Copyright © 2010 by the author(s). Published here under license by the Resilience Alliance.

Feagin, R. A., M. Luisa Martinez, G. Mendoza-Gonzalez, and R. Costanza. 2010. Salt marsh zonal
migration and ecosystem service change in response to global sealevel rise: a case study from an urban
region. Ecology and Society 15(4): 14. [online] URL: http://www.ecol ogyandsociety.org/vol 15/iss4/art14/

F&S

Research
Salt Marsh Zonal Migration and Ecosystem Service Changein Response
to Global Sea L evel Rise: A Case Study from an Urban Region

Rusty A. Feagin?!, M. Luisa Martinez?, Gabriela Mendoza-Gonzalez2, and Robert Costanza 3

ABSTRACT. Coastal wetland plants are expected to respond to global sealevel rise by migrating toward
higher elevations. Housing, infrastructure, and other anthropogenic modifications are expected to limit the
gpace available for this potential migration. Here, we explore the ecological and economic effects of
projected Intergovernmental Panel on Climate Change (IPCC) 2007 report sea level changes at the plant
community scale using the highest horizontal (1 m) and vertical (0.01 m) resolution data available, using
a6 x 6 km areaas an example. Our findings show that salt marshes do not always|ose land with increasing
rates of sealevel rise. We found that the lower bound of the IPCC 2007 potential rise (0.18 m by 2095)
actually increased the total marsh area. This low rise scenario resulted in a net gain in ecosystem service
values on public property, whereas market-based economic |osseswere predicted for private property. The
upper rise scenario (0.59 m by 2095) resulted in both public and private economic lossesfor thissame area.
Our work highlights the trade-offs between public and privately held value under the various IPCC 2007
climatechange scenarios. We concludethat aswetlandsmigrateinland into urbanized regions, their survival

islikely to be dependent on the rate of return on property and housing investments.
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INTRODUCTION

Coastal salt marsh wetlands are among the world’s
most productiveand val uableecosystems(Costanza
et a. 1989, Costanza et al. 1997, Martinez et a.
2007) and havelong adapted to changing sealevels.
Nevertheless, there is growing concern as to
whether they can withstand the accel erated rise that
may come with increased global climate change
(Morriset a. 2002, Valiela2006). Salt marshes are
expected to migrate upsiope with the rise (Brinson
et a. 1995), but human development is expected to
limit the potential migration and has already been
shownto bealimiting factor to coastal plant species
response patterns (Donnelly and Bertness 2001,
Feagin et a. 2005, Desantis et al. 2007).

To better understand the spatially variable effects,
models have been used to quantify the potential
impacts of climate change-induced sealevel riseon
coastal systems (Costanza et al. 1990, Titus and
Richman 2001) at regional scales (Thieler and
Hammar-Klose 2000, McFadden et a. 2007), or
with ecosystem scale Sea Level Affecting Marshes
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Model (SLAMM)-inspired models(Leeetal. 1992,
Craft et al. 2009) and cellular automata (Ross et al.
2009). The simple hypothesis that is typically
postulated at the ecosystem scale is that climate
change-induced rates of sealevel rise will result in
the loss of salt marsh wetlands. Moreover, we
assumethat such alossiscostly because ecosystems
provide goods and services upon which human life
Is sustained (Millenium Ecosystem Assessment
2003, Schrdter et al. 2005, Carpenter et a. 2009).
However, al previous models have strong
limitations in both horizontal (usually >35 m) and
vertical resolution (usually >1.5 m) and have thus
been unable to discern the differential response of
plant community zones and individual species to
sealevel rise.

Here, our primary objectiveisto show thedivergent
ecological effects of the projected United Nations
Intergovernmental Panel on Climate Change
(IPCC) report (Meehl et al. 2007) sealevel changes
at the plant community scale using the highest
horizontal (1 m) and vertical (0.01 m) resolution
Light Detection And Ranging (LIDAR) data
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available. Because the resolution of this model is
quite fine, gpatiadly and specieswise, we
demonstrate these effectswithin adiscrete 6 x 6 km
extent. For this same location, our secondary
objectiveisto cal culate how the net economic value
of the landscape responds to sealevel rise.

METHODS
Study area

The upper bound on the projected IPCC rise (0.59
m; Meehl et a. 2007) inthiscoming century isquite
close to the historically experienced rise (0.65 m)
at our chosen example site of Galveston Island,
Texas, USA during the last century. This location
provides a uniquely comparable sea level history
that islikely to bereplicated around theworld inthe
coming century. We do not consider the impact of
Hurricane Ike in this analysis because the wetlands
were not greatly altered by this storm, either by
erosion or accretion (Williams et a. 2009) except
along thefirst meter of wetland-to-open water edge
(Feagin et a. 2009), and the property valuesin the
study area have continued to increase on average
(Galveston County Appraisal District 2009).

The study area’s cross section of Galveston |sland,
Texas, USA stretches from 29.25 to 29.20 latitude
and from -94.87 t0-94.94 |ongitude. The study area
isthe entirety of theleft columnimagesin Figure 1
and is6192 x 6192 min size. Galvestonisabarrier
island within the northern Gulf of Mexico, with the
Gulf toitssouthand West Galveston Bay toitsnorth.
It has a subtropical climate with cool winters and
hot, humid summers. Rain is year-round with
maximain the late spring and early fall.

Coastal salt marshes at the study site exhibited the
zonation patterns common to other Spartina
alterniflora- dominated marshes in the U.S.
Southeast. Plant and animal composition within
these distinct zones are strongly related to tidal
elevation. Five plant community zones have been
previously defined (Feagin and Wu 2006) as. open
water, including the less than 1 ha of seagrass,
Ruppia maritima L., a the site; low marsh,
dominated by Spartina alterniflora Loisel with
some SalicorniavirginicalL . and BatismaritimalL.;
sat flat, i.e, alga crusts plus small stands of
Monanthochloe littoralis Engelm., Suaeda linearis
(Elliott) Moquin-Tandon, and Salicornia bigelovii
Torr.; high marsh, dominated by Spartina patens
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(Aiton) Muhl. with some Juncus roemerianus
Scheele, and Baccharis halimifolia L.; and upland,
mostly Axonopus affinis A. Chase and Paspalum
spp., with isolated stands of Tamarix gallica L. and
Sapium sebiferum (L.) Roxb., among various other
grasses. Because Galveston has been heavily
devel oped, concrete, housing, and non-nativeplants
aso compose much of the upland areas. We
considered al areas that were not in the open water
or various salt marsh zones as upland, whether this
upland was developed or natural, concrete or
vegetation.

Imagery and classification of plant community
zones

Weacquired al mresolution, 2005 Color Infra-Red
(CIR) image of the area and classified areas that
were covered by the five zones using the Iterative
Self-Organizing Data Analysis Technique (ISODATA)
in ENVI image processing software (Research
Systems, Inc. 2005, Boulder, Colorado, USA). We
then smoothed theimagewith a3 x 3 majority filter
to remove spurious pixels. Ground truthing was
performed with aGlobal Positioning System (GPS)
unit (Trimble Pathfinder Pro XRS unit, Trimble
Navigation Limited 2005, Sunnyvale, California,
USA). GPS points were differentially corrected to
an average positional error of 0.3 m.

We aso acquired a 2002 LIDAR laser-atimetry
dataset of the study area. Mean bias within the
dataset wasdetermined withtheaid of differentially
corrected, GPS pointsto be 0.01 minthe horizontal
dimension and 0.01 m in the vertical dimension,
with a standard deviation of 0.05 m.

Wefirst defined the elevation ranges at which each
of the plant community zonesexisted by overlaying
theLIDAR dataset on top of aclassified color infra-
red image. Utilizing an algorithm that we created in
ArcGIS 9.3's Model Builder (Environmental
Research Systems Ingtitute 2005, Redlands,
Cdlifornia, USA), we diced the LIDAR data for
every 0.01 m in the vertical dimension, and then
found thefrequency of occurrenceof each classified
plant zoneacrosselevationintheNAVD 88 vertical
datum. We then assigned discrete elevation ranges
that each zone dominated and created aninitial state
map by placing the zones at their appropriate
elevations on the LIDAR dataset, where each pixel
was defined as belonging to a particular plant
community class based on the defined elevation
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Fig. 1. Plant community zone distribution under various |PCC sealevel rise scenarios on Galveston
Island, Texas, USA. The study areais considered to be the entirety of the left column images. Red inset
boxes relate the coarser-scaled areas (Ieft column images) with the finer-scaled zoomed areas (right
column images). Y ellow transect lines represent the location of the cross section profiles detailed in

Figure 2.
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ranges. Thus, we assume that plant zonation is
determined entirely by observed response to
elevation (McKee and Patrick 1988), but this data
is specific to our study site.

The accuracy of the entire procedure was then
calculated using theinitial state map. We compared
the previously collected GPS ground truth datawith
the map. At the 5 m resolution, the total accuracy
was 90.30% producer’s accuracy (measure of

omission errors) and 91.46% user's accuracy
(measure of commission errors). Overadl, the
accuracy was quite strong considering that the GPS
points, from 2005 data, were taken from within 1 m
of a plant zone's edge and that this measure of
accuracy incorporated the error from the
classification, from 2005 imagery data, as well as
the error from the implementation of the range
definitions, from 2002 LIDAR DEM data, onto the
newly created map; thereisacross-shore, horizontal
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zonal migration rate of around 1-2 m per year inthis
area due to sea level rise which accounts for the
accuracy degradation.

Sea level rise ssimulations

A completescenario beganfromaninitial statemap.
To implement one time step, the following formula
was cal cul ated at each pixel of our plant community
scale maps:

e = € -1(g.8), + ae,c) (@8]

where e isthe elevation, r is the projected relative
riserate ascomposed of boththeglobal eustatic rate
gandthecurrent subsidencerates, aistheaccretion
rateasafunction of elevation eand plant community
class c, and t is the time step. There were 20 total
timestepsfromtheinitial state map to theyear 2095

map.

We simulated three IPCC scenarios (Meehl et al.
2007) for the eustatic component g: alow rise (0.18
m by 2095), amid rise (0.39), and a high maximum
rise (0.59 m by 2095). From 1909 to the present, the
average relative sea level rise rate was 0.65 cm/yr
at the study site. Approximately 0.32 of this
historical rate was dueto local subsidence, 0.10 due
to regiona subsidence, and 0.18 due to eustatic
water level rise. Because oil, gas, and water
extraction isno longer much of afactor inthisarea,
the current subsidence rate sis only 0.09 cm/yr at
the study site and much closer to the norm around
the world (Feagin et al. 2005).

Pb-210 and Cs-137 cores collected at the site have
shown that the accretion rate a has been an average
of 0.25 cm/yr at the low marsh edge over the
historical record, whereasthe relative sealevel rise
ratewas considerably higher (0.65 cm/yr); therehas
been alimitation of inorganic sediment in this area
(Ravens et a. 2009). The accretion rate was set at
0.25 cmlyr for the low marsh at water's edge,
regardless of long-shore position. Wethen modeled
the cross-shore variation in the accretion rate using
Callaway et al. (1997) asaguide, inwhichtheir low
marsh, as composed of Spartina alterniflora,
accretion rates were found to be roughly double
those in what they termed “mid and high” marshes.
We therefore set the cross-shore accretion ratein a
particular pixel as dependent on its elevation and
associated habitat classification: low marsh
accretion rates linearly declined from the 0.25 cm/
yr at the edge as one moved toward higher portions
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of thelow marsh, salt flat and high marsh accretion
rates were uniformly 0.125 cm/yr and 0.10 cm/yr,
respectively. Given a fixed spatial location over
time, asthesearosg, i.e., tidal inundation increased
andrelativeelevation of the pixel becamelower, the
accretion rate value would accordingly rise. This
aspect of the model allowed for wetland accretion
rates to be coupled with sea level rise rates, up to
the inorganic sedimentary limitation of our study
site of 0.25 cm/yr (Neubauer 2008, Ravens et al.
2009).

Wave-induced erosion of the marsh edge was
simulated by the conversion of all plant community
pixelsinto water pixelsthat werewithin aspecified
distance of the open bay shoreline. Thiscross-shore
erosion rate was on average 0.508 m/yr at the study
area, yet varied in the long-shore direction at 25 m
intervals, and was based on an empirical, spatially
explicit dataset (Gibeaut et al. 2003).

After running themodel, we cal cul ated the expected
plant habitat |oss/gain, bothincluding and excluding
potential barriersto plant migration for each of the
scenariosin ArcGIS9.3. Barriersto plant migration
were digitized as the extent of all seawalls,
bulkheads, parking lots, roads, housing developments,
managed lawns, etc. in the 2005 CIR image. When
simulations were conducted assuming that these
barriers existed, the lands within these outlines
remained as uplands, whether this was actualy
concrete or vegetated uplands, and they could not
be encroached upon by the other plant community
zonal classes. All calculations were carried out at
the 1 m? scae and converted to hectares for
presentation purposes.

Economic valuation

We calculated ecosystem service values and then
estimated losses and gains considering the different
sea level rise scenarios. Our goal was to best
represent the different plant community zones in
this salt marsh relative to one another, in terms of
market and nonmarket based values, rather than
quantify the absolute value of the total wetland as
an average. We first identified the ecosystem
services being provided by each plant community
at the study site and were able to locate monetary
valuesfor fiveservices:. recreation, i.e., hunting and
bird watching tourism val ues, carbon sequestration,
storm protection, fisheries support, and market-
based property appraisal values (see Appendix).
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Whenever available, we used ecosystem services
values previously estimated for the Galveston area
or calcul ated themfirst hand frompublicly available
data ourselves (see Appendix). We used three
databases when we did not have first hand data: the
Environmental Vauation Reference Inventory
(EVRI), Envalue, and the Ecosystem Services
Database (ESD; McComb et al. 2006). We used the
value transfer method in these cases (Wilson and
Hoehn 2006) to estimate ecosystem service values,
and we specifically point out these cases in the
Appendix. When we performed the value transfer
method, we were careful to choose only those
studies performed either in the Galveston areaor in
sites similar to it, in terms of economic and social
attributes as well as existing ecosystems, to avoid
using biased values as much as possible. The
ecosystem service values were estimated on a per
hectare per year basis. Values were adjusted to US
Dollarscurrency using the Purchasing Power Parity
(PPP) and Consumer Price Index (CPI) for 2006,
obtained from U.S. government statistics.

We then calculated the total flow of services from
each ecosystem by adding the value of each
individual service. Our calculated values are higher
than general wetland values typically found in the
literature (e.g., Woodward and Wui 2001, Brander
et al. 2006), but our study areaisin the second most
productive estuary inthe USA intermsof fisheries,
directly on the Central Flyway for migratory birds,
and embedded within a highly urbanized region;
much of our datais specific to location. Moreover,
our values are calculated at the plant community
zone scale, a much finer resolution than is typical
in these generalized studies.

In summary, the low marsh zone had the greatest
economic value in terms of ecosystem services in
comparison with the other natural ecosystems
occurring at the study site (Table 1). This was
mainly due to the valuable fisheries supply service
and storm protection provided by the low marsh.
The salt flat zone had a high recreational value
because of the fact that this is prime bird habitat,
but had a negative value for carbon sequestration
because there is a net CO? emission by the
microbiota in this zone (see Appendix). Similarly,
the high marsh recreation valuewashigh, but it also
provided avaluabl e carbon sequestration and storm
protection function. The value of the property was
moderately high in the uplands, because of a
willingness to pay for this land as recorded by the
tax appraisal data. Thisvalueof the uplandsbecame
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even higher when thetax appraisal datawasallowed
to follow the actual rate of ~ 6% in thisareatoward
property investment accumulation (Galveston
County Appraisa District 2009, Environmental
Protection Agency 2000), as opposed to the 3% rate
that the Nationa Oceanic and Atmospheric
Administration recommends for marsh vauation
and the rate of inflation for general economic
services (National Oceanic and Atmospheric
Administration 1999). Finally, to estimategainsand
losses, we calculated ecosystem service values
considering the different areas covered by each
ecosystem, given the modeled climate change
scenarios.

RESULTS
Spatial migration of plant community zones

The zona migration of the plant community zones
primarily depended ontherelativesealevel riserate,
the accretion rate as specific to zone and location,
and the availability of land at a suitable base
elevation. However, the choice as to whether
human-erected barriers should be removed or kept
in place also gresatly affected the availability of the
land on which this migration could occur.

When compared with the map of plant community
zones in 2005 (Fig. 1, top row), the IPCC low rise
scenario map appeared somewhat similar for the
year 2095 (Fig. 1, second row), except at the high
marsh-to-upland interface. The Spartina alterniflora
- dominated |ow marsh zoneat thelowest elevations
was maintained because the model ed accretion rate
(0.25 cm/ yr at the seaward edge) was nearly the
same as the net relative rise rate (0.09 cm/ yr of
subsidence plus eustatic rise). At the higher
elevations of this zone, elevation was not
maintained because accretion rates were less
(decreasing to 0.125 cm/ yr at the upper edge of the
low marsh zone) and these | ocations gradually sank
until they assumed the greater accretion rates of the
lower elevations of this zone.

Overdll, the plant communities increased in extent
for the low rise scenario, except for the upland
(Table 2). When the model assumed that
anthropogenic barriers could limit potential plant
migration, upland areas that fell within developed
areas were assumed to be protected and less of this
land was logt, e.g., in the event of zonal migration,
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Table 1. Economic value of ecosystem services provided by salt marsh zonesin the study area. All values
are per hectare per year and adjusted to 2006 US Dollars; i.e., $/halyr. Property values contained within
() arecalculated at 6% (see text) as opposed to 3%.

Community Birding/Hunt Carbon Storm Fisheries Property Total
Zone: Recreation sequestration protection

water 4,533.5
low marsh n‘a 1,204.8 11,7489 6,943.9  505.4(6,506.4) 20,403.0
(26,403.7)

sat flat 4,540.2 -9.4 405.1 n/a 511.1(6,579.6) 5,447.0
(11,515.5)

high marsh 4,540.2 1,140.4 1,174.9 n/a 865.7 7,721.0
(11,145.4) (18,000.9)

upland n/a n/a n‘a n/a 4,713.8 4,713.8
(60,684.3) (60,684.3)

ahousing development, parkinglot, or lawnislikely
to be raised and/or barricaded so as not to become
a marsh plant community. However, the barriers
also reduced the amount of land occupied by the
other marsh plant communities since they could not
migrate into these managed areas.

In the mid rise scenario, there was a net loss of
Soartina alterniflora — dominated low marsh,
particularly in the large expanse at the back of the
island (Fig. 1, third row), but anet gain of salt flats
and high marsh as these two plant communities
found more locations at suitable elevations as they
migrated upslope (Fig. 2). Upland areas showed the
greatest net |oss, yet thisloss was minimized at the
expense of the other plant communities when
barriers were assumed (Table 2).

Under the IPCC high scenario, the low marsh and
salt flat zones surprisingly fared better than in the
mid rise scenario because of the topographic relief
(Fig. 1, bottom row). The slope appeared to be the
primary factor that delimited plant community
distribution in the study area (Fig. 2). In this high
scenario, the relative rise rate was similar to that
which hasalready occurred in thelast century at the
study site (0.68 vs. 0.65 cmlyr, respectively),

although the mechanism driving the mgjority of the
relative water rise was different, global eustatic
change vs. local subsidence. Historical aerial
images at this site detail qualitatively similar losses
in the past as those predicted by our high rise
scenario maps, given approximately the same
relative rise rate, and exhibit similar zonal
migration.

Economic consequences

Inthedifferent sealevel risescenarios, itispredicted
that, overall, considering all community zones, i.e.,
water, low marsh, salt flat, high marsh and upland,
all the rise possihilities, i.e., IPCC low, mid, and
high rise scenarios, with and without barriers to
migration, and two different investment accumulation
rates on private property (3%, 6%), the economic
losses will generally outweigh the gains (Table 3).
Our models indicate that there will only be
economicgainsin Spartinaalterniflora—dominated
low marshesduring alow rise event. Inthe salt flats
and high marsh, net gains result in more available
ecosystem servicesin every scenario, except for the
high rise with barriers scenario in the case of the
high marsh. The uplands, with large property
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Table 2. Land gained / lost for IPCC sea level rise scenarios at the study area, by plant community zone.

Gainsarein bold. Units are in hectares.

No Barriersto Migration

With Barriersto Migration

Community Zone Low Rise Mid Rise High Rise Low Rise Mid Rise High Rise
water +29 + 228 + 351 +28 + 224 + 339
low marsh +42 -32 -15 +42 - 36 -24
salt flat +20 +42 + 53 + 16 +30 + 32
high marsh +95 +79 +41 +76 +44 -8
upland - 186 - 317 -430 - 162 - 262 - 339
appraisal values, arelikely to show largeeconomic  DISCUSSION

lossesin all the projected scenarios, with the largest
losses occurring in the high rise scenarios.

If property investments accumulate at a 3% rate,
then the net economic value will be greater when
the barriers to plant migration are removed (Table
4). However, if property investments accumul ate at
a 6% rate, then leaving the barriersin place will be
the optimal solution. This divergence aso
highlightsthe trade-offs between public and private
value as low marshes and open water are on public
property, they are navigable waters and sit below
the mean high tide line (Clean Water Act 1972),
whereas the other plant communities lay on
privately owned land. With strong return on
investment into private property and housing, for
example the 6% rate, relative to the return on
investment into other market or nonmarket sectors,
the opportunity costs of sea level rise increasingly
weigh heavily on thisinvestment toward the future,
relativetolower rateof return onecosystemservices
that exist largely on public land, at the lower 3%
rate, giventhesametimeframe. Thisfindingimplies
that the appea of removing barriers to wetland
migration may be strongly dependent on market
fluctuations in these private property prices. For
example, if housing pricesdeclined to zero, or if the
investment return rate declined to zero or below,
then removing barriers to plant migration would
certainly be the optimal economic solution for
society.

The natural and social context of salt marsh
migration

Our findings show that a salt marsh does not always
lose land with increasing rates of sealevel rise. The
response of each individual plant community zone
is more nuanced, with some zones gaining while
others lose land. In a purely natural setting, the
future distribution of migrating plants will be
largely predetermined by the accretion deficit
(Cahoon et al. 1995) at a given location and its
interaction with the pre-existing slope.

Direct human activities and intervention in the
migration process are estimated to account for the
large majority of the losses that are predicted to
occur worldwideby theend of thiscentury (Nicholls
et al. 1999). Rising sealevelsand inflating property
values will likely interact as they have in our
modeled scenarios, reducing the incentive to save
wetlands.

To more generally test the sensitivity of salt marsh
loss to changing property valuesin our study area,
weranged thereturnrate on privateinvestment from
-0.6% to 0.6%. As in the primary model, our
definition of private investment included housing
and property values only. We kept other rates
constant at 3%, for example the accumulation rate
on the fisheries value. This sensitivity test assumed
that the general inflation rate in the economy would
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Fig. 2. Cross section profiles for the various IPCC sea level rise scenarios. Each profile is coordinated
with ayellow transect linein Figure 1. Color legend is the same asin Figure 1. The ordinate axis
includes al components of relative sealevel rise, expressed in NAVD 88 meter units. In these
hypsometric representations, ‘rising water’ isrelatively the same as ‘sinking land’. The solid black line
is present day elevation. The relative elevation ranges at which each plant community zone exists remain
the same through time (right side bars), while accretion processes appear to alter the profile shapes

dightly in some areas.
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Table 3. Ecosystem services values gained and lost in different IPCC sealevel rise scenarios estimated for
the study area, Galveston Island, Texas. The upper portion versus lower portions of the table compare two
different rates of return on private property investment during the modeled period, 3% vs. 6%. Gains are
in bold. Units are in US Dollars (2006) per year, i.e., $/yr.

Private property at 3% accumulation on investment

No Barriersto Migration

With Barriersto Migration

Community Zone Low Rise Mid Rise High Rise Low Rise Mid Rise High Rise
water 131,472 1,033,638 1,591,259 126,938 1,015,504 1,536,857
low marsh 856,926 -652,896 -306,045 856,926 -734,508 -489,672
salt flat 108,940 228,774 288,691 87,152 163,410 174,304
high marsh 733,495 690,959 316,561 586,796 339,724 -61,768
upland -876,767 -1,494,275 -2,026,934 -763,636 -1,235,016 -1,597,978

Private property at 6% accumulation on investment

No Barriersto Migration

With Barriersto Migration

Community zone Low Rise Mid Rise High Rise Low Rise Mid Rise High Rise
water 131,472 1,033,638 1,591,259 126,938 1,015,504 1,536,857
low marsh 1,108,955 -844,918 -396,056 1,108,955 -950,533 -633,689
sat flat 230,310 483,651 610,322 184,248 345,465 368,496
high marsh 1,710,086 1,422,071 738,037 1,368,068 792,040 -144,007
upland -11,287,280 -19,236,923 -26,094,249 -9,830,857 -15,899,287 -20,571,978

be constant at 3%, while property values were also
constant at the private investment return rate that
was fixed, over the 2005-2095 time period.

We found that net economic losses did not beginin
thelow rise scenarios until a4% private investment
rate was exceeded, whereas they began in the high
rise scenarios above 2% (Fig. 3). Thus, if the high
rise scenarios come to pass, decisions would likely
biastoward keeping the barriersin place and losing
thewetlands, evenwithrelatively low ratesof return
on housing investments. Private property is likely
to be saved a the expense of publicly owned
jurisdictional lands when this is the most cost

efficient outcome (Titus et a. 1991), serves
immediate economic needs (Barbier 2006), or has
agreater immediate economicreturnoninvestment.
Similarly, as the private investment rate increased
past 3%, all scenariosbegantodivergein magnitude
of cost. One canimaginethat at high rates of return
on private investments, for example 10%, sealevel
rise would be catastrophic for both private and
public interests. Our results show that the financial
incentive to secure private property with barriers
will increase by several orders of magnitude, given
the IPCC high sea level rise scenario over the low
rise scenario.
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Table 4. Cost/ benefit of IPCC sea level rise scenarios at the study area, considering ecosystem services
provided by publicly owned (low marsh and open water) vs. privately owned properties (salt flat, high
marsh, uplands). The upper portion vs. lower portions of the table compare two different rates of return on
private property investment during the modeled period, 3% vs. 6%. Gains are in bold. Units are in US

Dollars (2006) per year, i.e., $/yr.

Private property at 3% accumulation on investment

No Barriersto Migration

With Barriersto Migration

Property Low Rise Mid Rise High Rise Low Rise Mid Rise High Rise
ownership

public 988,398 380,742 1,285,214 983,864 280,996 1,047,185
private -34,332 -655,542 -1,421,682 -89,688 -731,882 -1,485,442
Total 954,066 -274,800 -136,469 894,176 -450,886 -438,258

Private property at 6% accumulation on investment
No Barriers to Migration With Barriersto Migration

Property Low Rise Mid Rise High Rise Low Rise Mid Rise High Rise
ownership

public 1,240,427 188,720 1,195,203 1,235,893 64,971 903,168
private -9,346,884 -17,331,201 -24,745,891 -8,278,540 14,761,782 -20,347,489
Total -8,106,457 -17,142,482 -23,550,688 -7,042,647 -14,696,811 -19,444,321

Human attitudes toward their local environment
may turn out to bethe primary driver in determining
whether coastal ecosystems survive (Nicholls
2004). The protection and conservation of natural
ecosystems is necessary and requires the ability to
predict the direct and indirect, spatial and temporal
effects of human activities, as well as the potential
consequencesof each decision, e.g., keep or remove
barriers for wetland migration, in terms of
ecosystem services. The development of coastal
infrastructure should take into account the variance
among these possible futures (Turner et al. 2007).
Moreover, the legal standing of entities impacted
by global sea level rise is already being explored,
for example in the recent Massachusetts et al. v.
Environmental Protection Agency et a. case
(Supreme Court of the United States 2006).

Additional factorsthat may influence salt
mar sh migration

A large unknown factor is the relative impact of a
hurricane or maor storm on our scenarios.
Economic losses from property damage, such as
those accrued after 2008's Hurricane Ike in our
study area, are very likely to surpass immediate
economic returns from increasing housing prices.
However, and somewhat conversely, housing prices
for undamaged propertiestypically increase after a
major storm, as the available housing supply is
reduced. For our study area, the majority of
properties appear to have increased in value
(Galveston County Appraisal District 2009). The
potentially increasing impact of hurricanes in
climate change scenarios (Emanuel 2005, Webster
et a. 2005) needs to be considered when making
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Fig. 3. Effect of the rate of return on private property investment (%) on the benefit/costs of sealevel
rise (US Dollars X 107), in the 6 x 6 km study area on a per year basis.
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decisions on how to cope with sealevel rise. Future
work must be done to understand the complex
interactions between these two forces (e.g., Ross et
al. 2009), asrising base sea levels affect the spatial
extent of inundation by storm surges, and to
understand their impact on economics and human
decision making.

Another unknown factor is the effect that nutrient
enrichment may have on our modeled patterns of
zonal migration. Levine et al. (1998) introduced a
conceptual model suggesting that the competitive
hierarchy among marsh plants can be reversed by
increasing nutrient availability. In such a scenario,
the landward edge of plant zones may then invade
and migrate into the seaward edge of the following
higher plant zones. At our study site, an N-mediated
landward migration is likely to be limited for the
Spartina alterniflora —dominated low marsh into
the salt flat zone. The abiotic conditions in the salt
flat zone are too harsh for any plants to grow, and
N input would not alter the relative ability of plants
tosurvivethere. Thesalt flat tohighmarshtransition
would be similarly unaffected.

a
o=l rate of return on private property investment

0.2

rnid === high

mid- barriers == high-barriers

However, asEmery et al. (2001) point out, Spartina
alterniflora can invade the entirety of the Spartina
patens - dominated high marsh zone when enriched
with nutrients, regardless of the environmental
factors. Minchinton and Bertness (2003) provide an
estimated invasion rate of 1.5 m per year in an
example where N input influences zonal migration,
though for Phragmites australis. In our study area,
a similar rate for a Spartina alterniflora invasion
would allow this speciesto traverse the entirewidth
of the Spartina patens - dominated high marsh zone
by 2095. We believe that such aninvasion could be
possible.

Still, theeffect of this Spartinaalterniflorainvasion
on the relative benefit/costs of the various sea level
rise scenarios would be similar to that which we
present in Tables 3 and 4, because the value of ‘low
marsh’ is based on tidal inundation rather than a
specific species. For example, though the current
high marsh zone could be invaded entirely by
Soartina alterniflora, the invaders would remain
well above the daily tidal range and thus could not
deliver the fishery services of the ‘low marsh'.
Moreover, the invaders may express themselves
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phenotypically asthe short growth form of Spartina
alterniflora (Valiela et al. 1978) even with higher
N because of the salinities at our site (Linthurst and
Seneca 1981). They may then provide the same
provision of services as the high marsh
physiognomy at that elevation, i.e, storm
protection, avian habitat, etc.,, though this is
ultimately speculation. There are notable
exceptions where a species replacement certainly
could alter therelative benefit/costs, for examplean
invasion by Phragmitesaustralisor Tamarixgallica
would radically alter the physiognomy (Bertness et
al. 2002), though this event is unlikely because of
the high salinities present at our study site.

It islikely that N input would increase production
across all plant communities, increasing total
biomass and C sequestration at all fixed spatial
locations. Similarly, N enrichment would likely
increase aboveground organic accretion rates at all
spatial locations (Cahoon and Guntenspergen 2010,
Morriset al. 2002), thereby radically altering model
output. Moreover, shifts in species distribution
across the zones could ater belowground soil and
root structures, and further affect the elevation
change process.

Morework isneededto assesstheeffect of increased
N on the other ecosystem services that we list in
Table1. However, we predict that increasing N may
reducethefisheriesvalue of thelow marsh, because
it may reduce the tortuosity of the open water-to-
low marsh edge within the marsh (Feagin and Wu
2006), and increase the storm protection value,
though an increasein standing biomassisnot likely
to be linearly related to increased storm protection.
Future modeling work could focus on the within-
zone, and species-specific, dynamics of adding N
to the marsh ecosystem.

Another unknown factor is whether potentially
increasing CO, concentrations or temperatures will
have an influence on marsh accretion, athough
some initial work has shown that this process may
present a counter-weight to the rising sea (Kirwan
et al. 2009, Langley et al. 2009). However, another
unknown is whether specific ‘tipping e ements,
such as the West Antarctic Ice Sheet or the
Greenland | ce Sheet, will contribute more water to
the rise than the IPCC report suggests (Tol et al.
2006, Lenton et al. 2008). More will need to be
known about the magnitude of climate change,
biotic interactions among species in a salt marsh,
Species-specific ecosystem service values, and the
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complexities of the socioeconomic marketplace to
make our predictions even better in the future.

CONCLUSION

Our work highlights the trade-offs between public
and privately held value under the various IPCC
climate change scenarios in urbanized regions. We
conclude that as wetlands migrate landward, their
survival is also dependent on the rate of return on
property and housing investments. Investigations at
our example site had to be scaled to the plant
community zone/species level to resolve the actual
impact to the whole ecosystem, and to take into
account the benefit/costs among sea level rise
scenarios, local sources of geomorphic variability,
and trade-offs between public vs. privatelands. We
similarly expect that local conditions and human
proclivities will radically differentiate the benefit/
costs of sealevel rise at other |ocations around the
world.

Responses to this article can be read online at:
http: //mww.ecol ogyandsoci ety.org/vol 15/issA/art14/

responses/
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APPENDIX

Ecosystem Service Valuation

Recreation (hunting and bird watching tourism) is dependent upon the resources in the
salt flat and high marsh zones, as this is where the birds forage and reside. We calculated this
value similarly in both zones. The bird watching tourism value was taken as the average
willingness to pay and consumer surplus per recreation benefits, $3,243.0 ha/yr, a value
transferred from three coastal sites in South Texas from Mathis and Matishoff (2004), and thus
may represent a small source of error. However, because studies specific to the Galveston Bay
area show similar per day per person expenditures (Bell 1997), although without the per hectare
estimates that we needed for this analysis, the transfer should be appropriate. Texas hunters
spend 2.5 times less than birdwatchers on average (Adams et al. 1997) for a value of $1,297.2
ha/yr. We thus calculate the total for hunting and bird watching tourism as $4,540.2 ha/yr.

The carbon sequestration value was calculated as the average yearly net carbon
sequestration or production in a plant community zone, multiplied by the near-future average
market cost to sequester carbon, $20 (Department of Energy 2009). Average yearly net carbon
was calculated as 60,240 kg C/halyr for Spartina alterniflora — dominated low marsh and 57,020
kg C/halyr for Spartina patens — dominated high marsh, with the assumption that this yield is
directly transferable from Pezeshki and Delaune (1991) in Louisiana to our site in Texas as the
climate, species, and plant community zones are nearly identical. For the seasonally-inundated
algal salt flat, we assumed that the average yearly net carbon was -470 kg C/hal/yr, which
represents a gross value for an algal mat that subtracts the bacterial respiration (Cammen 1991).
This value was transferred from data taken during a summer in New England and thus may
represent a potential source of error.

The storm protection value was directly calculated as the avoidance cost value for the
vegetated marsh with respect to storms in the Galveston, TX region from historical data; see
Costanza et al. (2008) for methodological details. This value was calculated separately for the
low marsh and high marsh. Salt flat values were assumed to be 1/ 2.9 of those of the vegetated
high marsh, as this is the difference in wave reduction between vegetated and unvegetated areas
at the same elevation (Moller et al. 1999). Our assumption for this calculation is that the salt flat
zone and the high marsh zone occupy the same general elevation.

For fisheries value, we calculated the average replacement cost value for fishery
restoration projects in the Galveston, TX area at $45,012.4 per hectare as based upon Table 7 in
Rozas et al. (2005). Since this data source did not present per year estimates, we then calculated
the future value at the end of the model runs (year 2095) at a compounded 3% annual rate of
accumulation from their current value (2006); this represents the rate at which monetary gains
are accumulated (ie, reverse of ‘discounting’; National Oceanic and Atmospheric Administration
1999). This is the rate recommended by National Oceanic and Atmospheric Administration for
fishery-based restoration values, eg our data source. The resulting annualized value is
independent from inflation and remains in 2006 US Dollars.
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For property values, we first found the market value for each parcel and attending
housing improvement within the study area, using tax appraisal data from Galveston County
Appraisal District (2009). We then estimated the value of every square meter (1 x 1 m pixel)
within a parcel, as based upon the total value of a parcel and improvement divided by its area.
Next, we found the plant community zone that occupied each pixel, and summarized the values
from every pixel in the study area according to plant community zone. This allowed us to find
the average value for a square meter of the four plant community zones, within our study area.
We then converted this average value into hectares. Similar to the fisheries value, we calculated
private property accumulation rates following the methodology described above at the 3% rate,
as well calculating at the current market 6% rate (Galveston County Appraisal District 20009,
Environmental Protection Agency 2000), in order to estimate the effect of property investment
relative to ecosystem services. Currently, property values are still increasing in this area as
opposed to much of the USA, even after 2008’s Hurricane Ike (as caused by lower supply of
housing, as well as relatively good economic climate in this area).

We then calculated the total flow of services from each ecosystem by adding the value of
each individual service (except for open water, which we calculated as a total as the available
literature allowed, yet specifically for the Galveston Bay area, eg Whittington et al. 1994).
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