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Abstract
Salinity is an agro-environmental problem limiting plant growth and development in the arid to semi-arid regions 
of the world and becomes the predicament of serious concern. Plants exposed to salt stress may undergo osmotic 
stress, ion toxicity and nutritional imbalance which results in production of reactive oxygen species (ROS). The 
ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement and 
is determined by multifarious morpho-physiological and biochemical pathways like initial entry of salt to roots, 
intercellular compartmentation, synthesis of osmoprotectants (sugars, amino acids, proline and upgradation of 
antioxidant system) that results in maintaining ion homeostasis. This paper also revealed the plant responses to 
salinity stress with emphasis on physiological and biochemical mechanisms of salt tolerance which may help in 
interdisciplinary studies to assess the ecological consequence of salt stress. Moreover, the application of potassium 
helps the plants to cope with the hazardous effects of salinity by improving the morphological, physiological and 
biochemical attributes. 
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Introduction 
Salinity is one of the most important abiotic 

stresses and a serious threat to agricultural sustainability. 
The extent of salinity problem is about 10% of world 
land area and 50% of irrigated areas which results in 12 
billion US$ loss of agricultural production (Flowers et al., 
2010). The problem of salinity is further accelerated by 
converting fertile land of agriculture into other uses 
especially in urban areas which results in serious threats 
to fulfil 70% more production to meet the feeding of 
9.3 billion population in 2050 (Shabala, 2013). Plant 
responses to salt stresses have been discussed over the 
last three decades (Yeo, Flowers, 1983; Zhu et al., 1998; 
Abbasi et al., 2012). Salt stress is a complex mechanism 
which affects almost every physiological and biochemical 
pathway in the plants (Cuartero et al., 2006; Nabati et al., 
2011). Many morphological and physiological traits 
of plants are negatively affected by the soil salinity 
(Pitman, Lauchli, 2002; Parida, Das, 2005; Ahmad, 
2010). The effects of salt stress are associated with low 

osmotic potential of soil solution resulting in water 
stress, nutritional imbalance, specific ion effect and any 
combination of these factors (Evelin et al., 2009). Salt 
stress may cause membrane disorganization, generation 
of toxic metabolites, inhibition of photosynthesis, 
generation of ROS and attenuated nutrient acquisition 
leading to cell and whole plant death (Hasegawa et al., 
2000; Ashraf, 2004; Chartzoulakis, Psarras, 2005; Sun 
et al., 2011). Considerable progress in salinity tolerance 
has been made through conventional breeding methods 
(Ashraf, 2002). The selection for salt tolerance is 
more suitable and easy if plant species possess unique 
indicators in response to salinity stress (Ashraf, 2002; 
Munns, 2002). The complex mechanism of salt tolerance 
and high extent of variation at intra-specific and inter-
specific levels in plant constitute many difficulties to 
recognize a single indicator, which could be used as an 
effective selection criterion. Development of methods and 
strategies to ameliorate injurious effects of salt stress on 
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plants has received considerable attention. But currently, 
there are no economically viable technological means 
to facilitate crop production under saline conditions 
(Ashraf, Foolad, 2007). Among various macro-nutrients, 
potassium (K+) occupies an important role in the survival 
of plants under salt stressed conditions (Mengel, Kirkby, 
2001; Mahmood, 2011). A well balanced K+:Na+ 
ratio is crucial for the proper adjustment of stomatal 
function, activation of enzymes, protein synthesis, cell 
osmoregulation, oxidants metabolism, photosynthesis 
and turgor maintenance (Abbasi et al., 2014). In this 
review, much research information about the effects of 
salt stress on plant growth, plant responses to salinity and 
strategies to improve salt tolerance has been gathered 
with special emphasis on potassium role in alleviating 
salinity stress. 

Effects of salt stress on plant 
growth
An injurious effect of salinity stress on plant 

growth can be classified into four factors. 
Osmotic stress. The salt-induced osmotic stress 

is the major reason of growth reduction at initial stage 
of salt stress, while at later stages accumulation of Na+ 
occurs in the leaves and reduces plant growth (Munns, 
2005; Munns, Tester, 2008; Rahnama et al., 2010). High 
concentration of salt in the root zone limits water potential 
of soil solution that strictly reduces plant root water 
conductivity. As a result, cell membrane permeability 
drops and influx of water to the plant is greatly reduced 
(Munns, 2002). In jute, relative water content, leaf 
water potential, water uptake, transpiration rate, water 
retention, and water use efficiency reduced under short-
term salt stress (Chaudhuri, Choudhuri, 1997). The plant 
species that are unable to regulate osmotically cannot 
maintain their turgor pressure which results in stomatal 
closure followed by reduced photosynthetic activity. Cell 
division and cell elongation was badly affected by loss 
in turgor pressure (Shannon et al., 1998). The different 
studies revealed that growth of the cells is primarily 
correlated with turgor potential and reduction in turgor 
pressure is one of the major causes of inhibition of plant 
growth under saline conditions, e.g., maize (Cramer et al., 
1996), rice (Moons et al., 1995) and Shepherdia argentea 
(Qin et al., 2010). 

Adverse effect of salinity in the form of osmotic 
stress at cellular level is well documented in a number 
of comprehensive reviews (Hasegawa et al., 2000; 
Munns, 2005; Munns, Tester, 2008). However, the extent 
of growth inhibition due to salt-induced osmotic stress 
depends on the type of plant tissue and concentration of 
salts present in growing medium (Munns et al., 2000). 
In view of the above mentioned reports it is clear that 
salinity causes osmotic stress to plants but the extent of 
the effect of this stress varies from species to species. 
It is therefore necessary to understand the physiological 
mechanisms responsible for the salinity tolerance, so as 
to find out whether their growth is limited by the salt-
induced osmotic stress, or the toxic effect of the salt 
within the plant. 

Specific ion toxicity. Plants take up and 
accumulate certain toxic ions from the irrigation water that 
restrict plant growth. It is different from salinity problem. 
It may occur even when the salinity is low. These toxic 
ions are sodium, chloride, sulphate and bicarbonates 
which are found in excessive amounts in most salt affected 
soils which can cause severe ion toxicity. However, plant 
responses to specific toxic ions differ and depend on the 
type of species (Dogan et al., 2010). 

It is generally considered that excess amount of 
Na+ causes nutrient imbalance, thereby causing specific 
ion toxicity (Ashraf, 1994). Salt sensitive species have 
no ability to control Na+ transport. It has been observed 
that sodium ion appears to accumulate more rapidly to a 
toxic level than Cl−, therefore most studies have focused 
on Na+ exclusion and the control of Na+ transport within 
the plant (Munns, Tester, 2008). For example, salinity 
stress increased the levels of Na+ and Cl− in all parts 
of guava, particularly in the leaves thereby resulting in 
growth reduction (Ferreira et al., 2001). Similarly, high 
accumulation of Na+ in the leaves of different cultivars 
of Brassica napus reduces photosynthetic capacity (Ulfat 
et al., 2007). Qasim and Ashraf (2006) showed that 
differential salt tolerance in canola cultivars was due 
to low accumulation of Na+ in their leaves. In view of a 
huge number of published reports Amtmann and Sanders 
(1999) were able to suggest that high Na+ concentration in 
the cytoplasm interferes with normal ongoing metabolic 
processes. Consequently, plants try to avoid excessive 
accumulation of Na+ in the cytoplasm. 

Specific ion effect can further be assessed on salt 
sensitive and salt tolerant crop varieties. For example, 
leaf injuries and growth inhibition was observed in those 
cultivars that accumulate more Na+ in their leaves, e.g., 
in radish, cabbage and canola (Jamil et al., 2007). In 
addition to Na+ being a toxic ion, in some species, such 
as soybean, citrus and grapevine, Cl− is considered to be 
the more toxic ion (Grattan, Grieve, 1999). Physiological 
basis of Cl− toxicity on plant growth can be explained in 
view of the arguments of White and Broadley (2001) that 
chloride (Cl−) is taken up through roots and transported to 
shoot where it causes damaging effects on photosynthesis 
and other metabolic processes. From these reports, it 
can be concluded that excessive amounts of cations or 
anions in growth medium can cause ion toxicity which 
is genotype-specific. However, variation in specific ion 
toxicity at inter-specific or intra-specific level could be 
due to some adaptations to toxic ions, which is species-
specific. 

Nutritional imbalance. It is now well established 
that the interactions between salts and mineral nutrients 
result in considerable nutrient instability (Azeem, 
Ahmad, 2011). Ionic imbalance occurs in the cells due to 
excessive accumulation of Na+ and Cl− and reduces the 
uptake of other mineral nutrients, such as K+, Ca2+ and 
Mn2+ (Karimi et al., 2005). At higher level, salinity limits 
the concentration of K+ and Ca2+ in the leaves and roots 
of Brassica napus (canola) cultivars (Ulfat et al., 2007; 
Ashraf, Ali, 2008). High Na+:K+ ratio adversely affects 
metabolic processes in plants (Dogan et al., 2010). 
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High concentration of Na+ and Cl− ions in soil 
solution reduced the uptake of K+ ions which ultimately 
caused K+ deficiency in plants. K+ deficiency results 
in chlorosis and then necrosis in plant leaves (Gopal, 
Dube, 2003). Potassium is very important for enzymes 
activation, protein synthesis, osmoregulation, stimulating 
photosynthesis and maintaining cell turgor pressure 
(Freitas et al., 2001; Ashraf, 2004). Ca2+ and K+ both 
are very important for maintaining proper functioning 
and reliability of cell membranes (Wenxue et al., 2003). 
Maintenance of required K+ level in plant cell under saline 
conditions depends upon selective uptake of K+, cellular 
compartmentation of Na+ and K+ and distribution in the 
leaf tissues (Carden et al., 2003). Maintenance of the 
adequate level of calcium and its transport in plant cells 
under salinity stress is also very important parameters for 
measuring salinity tolerance (Soussi et al., 2001; Unno 
et al., 2002). 

Moreover, numerous studies have revealed that 
salt stress can reduce K+, Ca2+ and N accumulation in 
different crop plants, e.g., wheat (Raza et al., 2006), 
sunflower (Akram et al., 2007), radish, cabbage (Jamil 
et al., 2007) and canola (Ulfat et al., 2007). Salinity 
reduces nutrient availability as well as transport to 
the growing regions of the plant, thereby affecting the 
quality of both vegetative and reproductive organs. For 
example, higher concentrations of Na+ in soil decreased 
the Ca2+ activity in the external medium which also 
results in less availability of Ca2+ in Celosia argentea 
(Carter et al., 2005). 

In view of these reports, it is quite clear that salt 
stress limits the accumulation of essential nutrients such 
as K+, Mg2+ and Ca2+ while increases the concentration 
of Na+ in most crop species thereby resulting in reduced 
growth and yield. This argument is further supported 
by a number of studies in which it was found that 
exogenous application of salt-induced deficient nutrient 
such as Ca, K or N can mitigate the adverse effects of 
salinity on growth of many crops, e.g., wheat, sunflower 
and beans, etc. (Shabala et al., 2006; Akram et al., 2007; 
Mahmood, 2011). 

Reactive oxygen species. Plants exposure to salt 
stress enhanced the production of reactive oxygen species 
(ROS) such as H2O2 (hydrogen peroxide), O2

− (superoxide), 
1O2 (singlet oxygen) and OH− (hydroxyl radical). 
Overproduction of ROS enhanced lipid peroxidation, 
protein degradation and DNA mutation (Pitzschke et al., 
2006). In plant cells, ROS mainly H2O2, O2

− and a hydroxyl 
ion OH− are generated in the cytosol, chloroplasts, 
mitochondria and the apoplastic space (Mittler, 2002; 
Abbasi et al., 2014). A rise in ROS production may result 
in membrane injury (Shalata et al., 2001). 

Plants have developed antioxidant defense 
system to detoxify the ROS, which includes non-
enzymatic antioxidant compounds (tocopherols and 
carotenoids) and enzymatic antioxidant like superoxide 
dismutase (SOD), catalase (CAT), peroxidase (POD) 
(Ali et al., 2011; Abbasi et al., 2014). For instance, in a 
series of experiments with pea (Pisum sativum) plants, 
Hernandez et al. (1995) reported that a salt tolerant pea 

cultivar had higher activities of mitochondrial Mn-SOD, 
chloroplastic CuZn-SOD and ascorbate peroxidase than 
those in a salt sensitive pea cultivar. Similarly, over-
production of glutathione reductase (GSH) and ascorbate 
peroxidase (APX) have been shown to improve oxidative 
stress tolerance, resulting in enhanced water stress in 
wheat (Sairam et al., 1998). While working with cowpea 
(Vigna radiata L.), Cavalcanti et al. (2004) concluded 
that efficient SOD-APX-CAT antioxidant system is not 
necessarily involved in enhancing salinity tolerance in 
plants. Kholova et al. (2010) reported that salt tolerant 
maize genotypes have high activites of SOD, APX, CAT, 
glutathione reductase (GR) and comparatively lower O2

−, 
H2O2 and thiobarbituric acid reactive substance contents 
compared to salt sensitive maize genotypes under 
different salinity levels. 

Concluding from all these reports, we can 
suggest that increase in antioxidant enzymes is a part of 
the mechanism of salt tolerance and scavenging of ROS 
through any enzymatic or non-enzymatic antioxidants 
is more important than simply higher activities of 
antioxidants. However, although a wide range of genetic 
adaptations to saline conditions have been observed 
in a number of crop species, underlying mechanisms 
of oxidative stress tolerance in crop plants are still not 
completely understood and thus further research should 
be done. 

Strategies to improve salt 
tolerance 
Intra-cellular compartmentation. It has been 

reported that numerous mechanisms are involved in 
salinity tolerance of plants at cell level. 

Ion homeostasis pathway. The potassium 
homeostasis in cytoplasm plays central role in cell 
metabolism and normal functioning. Different studies 
have depicted the dramatic decline in potassium 
concentration under salinity stress (Abbasi et al., 2014; 
2015 a) along with strong positive association of shoot 
K+ concentration and plant for salt tolerance (Chen 
et al., 2005). Moreover, ability of roots to retain more 
potassium has also been verified as one of the key factors 
deliberating the salt tolerance in wheat (Cuin et al., 2011), 
maize (Abbasi et al., 2014), barley (Chen et al., 2005; 
2007), bean (Dawood et al., 2014) and lucerne (Smethurst 
et al., 2008). The application of potassium fertilizers 
under saline conditions has results in improvement of 
plant growth (Abbasi et al., 2015 b). 

The potassium is a key nutrient which contributes 
about 35% to 50% of cell osmotic potential (Rivelli et al., 
2002). Different halophytic species own better ability to 
retain more potassium under saline conditions (Garthwaite 
et al., 2005). Plant ability to maintain higher K+:Na+ ratio 
is also a key feature for salt tolerance of plants (Shabala, 
Cuin, 2008; Abbasi et al., 2015 b). K+:Na+ judgment has 
been subjected to quantitative trait loci (QTL) analysis 
for salinity tolerance in various experiments (Lindsay 
et al., 2004). Different features explain this essentiality, 
e.g., both K+ and Na+ compete for binding sites due to 
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similarities in valences (Bortner, Cidlowski, 2007). Two 
main findings support this concept: 1st – presence of CED-
9 gene retains more potassium and improves salinity 
tolerance in tobacco (Shabala et al., 2007); 2nd – activity 
of caspase-like proteases and endonucleases under saline 
stress conditions retain more K+ in the cytosol (Demidchik 
et al., 2010). It suggests that cytosolic K+:Na+ ratio is not 
only the important feature but also high concentration of 
K+ is necessary to deliberate salt tolerance. 

The production of ROS is significantly increased 
under salinity stress both in roots and shoots of plant 
but application of potassium under saline conditions 
detoxifies the harmful effect of ROS by improving 
photosynthetic electron transport (Marschner, Cakmak, 
1989; Cakmak, 2005). Other important aspects are 
the involvement of tonoplast NHX exchangers which 
are Na+:H+ antiporters that help to maintain potassium 
homeostasis under saline environment (Apse et al., 
1999). These NHX genes improve the salt tolerance of 
plants (Zhang, Blumwald, 2001). 

Na+ is pumped into vacuole which enters into 
leaf cells before it approaches toxic level for various 
enzymatic activities. A vacuolar Na+:H+ antiporter 
controls this activity (Blumwald et al., 2000). The 
Na+:H+ antiporters activity is induced by the addition of 
salt but its enhancement is more in salt tolerant than salt 
sensitive species (Staal et al., 1991). Certain experiments 
have placed emphasis on the mechanism where over 
expressing of vacuolar transporter has improved salinity 
tolerance of tomato and rice (Zhang, Blumwald, 2001; 
Fukuda et al., 2004). The storage of Na+ is facilitated 
and enhanced by the increased uptake of Na+ to short 
vacuoles and eventually conferring high tolerance by 
lessening Na+ in cytosol. 

Synthesis of osmoprotectants. During osmotic 
stress, plants accumulate specific organic solutes such 
as proline, free amino acids, sugars and quaternary 
ammonium compounds which are called as compatible 
solutes. These chemicals do not interfere with plant 
enzymatic activities even when present in higher 
concentration (Ashrafijou et al., 2010; Nabati et al., 2011). 
These chemicals are present in cytoplasm and certain 
ions such as Na+ and Cl− are preferentially sequestered 
into vacuole which leads to help in turgor maintenance 
during osmotic stress (Bohnert et al., 1995). 

Sugars. Soluble sugars play a central role in 
osmotic adjustment in almost all plants under salinity 
stress conditions. Many researchers reported that under 
drought or salinity stress, plants accumulate sucrose 
(Nabati et al., 2011). Other soluble sugars such as 
fructose and glucose are also very important and have 
significant role under stress conditions. Ashraf and Naqvi 
(1992) reported that under salinity stress soluble sugars 
in shoots of four Brassica species such as B. carinata, 
B. juncea, B. campestris and B. napus were increased, 
except B. carinata. When we applied salt in the plant 
growth medium, it markedly decreased the total sugar 
contents in the leaves of all eight cultivars of canola 
except the line ‘Oscar’ (Qasim, 2000). 

Free amino acids. Under salinity stress, free 

amino acids also play major role as a solute in osmotic 
adjustment of plants (Ashrafijou et al., 2010). Previously 
it was considered that osmotic adjustment does not give 
the physiological basis for this parameter in salinity 
tolerance (Munns, 1993). But identification of solutes 
in the cells under salinity stress could prove valuable 
information in identifying the plants which are more 
salt-tolerant. The several amino acids such as arginine, 
glycine, alanine, serine, valine, leucine and proline, take 
part in osmotic adjustment of cell (Mansour, 2000). By 
increasing salt dose in the growth medium, total free 
amino acids were markedly increased in all eight cultivars 
under observation of canola lines (Qasim, 2000). 

Proline. Generally, in higher plants proline 
contents are higher and its contents further enhanced 
under salinity stress (Dogan et al., 2010; Nabati et al., 
2011). It is a well known fact that proline plays vital 
role in membrane stabilization in plant cells (Gadallah, 
1999). The proline production has been narrated as a non 
specific response of plants under water stress condition 
(Ashraf, 1994). It was reported that proline contents 
were increased markedly in four Brassica species such 
as B. juncea, B. campestris, B. napus and B. carinata 
under salinity stress by increasing in Na+:Ca2+ ratio of the 
growth solution (Ashraf, Naqvi, 1992). It was observed 
that salt tolerant cultivars of B. juncea accumulate 
markedly higher concentration of proline in leaves than 
salt-sensitive cultivars under salinity stress (Kumar, 
1984). In B. juncea, it was observed that proline played 
a significant role in decreasing lipid peroxidation (Alia 
et al., 1993). 

Shot-gun approaches. To induce salt tolerance 
in plants, scientists proposed exogenous applications of 
compatible solutes, antioxidants, growth promoters, and 
inorganic salts (Hayat, Ahmad, 2003; Raza et al., 2006; 
Ashraf, Foolad, 2007; Abbasi et al., 2014). Although, a 
number of traditional plant breeding, molecular biology 
and genetic engineering techniques are trying to develop 
salt tolerant lines/cultivars of important commercial crops 
but a limited success has been achieved in developing salt-
tolerant cultivars through them (Ashraf, Foolad, 2007; 
Abbasi et al., 2014). Alternatively, some salt resistant 
varieties have been developed by exogenous application 
of various inorganic and organic chemicals. Exogenous 
application of these compounds has been proposed as 
an efficient and cost effective approach to improve crop 
productivity under stress conditions (Ashraf, Foolad, 
2007; Abbasi et al., 2014). 

Effect of potassium on 
morphological, physiological 
and biochemical attributes
Morphological attributes. Salinity is an agro-

environmental problem limiting plant growth and 
development in the arid and semi-arid regions of the 
world (Ashraf, 2004). Salinity stress reduces relative 
growth rate, net photosynthetic rate, net assimilation rate 
and alters biomass production (Akram et al., 2011; Sun 
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et al., 2011). Kabir et al. (2004) reported that salinity 
reduced total dry matter of plants which ultimately caused 
reduction in crop yield but application of potassium 
improved growth and biomass yield of barley and bean 
under saline conditions (Mahmood, 2011; Dawood et al., 
2014). Potassium was applied at the rates of 0, 40, 80 
and 120 kg ha-1. Maximum grain yield and 1,000-grain 
weight was obtained by applying potassium at 120 kg ha-1 
(Sharif, Hussain, 1993). 

The inhibitory effect of salinity on potassium 
translocation was stronger with low potassium 
concentration in the nutrient solution, when compared at 
two levels of K+ supply in maize seedlings, i.e. 0.1 and 
1 mmol L-1 (Botella et al., 1997). Thereby, salinity did not 
affect root dry weight, but low levels of K+ in the nutrient 
solution significantly reduced shoot dry weight. Yield 
components in maize like ear length, 1,000-grain weight 
and number of grains per ear remained unaffected but yield 
per ear was significantly affected by increasing potash 
rate. Similarly, the parameters like plant height, days to 
tasseling and silking remained unaffected, however stalk 
yield and protein contents were significantly affected. 
Similar responses have been found in spinach plants, 
which responded to an increasing K+ concentration, 
reducing the differences in shoot growth between 
plants grown under low salinity and those grown under 
high salinity (Chow et al., 1990). The salinity-induced 
inhibition of shoot growth at low levels of K+ in the root 
medium was attributed to the effect of K+ deficiency and/
or Na+ toxicity on the plants. The most recommended 
level of potassium is 125–160 kg ha-1 beyond this the 
application of potassium is not profitable (Chaudhry, 
Malik, 2000). Applying potassium at a rate of 150 kg ha-1 
increased grain yield by 10.8 kg for each kg potassium 
applied and net profit (Zhang et al., 2000). 

Physiological attributes. Potassium is essential 
for many physiological attributes like photosynthesis, 
activation of enzymes and reducing excess uptake of 
sodium under saline and drought conditions (Mengel, 
Kirkby, 2001; Reddy et al., 2004). Potassium is an 
important nutrient that maintains the turgidity in plant 
cells (Carroll et al., 1994). Salinity reduced adversely the 
relative water contents and water retaining capacity but 
application of higher amount of potassium significantly 
improved the plant water relation in mungbean plant 
(Kabir et al., 2004). High salinity caused a great reduction 
in growth such as leaf area, fresh and dry weight of leaves. 
These changes were related to a decrease in relative water 
content and K+ concentration (Ghoulam et al., 2002). 
The decreased relative water content (RWC) under saline 
conditions was also reported in different crops, including 
alfalfa (Serraj, Drevon, 1998), mungbean (Nandwal 
et al., 2000) and burning bush (Kochia scoparia) (Nabati 
et al., 2011). 

Effect of potassium on photosynthesis efficiency 
has been observed in sugarcane and it was noticed that 
salinity treatment significantly reduced photosynthetic 
efficiency but application of potassium significantly 
improved photosynthetic parameters (Noaman, 2004). 
The higher rates of photosynthesis were attributed to 
lower concentration of Na+ and Cl− in the leaves (Dogan 
et al., 2010; Abbasi et al., 2015 a). Perera et al. (1994) 

reported that transpiration and stomatal conductance 
decreased with salinity. Transpiration and stomatal 
conductance are directly involved in photosynthesis, 
decrease in transpiration and stomatal conductance results 
in the decrease in CO2 assimilation and photosynthesis. 
They further concluded that higher stomatal conductance 
in plants is known to increase CO2 diffusion into leaf, 
thereby favouring higher photosynthetic rates. Higher 
CO2 assimilation rates could in turn favour a high growth 
and higher crop yield. Leaf growth, gas exchange and 
chlorophyll fluorescence of the sorghum varieties were 
measured in response to NaCl concentration by Netondo 
et al. (2004). Meloni et al. (2004) also studied the effect 
of salinity on some growth and physiological parameters 
in algarrobo (Prosopis alba L.) seedling and concluded 
that high salinity reduced root growth, shoot growth and 
relative water contents. 

Biochemical attributes. Salinity reduces plant 
growth by inhibiting many physiological and biochemical 
processes such as nutrient uptake and assimilation (Munns, 
2002; Ali et al., 2011). Potassium is essential for protein 
synthesis, activation of enzymes and photosynthesis; 
osmoticum mediating cell expansion and turgor driven 
movements and competitor of Na+ under salt stress (Hu, 
Schmidhalter, 2005). Several studies have shown that 
application of potassium mitigates the unfavourable 
effects of salinity through its role in stomatal regulation, 
osmoregulation, energy status, charge balance, protein 
synthesis and homeostasis (Sanjakkara et al., 2001; 
Mahmood, 2011). 

Potassium in elemental form is generally 
required to activate at least 60 different enzymes which 
take part in plant growth (Suelter, 1985). Enzymes are 
proteins in nature and synthesis of proteins depends on 
the efficient nitrogen metabolism which is disturbed by 
salinity. Transport of amino acids to the sites of protein 
synthesis and balancing of electrical charges are among 
key roles of potassium (Ashraf, 2004). Potassium is often 
considered to be a nutrient of primary importance for 
cereal and oil seed crops. Plants exposed to environmental 
stress factors, such as salinity, drought, high light 
intensity and nutrient limitations, suffer from oxidative 
damage catalyzed by reactive oxygen species (ROS), e.g., 
super oxide, hydrogen peroxide and hydroxyl radical, 
ion toxicity and K-deficiency. Salt tolerant genotypes 
respond to salinity by increasing anti-oxidative defense 
systems for detoxification of ROS (Zhu, 2001; Ali et al., 
2011; Sun et al., 2011). 

Increasing evidence suggests that improvement 
of potassium (K+) nutritional status of plants can greatly 
lower the ROS production (Cakmak, 2005; Abbasi et al., 
2014). Potassium humate application increased the 
activities of superoxide dismutase (SOD), peroxidases 
(POD) and catalase (CAT), decreased the content of 
MDA and delayed the senescence of ginger roots (Liang 
et al., 2007). KNO3 application alleviates salinity effect 
in winter wheat by enhancing activities of antioxidant 
enzymes (Zheng et al., 2008). The scavenging of ROS 
by the scavenging system especially SOD, CAT and 
GPX activities was improved by potassium application 
(Soleimanzadeh et al., 2010; Abbasi et al., 2014). 
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Suelter (1985) has reported that application of potassium 
accelerates the enzymatic activity of pyruvate kinase 
involved in conversion of 3-p-glyceraldehyde to pyruvate 
with associated energy production in the glycolytic 
pathway. For maintaining ionic balance in the vacuole, 
cytoplasm accumulates low molecular weight compound 
which are termed as compatible solutes. These compatible 
solutes included mainly proline (Singh et al., 2000) and 
glycinebetain (Khan et al., 1998). They do not interfere 
with normal biochemical function of plants. 

Accumulation of Na+ and impairment of 
potassium nutrition is major characteristic of salt-
stressed plants. Therefore, K+:Na+ ratio in plants is 
considered a useful guide to assess salt tolerance (Akram 
et al., 2010; Abbasi et al., 2015 b). Selection or breeding 
genotypes with high K+:Na+ ratio is an important strategy 
to minimize growth deceases in saline soils (Santa-
Maria, Epstein, 2001). Rascio et al. (2001) identified a 
wheat mutant with a high ability to accumulate K+ in the 
shoot and showed that this mutant compared to other 
wheat genotypes greatly improved tissue hydration, 
seed germination and seedling growth under increasing 
concentration of NaCl. Saline soils generally have higher 
concentrations of Na+ than K+ and Ca2+ which may result 
in passive accumulation of Na+ in root and shoot (Bohra, 
Doerffling, 1993). High levels of Na+ can displace Ca2+ 
from root membranes, changing their integrity and thus 
affecting the selectivity for K+ uptake (Cramer et al., 
1996). Xylem loading of K+ is regulated by K+ uptake 
from external solution (Engels, Marschner, 1992). This 
indicates that Na+ salinity besides reducing the K+ uptake 
rate also interferes to a greater extent in K+ translocation 
from root to shoot, which results in a lower K+ shoot 
content and a higher K+ root content. 

Future prospects 
Salinity effects and problems with a view of 

tolerance and ecological performance are discussed briefly 
in this review. Attempts have been made to compare the 
relative sensitivity of miscellaneous plant species to salt 
uptake and transport of NaCl with regard to phytotoxicity 
and their interactions with nutrients. Improving 
potassium nutritional status of plants greatly minimizes 
detrimental effects of salinity which appears to be related 
to the inhibitory role of potassium against reactive oxygen 
species (ROS) production. So, the molecular factors that 
can be used for genetic engineering of salt-tolerant plants 
include over-expression of specific transcription factors, 
characterization of dehydrin proteins, overproduction of 
osmoprotectants, expression of water channel proteins 
and ion transporters and expression and characterization 
of genes which are involved in uptake and transport of 
potassium under salt stress conditions should be studied 
to tackle the problem of salinity in more effective way. 
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Santrauka 
Druskingumas yra žemės ūkio ir aplinkos problema, ribojanti augalų augimą bei vystymąsi sausringuose ir pusiau 
sausringuose pasaulio regionuose ir tampanti susirūpinimą keliančiu reiškiniu. Veikiami druskos streso augalai gali 
patirti osmosinį stresą, jonų toksiškumą ir mitybinį disbalansą, dėl to susidaro reaktyvios deguonies formos. Augalų 
geba detoksikuoti radikalus esant druskos stresui yra būtina sąlyga, nulemta įvairių morfofiziologinių ir biocheminių 
veiksnių, pavyzdžiui, pirminio druskos patekimo į šaknis, tarpląstelinio pasidalijimo, osmoprotektorių (cukrų, 
aminorūgščių, prolino ir antioksidacinės sistemos gradacijos) sintezės, dėl kurios palaikoma jonų homeostazė. 
Straipsnyje apibūdinama augalų reakcija į druskos sukeltą stresą išryškinant fiziologinius ir biocheminius tolerancijos 
druskai mechanizmus, kurie galėtų padėti įvertinti druskos streso ekologinę svarbą tarpdisciplininiuose tyrimuose. 
Be to, kalio, kuris gerina augalų morfologines, fiziologines ir biochemines savybes, naudojimas augalams padeda 
susidoroti su žalingu druskingumo poveikiu. 

Reikšminiai žodžiai: druskingumas, kalis, tolerancijos mechanizmas. 
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