
Open access to the Proceedings of

the 15th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by USENIX.

Salsify: Low-Latency Network Video
through Tighter Integration between a Video

Codec and a Transport Protocol
Sadjad Fouladi, John Emmons, and Emre Orbay, Stanford University;

Catherine Wu, Saratoga High School;

Riad S. Wahby and Keith Winstein, Stanford University

https://www.usenix.org/conference/nsdi18/presentation/fouladi

This paper is included in the Proceedings of the

15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Salsify: Low-Latency Network Video Through Tighter Integration

Between a Video Codec and a Transport Protocol

Sadjad Fouladi◦ John Emmons◦ Emre Orbay◦

Catherine Wu+ Riad S. Wahby◦ Keith Winstein◦

◦Stanford University, +Saratoga High School

Abstract

Salsify is a new architecture for real-time Internet video

that tightly integrates a video codec and a network trans-

port protocol, allowing it to respond quickly to changing

network conditions and avoid provoking packet drops

and queueing delays. To do this, Salsify optimizes the

compressed length and transmission time of each frame,

based on a current estimate of the network’s capacity; in

contrast, existing systems generally control longer-term

metrics like frame rate or bit rate. Salsify’s per-frame

optimization strategy relies on a purely functional video

codec, which Salsify uses to explore alternative encodings

of each frame at different quality levels.

We developed a testbed for evaluating real-time video

systems end-to-end with reproducible video content and

network conditions. Salsify achieves lower video delay

and, over variable network paths, higher visual quality

than five existing systems: FaceTime, Hangouts, Skype,

and WebRTC’s reference implementation with and with-

out scalable video coding.

1 Introduction

Real-time video has long been a popular Internet

application—from the seminal schemes of the 1990s [26,

10] to today’s widely used videoconferencing systems,

such as FaceTime, Hangouts, Skype, and WebRTC. These

applications are used for person-to-person videoconfer-

encing, cloud video-gaming, teleoperation of robots and

vehicles, and any setting where video must be encoded

and sent with low latency over the network.

Today’s systems generally combine two components: a

transport protocol and a video codec. The transport sends

compressed video to the receiver, processes acknowledg-

ments and congestion signals, and estimates the average

data rate of the network path. It supplies this estimate to

the codec, a distinct module with its own internal control

loop. The codec selects encoding parameters (a frame rate

and quality setting) and generates a compressed video

stream with an average bit rate that approximates the

estimated network capacity.

In this paper, we explore and evaluate a different design

for real-time Internet video, based on a video codec that

Video delay Video quality
95th %ile vs. Salsify-1c SSIM vs. Salsify-1c

System (lower is better) (higher is better)

Salsify-1c [449 ms] [15.4 dB]

FaceTime 2.3× −2.1 dB

Hangouts 4.2× −4.2 dB

Skype 1.2× −6.9 dB

WebRTC 10.5× −2.0 dB

WebRTC (VP9-SVC) 7.9× −1.3 dB

Figure 1: Performance of Salsify (single-core version) and other

real-time Internet video systems over an emulated AT&T LTE

network path. Full results are in Section 5.

is integrated tightly into the rest of the application. This

system, known as Salsify, combines the transport proto-

col’s packet-by-packet congestion control with the video

codec’s frame-by-frame rate control into one algorithm.

This allows Salsify to avoid provoking in-network buffer

overflows or queueing delays, by matching its video trans-

missions to the network’s varying capacity.

Salsify’s video codec is implemented in a purely func-

tional style, which lets the application explore alternative

encodings of each video frame, at different quality levels,

to find one whose compressed length fits within the net-

work’s instantaneous capacity. Salsify eschews an explicit

bit rate or frame rate; it sends video frames when it thinks

the network can accommodate them.

No individual component of Salsify is exactly new or

was co-designed expressly to be part of the larger system.

The compressed video format (VP8 [36]) was finalized in

2008 and has been superseded by more efficient formats in

commercial videoconferencing programs (e.g., VP9 [14]

and H.265 [32]). Salsify’s purely functional implementa-

tion of a VP8 codec has been previously described [9], its

loss-recovery strategy is related to Mosh [38, 37], and its

rate-control scheme is based on Sprout [39].

Nonetheless, as a concrete system that integrates these

components in a way that responds quickly to network

variation without provoking packet loss or queueing de-

lay, Salsify outperforms the commercial state of the art—

Skype, FaceTime, Hangouts, and the WebRTC implemen-

tation in Google Chrome, with or without scalable video

coding—in terms of end-to-end video quality and delay

(Figure 1 gives a preview of results).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 267

These results suggest that improvements to video

codecs may have reached the point of diminishing returns

in this setting, but changes to the architecture of video

systems can still yield significant benefit. In separating

the codec and transport protocol at arm’s length—each

with its own rate-control algorithm working separately—

today’s applications reflect current engineering practice

in which codecs are treated largely as black boxes, at the

cost of a significant performance penalty. Salsify demon-

strates a way to integrate these components more tightly,

while preserving an abstraction boundary between them.

This paper proceeds as follows. Section 2 discusses

background information on real-time video systems and

related work. We describe the design and implementation

of Salsify in Section 3 and of our measurement testbed for

black-box video systems in Section 4. Section 5 presents

the results of the evaluation. We discuss the limitations of

the system and its evaluation in Section 6.

We also performed two user studies to estimate the

relative importance of quality and delay on the subjective

quality of experience (QoE) of real-time video systems.

These results are described more fully in Appendix A.

Salsify is open-source software, and the experiments

reported in this paper are intended to be reproducible. The

source code and raw data from the evaluation are available

at https://snr.stanford.edu/salsify.

2 Related work

Adaptive videoconferencing. Skype and similar pro-

grams perform adaptive real-time videoconferencing over

an Internet path, by sending user datagrams (UDP) that

contain compressed video. In addition to Skype, such

systems include FaceTime, Hangouts, and the WebRTC

system, currently in development to become an Internet

standard [1]. WebRTC’s reference implementation [35]

has been incorporated into major Web browsers.

These systems generally include a video codec and

transport protocol as independent subsystems, each with

its own rate-control logic and control loop. The transport

provides the codec with estimates of the network’s data

rate, and the video encoder selects parameters (including

a frame rate and bit rate) to match its average bit rate

to the network’s data rate. Salsify, by contrast, merges

the rate-control algorithm of each component into one,

leveraging the functional nature of the video codec to keep

the length of each compressed frame within the transport’s

instantaneous estimate of the network capacity.

Joint source-channel video coding. The IEEE multi-

media communities have extensively studied low-latency

real-time video transmission over digital packet networks

(a survey is available in Zhai & Katsaggelos [45]). The

bulk of this work targets heavily-multiplexed networks,

where data rates are treated as fixed or slowly varying,

and packet loss and queueing delay can be modeled as

random processes independent of the application’s own

behavior (e.g., [5]). In this context, prior work has focused

on combining source coding (video compression) with

channel coding (forward error correction) in order for the

application to gracefully survive packet drops and delays

caused by independent random processes [45].

Salsify is aimed at a different regime, more typical of

today’s Internet access networks, where packet drops and

queueing delays are influenced by how much data the ap-

plication chooses to send [39, 13], the bottleneck data rate

can decay quickly, and forward-error-correction schemes

are less effective in the face of bursty packet losses [33].

Salsify’s main contribution is not in combining video cod-

ing and error-correction coding to weather packet drops

that occur independently; it is in merging the rate-control

algorithms in the video codec and transport protocol to

avoid provoking packet drops (e.g., by overflowing router

buffers) and queueing delay with its own traffic.

Cross-layer schemes. Schemes like SoftCast [19] and

Apex [30] reach into the physical layer, by sending analog

wireless signals structured so that video quality degrades

gracefully when there is more noise or interference on

the wireless link. Much of the IEEE literature [45] also

concerns regimes where modulation modes and power

levels are under the application’s control. Salsify is also

designed to degrade gracefully when the network deterio-

rates, but Salsify isn’t a cross-layer scheme in the same

way—it does not reach into the physical layer. Like Skype,

FaceTime, etc., Salsify sends conventional UDP data-

grams over the Internet.

Low-latency transport protocols. Prior work has de-

signed several transport protocols and capacity-estimation

schemes for real-time applications [21, 18, 39, 17, 6].

These schemes are often evaluated with the assumption

that the application always has data available to the trans-

port, allowing it to run “full throttle”; e.g., Sprout’s eval-

uation made this assumption [39]. In the case of video

encoders that produce frames intermittently at a particular

frame rate and bit rate, this assumption has been criticized

as unrealistic [16]. Salsify’s transport protocol is based on

Sprout-EWMA [39], but enhanced to be video-aware: the

capacity-estimation scheme accounts for the intermittent

(frame-by-frame) data generated by the video codec.

Scalable or layered video coding. Several video for-

mats support scalable encoding, where the encoder pro-

duces multiple streams of compressed video: a base layer,

followed by one or more enhancement layers that improve

the quality of the lower layers in terms of frame rate, res-

olution, or visual quality. Scalable coding is part of the

H.262 (MPEG-2), MPEG-4 part 2, H.264 (MPEG-4 part

10 AVC) and VP9 systems. A real-time video application

may use scalable video coding to improve performance

over a variable network, because the application can dis-

268 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://snr.stanford.edu/salsify

card enhancement layers immediately in the event of con-

gestion, without waiting for the video codec to adapt.

(Improvements in quality, however, must wait for a coded

enhancement opportunity.) Scalability is particularly use-

ful in multiparty videoconferences, because it allows a

relay node to adapt a sender’s video stream to different

receiver network capacities by discarding enhancement

layers, without re-encoding. Salsify is aimed at unicast

situations; in this setting, we evaluated a contemporary

SVC system, VP9-SVC as part of WebRTC in Google

Chrome, and found that it did not improve markedly over

conventional WebRTC.

Measurement of real-time video systems. Prior work

has evaluated the performance of integrated videoconfer-

encing applications. Zhang and colleagues [46] varied

the characteristics of an emulated network path and mea-

sured how Skype varied its network throughput and video

frame rate. Xu and colleagues [41] used Skype and Hang-

outs to film a stopwatch application on the receiver com-

puter’s display, producing two clocks side-by-side on the

receiver’s screen to measure the one-way video delay.

Salsify complements this literature with an end-to-end

measurement of videoconferencing systems’ video qual-

ity as well as delay. From the perspective of the sending

computer, the testbed appears to be a USB webcam that

captures a repeatable video clip. On the receiving com-

puter, the HDMI display output is routed back to the

testbed. The system measures the end-to-end video qual-

ity and delay of every frame.

QoE-driven video transport. Recent work has fo-

cused on optimization approaches to delivery of adap-

tive video. Techniques include control-theoretic selection

of pre-encoded video chunks for a Netflix-like applica-

tion [44] and inferential approaches to selecting relays

and routings [20, 12]. Generally speaking, these systems

attempt to evaluate or maximize performance according to

a function that maps various metrics into a single quality

of experience (QoE) figure. Our evaluation includes two

user studies to calibrate a QoE metric and find the relative

impact of video delay and visual quality on quality of

experience in real-time video applications (a videochat

and a driving-simulation videogame).

Loss recovery. Existing systems use several techniques

to recover from packet loss. RTP and WebRTC applica-

tions sometimes retransmit the lost packet, and sometimes

re-encode missing slices of a video frame de novo [28, 25].

By contrast, Salsify’s functional video decoder retains old

states in memory until the sender gives permission to evict

them. If a network has exhibited recent packet loss, the en-

coder can start encoding new frames in a way that depends

only on an older state that the receiver has acknowledged,

allowing the frame to be decoded even if intervening

packets turn out to have been lost. This approach has been

described as “prophylactic retransmission” [37].

3 Design and Implementation

Real-time Internet video systems are built by combin-

ing two components: a transport protocol and a video

codec. In existing systems, these components operate

independently, occasionally communicating through a

standardized interface. For example, in WebRTC’s open-

source reference implementation, the video encoder reads

frames off the camera at a particular frame rate and com-

presses them, aiming for a particular average bit rate. The

transport protocol [17] updates the encoder’s frame rate

and target bit rate on a roughly one-second timescale.

WebRTC’s congestion response is generally reactive: if

the video codec produces a compressed frame that over-

shoots the network’s capacity, the transport will send it

(even though it will cause packet loss or bloated buffers),

but the WebRTC transport subsequently tells the codec

to pause encoding new frames until congestion clears.

Skype, FaceTime, and Hangouts work similarly.

Salsify’s architecture is more closely coupled. Instead

of allowing the video codec to free-run at a particular

frame rate and target bit rate, Salsify fuses the video

codec’s and transport protocol’s control loops into one.

This architecture allows the transport protocol to com-

municate network conditions to the video codec before

each frame is compressed, so that Salsify’s transmissions

match the network’s evolving capacity, and frames are

encoded when the network can accommodate them.

Salsify achieves this by exploiting its codec’s ability

to save and restore its internal state. Salsify’s transport

estimates the number of bytes that the network can safely

accept without dropping or excessively queueing frames.

Even if this number is known before encoding begins

for each frame, it is challenging to predict the encoder

parameters (quality settings) that cause a video encoder

to match a pre-specified frame length.

Instead, each time a frame is needed, Salsify tries en-

coding with two different sets of encoder parameters in

order to bracket the available capacity. The system exam-

ines the encoded sizes of the resulting compressed frames

and selects one to send, based on which more closely

matches the network capacity estimate. The state induced

by this frame is then restored and used as the basis for

both versions of the next coded frame. We implemented

two versions of Salsify: one that does the two encodings

serially on one core (Salsify-1c), and one in parallel on

two cores (Salsify-2c).

3.1 Salsify’s functional video codec

Salsify’s video codec is written in about 11,000 lines

of C++ and encodes/decodes video in Google’s VP8 for-

mat [36]. It differs from previous implementations of VP8

and other codecs in one key aspect: it exposes the internal

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 269

“state” of its encoder/decoder to the application in explicit

state-passing style (We previously described an earlier

version of this codec in ExCamera [9].)

The state includes copies of previous decoded frames,

known as reference images, and probability tables used

for entropy coding. At a resolution of 1280× 720, the

internal state of a VP8 decoder is about 4 MiB. To com-

press a new image, the video encoder takes advantage

of its similarities with the reference images in the state.

The video decoder can be modeled as an automaton, with

coded frames as the inputs that cause state transitions

between a source and target state. The automaton starts in

the source state, consumes the compressed frame, outputs

an image for display, and transitions to the target state.

In typical implementations, whether hardware or soft-

ware, this state is maintained internally by the en-

coder/decoder and is inaccessible to the application. The

encoder ingests a stream of raw images as the input, and

produces a compressed bitstream. When a frame is en-

coded, the internal state of the encoder changes and there

is no way to undo the operation and return to the previous

state. Salsify’s VP8 encoder and decoder, by contrast, are

pure functions with no side effects and all state maintained

externally. The interface is:

decode(state, frame)→ (state′, image)
encode(state, image, quality)→ frame

Using this interface, the application can explore dif-

ferent quality options for encoding each frame and start

decoding from a desired state. This allows Salsify to (1)

encode frames at a size and quality that matches the net-

work capacity and (2) efficiently recover from packet loss.

Encoding to match network capacity. Current video

encoders, including Salsify’s, are unable to compress a

single frame to accurately match a specified coded length.

Only after compressing a frame does the encoder discover

the resulting length with any precision. As a result, current

videoconferencing systems generally track the network’s

capacity in an average sense, by matching the encoder’s

average bit rate over time to the network’s data rate.

Salsify, by contrast, exploits the functional nature of

its video encoder to optimize the compressed length of

each individual frame, based on a current estimate of

the network’s capacity. Two compression levels are ex-

plored for each frame by running two encoders (serially

or in parallel), initialized with the same internal state but

with different quality settings. Salsify selects the resulting

frame that best matches the network conditions, delay-

ing the decision of which version to send until as late as

possible, after knowing the exact size of the compressed

frames. Since the encoder is implemented in explicit state-

passing style, it can be resynchronized to the state induced

by whichever version of the frame is chosen to be trans-

mitted. Salsify chooses the two quality settings for the

next frame based on surrounding (one higher, one lower)

whichever settings were successful in the previous frame.

There is also a third choice: not to send either version,

if both exceed the estimated network capacity. In this case,

the next frame will be encoded based on the same internal

state. Salsify is therefore able to vary the frame cadence

to accommodate the network, by skipping frames in a way

that other video applications cannot (conventional applica-

tions can only pause frames on input to the encoder—they

cannot skip a frame after it has been encoded without

causing corruption).

Loss recovery. Salsify’s loss recovery strategy con-

denses into picking the right source state for encoding

frames. In the absence of loss, the encoder produces a se-

quence of compressed frames, each one depending on the

target state resulting from the previous frame, even if that

frame has not yet been acknowledged as received—the

sender assumes that all the packets in flight will be deliv-

ered. Packet loss, however, causes incomplete or missing

frames at the receiver, putting its decoder in a different

state than the one assumed by the sender and corrupt-

ing the decoded video stream. To remedy this, when the

sender detects packet loss (via ACKs from the receiver,

§ 3.2), it resynchronizes the receiver’s state by creating

frames that depend on a state that the receiver has explic-

itly acknowledged (Algorithm 1.3 and Algorithm 2.3);

these frames will be usable by the receiver, even if in-

termediate packets are lost. This approach requires the

sender and receiver to save the sequence of target states

in memory, only deleting them when safe. Specifically,

upon receiving a frame based on some state, the receiver

discards all older ones; and when the sender receives an

ACK for some state, it discards all older ones.

In case of packet reordering, if a fragment for a new

frame is received before the current frame is complete, the

receiver still decodes the incomplete frame—which puts

its decoder in an invalid state—and moves on the next

frames. The sender recognizes this situation as packet loss

and handles it the same way. Packet reordering within the

fragments of a frame is not disruptive, as the receiver

first waits for all the fragments before reassembling and

decoding a frame.

3.2 Salsify’s transport protocol

We implemented Salsify’s transport protocol in about

2,000 lines of C++. The sender transmits compressed

video frames over UDP to the receiver, which replies with

acknowledgments. Each video frame is divided into one

or more MTU-sized fragments.

Other than the frame serial number and fragment index,

each frame’s header contains the hash of its source state,

and the hash of its target state. With these headers, a com-

pressed video frame becomes an idempotent operator that

270 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Salsify transport protocol

1: procedure ON-RECEIVING-ACK(ack)

2: set to values indicated by ack:

mean_interarrival_time,

known_receiver_codec_state,

num_packets_outstanding

3: if ack indicates loss then

4: /* enter loss recovery mode for next 5 seconds */

5: end if

6: max_frame_size←MTU × (100 ms /
mean_interarrival_time −
num_packets_outstanding)

7: end procedure

acts on the identified source state at the receiver, trans-

forming it into the identified target state, and producing

a picture for display in the process. The receiver stores

the target state in memory, in the case that the sender

wants to use that state for loss recovery. In reply to each

fragment, the receiver sends an acknowledgment message

that contains the frame number and the fragment index,

along with its current decoder hash.

The receiver treats the incoming packets as a packet

train [21, 18] to probe the network and maintains a

moving average of packet inter-arrival times, similar to

WebRTC [17, 6] and Sprout-EWMA [39]. This estimate is

communicated to the sender in the acknowledgment pack-

ets. However, the sender does not transmit continuously—

it pauses between frames. As a result, the inter-arrival

time between the last fragment of one frame and the first

fragment of the next frame is not as helpful an indicator of

the network capacity (Figure 2). This pause could give the

receiver an artificially pessimistic estimate of the network

because the application is not transmitting “full throttle.”

To account for this, the sender includes a grace period in

each fragment, which tells the receiver about the duration

between when the current and previous fragments were

sent. As fragment i is received, the receiver calculates the

smoothed inter-arrival time, τi, as

τi← α(Ti−Ti−1−grace-periodi)+(1−α)τi−1,

where Ti is the time fragment i is received. The value of

α is 0.1 in our implementation, approximating a moving

average over the last ten arrivals.

At the sender side, Salsify’s transport protocol esti-

mates the desired size of a frame based on the latest

average inter-arrival time reported by the receiver. To

calculate the target size at time step i, the sender first esti-

mates an upper bound for the number of packets already

in-flight, Ni, by subtracting the indices of the last-sent

packet and the last-acknowledged packet. Let τi be the

latest average inter-arrival time reported by the receiver

at i. If the sender aims to keep the end-to-end delay less

than d (set to 100 ms in our implementation) to preserve

interactivity, there can be no more than d/τi packets in

flight. Therefore, the target size is (d/τi−Ni) MTU-size

fragments (Algorithm 1.6). At the time of sending, the

sender will pick the largest frame that doesn’t exceed this

length. If both encoded versions are over this size, the

sender discards the frame and moves on to sending the

next frame. To be able to receive new feedback from the

receiver, if more than four frames are skipped in a row,

the sender sends the low quality version (Algorithm 2).

Algorithm 2 Salsify sender program

1: procedure SEND-NEXT-FRAME

2: image← NEXT-IMAGE-FROM-CAMERA

3: source_state← loss_recovery_mode

? known_receiver_codec_state

: last_sent_frame.target_codec_state

4: frame_lower_quality← ENCODE(

source_state, image,

last_sent_frame.quality − DECR)

5: frame_higher_quality← ENCODE(

source_state, image,

last_sent_frame.quality + INCR)

6: frame_to_send← SELECT-FRAME(

frame_lower_quality,

frame_higher_quality)

7: if frame_to_send 6= null then

8: SEND(frame_to_send)

9: consecutive_skip_count← 0

10: last_sent_frame← frame_to_send

11: end if

12: end procedure

13:

14: function SELECT-FRAME(lower, higher)

15: if higher.length < max_frame_size then

16: return higher

17: else if lower.length < max_frame_size or

consecutive_skip_count ≥ 4 then

18: return lower

19: else

20: consecutive_skip_count++

21: return null

22: end if

23: end function

4 Measurement testbed

To evaluate Salsify, we built an end-to-end measurement

testbed for real-time video systems that treats the sender

and receiver as black boxes, emulating a time-varying

network while measuring application-level video metrics

that affect quality of experience. This section describes

the testbed’s metrics and requirements (§4.1), its design

(§4.2), and its implementation (§4.3).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 271

R
e
c
e
iv
e
r

t₁ t₂ t₃ t₄ t₅
grace
period

frame i frame i+1
S
e
n
d
e
r

Figure 2: The receiver maintains a moving average of packet

inter-arrival times, tis. The sender includes the delay between

sent packets as a “grace period,” so the receiver can account for

the sender’s pauses between frames.

4.1 Requirements and metrics

Requirements. The testbed needs to present itself as a

webcam and supply a high-definition, 60 fps video clip in

a repeatable fashion to unmodified real-time video sys-

tems. At the same time, the testbed needs to emulate a

varying network link between the sender and receiver in

the system, with the time-varying behavior of the emu-

lated network synchronized to the test video. Finally, the

testbed needs to capture frames coming out of the dis-

play of an unmodified receiver, and quantify their quality

(relative to the source video) and delay.

Metrics. The measurement testbed uses two principal

metrics for evaluating the video quality and video delay

of a real-time video system. For quality, we use mean

structural similarity (SSIM) [34], a standard measure that

compares the received frame to the source video.

To measure interactive video delay, the testbed calcu-

lates the difference between the time that it supplies a

frame (acting as a webcam) and when the receiver dis-

plays the same frame (less the testbed’s inherent delay,

which we measure in §5.1).

For frames on the 60 fps webcam input that weren’t sent

or weren’t displayed by the receiver, we assign an arrival

time equal to the next frame shown. As a result, the delay

metric rewards systems that transmit with a higher frame

rate. The goal of this metric is to account for both the

frame rate chosen by a system, and the delay of the frames

it chooses to transmit. A system that transmits one frame

per hour, but those frames always arrive immediately, will

still be measured as having delay of up to an hour, even

though the rare frame that does get transmitted arrives

quickly. A system that transmits at 60 frames per second,

but on a one-hour tape delay, will also be represented as

having a large delay.

4.2 Design

Figure 3 outlines the testbed’s hardware arrangement. At

a high level, the testbed works by injecting video into a

sending client, simulating network conditions between

sender and receiver, and capturing the displayed video at

the receiving client. It then matches up frames injected

into the sender with frames captured from the receiver,

and computes the delay and quality.

Hardware. The sender and receiver are two comput-

ers running an unaltered version of the real-time video

application under test. Each endpoint’s video interface

to the testbed is a standard interface: For the sender, the

testbed emulates a UVC webcam device. For the receiver,

the testbed captures HDMI video output.

The measurement testbed also controls the network

connection between the sender and receiver. Each end-

point has an Ethernet connection to the testbed, which

bridges the endpoints to each other and to the Internet.

Video analysis. To compute video-related metrics, the

testbed logs the times when the sending machine is pre-

sented with each frame, captures the display output from

the receiver, and timestamps each arriving frame in hard-

ware to the same clock.

The testbed matches each frame captured from the re-

ceiver to a frame injected at the sender. To do so, the

testbed preprocesses the video to add two small barcodes,

in the upper-left and lower-right of each frame.1 Together,

the barcodes consume 3.6% of the frame area. Each bar-

code encodes a 64-bit random number that is unique over

the course of the video. An example frame is shown in fig-

ures 3 and 4. The quality and delay metrics are computed

in postprocessing by matching the barcodes on sent and

received frames, then comparing corresponding frames.

4.3 Implementation

The measurement testbed is a PC workstation with spe-

cialized hardware. To capture and play raw video, the

system uses a Blackmagic Design DeckLink 4K Extreme

12G card, which emits and captures HDMI video. The

DeckLink timestamps incoming and outgoing frames with

its own hardware clock. To convert outgoing video to the

UVC webcam interface, the testbed uses an Epiphan AV.io

HDMI-to-UVC converter. At a resolution of 1280×720

and 60 frames per second, raw video consumes 1.8 giga-

bits per second. The testbed uses two SSDs to simultane-

ously play back and capture raw video.

The measurement testbed computes SSIM using the

Xiph Daala tools package. For network emulation, we use

Cellsim [39], always starting the program synchronized

to the beginning of an experiment. To explore the sensi-

tivity to queueing behavior in the network, we configured

Cellsim with a DropTail queue with a dropping threshold

of 64, 256, or 1024 packets; ultimately we found applica-

tions were not sensitive to this parameter and conducted

1The two barcodes were designed to detect tearing within a frame,

when the receiver displays pieces of two different source frames at the

same time. In our evaluations, we did not see this occur.

272 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Video
System

AV.io

Measurement System

Sender Receiver

Network
Emulator

Figure 3: Testbed architecture. The system measures the performance of an unmodified real-time video system. It emulates a

webcam to supply a barcoded video clip to the sender. The sender transmits frames to the receiver via an Ethernet connection. The

measurement testbed interposes on the receiver’s network connection and controls network conditions using a network emulator

synchronized to the video. The receiver displays its output in a fullscreen window via HDMI, which the testbed captures. By matching

barcodes on sent and received frames, the testbed measures the video’s delay and quality, relative to the source. The measurement

testbed timestamps outgoing and incoming frames with a dedicated hardware clock, eliminating the effect of scheduling jitter in

measuring the timing of 60 fps video frames.

Figure 4: An example barcoded video frame sent by the mea-

surement testbed (§4.2). The barcodes each represent a 64-bit

random number that is unique over the course of the video.

remaining tests with a 256-packet buffer. The round-trip

delay was set to 40 ms for cellular traces. We developed

new software for barcoding, playing, capturing, and ana-

lyzing video. It comprises about 2,500 lines of C++.

5 Evaluation of Salsify

This evaluation answers the question: how does Salsify

compare with five popular real-time video systems in

terms of video delay and video quality when running over

a variety of real-world and synthetic network traces? In

sum, we find that, among the systems tested, Salsify gave

the best delay and quality by substantial margins over a

range of cellular traces; Salsify also performed compet-

itively on a synthetic intermittent link and an emulated

Wi-Fi link.

5.1 Setup, calibration, and method

Setup. We ran all experiments using the measurement

testbed described in Section 4. Figure 5 lists applications

and versions. Tests on macOS used late-model MacBook

Pro laptops running macOS Sierra. WebRTC (VP9-SVC)

was run on Chrome with command line arguments to

enable VP9 scalable video coding; the arguments were

suggested by video-compression engineers on the Chrome

team at Google.2 Tests on Linux used Ubuntu 16.10 on

desktop computers with recent Intel Xeon E3-1240v5

processors and 32 GiB of RAM. We tested Salsify using

the same Linux machine.

All machines were physically located in the same room

during experiments and were connected to each other

and the public Internet through gigabit Ethernet connec-

tions. Care was taken to ensure that no other compute- or

network-intensive processes were running on any of the

client machines while experiments were being performed.

Calibration. To calibrate the measurement testbed, we

ran a loopback experiment with no network: we connected

the testbed’s UVC output to the desktop computer de-

scribed above, configured that computer to display in-

coming frames fullscreen on its own HDMI output using

ffplay, and connected that output back to the testbed.

We found that the delay through the loopback connec-

tion was 4 frames, or about 67 ms; in all further exper-

iments we subtracted this intrinsic delay from the raw

results. The difference between the output and input im-

ages was negligible, with SSIM in excess of 25 dB, which

2The arguments were: out/Release/chrome --enable-webrtc-

vp9-svc-2sl-3tl --fake-variations-channel=canary --variations-server-

url=https://clients4.google.com/chrome-variations/seed .

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 273

Application Platform Version Configuration change

Skype macOS 7.42 Turned off Skype logo on the receiver.

FaceTime macOS 3.0 Blacked out self view in post-processing.

Hangouts Chrome (Linux)
Chrome 55.0

Chrome 62.0 (Figure 6e)
Edited CSS to hide self view.

WebRTC Chrome (Linux)

Chrome 62.0, https://appr.tc

Chrome 55.0 (Figure 7)

Chrome 65.0 (Figure 8)

Edited CSS to hide self view.

WebRTC

(VP9-SVC)
Chrome (Linux) Chrome 62.0, https://appr.tc Edited CSS to hide self view.

Figure 5: Application versions tested. For each application, we slightly modified the receiver to eliminate extraneous display

elements that would have interfered with SSIM calculations. For WebRTC (VP9-SVC), we passed command-line arguments to

Chrome to enable the scalable video codec.

corresponds to 99.7% absolute similarity.

Method. For each experiment below, we evaluate each

system on the testbed using a specified network trace,

computing metrics as described in Section 4.1. The stim-

ulus is a ten minute, 60 fps, 1280× 720 video of three

people having a typical videoconference call. We prepro-

cessed this video as described in Section 4.2, labeling

each frame with a barcode. The network traces are long

enough to cover the whole length of the video.

5.2 Results

Experiment 1: variable cellular paths. In this exper-

iment, we measured Salsify and the other systems us-

ing the AT&T LTE, T-Mobile UMTS (“3G”), and Ver-

izon LTE cellular network traces distributed with the

Mahimahi network-emulation tool [27]. The experiment’s

duration is 10 minutes. The cellular traces vary through a

large range of network capacities over time: from more

than 20 Mbps to less than 100 kbps. The AT&T LTE and

T-Mobile traces were held out and not used in Salsify’s

development, although an earlier (8-core) version of Sal-

sify was previously evaluated on these traces before we

developed the current 1-core and 2-core versions.

Figures 6a, 6b and 6c show the results for each scheme

on each trace. Both the single-core (Salsify-1c) and dual-

core (Salsify-2c) versions of Salsify outperform all of

the competing schemes on both quality and delay (and

therefore, on either QoE model from the user study). We

saw little difference in performance between the serial and

parallel versions of Salsify; this suggests that having the

two video encoders run in parallel is not very important

on the PC workstation tested.

Salsify’s loss-recovery strategy requires the sender and

receiver keep a set of decoder states in memory, in order

to recover from a known state if loss occurs. After the

receiver acknowledges a state, or the sender sends a frame

based on a state, the other program discards the older

states. In our AT&T LTE trace experiment, Salsify-2c

sender kept 6 states on average, each 4 MiB in size, during

the course of its execution, while the receiver kept 3 states

at a time on average. Additionally, in the same experiment,

Salsify-2c picked the better-quality option in 50%, the

lower-quality option in 32%, and not sending the frame

at all in 18% of the opportunities to send a frame.

Figure 6f shows how the quality and delay of differ-

ent schemes vary during a one-minute period of AT&T

LTE trace where the network path was mostly steady in

capacity.

Experiment 2: intermittent link. In this experiment,

we evaluated Salsify’s method of loss resilience. We ran

each system on a two-state intermittent link. The link’s

capacity is 12 Mbps with no drops until a “failure” arrives,

which happens on average after five seconds (exponen-

tially distributed). During failure, all packets are dropped

until a “restore” event arrives, on average after 0.2 sec-

onds of failure. The experiment’s duration is 10 minutes.

Figure 6d shows the results for each scheme. The Sal-

sify schemes had the best quality, and their delay was

better than all schemes except Skype and WebRTC. Sal-

sify and WebRTC are both on the Pareto frontier of this

scenario; further tuning will be required to see if Salsify

can improve its delay without compromising quality.

Experiment 3: emulated Wi-Fi. In this experiment, we

evaluated Salsify and the other systems on a challenged

network path that, unlike the cellular traces, does not vary

its capacity with time. This emulated Wi-Fi network path

matches the behavior of a long-distance free-space Wi-

Fi hop, with the emulation parameters taken from [42],

including an average data rate of about 570 kbps and Pois-

son packet arrivals. Figure 6e shows the results. Salsify is

on the Pareto frontier, and WebRTC also performs well

when the network data rate does not vary with time.

Experiment 4: component analysis study. In this ex-

periment, we removed the new components implemented

274 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://appr.tc

8

10

12

14

16

18

5007001000200050007000

V
id

e
o
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)Skype

Salsify-2c

FaceTime

Hangouts

Salsify-1c

WebRTC

Salsify (no grace period)

Salsify (conventional

transport and codec)

Salsify (conventional codec)

(a) Verizon LTE trace

8

9

10

11

12

13

14

15

16

200300500700100020005000

V
id

e
o
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype

FaceTime

Hangouts

Salsify-1c Salsify-2c

WebRTC

(b) AT&T LTE trace

9

10

11

12

13

14

350050007000100001400018000

V
id

e
o
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype

FaceTime

Hangouts

Salsify-1c

Salsify-2c

WebRTC

(c) T-Mobile UMTS trace

9

10

11

12

13

14

15

16

17

18

100200300500100020004000

V
id

e
o
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

SkypeFaceTime

Hangouts

Salsify-1c
Salsify-2c

WebRTC

(d) Intermittent link

7

8

9

10

11

12

30050070010002000500015000

V
id

e
o
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype
Hangouts

Salsify-1c
FaceTime

Salsify-2c
WebRTC

Bette
r

(e) Constant-rate Wi-Fi link

6

8

10

12

14

16

18

20

5010020030050070010002000

V
id

e
o
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC

Salsify-2c

Skype

Hangouts

FaceTime

(f) Evolution of quality and delay over a one-minute period

Figure 6: Figures (a)–(e) show the end-to-end video quality and video delay over four emulated networks. Salsify-1c and Salsify-2c

achieve better video quality (both on average and the “worse” tail at 25th percentile) and better video delay (both on average and the

worse tail at 95th percentile) than other systems for the three real-world network traces (AT&T, T-Mobile, Verizon). Salsify-1c and

Salsify-2c perform competitively on the artificially generated “intermittent link” network, which occasionally drops packets but is

otherwise a constant 12Mbps (§5), and an emulated constant-rate Wi-Fi link. The AT&T, T-Mobile, Wi-Fi, and and intermittent-link

scenarios were held out during development. Figure (f) shows the evolution of the quality and delay during a one-minute period of

the AT&T LTE trace when network capacity remained roughly constant.

in Salsify one-by-one to better understand their contri-

bution to the total performance of the system. First, we

removed the feature of Salsify’s transport protocol that

makes it video-aware: the “grace period” to account for

intermittent transmissions from the video codec. The per-

formance degradation of this configuration is shown in

Figure 6a as the “Salsify (no grace period) dot”; with-

out this component, Salsify underestimates the network

capacity and sends low-quality, low-bitrate video.

We then removed Salsify’s explicit state-passing-style

video codec, replacing it with a conventional codec where

the state is opaque to the application, and the appropriate

encoding parameters must be predicted upfront (instead

of choosing the best compressed version of each frame

after the fact). The codec predicted these parameters by

performing a binary search for the quality setting on a

decimated version of the original frame, attempting to hit

a target frame size and extrapolating the resulting size to

the full frame. The target size was selected using the same

transport protocol in normal Salsify. The result is also in

Figure 6a as “Salsify (conventional codec).”

As shown in the plot, Salsify’s performance is again

substantially reduced. This is a result of two factors: (1)

The transport no longer has access to a choice of frames at

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 275

0

1

2

3

4

5

6

7

8

0 5 10 15 20

Salsify

Skype

WebRTC

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

(a) Throughput

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

Salsify

Skype

WebRTC

F
ra

m
e
 D

e
la

y
 (

s
)

Time (s)

(b) Frame delay

Figure 7: Salsify’s reacts more quickly to changes in network

conditions than other video systems. This is illustrated by com-

paring the performance of Skype, WebRTC, and Salsify over a

network path whose capacity decreases gradually to zero, then

back up again (instantaneous network capacity shown in gray).

transmission time; if the capacity estimate changed during

the time it took to compress the video frame, Salsify

will either incur delay or have missed an opportunity to

improve the quality of the video, and (2) it is challenging

for any codec to choose the appropriate quality settings

upfront to meet a target size; the encoder will be liable to

under- or overshoot its target.

Finally, we created an end-to-end system that emu-

lates the behavior of the conventional videoconferencing

systems, by removing the distinctive features of both Sal-

sify’s video codec and transport protocol. Rather than

operating frame by frame, the transport protocol in this

implementation estimates the network’s average data rate

and updates the quality settings of the video codec, once

every second. As the “Salsify (conventional transport and

codec) dot” in Figure 6a shows, this implementation has

a similar performance to Skype and WebRTC.

We conclude that each of Salsify’s distinctive features—

the video-aware transport protocol, purely functional

codec, and the frame-by-frame coupling between them

that merges the rate-control algorithms of each module—

contributes positively to the system’s overall performance.

Experiment 5: capacity ramp. In this experiment, we

evaluated how Salsify, Skype, and WebRTC handle a net-

work with a gradual decrease in data rate (to zero), then

a gradual resumption of network capacity. We created

the synthetic network trace depicted in light gray in Fig-

ures 7a and 7b. The experiment’s duration is 20 seconds.

Figure 7a shows the data transmission rate each scheme

tries to send through the link, versus time. Salsify’s

throughput smoothly decreases alongside link capacity,

then gracefully recovers. The result is that Salsify’s video

display recovers quickly after link capacity is restored, as

shown in Figure 7b.

In contrast, Skype reacts slowly to degraded network

capacity, and as a result induces loss on the link and a

standing queue, both of which delay the resulting video

for several seconds. WebRTC reacts to the loss of link

capacity, but ends up stuck in a bad mode after the network

is restored; the receiver displays only a handful of frames

(marked with blue dots) in the eight seconds after the link

begins to recover.

Experiment 6: one-second dropout experiment. In

this experiment, we compared the effect of packet loss on

Salsify-2c and WebRTC by introducing a single dropout

for 1 s while running each application on an emulated link

with a constant data rate of 500 kbps. All of the packets

that were scheduled to be delivered during the outage

were dropped. Figure 8 shows the results. After the net-

work is restored, WebRTC’s transport protocol retrans-

mits the packets that were lost during the outage, causing

a spike in delay before its video codec starts encoding

new frames of video (WebRTC’s baseline delay is also

considerably larger). Salsify does not have the same inde-

pendence between its video codec and transport protocol;

upon recovery of the network, Salsify’s functional video

codec can immediately encode new frames in terms of

reference images that are already present at the receiver.

This results in faster recovery from the dropout.

Experiment 7: sensitivity to queueing policy. In this

experiment, we quantified the performance impact of net-

work buffer size on Salsify, Hangouts, WebRTC, and Web-

RTC (VP9-SVC) for the Verizon-LTE network trace. The

plots in Figure 9 show the performance of each system

on the trace across various DropTail thresholds (at 64,

256, and 1024 MTU-sized packets). The performance of

the tested systems was not significantly influenced by the

choice of buffer size, perhaps because all schemes are

striving for low delay and therefore are unlikely to build

up a large-enough standing queue to see DropTail-induced

packet drops. We ran the remaining tests using the middle

setting (256 packets).

5.3 Modifications to systems under test

Although the testbed was designed to work with unmodi-

fied real-time video systems as long as the sender accepts

input on a USB webcam and the receiver displays output

276 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Salsify-2c

WebRTCo
u
ta
g
e

F
ra

m
e
 D

e
la

y
 (

s
)

Display Time (s)

o
u
ta
g
e

(a) Frame delay

9

10

11

12

13

14

15

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Salsify-2c

WebRTC

o
u
ta
g
e

F
ra

m
e
 Q

u
a
lit

y
 (

S
S

IM
 d

B
)

Display Time (s)

(b) Frame quality

Figure 8: Comparison of the response of Salsify and WebRTC (implementation in Chrome 65) to a single loss event for one second,

while communicating over a network path with a constant data rate of 500 kbps. During the loss episode, all packets were dropped.

WebRTC displays frames out of a receiver-side buffer during the outage. In contrast to Salsify’s strategy of always encoding the most

recent video in terms of references available at the receiver, WebRTC’s transport protocol retransmits packets lost during the outage

before its video encoder starts encoding new frames. This causes a spike in the video delay and wide variations in the frame rate.

9

10

11

12

13

14

15

16

7001000200050007000

V
id

e
o

 Q
u

a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)
Salsify-2c

Hangouts

Salsify-1cWebRTC

(a) DropTail threshold = 64 packets.

9

10

11

12

13

14

15

16

7001000200050007000

V
id

e
o

 Q
u

a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)
Salsify-2c

Hangouts

Salsify-1c

WebRTC

(b) DropTail threshold = 256 packets.

9

10

11

12

13

14

15

16

7001000200050007000

V
id

e
o

 Q
u

a
lit

y
 (

S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Salsify-2c Salsify-1c
WebRTC

HangoutsBette
r

(c) DropTail threshold = 1024 packets.

Figure 9: Sensitivity to queueing policy. We measured per-

formance over the Verizon LTE network trace with different

in-network buffer sizes. The tested systems were not particular

sensitive to this parameter. We ran the other experiments with a

buffer size of 256 packets.

fullscreen via HDMI, in practice we found that to evaluate

the commercial systems fairly, small modifications were

needed. We describe these here.

FaceTime two-way video and self view. Unlike the

other video conferencing programs we tested, FaceTime

could not be configured to disable bidirectional video

transmission. We physically covered the webcam of the

receiver when evaluating FaceTime in order to minimize

the amount of data the receiver needed to send.

Also, like most video conferencing programs, Face-

Time provides a self-view window so users can see the

video they are sending. This cannot be disabled in Face-

Time and is present in the frames captured by our mea-

surement testbed. To prevent this from unfairly lowering

FaceTime’s SSIM score, we blacked out the self view win-

dow in post-processing (in both the sent and received raw

videos) before computing SSIM. These regions accounted

for approximately 4% of the total frame area.

Hangouts & WebRTC watermarks and self view.

By default, Google Hangouts and our reference Web-

RTC client (appr.tc) had several watermarks and self view

windows. Since these program run in the browser, we

modified their CSS files to remove these artifacts so we

could accurately measure SSIM.

Hangouts did not make P2P connections. Unlike all

the other systems we evaluated, Google Hangouts did not

make a direct UDP connection between the two client

machines. Rather, the clients communicated through a

Google relay server, still via UDP. We measured this

delay by pinging the Google server used by the client

machines. The round trip delay was < 20 ms in all cases

and ∼5 ms on average.

6 Limitations and Future Work

Salsify and its evaluation feature a number of important

limitations and opportunities for future work.

6.1 Limitations of Salsify

No audio. Salsify does not encode or transmit audio.

When testing other applications, we disabled audio to

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 277

avoid giving Salsify an unfair advantage. Adding audio

to a videoconferencing system creates a number of op-

portunities for future work in QoE optimization—e.g., it

is generally beneficial for the receiver to delay audio in

a buffer to allow uninterrupted playback in the face of

network jitter, even at the expense of some added delay.

To what extent should video be similarly delayed to keep

it in sync with the audio, and what are the right metrics to

evaluate any compromise along these axes?

Most codecs do not support save/restore of state. Sal-

sify includes a VP8 codec—an existing format that we did

not modify—with the addition that the codec is in a func-

tional style and allows the application to save and restore

its internal state. Conventional codecs, whether hardware

or software, do not support this interface, although we

are hopeful these results will encourage implementers to

expose such an interface. On power-constrained devices,

only hardware codecs are sufficiently power-efficient, so

we are hopeful that Salsify’s results will motivate hard-

ware codec implementers to expose state as Salsify does.

Improved conventional codecs could render Salsify’s

functional codec unnecessary. The benefit of Salsify’s

purely functional codec is principally in its ability to pro-

duce (by trial and error) compressed frames whose length

matches the transport protocol’s estimate of the network’s

instantaneous capacity. To the extent that conventional

codecs also grow this capability, the benefits of a func-

tional codec in this setting will shrink.

Benefits are strongest when the network path is most

variable. Salsify’s main contribution is in combining the

rate-control algorithms in the transport protocol and video

codec, and exploiting the functional codec to coax indi-

vidual compressed frames that match the network’s in-

stantaneous capacity, even when it is highly variable. On

network paths that exhibit such variability (e.g. cellular

networks while moving), Salsify demonstrated a signifi-

cant performance advantage over current applications. On

less-variable networks, Salsify’s performance was closer

to existing applications.

6.2 Limitations of the evaluation

Unidirectional video. Our experiments used a dedicated

sender and receiver, whereas a typical video call has bidi-

rectional video. This is because the testbed only has one

Blackmagic card (and pair of high-speed SSDs) and can-

not send and capture two video streams simultaneously.

The traces do not reflect multiple flows sharing the

same queue. To achieve a fair evaluation of each appli-

cation, we used the same test video and ran over a series of

reproducible network emulators. We did not evaluate the

schemes over “wild” real-world paths. The trace-based

network emulation replays the actual packet timings (in

both the forward and reverse direction) captured from cel-

lular networks. These traces capture several phenomena,

including the effect of multiple hops, ACK compression

in the reverse path, and cross traffic from other flows and

users sharing the network while the traces were recorded,

reducing the available data rate of the network path. How-

ever, the emulation does not capture cross traffic that

shares the same bottleneck queue as the application under

test. Generally speaking, no end-to-end application can

achieve low-latency video when the bottleneck queue is

shared with “bufferbloating” cross traffic [13].

7 Conclusion

In this paper, we presented Salsify, a new architecture

for real-time Internet video that tightly integrates a video

codec and a network transport protocol. Salsify improves

upon existing systems in three principal ways: (1) a video-

aware transport protocol achieves accurate estimates of

network capacity without a “full throttle” source, (2) a

functional video codec allows the application to experi-

ment with multiple settings for each frame to find the best

match to the network’s capacity, and (3) Salsify merges

the rate-control algorithms in the video codec and trans-

port protocol to avoid provoking packet drops and queue-

ing delay with its own traffic.

In an end-to-end evaluation, Salsify achieved lower

end-to-end video delay and higher quality when com-

pared with five existing systems: Skype, FaceTime, Hang-

outs, and WebRTC’s reference implementation with and

without scalable video coding (VP9-SVC).

It is notable that Salsify achieves superior visual quality

than other systems, as Salsify uses our own implementa-

tion of a VP8 codec—a largely superseded compression

scheme, and an unsophisticated encoder for that scheme.

The results suggest that further improvements to video

codecs may have reached the point of diminishing returns

in this setting, but changes to the architecture of video

systems can still yield significant benefit.

Acknowledgments

We thank the NSDI reviewers and our shepherd, Kyle

Jamieson, for their helpful comments and suggestions.

We are grateful to James Bankoski, Josh Bailey, Danner

Stodolsky, Timothy Terriberry, and Thomas Daede for

feedback throughout this project, and to the participants

in the user study. This work was supported by NSF grant

CNS-1528197, DARPA grant HR0011-15-2-0047, the

NSF Graduate Research Fellowship Program (JE), and by

Google, Huawei, VMware, Dropbox, Facebook, and the

Stanford Platform Lab.

278 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ALVESTRAND, H. T. Overview: Real Time Protocols

for Browser-based Applications. Internet-Draft draft-

ietf-rtcweb-overview-16, Internet Engineering Task Force,

Nov. 2016. Work in Progress.

[2] CHEN, M., PONEC, M., SENGUPTA, S., LI, J., AND

CHOU, P. A. Utility maximization in peer-to-peer systems.

In ACM SIGMETRICS (June 2008).

[3] CHEN, X., CHEN, M., LI, B., ZHAO, Y., WU, Y., AND

LI, J. Celerity: A low-delay multi-party conferencing solu-

tion. IEEE Journal on Selected Areas in Communications

31, 9 (Sept. 2013), 155–164.

[4] CHENG, R., WU, W., CHEN, Y., AND LOU, Y. A cloud-

based transcoding framework for real-time mobile video

conferencing system. In IEEE MobileCloud (Apr. 2014).

[5] CHOU, P. A., AND MIAO, Z. Rate-distortion optimized

streaming of packetized media. IEEE Transactions on

Multimedia 8, 2 (April 2006), 390–404.

[6] CICCO, L. D., CARLUCCI, G., AND MASCOLO, S. Ex-

perimental investigation of the Google congestion control

for real-time flows. In ACM FhMN (Aug. 2013).

[7] ELMOKASHFI, A., MYAKOTNYKH, E., EVANG, J. M.,

KVALBEIN, A., AND CICIC, T. Geography matters: Build-

ing an efficient transport network for a better video confer-

encing experience. In CoNEXT (Dec. 2013).

[8] FENG, Y., LI, B., AND LI, B. Airlift: Video conferencing

as a cloud service. In IEEE ICNP (Feb. 2012).

[9] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BAL-

ASUBRAMANIAM, K. V., ZENG, W., BHALERAO, R.,

SIVARAMAN, A., PORTER, G., AND WINSTEIN, K. En-

coding, fast and slow: Low-latency video processing using

thousands of tiny threads. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’17)

(2017), USENIX Association, pp. 363–376.

[10] FREDERICK, R. Experiences with real-time software

video compression. In Proceedings of the Sixth Inter-

national Workshop on Packet Video (1994).

[11] FUND, F., WANG, C., LIU, Y., KORAKIS, T., ZINK, M.,

AND PANWAR, S. S. Performance of DASH and WebRTC

video services for mobile users. In IEEE PV (Dec. 2013).

[12] GANJAM, A., JIANG, J., LIU, X., SEKAR, V., SIDDIQUI,

F., STOICA, I., ZHAN, J., AND ZHANG, H. C3: Internet-

scale control plane for video quality optimization. In NSDI

(May 2015).

[13] GETTYS, J., AND NICHOLS, K. Bufferbloat: Dark buffers

in the Internet. Queue 9, 11 (Nov. 2011), 40:40–40:54.

[14] GRANGE, A., DE RIVAZ, P., AND HUNT, J. VP9 Bit-

stream & Decoding Process Specification version 0.6,

March 2016. http://www.webmproject.org/vp9/.

[15] HAJIESMAILI, M. H., MAK, L., WANG, Z., WU, C.,

CHEN, M., AND KHONSARI, A. Cost-effective low-delay

cloud video conferencing. In IEEE ICDCS (June 2015).

[16] HERMANNS, N., AND SARKER, Z. Congestion

control issues in real-time communication—“Sprout”

an example. Internet Congestion Control Research

Group. https://datatracker.ietf.org/meeting/88/materials/

slides-88-iccrg-3.

[17] HOLMER, S., LUNDIN, H., CARLUCCI, G., CICCO,

L. D., AND MASCOLO, S. A Google congestion con-

trol algorithm for real-time communication, 2015. draft-

alvestrand-rmcat-congestion-03.

[18] JAIN, M., AND DOVROLIS, C. End-to-end available band-

width: Measurement methodology, dynamics, and rela-

tion with TCP throughput. In Proceedings of the 2002

Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications (2002), SIG-

COMM ’02, ACM, pp. 295–308.

[19] JAKUBCZAK, S., AND KATABI, D. A cross-layer design

for scalable mobile video. In MobiComm (Sept. 2011).

[20] JIANG, J., DAS, R., ANANTHANARAYANAN, G., CHOU,

P. A., PADMANABHAN, V. N., SEKAR, V., DOMINIQUE,

E., GOLISZEWSKI, M., KUKOLECA, D., VAFIN, R., AND

ZHANG, H. VIA: Improving internet telephony call qual-

ity using predictive relay selection. In SIGCOMM (Aug.

2016).

[21] KESHAV, S. A control-theoretic approach to flow control.

In Proceedings of the Conference on Communications

Architecture & Protocols (1991), SIGCOMM ’91, ACM,

pp. 3–15.

[22] LI, J., CHOU, P. A., AND ZHANG, C. Mutualcast: An ef-

ficient mechanism for content distribution in a peer-to-peer

(P2P) network. Tech. Rep. MSR-TR-2004-98, Microsoft

Research, 2004.

[23] LIANG, C., ZHAO, M., AND LIU, Y. Optimal bandwidth

sharing in multiswarm multiparty P2P video-conferencing

systems. IEEE/ACM Trans. Networking 19, 6 (Dec. 2011),

1704–1716.

[24] LIU, X., DOBRIAN, F., MILNER, H., JIANG, J., SEKAR,

V., STOICA, I., AND ZHANG, H. A case for a coordinated

Internet video control plane. In SIGCOMM (Aug. 2012).

[25] LUMIAHO, L., AND NAGY, M., Oct. 2015. Er-

ror Resilience Mechanisms for WebRTC Video

Communications http://www.callstats.io/2015/10/30/

error-resilience-mechanisms-webrtc-video/.

[26] MCCANNE, S., AND JACOBSON, V. Vic: A flexible frame-

work for packet video. In Proceedings of the Third ACM

International Conference on Multimedia (1995), MULTI-

MEDIA ’95, ACM, pp. 511–522.

[27] NETRAVALI, R., SIVARAMAN, A., DAS, S., GOYAL, A.,

WINSTEIN, K., MICKENS, J., AND BALAKRISHNAN,

H. Mahimahi: Accurate record-and-replay for HTTP. In

USENIX Annual Technical Conference (2015), pp. 417–

429.

[28] OTT, J., AND WENGER, D. S. Extended RTP Profile

for Real-time Transport Control Protocol (RTCP)-Based

Feedback (RTP/AVPF). RFC 4585, July 2006.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 279

http://www.webmproject.org/vp9/
https://datatracker.ietf.org/meeting/88/materials/slides-88-iccrg-3
https://datatracker.ietf.org/meeting/88/materials/slides-88-iccrg-3
http://www.callstats.io/2015/10/30/error-resilience-mechanisms-webrtc-video/
http://www.callstats.io/2015/10/30/error-resilience-mechanisms-webrtc-video/

[29] PONEC, M., SENGUPTA, S., CHIN, M., LI, J., AND

CHOU, P. A. Multi-rate peer-to-peer video conferencing:

A distributed approach using scalable coding. In IEEE

ICME (June 2009).

[30] SEN, S., GILANI, S., SRINATH, S., SCHMITT, S., AND

BANERJEE, S. Design and implementation of an “ap-

proximate” communication system for wireless media ap-

plications. In Proceedings of the ACM SIGCOMM 2010

Conference (2010), SIGCOMM ’10, ACM, pp. 15–26.

[31] SEUNG, Y., LENG, Q., DONG, W., QIU, L., AND

ZHANG, Y. Randomized routing in multi-party internet

video conferencing. In IEEE IPCCC (Dec. 2014).

[32] SULLIVAN, G. J., OHM, J.-R., HAN, W.-J., AND WIE-

GAND, T. Overview of the high efficiency video coding

(HEVC) standard. IEEE Trans. Cir. and Sys. for Video

Technol. 22, 12 (Dec. 2012), 1649–1668.

[33] SWETT, I. QUIC FEC v1.

https://docs.google.com/document/d/

1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk.

[34] WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SI-

MONCELLI, E. P. Image quality assessment: from error

visibility to structural similarity. IEEE transactions on

image processing 13, 4 (2004), 600–612.

[35] WEBRTC.ORG. WebRTC Native Code. https://webrtc.org/

native-code.

[36] WILKINS, P., XU, Y., QUILLIO, L., BANKOSKI, J., SA-

LONEN, J., AND KOLESZAR, J. VP8 Data Format and

Decoding Guide. RFC 6386, Oct. 2015.

[37] WINSTEIN, K., AND BALAKRISHNAN, H. Mosh: A State-

of-the-Art Good Old-Fashioned Mobile Shell. In ;login:

(37, 4, August 2012).

[38] WINSTEIN, K., AND BALAKRISHNAN, H. Mosh: An in-

teractive remote shell for mobile clients. In 2012 USENIX

Annual Technical Conference (USENIX ATC 12) (2012),

USENIX. Available at https://mosh.org., pp. 177–182.

[39] WINSTEIN, K., SIVARAMAN, A., AND BALAKRISHNAN,

H. Stochastic forecasts achieve high throughput and low

delay over cellular networks. In 10th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI ’13) (2013), USENIX, pp. 459–471.

[40] WU, Y., WU, C., LI, B., AND LAU, F. C. M. vSkyConf:

Cloud-assisted multi-party mobile video conferencing. In

ACM MCC (Aug. 2013).

[41] XU, Y., YU, C., LI, J., AND LIU, Y. Video telephony for

end-consumers: Measurement study of Google+, iChat,

and Skype. In IMC (Nov. 2012).

[42] YAN, F. Y., MA, J., HILL, G., RAGHAVAN, D., WAHBY,

R. S., LEVIS, P., AND WINSTEIN, K. Pantheon: the

training ground for Internet congestion-control research.

Measurement at http://pantheon.stanford.edu/result/1622/.

[43] YAP, K.-K., HUANG, T.-Y., YIAKOUMIS, Y., MCKE-

OWN, N., AND KATTI, S. Late-binding: how to lose fewer

packets during handoff. In Proceedings of the 2013 Work-

shop on Cellular Networks: Operations, Challenges, and

Future Design (2013), ACM, pp. 1–6.

[44] YIN, X., JINDAL, A., SEKAR, V., AND SINOPOLI, B.

A control-theoretic approach for dynamic adaptive video

streaming over HTTP. In SIGCOMM (Aug. 2015).

[45] ZHAI, F., AND KATSAGGELOS, A. Joint Source-Channel

Video Transmission. Morgan & Claypool, 2007. https:

//doi.org/10.2200/S00061ED1V01Y200707IVM010.

[46] ZHANG, X., XU, Y., HU, H., LIU, Y., GUO, Z., AND

WANG, Y. Modeling and analysis of Skype video calls:

Rate control and video quality. IEEE Trans. Multimedia

15, 6 (Oct. 2013), 1446–1457.

280 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk
https://webrtc.org/native-code
https://webrtc.org/native-code
https://mosh.org
http://pantheon.stanford.edu/result/1622/
https://doi.org/10.2200/S00061ED1V01Y200707IVM010
https://doi.org/10.2200/S00061ED1V01Y200707IVM010

A User studies to calibrate QoE metrics

As part of the development of Salsify, we conducted two

user studies to quantify the relative impact of video de-

lay and video quality on quality of experience (QoE) in

real-time video applications. These studies were approved

by the Institutional Review Board at Stanford University.

The participants were all Stanford graduate students and

were unpaid. In both studies, we varied video delay and

quality over the ranges observed in the comparative eval-

uation (Section 5). Our results show that small variations

in video delay greatly affect mean opinion score; video

quality also affects mean opinion score but less so.

In the first study, participants engaged in a simulated

long-distance video conference call with a partner. As part

of this study, we built a test jig that captured the audio

and video of both participants and played it to their part-

ner with a controlled amount of added delay and visual

quality degradation, achieved by encoding and then de-

coding the video with the x264 H.264 encoder at various

quality settings. Participants conversed for one minute on

each setting of delay and quality; after each one-minute

interval, participants scored their subjective quality of

experience on a scale from 1 (worst) to 5 (best). Twenty

participants performed this user study, and every partici-

pant experienced the same 12 video delay and video qual-

ity settings (SSIM dB × delay: {10dB, 14dB, 18dB}×
{300ms, 1200ms, 2200ms, 4200ms}).

The second user study put participants behind the

wheel of a race car in a simulated environment: a

PlayStation 4 playing the “Driveclub” videogame. Us-

ing a second test jig, the visual quality and the delay

between the PlayStation’s HDMI output and the par-

ticipant’s display were controlled. Participants drove

their simulated vehicle for 45 seconds on each qual-

ity and delay setting, then rated their quality of ex-

perience from 1 (worst) to 5 (best). Seventeen partic-

ipants performed this user study, and all participants

experienced the same 12 video delay and video qual-

ity settings (SSIM dB × delay: {8dB, 11dB, 14dB}×
{100ms, 300ms, 550ms, 1050ms}).

Results and interpretation. We used a two-

dimensional linear equation as our QoE model; the model

for each user study was fit using ordinary least squares.

The resultant best-fit lines (one for the videochat, and one

for the driving simulation) are shown in Figure 10. Us-

ing the learned coefficients from the videoconferencing

study, we predict that a 100 ms decrease in video delay

produces the same quality of experience improvement

as a 1.0 dB increase in visual quality (SSIM dB). Like-

wise, in the driving simulation we predict that a 100 ms

decrease in video delay is equivalent to a 1.9 dB increase

in visual quality. This suggests that in settings such as

teleoperation of vehicles, achieving low video delay is

more critical than increasing video quality, even more

than in person-to-person videoconferencing.

The equations for the best fit lines are given below.

QoE video call = −6.39 ·10−6×DELAY ms +

6.22 ·10−2×SSIM dB +3.30

QoE driving = −1.92 ·10−3×DELAY ms +

1.01 ·10−1×SSIM dB +2.67

(a) Video call (b) Driving simulation

Figure 10: The results of the two user studies. The data from each study were fit to a two-dimensional linear model—one for

videoconferencing, one for driving—using ordinary least squares. The upper plots project the learned bilinear models onto the

delay-QoE axes; similarly, the lower plots show the quality-QoE projection. We found that for a given delay, the quality has only a

small impact on the QoE (upper plots); conversely, for a given quality, the delay has a large impact on the QoE (lower plots).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 281

B Numerical evaluation results

Video Quality

(SSIM dB)

Video Delay

(ms)

System Trace p25 mean mean p95 Data

Salsify-1c

Verizon LTE

15.1 15.5 517.4 684.0

Salsify-2c 15.1 15.6 496.7 1256.8

FaceTime 15.0* 13.9 658.6 2044.2

Hangouts 9.8 10.4 560.9 1719.0

Skype 15.1* 14.1 1182.6 6600.2

WebRTC 13.2 13.7 973.0 4977.4

WebRTC (VP9-SVC) 13.6 14.1 1196.1 5411.9

Salsify-1c

AT&T LTE

15.0 15.4 349.1 448.5

Salsify-2c 15.0 15.4 282.1 362.4

FaceTime 12.6 13.3 469.4 1023.6

Hangouts 10.7 11.2 846.4 1862.4

Skype 8.2 8.5 322.1 557.4

WebRTC 12.4 13.4 934.7 4729.9

WebRTC (VP9-SVC) 13.5 14.1 775.2 3547.2

Salsify-1c

T-Mobile UMTS

13.0 13.2 840.1 3906.8

Salsify-2c 12.9 13.3 803.3 4129.4

FaceTime 8.8 10.5 1206.8 5699.6

Hangouts 8.5 9.4 1012.0 7096.9

Skype 11.1 11.8 1451.8 5745.9

WebRTC 10.4 11.5 1795.7 8685.5

WebRTC (VP9-SVC) 12.1 12.8 2585.2 18215.3

Salsify-1c

Intermittent Link

15.9 16.7 265.2 373.6

Salsify-2c 15.8 16.6 181.9 263.3

FaceTime 14.6 14.7 280.2 415.8

Hangouts 9.1 9.3 437.0 1771.4

Skype 15.5 15.7 128.4 229.7

WebRTC 16.0 16.1 155.8 169.1

WebRTC (VP9-SVC) 12.3 13.4 1735.2 3216.9

Salsify-1c

Emulated Wi-Fi Link

9.0 9.6 317.7 593.9

Salsify-2c 9.0 9.6 234.8 429.2

FaceTime 8.5 8.8 609.5 1080.2

Hangouts 8.2 8.4 514.4 980.5

Skype 7.5 7.8 250.9 495.1

WebRTC 10.0 10.2 315.2 721.0

WebRTC (VP9-SVC) 11.4 11.7 2512.4 14767.3

Figure 11: Summary of results of the evaluation (Section 5). The best results on each metric are highlighted. Two entries marked

with a * have a 25th-percentile SSIM that is higher than their mean SSIM; this indicates a skewed distribution of video quality.

In the PDF version of this paper, the icons in the data column link to the raw data for each item, within the repository at

https://github.com/excamera/salsify-results.

282 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/salsify-1-256.2017-09-19/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/salsify-2-256-2017-09-02/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/hangouts-256.2017-09-08/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/apprtc-256.2017-09-07/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/apprtc-svc-2s-3t-256.2017-09-05/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/salsify-1/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/salsify2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/hangouts/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/apprtc-rerun-2017-09-07/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/apprtc-svc-2s-3t/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/salsify-1/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/salsify2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/hangouts/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/apptrc/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/apprtc-svc-2s-3t/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/salsify-1-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/salsify-2-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/facetime-on-off/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/hangouts-on-off/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/skype-on-off/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/apprtc-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/apprtc-svc-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/salsify-1/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/salsify-2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/hangouts/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/apprtc-2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/apprtc-svc/video3_720p60
https://github.com/excamera/salsify-results

	Introduction
	Related work
	Design and Implementation
	Salsify's functional video codec
	Salsify's transport protocol

	Measurement testbed
	Requirements and metrics
	Design
	Implementation

	Evaluation of Salsify
	Setup, calibration, and method
	Results
	Modifications to systems under test

	Limitations and Future Work
	Limitations of Salsify
	Limitations of the evaluation

	Conclusion
	User studies to calibrate QoE metrics
	Numerical evaluation results

