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ABSTRACT

Skyline queries compute the set of Pareto-optimal tuples in
a relation, i.e., those tuples that are not dominated by any
other tuple in the same relation. Although several algo-
rithms have been proposed for efficiently evaluating skyline
queries, they either require to extend the relational server
with specialized access methods (which is not always fea-
sible) or have to perform the dominance tests on all the
tuples in order to determine the result. In this paper we
introduce SaLSa (Sort and Limit Skyline algorithm), which
exploits the sorting machinery of a relational engine to order
tuples so that only a subset of them needs to be examined
for computing the skyline result. This makes SaLSa particu-
larly attractive when skyline queries are executed on top of
systems that do not understand skyline semantics or when
the skyline logic runs on clients with limited power and/or
bandwidth.
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1. INTRODUCTION
The skyline of a relation r is the set of Pareto-optimal, or

undominated, tuples in r. According to the Pareto principle,
a tuple p dominates another tuple pi if p is at least as good
as pi on all the skyline attributes and strictly better than pi

on at least one attribute.
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Example 1 Consider the relation Hotels(Name, Price, Rat-
ing, Location) and the instance:

Name Price Rating Location
Jolly $ 30 2 sea
Continental $ 35 2 mountain
Excelsior $ 60 3 city
Rome $ 60 5 sea
Holiday $ 50 4 country
Capri $ 60 4 city

A skyline query over the attributes Price (to be minimized),
Rating (to be maximized), and Location, for which the most
preferred value is ‘sea’ whereas ‘city’ is the worst, will re-
turn hotels Jolly, Rome, and Holiday, since Jolly dominates
Continental (better price, same rating, better location) and
both Rome and Holiday dominate Excelsior and Capri. Us-
ing Preference SQL [11], this query can be expressed as:
SELECT *

FROM Hotels

PREFERRING LOWEST(Price) AND HIGHEST(Rating)

AND Location=‘sea’ ELSE Location<>‘city’ ✷

Skyline queries are a specific, yet relevant, example of pref-
erence queries [6, 10], and have been recognized as a useful
and practical way to make database systems more flexible in
supporting user requirements [5]. Consequently, there has
been a growing interest in algorithms for efficiently evalu-
ating skyline queries on large databases [4, 8, 13, 9]. With
respect to such works, which concentrate on how to imple-
ment the skyline operator within a database system, in this
paper we take a slightly different perspective on the prob-
lem, by addressing the following important issue: how can
skyline queries be efficiently computed if the underlying data
server has no knowledge at all of the skyline logic? In other
terms, how can an application, running on top of a standard
database system, evaluate a skyline query? Note that this
is precisely the problem that one has to face when using any
currently available commercial database system. The same
is true if one wants to provide skyline functionality on top
of a web-accessible data source.

In scenarios like these the only currently available alter-
native is to run a skyline algorithm on the client side, and
compute the result by requesting to the underlying data
source all the data in the target relation. For instance,
computing the skyline query in Example 1 would require
the client to fetch from the server holding the Hotels rela-
tion all its (presumably many) hotels. It should be observed
that, no matter how smart the skyline algorithm is designed,
this strategy will pay an excessive communication overhead,



which might nullify any effort spent in the implementation
of the skyline algorithm. This is particularly true for clients
with a limited bandwidth connection, as the following ex-
ample illustrates.

Example 2 Consider a skyline query issued by a wireless
client (e.g., a PDA) on a 802.11b network. If the relation
has 20,000 tuples, each of 100 bytes, and the effective data
transfer rate between the client and the server is 1 Mbps (1
Megabits per second),1 then shipping all the tuples to the
client will require about 15 seconds. On the other hand,
state-of-the-art algorithms can compute a 6-dimensional sky-
line on such relation in less than 1 second, i.e., 1 order of
magnitude faster (see also our experiments in Section 5). ✷

Motivated by above observations, in this paper we introduce
a novel algorithm, called SaLSa (Sort and Limit Skyline al-
gorithm). SaLSa takes from the SFS (Sort Filter Skyline)
algorithm by Chomicki et al. [8] the idea of pre-sorting the
input relation before running the filter step in which domi-
nance tests are executed. Thus, both SFS and SaLSa need
to perform a topological sort of the input data, and as such
both can progressively return undominated tuples as soon
as they discover them. However, while for SFS a “good”
sorting function is one that puts in the first positions those
tuples that are likely to dominate many other tuples, thus
leading to reduce the number of dominance tests, sorting
data in SaLSa is mainly used as a means to stop fetching
tuples from the input stream, thus effectively limiting the
number of tuples to be read. In other terms, SaLSa relies
on sorting functions that can guarantee that all tuples be-
yond a certain point in the input stream are dominated by
some already seen tuple. As an example, SaLSa is able to
determine the 10 tuples of a 3-dimensional skyline over the
NBA dataset by reading only 3783 tuples out of 17791, thus
saving 79% of the transfer cost (see Section 5 for description
of datasets and details on experiments). With numbers as
in Example 2, this would save about 11 seconds of transfer
time.

The rest of the paper is organized as follows. In Section 2
we review the semantics of a skyline query and algorithms
for its evaluation. Section 3 introduces the SaLSa algorithm.
Section 4 provides details on some implementation issues.
Section 5 presents experimental results on both real and
synthetic datasets, and Section 6 concludes.

2. SKYLINE ALGORITHMS
This section briefly reviews the definition of skyline and

existing algorithms for its evaluation.
Let R(A1, . . . , Ad) be a relation schema, and let dom(Aj)

be the domain of attribute Aj . Further, let D = dom(A1)×
. . . × dom(Ad). Let r be a relation over R, i.e., a set of
tuples, or d-dimensional points, from D. In the following,
the terms tuple and point will be used interchangeably.

The skyline of r, S = S(r), is the subset of points in r
that are Pareto-optimal.2 A point p is Pareto-optimal, or

1The nominal 802.11b bandwidth is 11Mbps, but this as-
sumes no traffic at all in the network. An effective 1Mbps
transfer rate is a realistic estimate for the case of moderate
traffic.
2For simplicity we consider that all attributes are involved in
the skyline. Generalization to the case where R also includes
non-skyline attributes is immediate.

undominated, iff there is no other point pi ∈ r that is not
worse than p on all attributes (or coordinates) and strictly
better than p on at least one attribute. Assuming without
loss of generality that on each attribute higher values are
better, and writing p ≻ pi to mean that p dominates pi, we
have:

S(r) = {p ∈ r :� ∃pi ∈ r : pi ≻ p} (1)

where:

p ≻ pi ⇔

�
d�

j=1

p [j] ≥ pi[j]

�
∧

�
d�

j=1

p [j] > pi[j]

�
(2)

and p [j] ≡ p.Aj is the value of p for attribute Aj . Ex-
tending the definition to the case of categorical attributes
(e.g., Location) is an easy task, which will be discussed in
Section 4.

Computing the skyline is equivalent to determine the max-
ima of a set of vectors, a well-known problem in computa-
tional geometry [14]. However, algorithms developed in that
field cannot be directly applied in a database scenario, since
they do not take into account main memory limitations.
This was observed in [4], where a divide and conquer al-
gorithm, D&C, suitable for external memory was proposed.
However, a recent analysis [9] shows that the average perfor-
mance of D&C deteriorates with increasing skyline dimen-
sionality, d. In [4] another algorithm, called Block Nested
Loops (BNL), is proposed. BNL allocates in main memory a
window W , and sequentially scans the input relation. When
a point p is read, it is compared to points in W . If p is dom-
inated by a point in W , then p is discarded, otherwise p is
inserted in W . If p dominates some points in W , these are
removed from W . In case the window saturates, a tempo-
rary file is used to store points that cannot be placed in W .
This file is used as the input to the next pass. Eventually
the algorithm terminates, since at the end of each pass the
size of the temporary file can only decrease.

The SFS (Sort Filter Skyline) algorithm [8] improves over
BNL by first sorting the input data according to decreasing
values of a monotone function F . This guarantees that if
F(p) ≥ F(pi), then pi will not dominate p, written pi �≻ p.
In other terms, using a monotone function corresponds to
perform a topological sort with respect to the Pareto dom-
inance criterion. Similarly to BNL, SFS keeps in W the
undominated points seen so far. However, the monotonicity
of F now guarantees that in the filter phase a new point pi

will never dominate an already seen point p, thus a point will
never be dropped from the window. This leads to three ma-
jor improvements with respect to BNL: 1) the management
of W largely simplifies, 2) points in the skyline can be pro-
gressively returned without having to wait for all the input
to be read, and 3) the number of passes of the filter phase
is optimal, i.e., ⌈|S|/|W |⌉. From the last observation it fol-
lows that, even for moderately large skylines, SFS will likely
complete in a single pass. Experimental results in [8] indeed
show that SFS runs (much) faster than BNL, and that it ex-
ecutes less dominance tests. In particular, this is achieved
by sorting data using their “volume” or, equivalently, their
“entropy” (see Section 3.1.2 for details).

LESS [9] is a recent improvement of SFS that integrates in
the first step of a standard external sort-merge algorithm an
elimination-filter window, so as to earlier discarding some
dominated tuples. Further, LESS combines the last merge
pass of the sorting algorithm with the first skyline-filter pass.



Although results in [9] show that LESS consistently outper-
forms SFS, LESS would not be applicable in scenarios in
which one has no direct control on the data server (thus on
the algorithm used to sort tuples). For the same reason, al-
gorithms like NN [12] and BBS [13] that rely on the existence
of specific access structures are not relevant here.

Even if not directly fitting the scenario considered in this
paper, it is worth mentioning skyline algorithms based on
a distributed access model [1, 3, 2]. Such algorithms work
by querying d independent subsystems, each managing a
specific skyline attribute and returning objects ordered ac-
cording to the preference on that attribute (e.g., minimize
the price). By iterating on the streams of incoming results,
the skyline can be computed by just looking at those objects
that are returned by at least one subsystem before a single
object p is returned by all subsystems. To perform all the
necessary dominance tests, thus to eventually determine the
actual skyline, missing attribute values for all candidate ob-
jects are then obtained through a series of random accesses,
each having as input the object identifier for which attribute
values are sought.

Although distributed skyline algorithms can indeed limit
the number of tuples to be transmitted from a server to
a client, applying them in a scenario where all skyline at-
tributes are managed by a single server would unnecessarily
incur a high overhead. First, the client should issue d inde-
pendent sub-queries, for each of which the server should per-
form a distinct sort of the input relation. Further, the client
should waste resources to join the results arriving from the
sub-queries. Finally, many other queries would be needed
for performing the random accesses, i.e., to retrieve missing
attribute values.

Considering all the above, and reminding that only algo-
rithms that can be run on top of standard database systems
are of interest in our scenario, it is evident that the best
currently available alternative is indeed SFS.

3. THE SALSA ALGORITHM
The algorithm we introduce, called SaLSa (for Sort and

Limit Skyline algorithm), builds on the basic idea that, if
the input relation r is sorted according to a suitably chosen
monotone function, then it is possible to determine the sky-
line of r without applying the skyline filter to all the points.
In general, this might drastically reduce the number of tu-
ples to be read and, depending on the specific instance and
sorting function, it might reduce the number of dominance
tests as well. Since SaLSa shares with SFS the idea of pre-
sorting the input relation, it also keeps all the SFS strengths:
simplified management of the window, incremental delivery
of results, and optimal number of passes of the filter phase.

We illustrate how SaLSa works when a single pass is suf-
ficient to complete the evaluation. Extension to the case
where skyline size exceeds the available main memory is
managed as in SFS, and not reported here for brevity.

SaLSa starts by initializing to r the set U of unread tuples.
It also makes use of a stop point, pstop, which is used to ear-
lier terminate reading tuples. Step 2 sorts U according to
decreasing values of a monotone function F . This is actu-
ally done by issuing the following standard, i.e., non-skyline,
SQL query to the server:
SELECT *

FROM R
ORDER BY F DESC

Each time a new point p is read from U , p is compared
against the current skyline S . If none of the points in S
dominates p (i.e., S �≻ p), p is inserted into S . This might
possibly trigger the update of the stop point (step 5). At
step 6 SaLSa checks if it has gained sufficient evidence to
conclude that no further point in U can be part of the sky-
line, i.e., all points in U are dominated by pstop (pstop ≻ U).
If this is so, the algorithm terminates.

Algorithm 1 SaLSa

1: S ← ∅, U ← r, stop ← false, pstop ← undefined
2: sort U according to F
3: while not stop ∧ U �= ∅ do
4: p ← get next point from U , U ← U \ {p}
5: if S �≻ p then S ← S ∪ {p}, update pstop

6: if pstop ≻ U then stop ← true

7: return S

Two key factors ultimately determine the actual perfor-
mance of SaLSa: the choice of the sorting function, which
might severely influence the number of tuples to be read, and
the strategy for choosing the stop point. Before analyzing
both issues, we introduce some basic terminology.

Assume that during the execution of SaLSa the last point
p read so far has value F(p) = l. We say that F is at level
l after reading p, and denote with l(F , r) the level at which
SaLSa eventually halts, also called the stop level of F on r.
Similarly, U(F , r) denotes the value of U when the algorithm
terminates.

When F is at level l, F(pi) ≤ l holds for each pi ∈ U . To
safely stop the execution one should guarantee that pstop ≻
pi for all unread points. This is done in SaLSa by considering
the unread domain at level l, defined as:

D(F , l) = {pi ∈ D : F(pi) ≤ l}. (3)

Therefore, when F is at level l it is U ⊆ D(F , l). Note that
D(F , l), unlike U , does not depend on the specific relation r.
Then, SaLSa can safely stop fetching tuples iff the following
is true:

∀pi ∈ D(F , l) : pstop ≻ pi (4)

The subset of the D domain that SaLSa has not explored
when it halts is denoted D(F , r) ≡ D(F , l(F , r)).

In principle, any monotone function can be used within
SaLSa. However, it is useless to use a function F if F is not
able to limit the tuples to be read. More precisely, we say
that F limits a relation r when U(F , r) �= ∅ and that F is
limiting if there exists at least a relation r for which U(F , r)
is not empty. Note that this is the same as saying that
D(F , r) is not always empty. Thus, only limiting sorting
functions are worth considering for SaLSa.

3.1 Symmetric Sorting Functions
It is not clear how one could analyze the whole space of

limiting functions by looking for the “best” one to use. For
instance, let d = 4, and functions F1 = A1 × (A2 + A3)

A4

and F2 = (A1 + A2) × ln A3 + A4. Is F1 better than F2?
Are they limiting? Can we provide an effective method to
check if pstop ≻ D(Fi, l) when Fi is at level l? Can the stop
point be efficiently updated? Is there any principled reason
why the attributes should be assigned different roles (e.g.,
A1 and A4 in F1)?



Being this the first work that addresses the problem of
using a sorting function to limit the number of tuples to
be read, we feel it is important to focus the attention on a
well-defined class of functions, which exhibit a key property
of symmetry.

Definition 1 A function F on d variables is symmetric iff
it is invariant under any permutation of the variables.

Intuitively, a symmetric function F does not privilege any
attribute over the others, i.e., all the attributes play the
same role. This seems to be a very natural requirements if
one uses F for computing the skyline, since by definition all
skyline attributes are equally important.

In the following we will only consider symmetric functions.
Further, in order to avoid unnecessary complications, we will
consider that all attribute values are normalized in the [0, 1]
range, i.e., ∀j : dom(Aj) = [0, 1]. Section 3.2 briefly touches
on the case of asymmetric functions, and Section 4 describes
how relations with arbitrary domains can be dealt with.

3.1.1 Choosing the Stop Point

A key factor affecting the performance of SaLSa is the
choice of the stop point, pstop. Clearly, a good stop point
should maximize the chance of stopping earlier the execu-
tion. Although one might suspect that the choice of the
stop point depends on the specific function used to sort the
points, rather surprisingly this is not the case for symmetric
functions. We first need the following result about symmet-
ric monotone functions.

Lemma 1 Let F be a symmetric monotone function and
assume F is at level l. Further, let M be the maximum
value such that l = F(M, 0, 0, . . . , 0) and assume M is finite.
Then, there is no point p for which both the following hold:
1) F(p) ≤ l, and 2) ∃j : p [j] > M .

Proof. Assume that both 1) and 2) hold. Since F is sym-
metric it is possible to arbitrarily choose the attribute Aj for
which p [j] > M . Then, let j = 1. Consider the point p′ =
(p [1], 0, 0, . . . , 0), i.e., p′[1] = p [1] and ∀j �= 1 : p′[j] ≤ p [j].
Then, by monotonicity of F , it is F(p′) ≤ F(p) ≤ l. This
contradicts the hypothesis that M is the maximum value for
which l = F(M, 0, 0, . . . , 0) holds. ✷

Theorem 1 Let F be any symmetric monotone function,
and let S be the current set of skyline points. For each point
pi ∈ S, let pi = minj{pi[j]}. The strategy that chooses the
stop point according to the following MaxiMin rule:

pstop = arg max
i∈S

{pi} (5)

with ties that can be arbitrarily broken, is optimal, i.e., there
is no other rule that on any relation can do better than the
MaxiMin rule.

Proof. Consider a rule that eventually chooses as stop point
pbad ∈ S such that pbad < pstop, where pstop is as in Equa-

tion 5. To prove the theorem we need to show that: 1)
whenever SaLSa halts due to pbad, then so it does due to
pstop, and 2) there exists at least a relation r for which SaLSa

using pstop can be stopped before than if using pbad.

1) Let pi be any point in the region, denoted as D(F , r)[pbad],
not explored by SaLSa when it halts by using pbad as
stop point. We have that pbad ≻ pi iff for each at-
tribute Aj it is pi[j] ≤ pbad[j], with at least one in-
equality being strict. From Lemma 1 we have that the
following does not depend on the specific attribute j:

max{pi[j] : pi ∈ D(F , r)[pbad]}

i.e., maximal attribute values in the unread domain
are the same on all attributes. Denote the above with
M . Then, pbad ≻ pi if M ≤ pbad[j] holds for each
attribute, with at least one strict inequality. There
are two cases to consider here. If ∃j : pbad[j] > pbad,
then the stop condition is equivalent to require that
M ≤ pbad. Alternatively, if ∀j : pbad[j] = pbad, then
we might stop only if M < pbad. Since pbad < pstop, in
both cases the result follows.

2) Immediate. ✷

The definition given by Equation 5 provide an efficient, O(1),
method for incrementally updating the stop point. Let pstop

be the current stop point. When a new point p is added to
the skyline, the stop point either remains unchanged or it is
set to p. This only depends on which among p and pstop is
maximum.

Example 3 Suppose the current skyline S consists of points
p1 = (.75, .4), p3 = (.3, .8), and p7 = (.05, .9) (the same data
are used in Example 4); then, it is p1 = 0.4, p3 = 0.3, p7 =
0.05, thus pstop = p1. If point p2 = (.55, .5) is added to S,
then p2 becomes the new stop point, since it is p2 = 0.5 >
0.4 = p1. ✷

Lemma 1 also provides an effective way to determine when
SaLSa can be stopped.

Theorem 2 Let pstop be the current stop point. Let F be
any symmetric monotone function, and assume F is at level
l. Further, let M be the maximum value such that l =
F(M, 0, 0, . . . , 0). If no such finite M exists, then set M =
∞. If M ≤ pstop then SaLSa can be stopped. Strict inequal-

ity is required only in the particular case that ∀j : pstop[j] =
pstop.

Proof. From Lemma 1 we know that no point p such that
F(p) ≤ l has an attribute value greater than M . This is
sufficient to conclude that p is dominated by pstop. ✷

3.1.2 Some Specific Sorting Functions

Although Theorem 1 shows that the stop point can be cho-
sen independently of the sorting function, this does not mean
that all sorting functions will behave equally well. In the fol-
lowing we consider some relevant cases of sorting functions,
and argument about their applicability. To avoid making
the problem trivial to solve, we exclude from the analysis
those (unrealistic) instances that include the “ideal” point
1 = (1, . . . , 1), and consider only skylines over at least 2
dimensions, i.e., d ≥ 2.



3.1.2.1 Sorting by Volume.
The first symmetric monotone function we consider is the

one based on the “volume” of the points, as originally pro-
posed by the authors of SFS in [7]:

vol[0](p) =

d�
j=1

p [j]

We will shortly explain why we denote the function as vol[0]
rather than simply as vol. The rationale of using vol[0],
which also justifies its name, is that if points are uniformly
distributed over D, then vol[0](p) is the volume of the region
dominated by p. Then, fetching first points with higher
volume increases the chance of early discarding many other
points, thus reducing the overall number of comparisons.
Since SFS is not concerned with the problem of limiting the
number of points to be read, no analysis on the effectiveness
of using vol[0] for this purpose was given in [7] and [8].

Observation 1 The vol[0] sorting function is not limiting.

Intuitively, vol[0] is not limiting since, for any level l, D(F , l)
includes points that are maximal on one or more attributes.
Without loss of generality assume d = 2. Let p1 = (1, p1[2])
and p2 = (p2[1], 1). For any value of the current vol[0] level
it is possible to choose values for p1[2] and p2[1] such that
both p1 and p2 are in U . Then, the only point that can
dominate both is the ideal point 1. The arguments can
be easily generalized to an arbitrary number of attributes
d by considering d points, each one maximal on a different
attribute.

Technically, to make the volume function limiting one has
to exclude the 0 value from the domain. To this end, con-
sider the function vol[1](p) =

�d

j=1
(p [j] + 1).3 If we have,

say, a 2-dimensional skyline, now there is a chance of halting
SaLSa execution as soon as the level of vol[1] reaches a value
l < 2. This is because l < 2 guarantees that no point with
maximal values either on A1 or on A2 is still unread. Such
arguments are generalized as follows.

Observation 2 Consider the function

vol[m](p) =
d�

j=1

(p [j] + m) (m > 0).

Then l(vol[m], r) < (m + 1)md−1 for any relation r.

Proof. (sketch) Each vertex v of the hypercube [0, 1]d with
coordinates (0, . . . , 0, 1, 0, . . . , 0), for which it is vol[m](v) =
(m + 1)md−1, needs to be excluded from U , otherwise the
arguments used for Observation 1 would apply here. ✷

A detailed analysis of the effect of m on the limiting power
of vol[m] is beyond the scope of this paper and is left as a
subject for future work. However, it is instructive to have
some intuition about “how much”, in geometrical terms, one
can expect to limit. For this, consider the point p on the

3SFS actually implements the entropy function, E(p) =�d

j=1
log(p [j] + 1), which also avoids to incur into overflow

problems. In [7] it is asserted that E yields the same order
as vol[0]. This is not true, since E produces the same order
of vol[1], which in general is different from that induced by
vol[0].

main diagonal of the hypercube for which it is vol[m](p) =
(m + 1)md−1 = md(m + 1)/m. For each attribute Aj it

is p [j] = m( d
�

(m + 1)/m − 1). Thus, even for moderately
large values of d, p is already quite close to the worst possible
point, i.e., (0, . . . , 0), yet vol[m] cannot discard it.

In the following we will only consider vol[1], and will de-
note it as vol for simplicity.

3.1.2.2 Sorting by Sum of Coordinates.
An obvious alternative to vol is to sum (rather than to

multiply) attribute values, that is:

sum(p) =
d	

j=1

p [j]

Observation 3 The sum sorting function is limiting and
l(sum, r) < 1.

This immediately follows from Theorem 2. Assume that r
has a point pstop with pstop = x, 0 < x < 1. Then, SaLSa

can be halted as soon as the current level l ≤ x, since for
any point p ∈ D(sum, x) it is ∀j : p [j] ≤ x, with at least an
inequality which is guaranteed to be strict.

3.1.2.3 Maximum Coordinate Sort.
Arguments used to show that sum is limiting can be used

to show that many other functions are limiting as well. It
is therefore natural to ask if there is an “optimal” sorting
function, i.e., a function that on any instance r can limit r
more than any other function. The answer is affirmative,
and such optimal function, max, is defined as:

max(p) = (max
j

{p [j]}, sum(p))

Therefore, max first sorts points considering for each of them
the maximum coordinate value. Then, in case of ties, a sum
on the skyline attributes is used. Note that this is needed
only to guarantee the monotonicity of max, and that other
monotone tie-breaking rules are possible here (e.g., vol).

Clearly, max is limiting, since when pstop = x, 0 < x < 1,
SaLSa can be stopped as soon as it fetches a point for which
it is l ≤ x.4

Theorem 3 For each relation r and any symmetric sorting
function F different from max it is: D(F , r) ⊂ D(max, r),
thus U(F , r) ⊆ U(max, r).

Proof. (sketch) The optimality of max follows from simple
geometric arguments and the observation that, due to The-
orem 1, all symmetric limiting sorting function will eventu-
ally limit r using the same stop point pstop, with pstop = x,
0 < x < 1. This is to say that maximal attribute val-
ues in the unread domain D(F , r) are equal to x, indepen-
dently of F . Let F �= max. Since F is monotone, then
D(F , r) ⊂ [0, x]d ≡ D(max, r). The second part of the theo-
rem, U(F , r) ⊆ U(max, r), immediately follows. The equal-
ity case has also to be considered here, since it is possible
that r has no point in D(max, r) \ D(F , r). ✷

We conclude this section by observing that the limiting
and the filtering power of a sorting function F , the latter

4Strict inequality is required only in the particular case when
∀j : pstop[j] = x and duplicates are possible.



referring to the impact F has on the effectiveness of the fil-
ter phase in which dominance tests are executed, are not
necessarily positively correlated. This is also to say that,
given functions F1 and F2, it might well be the case that
U(F1, r) ⊂ U(F2, r), yet sorting data using F1 leads to exe-
cute less dominance tests than using F2.

Example 4 As an example of how the different sorting func-
tions operate, we show below the case of a 2-dimensional
skyline over a relation with 8 points. The skyline consists of
points p1, p2, p3, and p7 (marked with an asterisk in the ta-
bles). The stop point is point p2 = (.55, .5), with p2 = .5. In
the left-most table we see that sorting by vol (actually vol[1])
cannot avoid reading all the points. Indeed, after reading p8

the level of vol is 1.54 = (.4 + 1) × (.1 + 1). From this one
derives that the maximum possible value on either A1 or A2

is .54 > .5, thus also the last point p6 has to be read.
Sorting by sum allows halting the execution without read-

ing point p6. After reading p8, the level of sum is l = .5,
which is sufficient to conclude that all skyline points have
been seen. Note that in this particular case sum and vol

yield the same order.
Finally, sorting by max allows SaLSa to stop before reading

p5. Although p8 is in the region dominated by the stop point,
SaLSa cannot avoid reading it. Indeed, before reading p8, the
level of max is .55, and from this one cannot exclude that a
skyline point, say (.4, .52), exists.

As to dominance tests, it can be verified that both vol and
max execute 11 comparisons, whereas sum performs only 10
tests to determine the skyline. ✷

A1 A2

p1(
∗) .75 .4

p3(
∗) .3 .8

p2(
∗) .55 .5

p4 .3 .7
p7(

∗) .05 .9
p5 .3 .35
p8 .4 .1
p6 .2 .25

vol

A1 A2

p1(
∗) .75 .4

p3(
∗) .3 .8

p2(
∗) .55 .5

p4 .3 .7
p7(

∗) .05 .9
p5 .3 .35
p8 .4 .1
p6 .2 .25

sum

A1 A2

p7(
∗) .05 .9

p3(
∗) .3 .8

p1(
∗) .75 .4

p4 .3 .7
p2(

∗) .55 .5
p8 .4 .1
p5 .3 .35
p6 .2 .25

max

3.2 Lexicographic Sort and Asymmetric
Functions

In this section we try to shed some light on what the
use of an asymmetric sorting function is going to change in
the choice of the stop point and in the logic for halting the
execution of SaLSa. We start with the well-known case of
lexicographic sort.

A popular way to sort data is by first ordering them ac-
cording to A1 values, then breaking ties using A2, and so on.
According to this lexicographic sort, each point is assigned
the (vector) value:

lex(p) = (p [1], . . . , p [j], . . . , p [d])

and we write lex(p) > lex(pi) if p precedes pi in the lexico-
graphic order. Note that lexicographically sorting only on a
proper subset of skyline attributes would not yield a mono-
tone order in case of ties on the sorting attributes. This is
to say that we could have pi ≻ p even if p has been read
before than pi.

Since lex is not symmetric, arguments used in Section 3.1
do not apply here. In particular, the choice of the stop
point cannot be based on the MaxiMin rule described in
Theorem 1. Consider a point p = (p [1], . . . , p [k], 1, . . . , 1),
i.e., p is maximal on attributes k + 1, . . . , d. Then, p can be
used to stop the execution as soon as SaLSa reads a point pi

such that pi[j] = 0, 1 ≤ j < k, and pi[k] ≤ p [k].5 The same
holds even when k = d, in which case one must wait to read
a point pi = (0, . . . , 0, pi[d]), pi[d] ≤ p [d] before being able
to stop. The following result summarizes such observations.

Theorem 4 Let S be the current set of skyline points. For

each point pi ∈ S, consider its “reversed” version,
←
pi=

(pi[d], . . . , pi[1]). Then, the strategy that chooses the stop
point according to the following ReverseLex rule:

pstop = arg max
i∈S

{lex(
←
pi)} (6)

is optimal for lex.

Rather surprisingly, above theorem says that the best point
to use for stopping the execution is indeed the one that
is optimal when the priority of attributes is reversed with
respect to the one adopted for sorting.

We now turn to consider the case when F is a generic
asymmetric sorting function. For the sake of definiteness,
assume F is real valued, F(p) ∈ ℜ. The basic observation
is now that when F is asymmetric, it is no longer true that
maximal values of points in the unread domain at level l,
D(F , l), are the same for all attributes, thus results in Sec-
tion 3.1 need to be generalized. This can be done as follows.

For point pi define its j-th stop level as:

li[j] = F(0, . . . , 0, pi[j], 0, . . . , 0)

and li = minj{li[j]}. Note that when the level of F is l ≤ li
we have that, for each j, the maximal value of Aj in D(F , l),
Mj , is guaranteed to be not higher than pi[j], Mj ≤ pi[j].
Then, we can generalize the MaxiMin rule of Theorem 1 by
choosing as stop point:

pstop = arg max
i∈S

{li} (7)

For instance, let F = 1.2A1 + A2 + 2A3 and consider points
p1 = (.3, .7, .5) and p2 = (.6, .4, .3). We have l1 = (.36, .7, 1)
and l2 = (.72, .4, .6), thus l1 = .36 and l2 = .4, from which
we conclude that the stop point is p2 and that we must wait
F to reach level l ≤ .4 before being able to stop.

4. MAKING SALSA TO WORK
In this section we briefly describe how some practical is-

sues that arise when implementing SaLSa on top of a real
DBMS can be dealt with.

In our discussion, we have assumed that all skyline at-
tributes have the numerical domain [0, 1]. This was only
done with the aim to simplify the presentation of results.
However, in real cases each attribute might likely have a
different, specific, domain. For instance, in Example 1 the
domain of the Price attribute is the set of real numbers,
while the domain of Rating is the set of integers from 1 to
5. Further, the domain of Location is not even numeric.

5The last should be a strict inequality only if p [j] = 0,
1 ≤ j < k.



For arbitrary numerical domains the problem can be eas-
ily solved as follows. Given a skyline attribute Aj , one first
determines the maximum, maxj , and minimum, minj , val-
ues of Aj , after that it normalizes values in the [0, 1] range
by using in the function F

Aj − minj

maxj −minj

in place of Aj (or complementing to 1 the above if Aj has to
be minimized). The specific method used for determining
maxj and minj can vary depending on the specific scenario
at hand. For instance, both values might be derivable from
the semantics of the application, or they could be obtained
from the server catalogs and then cached in the client to be
reused in other queries.

Consider now the case of categorical attributes. The pref-
erences we consider always induce a weak order over at-
tribute values. This is to say that a preference on attribute
Aj implicitly defines a number n of “levels”, L1, . . . , Ln, on
the domain of Aj . For instance, the preference over the Lo-
cation attribute in Example 1 induces the order: ‘sea’ ≻
{all other values but ‘city’} ≻ ‘city’, which consists of n = 3
levels. Note that a value at level Li is better than any value
at level Lj , j > i.

Preferences of this kind cannot be directly embedded in
an ORDER BY clause, since the SQL standard does not
provide any means to order categorical attributes in an ar-
bitrary way. The approach we take is to map the preference
levels into n different numerical values, x1, . . . , xn ∈ [0, 1],
such that Li ≻ Lj leads to xi > xj . A basic way for doing
this is to set xi = (n − i)/(n − 1), thus the first level has
value 1 and the worst has value 0.

In order to provide a numerical value that can be inserted
into an ORDER BY clause, one can use CASE expressions,
which are part of the SQL99 standard. Putting all together,
the query in Example 1 would be transformed in the stan-
dard SQL query (assuming to use sum as sorting function
and that hotels’ prices range from 20 to 300 dollars):
SELECT * FROM Hotels

ORDER BY ((300-Price)/280 + (Rating-1)/4 +

CASE Location WHEN ‘sea’ THEN 1

WHEN ‘city’ THEN 0

ELSE 0.5 END) DESC

Finally, the max sorting function can be easily imple-
mented within a DBMS as a user-defined function (UDF). In
our experimental setup we followed this approach and imple-
mented max as a binary C UDF within IBM DB2 UDB. The
computation of max over 3 or more attributes was done by
nesting the function calls (e.g., max(A1, max(A2, A3))).

5. EXPERIMENTAL RESULTS
We experimented with the SaLSa and the SFS algorithms

using both synthetic and real datasets:

Synthetic: We used the synthetic data generator provided
by the authors of [4], creating 3 different datasets (uni-
form, correlated, and anti-correlated), each consisting
of 500,000 tuples with 6 real attributes. A dummy
attribute was also added, so as to have tuples of 100
bytes. Datasets like these are commonly used to eval-
uate performance of skyline algorithms.

Real: We downloaded from www.basketballreference.com

the NBA dataset. This dataset consists of 19,112 tu-

ples containing statistics of basketball players during
regular seasons in the period [1946–2005]. Multiple tu-
ples are present for players that have switched teams
during the season (one for each team + one total),
thus we deleted the ‘total’ tuples from the set, obtain-
ing 17,791 tuples. For each player, we only retained
some of his statistics, namely number of games played
during the season (gp), points scored (pts), total re-
bounds (reb), assists (ast), field goal made (fgm), and
free throws made (ftm). Other statistics were not used
since they were not available for all players, e.g., steals
were not considered before 1973. The resulting tuple
size is 210 bytes.

All datasets were bulk-loaded into the DB2 Universal DataBase
V8.1, running on a Pentium IV 3.4 GHz PC equipped with
512 MB of main memory and a 80GB Samsung SP0812C
hard drive, under the Windows XP Professional operating
system. SaLSa and SFS were implemented in Java on a client
machine.

Since for all the experiments we performed the size of
the skyline was sufficiently small (at most 29,295 100-bytes
points) to be entirely contained in the client main memory,
no temporary file was ever needed (i.e., both SaLSa and SFS

always completed in a single pass).
In the first experiment we wanted to establish the perfor-

mance of the vol, sum, and max sorting functions in limiting
the input relation. To this end, we consider the normalized
Limiting Power (nLP ), which measures how many useless
points are pruned when using a given sorting function. nLP
is defined as the number of unread tuples, |U|, divided by
the number of points not in the skyline, |r| − |S|:

nLP =
|U|

|r| − |S|
(8)

The range of nLP is [0,1], with higher values meaning better
limiting performance.

Values of nLP over the synthetic datasets are shown in
Figure 1 as a function of the number of skyline attributes.
Clearly, when increasing the number of attributes, finding
the skyline becomes more difficult, thus nLP decreases. A
remarkable exception is the behavior of max on the corre-
lated dataset, in which nLP is almost independent on the
number of attributes and always remains well above 99%.
When comparing the different sorting functions, it is evi-
dent that max obtains for all distributions much higher nLP
values than sum, which in turn always limits more than vol.
The figures also include results for a mixed dataset, consist-
ing of 500,000 tuples, half of which are anti-correlated and
half of which are uniformly distributed in the [0, 0.5]d do-
main. Thus, mixed simulates the case where the “front” of
the dataset is anti-correlated, after which several other tu-
ples follow. Their actual distribution is indeed almost imma-
terial, the relevant thing being that such tuples are all likely
to be dominated by some other tuple in the front. We found
this kind of mixed distribution more similar than any of the
other three synthetically generated to what real data actu-
ally look like, an example of which is given in Figure 4. This
kind of distribution is the one on which both sum and vol

exhibit their best limiting power, whereas max performance
stays between that of uniform and anti-correlated datasets.
In particular, with d = 6 attributes, max still prunes about
56% (≈ 270,000) tuples.
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Figure 1: Normalized Limiting Power (nLP ) for the sum (a), the max (b), and the vol (c) sorting functions as
a function of the number of attributes.

While nLP measures the amount of work saved for re-
trieving tuples from the data server, to express the amount
of work saved by the client during the computation of the
skyline we introduce the normalized Filtering Power (nFP ).
We computed the number of actual dominance tests, dt,
and normalized it by the maximum number of comparisons,
which equals



|S|
2

�
+ |S|(|r| − |S|). Then, nFP is just the

complement to 1 of this quantity, i.e.:

nFP = 1 −
dt


|S|
2

�
+ |S|(|r| − |S|)

(9)

Figure 2 shows that the max sorting function, which is
the clear winner when limiting is considered, has a variable
behavior in reducing the number of comparisons. In partic-
ular this is true when increasing the number of attributes,
in which case the function with the best filtering power is
sum, followed by vol and then by max.

Figure 3 shows the percentage of dominance tests that
each function leads to execute, when compared to SFS using
the same function. Thus, with respect to Figure 2, now one
can appreciate the actual effect that limiting the input has
on the filtering phase. Clearly, for a given function, the
relative Filtering Power :

rFP =
dt(SaLSa)

dt(SFS)

of SaLSa with respect to SFS is always ≤ 1, since SaLSa

never executes more dominance tests than SFS. For all func-
tions rFP tends to 1 as the number of attributes increases,
with the exception of max over uniform and correlated datasets.
However, the ratio of dominance tests tending to 1 does not
mean that SaLSa and SFS execute the same number of com-
parisons. For instance, with d = 6 attributes and using max,
SaLSa saves about 6.6×106 tests on the mixed and 107 tests
on the anti-correlated datasets, respectively.

Then, we analyzed the performance of SFS and SaLSa

on the NBA real dataset. For this set of experiments we
considered only SFS using the vol function. The attributes
were considered in the following order: gp, pts, reb, ast, fgm,
and ftm. To provide a graphical intuition about the dataset,
Figure 4 shows the projection of the 17,791 tuples over the
reb and the ast attributes. As anticipated, it is hard to
model this kind of distribution with one of the three “basic”
synthetic datasets (uniform, correlated, and anti-correlated)
that are commonly used to benchmark skyline algorithms.
The mixed dataset we introduced indeed seems to provide a
better fit of what one can expect in real situations.
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Figure 4: Visual analysis of correlation between
reb/ast attributes in the NBA dataset.

Graphs in Figure 5 show, respectively, the number of
fetched tuples and of comparisons for the four methods un-
der analysis (SFS with vol, SaLSa with vol, sum, and max).

Results in Figure 5 (a) demonstrate that SaLSa is in-
deed highly effective in reducing the number of tuples to
be fetched from the data server. For instance, even with 6
attributes SaLSa using max correctly computes the skyline
without having to read about 5,500 tuples out of 17,791.
Only slightly worse is the performance when either vol or
sum is used, both pruning about 4,000 tuples. It is worth
noting that the jump observed in the graphs of all SaLSa

variants when d = 4 is mainly due to the insertion of the
ast attribute, which has a very low correlation with reb (see
Figure 4).

As to the number of comparisons (Figure 5 (b)), all solu-
tions are somewhat comparable for a number of attributes
d ≥ 4, whereas for 2 and 3 attributes max is clearly the most
effective method. For instance, when d = 2, max executes
only 3,193 comparisons versus the 20,234 of SFS.

Finally, we evaluated actual computation times for the
SFS and the SaLSa algorithms on the NBA dataset. In par-
ticular, we considered sorting times, i.e., the time needed by
the data server to sort the data, filtering times, i.e., the time
spent by the client in computing the skyline, and commu-
nication times, i.e., the time needed to transmit data from
the server to the client. The client used in the experiments
was a PC with the same HW characteristics of the data
server, whereas we simulated the use of a wireless 802.11b
connection with a realistic actual transfer rate of 1Mbps (see
Footnote 1).
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Figure 2: Normalized Filtering Power (nFP ) for SaLSa, using sum (a), max (b), and vol (c) for sorting, as a
function of the number of attributes.
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Figure 3: Relative Filtering Power (rFP ) of SaLSa wrt SFS, using sum (a), max (b), and vol (c) for sorting, as
a function of the number of attributes.

Sorting and filtering costs are shown in Figure 6 (a) and
(b), respectively. It can be observed that, albeit max is the
best solution for both limiting and filtering points, its sorting
time is the highest one. In particular, the sorting time grows
linearly for max, whereas it stays almost constant when vol

or sum is used. From this we conclude that when d = 2 we
are just paying the overhead of invoking a user-defined func-
tion in DB2, whereas the linear trend only depends on our
binary implementation of max, which makes such overhead
linearly dependent on d.

When communication costs are considered, the higher num-
ber of tuples that SFS needs to fetch from the server has a
major impact, and the limiting power becomes predominant
in determining the overall performance. Thus, as Figure 6
(c) shows, SFS is the worst among the considered solutions,
while the best limiting power of max wrt sum and vol makes
sorting by the maximum coordinate value the cheapest al-
ternative along the full range of considered dimensionalities.

To study the impact of different transfer rates on the total
elapsed time, we considered computing the skyline over 4 at-
tributes and varied the transfer rate between the data server
and the client in the range [1,100] Mbps. Figure 7 shows to-
tal computation times for the three SaLSa variants, normal-
ized with respect to SFS costs: in the range of considered
transfer rate values SaLSa always performs better than SFS

(normalized costs are always less than 1), and only when
communication is very fast (100 Mbps) the higher sorting
costs of max outweigh the higher number of fetched tuples
of sum and vol, making these two slightly better than max.

Finally, we observe that in the above experiments we have
considered a client with the same computing capabilities of
the server. Had we experimented with a slower client, the
net effect would have been a relative increase of filtering

with respect to sorting times, thus a further increase in per-
formance of SaLSa variants with respect to SFS.

6. CONCLUSIONS
In this paper we have introduced SaLSa, a novel algorithm

for computing the skyline of a relation. With respect to pre-
vious algorithms, SaLSa innovative feature is the ability of
computing the correct result without having to apply domi-
nance tests to all the objects in the relation. This is achieved
by pre-sorting the data using a monotone limiting function,
and then checking that unread data are all dominated by
a so-called stop point. Experimental results show that this
strategy is indeed effective, thus particularly attractive when
one has no direct control on the data server or when the sky-
line logic runs on a client with limited bandwidth connec-
tion. Incidentally, the idea of limiting the amount of data
to be read by exploiting the value of a monotone function is
also used by the recent SUBSKY algorithm [15] for comput-
ing skylines in subspaces. However, being SUBSKY based
on a fixed ordering for each attribute, it cannot be used for
arbitrary preference specifications (e.g., the one on Location
in Example 1).

In this paper we have considered three specific symmetric
sorting functions, namely volume (vol), sum of coordinates
(sum), and maximum coordinate (max), and proved that the
latter has an optimal limiting performance. In the future,
we would like to better understand the interplay between
the limiting power of a sorting function and its effectiveness
in reducing the number of dominance tests. A further in-
teresting issue would be to understand how information on
data distribution could be exploited to dynamically choose
the best, possibly asymmetric, sorting function to use.



0

20

40

60

80

100

120

140

160

180

200

gp+pts +reb +ast +fgm +ftm

attributes

s
o
rt

in
g
 t
im

e
 (

m
s
e
c
)

SFS-vol

SaLSa-sum

SaLSa-max

SaLSa-vol

(a)

0

20

40

60

80

100

120

140

160

180

200

gp+pts +reb +ast +fgm +ftm

attributes

fil
te

ri
n
g
 t
im

e
 (

m
s
e
c
)

SFS-vol

SaLSa-sum

SaLSa-max

SaLSa-vol

(b)

0

5

10

15

20

25

30

35

gp+pts +reb +ast +fgm +ftm

attributes

to
ta

l e
la

p
s
e
d
 t
im

e
 (

s
e
c
)

SFS-vol

SaLSa-sum

SaLSa-max

SaLSa-vol

(c)

Figure 6: Elapsed times on the NBA dataset as a function of the number of attributes: sorting (a), filtering
(b), and total (c).
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Figure 5: Number of fetched tuples (a) and of com-
parisons (b) as a function of the number of attributes
for the NBA dataset.

Finally, although SaLSa was conceived as a client-side al-
gorithm, the idea of limiting the input could be applied to
enhance the performance of server-side algorithms as well.
Towards this direction we plan to integrate SaLSa with LESS [9],
which is nowadays the best server-side algorithm when no
indices are available.
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