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Salinity stress is one of the significant abiotic stresses that influence critical 

metabolic processes in the plant. Salinity stress limits plant growth and 

development by adversely affecting various physiological and biochemical 

processes. Enhanced generation of reactive oxygen species (ROS) induced via 

salinity stress subsequently alters macromolecules such as lipids, proteins, and 

nucleic acids, and thus constrains crop productivity. Due to which, a decreasing 

trend in cultivable land and a rising world population raises a question of 

global food security. In response to salt stress signals, plants adapt defensive 

mechanisms by orchestrating the synthesis, signaling, and regulation of various 

osmolytes and phytohormones. Under salinity stress, osmolytes have been 

investigated to stabilize the osmotic differences between the surrounding of 

cells and cytosol. They also help in the regulation of protein folding to facilitate 

protein functioning and stress signaling. Phytohormones play critical roles in 

eliciting a salinity stress adaptation response in plants. These responses enable 

the plants to acclimatize to adverse soil conditions. Phytohormones and 

osmolytes are helpful in minimizing salinity stress-related detrimental effects 

on plants. These phytohormones modulate the level of osmolytes through 

alteration in the gene expression pattern of key biosynthetic enzymes and 

antioxidative enzymes along with their role as signaling molecules. Thus, it 

becomes vital to understand the roles of these phytohormones on osmolyte 

accumulation and regulation to conclude the adaptive roles played by plants 

to avoid salinity stress.
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Introduction

Soil is a complicated system in which physical and biological 
processes interact. Various natural and anthropogenic activities 
influences climate change that leads to disturbed physical and 
chemical characteristics of soil (Pandey and Choudhary, 2019; 
Ahirwal et  al., 2021). Among environmental changes, soil 
salinization has been known as a severe threat to agricultural fields 
(Mukhopadhyay et al., 2021). Approximately 20% of the world’s 
irrigated land [about 60 million (Mha)] has been globally affected 
due to salinity (FAO and ITPS, 2015), and with continuous climate 
change, it is projected to increase to 50% by 2050 (Machado and 
Serralheiro, 2017; Abdelrahman et al., 2018). In addition to this, 
FAO has reported that increasing soil salinity could pull 0.3–1.5 
million hectares agricultural land out of production each year, 
reducing yield potential by 20–46 million hectares (FAO and 
ITPS, 2015). Therefore, crops cannot be cultivated if soil salinity 
is not controlled and rises above specified salinity thresholds 
(FAO, 2017). Among abiotic stresses, salinity affects plant growth 
by hampering photosynthesis, CO2 assimilation and excessive 
ROS production (Chaudhary and Choudhary, 2021; ElSayed et al., 
2021; Selem et al., 2022). The detrimental effects of salinity begin 
with osmotic or water stress (a reduction in the root’s ability to 
absorb water), followed by ionic toxicity (nutritional imbalance, 
formation of ROS species), hormonal imbalance and susceptibility 
to infection by the pathogen (Choudhary et  al., 2017; Talbi 
et al., 2018).

Plants respond to salinity by adapting diverse strategies such 
as phytohormonal regulation, redox change in potential, osmolyte 
biosynthesis, and epigenetic control of stress-related genes during 
stressful conditions. Similarly, salt stress tolerance is a complex 
trait that includes various signaling pathways, transcription 
factors, stress-responsive genes (Mansour and Hassan, 2022). 
However, tolerance to salinity levels varies between plant species, 
and such plants can be categorized as halophytes or glycophytes. 
Halophytes are the plants that are endowed with the ability to 
tolerate salinity up to 200 mM over glycophytes that are salt 
sensitive under adverse effects of salinity (Flowers and Colmer, 
2008; Santos et al., 2016; Song et al., 2016). This salt tolerance 
mechanism in halophytes involves the reduction of Na+ influx, Na+ 
compartmentalization, and efflux of Na+ ions (Flowers and 
Colmer, 2008). In addition to this, ROS scavenging via antioxidant 
enzymes or quenching them with non-enzymatic molecules such 
as carotenoids, flavonoids, reduced glutathione, ascorbic acid and 
compatible osmolytes such as proline, glycine betaine (GB), 
trehalose sugar (Khan et  al., 2015; Per et  al., 2018) provide 
tolerance against salinity stress in the plant (Anjum et al., 2017). 
Osmolytes majorly contribute to maintaining cellular osmotic 
adjustment through cell turgidity, protects internal cell 
components and reduced ionic toxicity.

However, multiple pathways have been explored in the 
biosynthesis of osmolytes in bacteria as well as in plants. In 
addition to this, phytohormones undoubtedly regulate osmolyte 

production and accumulation (Per et al., 2017). Phytohormones 
interact synergistically with osmolytes and bring tolerance to 
stress (Iqbal et al., 2014). However, the comprehensive role of 
phytohormones by modulating the biosynthesis of osmolytes has 
not been explored properly. Therefore, it becomes imperative to 
understand the underlying mechanism of phytohormones 
regulating the biosynthesis of osmolytes. Thus, in this present 
review, we have focused on the synthesis and role of osmolytes in 
plants and further their modulation via phytohormones under 
salinity stress.

Impact of salinity stress on plant 
growth

The term “Salinity” refers to the presence of an excessive 
amount of soluble salts in the soil that hinders plant growth 
(Etikala et al., 2021). High salinity is one of the major abiotic 
stress that is most widely distributed around the globe 
(Chaudhry and Sidhu, 2021). Since salinity is one of the 
stringent problems, it can be  categorized as Primary and 
Secondary salinity. Primary salinity occurs in arid and semi-
arid climatic zones due to natural, anthropogenic activities and 
Secondary salinity occur directly as a consequence of 
man-made activities (Safdar et  al., 2019). The detrimental 
effect of salinity on crop growth is due to changes in 
physiological, morphological, biochemical and molecular 
responses in plant growth (Arif et al., 2020; Figure 1). Inhibitory 
effects of salt stress is influenced by number of factors 
including salt content, duration of exposure, plant species and 
varieties, photochemical quenching capability, plant growth 
stages, stress type, gas exchange characteristics, photosynthetic 
pigments, and ambient conditions (Shahverdi et al., 2018). At 
low levels of soil salinity, it enhances the plant length as 
concluded in various studies on various crops such as Zea mays 
(Hamada, 1995), Oryza sativa L. (Lee et  al., 2011), Vigna 
unguiculata L. (Ibrahim, 2016), Brassica campestris L. (Memon 
et al., 2010) and Vicia faba L. (Hanafy et al., 2013). Higher 
sodium chloride salt concentrations, on the other hand, 
lowered the height of Vigna mungo L. (Kapoor and Srivastava, 
2010), and Tanacetum parthenium L. (Mallahi et  al., 2018) 
plants. Salt stress affects root and stem growth, and hinders 
nutrient uptake and translocation (Shrivastava and Kumar, 
2015). Reduction in the plant growth is mainly due to 
decreased chlorophyll content which leads to the reduction in 
photosynthetic capacity of the plants under salinity stress 
(Netondo et al., 2004). In the context of plant growth, a recent 
detailed study on tomato with different salt concentrations 
(75,150 and 300 mM) exhibited a reduction in fresh and dry 
weight of roots (86.5% and 78.6%), shoot (71% and 72%), 
chlorophyll and carotenoid contents (22, 18.6%), and 
anthocyanin (41.1%), respectively (Alzahib et  al., 2021). 
However, at a relatively higher concentration, 300 mM NaCl, 
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reported an increase in proline content (67.37 mg g-1 fresh 
weight), antioxidant enzymes such as Superoxide dismutase 
(SOD), and Catalase (CAT), while reduction in 
malondialdehyde (MDA) content. An increased salt 
concentration alters the morphology, physiology and 
metabolism in these landraces in response to salt stress 
(Alzahib et al., 2021). Similarly, in Medicago truncatula, the 
effect of salinity on photosynthesis and chlorophyll 
fluorescence was studied, and total chlorophyll content was 
significantly reduced by 43% in TN6.18 and only 6% in 
TN.8.20 compared to control plants. The same effect was 
reported with carotenoid content, reduced by 51% in the 
sensitive TN6.18 line but only 13% in the resistant line (Najar 
et  al., 2019). These recent studies indicate that salinity 
drastically affects the growth and development of plants. 
Nutritive imbalance another factor of salt stress that disrupts 
the osmotic equilibrium and further prevails drought 
conditions (Riaz et  al., 2019). Additional effects include 
hampering reproductive processes such as inhibiting 
microsporogenesis, promotion of rapid programmed cell death 
and senescence of fertilized embryos (Suo et al., 2017). TEM 
micrographs of Solanum melongena treated with 75, 100, and 
150 mM NaCl exhibited bulging chloroplasts and an absence 
of integrated thylakoid membranes associated with big starch 
grains (Alkhatib et  al., 2021). Salinity influences the 
antioxidant activity of enzymes. For example, in Andrographis 
paniculata alteration in the activity of antioxidant enzymes, 
viz. catalase (CAT) and peroxidase (POD) was observed that 

further reveals the extent of induced changes modulated by 
salinity stress (Kumar and Srivastava, 2018). In short, the 
impact of salinity stress has been illustrated in Figure 1.

Salinity stress tolerance in plants

To comprehend the physiological process of salinity 
tolerance in plants, one must first understand the cause of 
growth restriction, which can be due to salt’s osmotic impact on 
the soil or the toxic effect of salt within the plant body. As a 
result, plants respond to salinity in two ways: an initial rapid 
increase in external osmotic pressure at first followed by a 
gradual response as Na+ accumulates in leaves. In the first 
phase, plant roots sense the salt concentration above the 
threshold level, mainly 40 mM NaCl in many plants or less for 
sensitive plants like rice and Arabidopsis, and significantly 
decreases the rate of shoot growth. In the second ionic phase, 
the salt concentration increases excessively in the older leaves 
due to continuous transport to transpiring leaves over a longer 
period of time eventually results in higher salt concentration 
and then leaves die. As a result, if new leaves die faster than they 
are being produced, the plant’s photosynthetic capacity will no 
longer meet the carbohydrate requirements of young leaves, 
declining growth even more (Munns and Tester, 2008). Salinity 
tolerance is a physiological feature that is linked to a number of 
mechanisms that influences stress (Roy et al., 2014). However, 
based on the differential responses of plants, tolerance to 

FIGURE 1

Impact of Salinity stress on various physiological and morphological traits of plants.
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salinity can be  categorized into three types, viz. osmotic 
tolerance, ionic tolerance, and tissue tolerance (Chaudhary and 
Choudhary, 2021).

Osmotic stress tolerance

Osmotic stress tolerance initiates a rapid response by 
diminishing cell expansion of root tips and young leaves and 
decreasing stomatal conductance to preserve water. It uses 
quick, long-distance (root to shoot) signaling pathways (Roy 
et al., 2014; Isayenkov and Maathuis, 2019), which essentially 
ignores the osmotic effects of NaCl, KCl, mannitol, and 
polyethylene glycol (Hassini et al., 2017; Darko et al., 2019; 
Prodjinoto et al., 2021; Gul et al., 2022). In osmotic tolerance, 
both organic solutes and inorganic ions are essential. These 
low molecular weight organic solutes, such as sugar and sugar 
derivatives including sucrose, polyols, and heterosides, GB 
and homarine (tertiary nitrogen compounds), amino acids 
such as proline, glutamate are commonly found in higher 
plants. Although it was thought that crop species had a wide 
range of osmotic tolerance, this was difficult to evaluate until 
recently. The measurements of growth parameters such as leaf 
growth and stomatal conductance methods are usually time-
consuming and destructive. Digital images of plants allow 
measurements of the plant’s relative growth rate immediately 
after exposure to salinity and, hence, measure osmotic 
tolerance. Rice (Al-Tamimi et  al., 2016), barley (Tilbrook 
et al., 2017), durum wheat (James et al., 2008; Sirault et al., 
2009), bread wheat (Asif et al., 2018), and wild relatives of 
wheat, such as T. monococcum, have shown variations in 
osmotic tolerance based on relative plant growth rate.

Ionic tolerance

The exclusion of ions, particularly Na+, from the shoot is a 
long-established mechanism for salinity tolerance in agricultural 
plants. This mechanism has received the most attention as it 
becomes easier to perform experimentation. Many crops, such as 
durum wheat (Forster, 2001; Munns and James, 2003), rice (Zhu 
et al., 2001; Lee et al., 2003), barley (Wei et al., 2003; Garthwaite 
et  al., 2005) and Medicago (Sibole et  al., 2003) have shown a 
substantial link between exclusion and tolerance of salt. In this 
mechanism, Na+ and Cl− enter the plant’s roots and are quickly 
transported to the shoot via transpiration stream. To avoid the 
buildup of these ions into the shoot system, roots exclude most of 
the Na+ and Cl− dissolved in the soil solution through which the 
concentration of salt in the shoot as a whole would never increase 
over that in soil, and the plant could survive indefinitely in saline 
soil. In this way, the concentration of Na+ and Cl− ions is relatively 
higher in shoot than in roots that, improve the plant’s salt 
tolerance. Lauchli et  al. (2008) evaluated the concentration of 
sodium and other ions in different layers of wheat root. In addition 

to this, the SOS1 antiporter localized to the root epidermis 
(particularly at the root tip, where roots are undifferentiated) 
provides the first line of defense against sodium uptake (Assaha 
et al., 2017; Figure 2).

Tissue tolerance

Tissue tolerance refers to a tissue’s ability to retain tissue 
function while accumulating high amounts of intracellular Na+  
or Cl− ions (Munns et al., 2016; Negrāo et al., 2017). To avoid  
the detrimental effect of accumulated Na+ and Cl− ions, 
compartmentalization into vacuoles or photosynthetically 
non-active cells avoids the accumulation of Na+ and Cl− ions in 
the cytoplasm of plant cells where most important metabolic 
process occurs, i.e., tissue tolerance (Munns and Tester, 2008; Roy 
et al., 2014; Figure 2) and employing such mechanism will allow 
a plant to avoid toxicity. There is already a considerable amount of 
evidence across crop varieties in terms of the rates of accumulation 
of Na+ and Cl− in the shoots (Munns et al., 2016).

Major osmoprotectants in plants

Osmoprotectants are low molecular weight hydrophilic 
organic compounds that involve a variety of roles connected 
to plant defense mechanisms under varying environmental 
conditions. Unlike inorganic compounds, these compounds 
are non-toxic at higher cellular concentrations (Nahar et al., 
2016; Niazian et al., 2021). During stressful conditions, these 
osmoprotectants accumulates in plants like proline, ectoine, 
trehalose, polyols, fructan, and quaternary ammonium 
compounds (QACs) such as glycinebetaine, alanine betaine, 
proline betaine, choline-O-sulfate, hydroxyproline betaine, 
and pipecolate betaine (Singh et al., 2015). Transgenic plants 
overexpressing biosynthetic enzymes for osmoprotectants, 
such as mannitol, GB, D-ononitol, or sorbitol, have 
accumulated these compounds in levels too low to give 
protective benefits solely through osmotic mass action (Huang 
et al., 2000).

The fundamental function of osmoprotectants accumulation 
in plants under salt stress is to maintain cell turgor pressure  
via osmoregulation, and protection of cellular components  
via reduction of ionic toxicity. Furthermore, by scavenging  
of hazardous ROS generated and preserving important 
antioxidative enzymes, these osmoprotective chemicals boost 
the antioxidative defense system in plants (Hasanuzzaman et al., 
2014, 2019). In addition to this, osmolytes also function in the 
activation of defense-related genes under various stresses, 
which designates its prime importance in plants (Wani et al., 
2018b). In the upcoming section, we  discuss the role of 
important osmoprotectants under salinity stress in plants. 
Table 1 summarizes some of the relevant osmoprotectants in 
plants exposed to salinity stress.
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Amino acids

Amino acids derived osmoprotectants such as proline, 
arginine, alanine, leucine, glycine, serine, valine and 
γ-aminobutyric acid (GABA; Suprasanna et  al., 2014). These 
osmoprotectants accumulate under salinity stress conditions and 
decrease the osmotic potential of cells allowing water absorption. 
They also stabilize protein structures and membranes (Ashraf and 
Foolad, 2007); also act as nitrogen storing agents and ROS 
scavengers (Hayat et  al., 2012). In stressed conditions, 
accumulation of mainly proline in relatively higher amounts as 
compared to other osmoprotectants is an indication of stress 
conditions. β-alanine being a non-proteinogenic amino acid is a 
stress response molecule involved in plant protection from biotic 
and abiotic stresses. Furthermore, it is converted into β-alanine 
betaine, an osmoprotective compound in some plant species 
(Parthasarathy et al., 2019).

Proline
Proline can be biosynthesized by two pathways: glutamate 

and ornithine pathway. Proline is produced from glutamatic 
acid via the intermediate Δ1-pyrroline-5-carboxylate (P5C), 

which is catalyzed by Δ1-pyrroline 5-carboxylate synthetase 
(P5CS) and Δ1-pyrroline5-carboxylate reductase (P5CR) in the 
glutamate pathway (Dar et al., 2016). However, in an alternate 
pathway, Proline is synthesized from ornithine (Orn), which is 
transaminated to Pyrroline-5- carboxylate (P5C) via Orn-δ-
aminotransferase (δ-OAT; Verbruggen and Hermans, 2008). It 
has been claimed that proline buildup aids stress tolerance in 
various ways. It acts as a molecular chaperone, ensuring the 
integrity of proteins and enhancing enzyme activity (Ghosh 
et al., 2022). Recently, engineered plants have high expression 
of pyrroline-5-carboxylate reductase enzyme, leads to the 
accumulation of proline. Also, it has been observed that the 
antioxidant property of proline is helpful as ROS Scavenger (El-
Badri et al., 2021). The importance of the Orn pathway in the 
development of rice seedlings has been explained through the 
constitutive expression of OsOAT genes. These genes are 
responsible for enhanced δ-OAT activity, improved antioxidant 
status, tolerance to drought, and osmotic stress (You et  al., 
2012). However, under salt stress, the preferential use of the Glu 
pathway over the Orn pathway is increased due to enhanced 
expression of P5CS activity. This suggests the pivotal role of Glu 
pathway in proline accumulation during osmotic adjustment 

FIGURE 2

Schematic representation involved in salt overlay sensitive pathway (SOS) pathway during salinity stress. Plasma membrane of plant cell and 
organelle vacuolar membrane are involved in the transportation of Na+ ion. Apart from this, influx of Na+ into cells are mediated by ion 
transporters such as Cyclic-nucleotide gated channels (CNGs), Na2+/Ca2+ exchanger (AtNCl), High affinity K+ transporters (HKT), Glutamate 
receptors (GLR), Non-selective cation channels (NSCC). SOS1 (Na+/H+ antiporter), SOS2 (Serine/threonine protein kinase) and SOS3 (Calcium 
bindingprotein) are three genes commonly involved in this pathway that regulates the cytosolic concentration of Na+ ion, by subsequent extrusion 
and compartmentation into vacuoles. Calcineurin B-like (CBL10) along with SOS2 protein mediates the sequestration of Na+ ions into vacuole, 
through vacuolar membrane Na+/H+antiporter (NHX1), thereby maintaining ion homeostasis. Aluminum activated malate transporter (ALMT), 
Cation/chloride transporter (CLC) mediates the entry of Cl−ion into vacuole. Electrochemical potential is maintained by vacuolar H+-
pyrophosphatase (AVP1) and H+-ATPase (V-ATPase).
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TABLE 1 Biosynthetic pathways of osmoprotectants and their cellular functions.

Class Osmoprotectants Occurrence Biosynthesis and Cellular functions References

Amino acids Proline

(C5H9NO2)

Chloroplast and 

cytoplasm

Glutamate or ornithine pathway; acts as a molecular chaperone, maintains protein integrity and enzymatic activity of 

cellular enzymes, nitrogen storing agent, and ROS Scavenger

Verbruggen and Hermans (2008), Dar et al. 

(2016), and Ghosh et al. (2022)

Alanine

(C3H7NO2)

Cytoplasm Glutamate is converted to pyruvate to form alanine by alanine aminotransferase; nitrogen storage under hypoxia conditions Lea et al. (2007) and Miyashita et al. (2007)

Arginine

(C6H14N4O2)

Chloroplast Synthesis of ornithine from glutamate to produce arginine; nitrogen storage and nitrogen immobilization during 

germination, the precursor for the biosynthesis of nitric oxide and polyamines

Slocum (2005), Winter et al. (2015) and 

Llebres et al. (2018)

Glycine

(C2H5NO2)

Chloroplast Aspartate family pathway; signaling molecule in plant-gated glutamate receptors (GLRs) Galili (2011) and Dubos et al. (2003)

Glutamine

(C5H10N2O3)

Chloroplast and 

cytosol

Catalytic condensation of glutamate and ammonia by enzyme glutamine synthetase; major amino acid donor for the 

synthesis of amino acids, and nitrogen-containing compounds; regulates gene expression of nitrate reductase, nitrate and 

ammonium transporter genes.

Kusano et al. (2011), Forde and Lea (2007), 

Vincentz et al. (1993), Sonoda et al. (2003), 

Vidmar et al. (2000), and Nazoa et al. 

(2003)

Asparagine

(C4H8N2O3)

Cytoplasm Synthesis of asparagine and glutamate from aspartate and glutamine in ATP-dependent amino-transferase reaction 

catalyzed by asparagine synthetase; efficient molecule for nitrogen storage and transport.

Lomelino et al. (2017) and Lea et al. (2007)

γ-Amino-Butyric Acid

(C4H9NO2)

Cytosol Irreversible decarboxylation of glutamate catalyzed by glutamate decarboxylase; acts as signaling molecule in plant growth 

and development; stomatal regulation; free-radical Scavenging activity

Li et al. (2021)

Sugars Trehalose

(α-D-glucopyranosyl-1-α-D 

glucopyranoside)

(C12H22O11)

Cytoplasm Two-step process involving trehalose-6-phosphate (T6P) production catalyzed by trehalose-6-phosphate synthase (TPS) 

and its subsequent dephosphorylation to trehalose mediated by trehalose-6-phosphate phosphatase (TPP); non-reducing 

sugar, protects cellular membranes and proteins by formation of amorphous glass structure

Ponnu et al. (2011), Abdallah et al. (2016) 

and Kosar et al. (2018)

Sucrose

(a-D-glucopyranosyl-β-

Dfructofuranoside)

(C12H22O11)

Cytosol UDP-glucose & fructose-6-phosphate are converted into sucrose-6-phosphate by SPS and finally to sucrose by SPP; act as 

both metabolite and signaling molecule in plant metabolism and development

Wind et al. (2010), Tognetti et al. (2013), 

and Ruan (2014)

Fructose

(C6H12O6)

Cytosol Sucrose is converted into fructose via INV; protects membranes or other cellular components as fructans, directly 

influences plant growth.

Dennis and Blakeley (2000)

Maltose

(C12H22O11)

chloroplast Hydrolysis of α-1,4 glycosidic linkage of polyglucan chains to produce maltose; protects membrane proteins and 

photosynthetic electron transport chain.

Kaplan and Guy (2004) and Kaplan et al. 

(2006)

Galactinol (1-O-alpha-D-

galactopyranosyl-L-myo-

inositol)

(C12H26O13)

Cytoplasm UDP-galactose and myo-inositol synthesizes GOl with key enzyme galactinol synthase (GOlS);RFO biosynthesis protects 

the plant against biotic and abiotic stress.

dos Santos and Vieira (2020)

(Continued)
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Class Osmoprotectants Occurrence Biosynthesis and Cellular functions References

Quaternary 

Ammonium 

Compounds

Glycine-Betaine

(N,N,N-trimethyl glycine)

(C5H12NO)

chloroplast Choline is converted to betaine aldehyde and then to glycine betaine through CMO; protects membrane enzymes and 

proteins, and safeguards young leaves and tissues during the onset of stress.

Annunziata et al. (2019)

β-Alanine Betaine

(C6H13NO2)

Cytoplasm S-adenosylmethionine-dependent N-methylation of beta-alanine via N-methyl beta-alanine and N,N-dimethyl beta-

alanine; appropriate osmoprotectant than glycine betaine

Parthasarathy et al. (2019)

Proline betaine

(N,N-dimethylproline or 

stachydrine)

(C7H13NO2)

Chlorophyll 

containing tissue

Synthesized from several steps of methylation of proline under long-term response to salinization; more effective 

osmoprotectant than proline in bacteria

Trinchant et al. (2004)

Choline-O-Sulfate

(C5H13NO4S)

Chloroplast Choline and 3′-phosphoadenosine 5′-phosphosulfate (PAPS); detoxification activity and osmoprotection Hanson et al. (1994) and Hagihara et al. 

(2012)

TMAO (Trimethylamine 

N-oxide)

(CH3)3NO

- Synthesized from plant FMOs; enhances protein folding in plants and up-regulates the abiotic stress-induced gene 

expression

Catala et al. (2021)

Sugar Alcohol D-pinitol

(C7H14O6)

Cytoplasm Conversion of glucose phosphate precursor to myo-inositol by the action of INPS (myo-inositol 1-phosphate synthase) and 

IMP (myo-inositol monophosphatase) which is methylated. and epimerized to form D-pinitol in a two-step reaction 

process; able to maintain turgor pressure that in turn confers osmotic adjustment.

Ahn et al. (2018) and Dumschott et al. 

(2019)

Mannitol

(C6H14O6)

Cytoplasm Enzymatic action of mannose-6-phosphate isomerase, mannose-6-reductase and mannose-1-phosphate phosphatase on 

fructose-6-phosphate; osmotic adjustment, regulation of redox system (ROS Scavengers), molecular chaperons

Loescher et al. (1992) and Kaya et al. (2013)

Myo-Inositol

(C6H1206)

Cytoplasm De novo biosynthesis of myo-inositol from D-Glucose-6-phosphate catalyzed by MIPS (myo-inositol 1-P synthase) 

followed by dephosphorylation by inositol monophosphatase; membrane biogenesis, phosphorus storage, secondary 

messenger, osmotolerance

Majumder et al. (2003) and Dastidar et al. 

(2006)

Sorbitol

(C6H14O6)

Cytoplasm Action of sorbitol-6-phosphate dehydrogenase (S6PDH) and sorbitol-6-pyrophosphatase (S6PP) on glucose-6-phosphate to 

produce sorbitol; osmoprotectant and major photosynthetic product and catalyze the oxidation of sorbitol to fructose.

Dutta et al. (2019)

D-ononitol

(C7H14O6)

Cytoplasm Myo-inositol can be methylated by myo-inositol-O-methyltransferase (IMT) to form D-ononitol; prevent water loss in 

plants, thus providing salt and drought tolerance

Streeter (1985) and Handa et al. (2018)

Polyamines Putrescine (Put)

(C4H12N2)

Cytosol Ornithine or arginine via decarboxylation reactions; maintain cellular pH and ionic balance, osmotic adjustment, hydroxyl 

radical scavengers, down-regulate methylglyoxal production.

Gill and Tuteja (2010a,b), Kuznetsov et al. 

(2007) and Pál et al. (2021)

Spermidine (Spd)

(C7H19N3)

Cytosol From putrescine via spermidine synthase, quench singlet oxygen, osmoprotectant, enhances plant growth through reactive 

oxygen metabolism.

Gill and Tuteja (2010a,b), Meng et al. 

(2015), Baniasadi et al. (2018), and Pál et al. 

(2021)

Spermine (Spm)

(C10H26N4)

Cytosol From spermidine via spermine synthase; enhances the accumulation of ABA maintaining cellular homeostasis. Gill and Tuteja (2010a,b), Marco et al. 

(2019), and Pál et al. (2021)

ABA, abscisic acid; FMOs, Flavin-containing monooxygenases; GABA, γ-aminobutyric acid; GOl, Galactinol; INV, invertase; RFO, Raffinose family of Oligosaccharides; ROS, reactive oxygen species; SPS, Sucrose phosphate synthase; SPP, Sucrose-phosphate 
phosphatase; UDP-glucose, Uridine diphosphate glucose.

TABLE 1 (Continued)
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(Zhen and Ma, 2009). Delauney et al. (1993) reported that P5CS 
mRNA levels were significantly up-regulated while OAT mRNA 
levels were down-regulated during salt stress in Vigna 
aconitifolia L. Later, it was confirmed by Lei et al. (2016) and 
Mansour and Ali (2017) through evaluation studies related to 
proline biosynthesis in salt stress. Interestingly, exogenous 
application of proline produced different results. For instance, 
Zea mays L. under foliar exposure of proline resulted in 
decreased P5CS activity and increased PDH activity under salt 
stress (de Freitas et al., 2018). Similar results were obtained in 
Sorghum bicolor under saline conditions (de Freitas et al., 2019). 
Seed primed with exogenous proline has been observed with 
decreased P5CS response while, on the other hand, PDH 
expression increased significantly in Triticum aestivum L. (Rady 
et al., 2019). These increased PDH level protect plants from 
proline toxicity (Deuschle et al., 2001). Over-expression of P5CS 
gene expression in Lepidium draba leads to proline accumulation 
and improved antioxidative responses under salt stress (Pakzad 
et al., 2021).

Quaternary ammonium compounds

Quaternary ammonium compounds like GB, β-alanine 
betaine, proline-betaine, choline-O-sulfate etc. (Koyro et al., 2012) 
accumulate under salt stress conditions. Among these compounds, 
GB generally gets accumulated in a more considerable amount as 
compared to others, mainly accumulated in the chloroplast. GB 
helps to maintain intracellular osmotic equilibrium by regulating 
water flow into the cells (Ranganayakulu et  al., 2013). More 
benefits are reflected in terms of the protection to thylakoids 
membrane, maintenance of photosynthetic activity and stomatal 
conductance, and photorespiration reduction etc. Transgenic 
approaches by overexpressing Betaine aldehyde dehydrogenase 
(BADH) enzyme provide better tolerance under stressful 
conditions (Sulpice et al., 2003).

Glycine betaine
Glycine betaine (GB) is zwitterionic, neutral at physiological 

pH and a quaternary ammonium compound that is N-methylated 
derivative of glycine (Ashraf and Foolad, 2007). GB is widely 
synthesized in chloroplasts of young tissues protecting the 
membrane enzymes and proteins under stressful environmental 
conditions. Because GB is not actively destroyed or metabolized 
in plant tissues, its concentration is determined by synthesis, 
transport, and dilution of plants (Annunziata et al., 2019). GB is 
biosynthesized as spatio-temporal under abiotic stress conditions 
(Annunziata et al., 2019). Usually, it is synthesized at modest levels 
and gently rises in young tissues /organs when abiotic stress 
occurs. Furthermore, unlike proline, the GB is swiftly 
re-translocated to younger leaves even if it is exogenously supplied 
to older sections. Thus, it can be  inferred that GB cannot 
be  metabolized and plays a critical role in the protection of 
young tissues.

Under normal and stressful conditions, some plant species 
accumulate GB spontaneously (Chen and Murata, 2008) such 
as major cereals that are completely devoid of the potential to 
accumulate GB (Kurepin et al., 2015). An attempt to transfer 
GB biosynthetic genes in these plants via genetic engineering 
is considered a protective strategy for increasing salinity stress 
tolerance (Chen and Murata, 2011). Upregulation of the BADH 
gene has been reported as a potential biomarker in salt-
stressed wheat plants (Lv et al., 2016). Similarly, Arabidopsis 
plants transformed with a novel BADH gene, ScBADH, 
resulted in the accumulation of SOD, proline and GB under 
salt stress (Wang et al., 2016). In another study, transgenic 
maize introduced with BADH gene from Artiplex micrantha 
L. reported higher GB content that is sufficient to impart 
tolerance against salt stress.

Similarly, japonica and rice cultivars mediate up-regulated 
expression of the BADH1 gene in salt stress (Fitzgerald et al., 
2008). Thus, it could be  inferred that BADH act as a positive 
regulator in the treatment of salt stress via MAPK pathway in 
plants. Furthermore, the codA gene (choline oxidase) isolated 
from Arthrobacter globiformis can potentially alleviate phosphate 
deficiency in tomato plants through GB action (Li et al., 2019). In 
addition, GB regulates ion channels and transporters by 
maintaining Na+/K+ levels that are helpful in the transportation of 
phosphate under salt-stressed conditions (Haruta and Sussman, 
2012; Wei et al., 2017; Yuan et al., 2017).

Trimethylamine N-oxide
Plant osmolytes, besides enhancing osmotic homeostasis 

and stabilization, also act as chaperons in preserving the folding 
of proteins under stressful conditions and thus providing 
stability and function (Slama et al., 2015; Rabbani and Choi, 
2018). In animals, TMAO is a quintessential osmolyte that act as 
a chaperone that retains the folding status of protein and protects 
against denaturants (Yancey, 2005; Strambini and Gonnelli, 
2008; Jethva and Udgaonkar, 2018). Interestingly, a recent study 
demonstrated that the plant also synthesizes TMAO 
endogenously from FAOs and further illustrates that its level 
rises under abiotic stress conditions. Thus, TMAO enhances 
plant tolerance to freezing, drought, temperatures and high salt 
(Catala et al., 2021).

Sugars

During salt stress, carbohydrates such as sugars (e.g., 
glucose, fructose, trehalose) and starch accumulate (Parida 
et al., 2004). The significant role played by these sugars involves 
osmoprotectant and scavenging of ROS for mitigating salt 
stress. It has also been reported that with an increase in the level 
of salt stress, the level of reducing sugars (sucrose, fructans) also 
increases significantly (Kerepesi and Galiba, 2000; Gangola and 
Ramadoss, 2018).
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Trehalose sugar
Trehalose (Tre) is a non-reducing sugar that is made up of two 

glucose residues (D-glucopyranose units) linked together by an 
extremely stable linkage (Ahluwalia, 2022). It’s a suitable solute or 
osmoprotectant even at high cellular concentrations because it’s 
non-reducing in nature and very soluble (Lunn et al., 2014).

Plants produce Tre through the trehalose-6-phosphate 
synthase/phosphatase (OtsA–OtsB) pathway, which is dependent 
on two essential molecules: uridine-diphospho-glucose (UDP-
Glc) and glucose-6-phosphate (Glc-6-P) in a two-reaction process 
(Paul et al., 2008; Kosar et al., 2018). Tre functions as a protective 
molecule for cellular, membrane, and proteinaceous structures 
due to this particular characteristic (López-Gómez and Lluch, 
2012; Abdallah et al., 2016). Tre preserves membrane and protein 
structures under stress by forming an amorphous glass structure 
and influencing the surrounding polar phospholipid head groups 
or amino acids via hydrogen bonding (Einfalt et al., 2013; Poonam 
et  al., 2016). The creation of this amorphous glassy structure 
protects biomolecules from the negative effects of abiotic stresses, 
particularly dehydration and aids in the recovery of their specific 
functions when normal non-stress environmental conditions 
prevail (Kosar et  al., 2018). Transgenic plants have conferred 
enhanced tolerance to various abiotic stresses through the 
expression of Tre biosynthesis genes (Iordachescu and Imai, 2008). 
TPP (trehalose-6-phosphate phosphatase) and TSS (trehalose-6-
phosphate synthase) genes are commonly present in the genomes 
of higher plants (Leyman et al., 2001). OsTPP1, a member of the 
TPP gene family, is involved in circumventing salt tolerance 
through transient up-regulated expression (Chao et al., 2005). For 
instance, the overexpressed OsTPP1 gene in rice plants has been 
found to tolerate salt stress by promoting the expression of stress-
responsive genes (Ge et al., 2008). Similarly, Tre accumulation 
takes place in transgenic rice plants through regulated expression 
of fusion genes involving E. coli biosynthetic genes (OtsA and 
OtsB) along with TPS and TPP genes (Garg et al., 2002). These 
plants exhibited high tolerance levels to salt stress, further 
necessitating the importance of these genes in the design of 
transgenic plants. In Arabidopsis, AtTPPD is a chloroplast-
localized enzyme that has been speculated to enhance tolerance 
toward high salinity (Krasensky et al., 2014). Higher accumulation 
of soluble sugars and starch levels achieved through over-
expression of AtTPPD suggested its putative role in the 
metabolism of sugars under salt stress. The introduction of TPP 
gene from rice into maize plants resulted in a 20%–31% higher 
yield than non-transgenic controls (Nuccio et al., 2015).

Sugar alcohol

Sugar alcohols such as pinitol, mannitol, myo-inositol and 
sorbitol show an influential role in mitigating stress conditions by 
adjusting osmotic equilibrium. These are also well-known as 
polyols. Myo-inositol and Pinitol have a cyclic structure, while 
mannitol and sorbitol have a linear structure. Their accumulation 

in plants is thought to serve a variety of functions, including 
osmotic adjustment, ROS regulation and molecular chaperons 
(Upadhyay et al., 2015; Bhattacharya and Kundu, 2020). Mannitol, 
a sugar alcohol, formed by the action of enzyme mannose-6-
phosphate reductase on the mixture of glucose/fructose 
transforms into mannitol and gluconic acid. Mannitol aids in 
osmotic regulation and helps to remove oxygen radicals produced 
by stress (Kaya et al., 2013). Sorbitol is an osmoprotectant that is 
produced during photosynthesis (Wu et al., 2010). Zhou et al. 
(2003) utilized sorbitol-6-phosphate to produce sorbitol by 
dephosphorylating sorbitol-6-phosphatase. D-Ononitol, on the 
other hand, is a sugar alcohol that acts as an osmolyte, reducing 
water loss in plants during drought stress. The myo-inositol 
O-methyltransferase gene from Mesembryanthemum crystallinum 
was transferred into tobacco, which resulted in increased 
D-ononitol production and improved drought and salt resistance 
(Vinocur and Altman, 2005). Pinitol is generated by the 
methylation of myo-inositol and has found in many halophytic 
species. Ononitol epimerization also results in the formation of 
pinitol (Sengupta et  al., 2008; Slama et  al., 2015; Dumschott 
et al., 2019).

Mannitol
Mannitol is an acyclic polyol consisting of six carbon atoms 

(Slama et al., 2015). It is essential in quenching hydroxyl radicals 
(Gill and Tuteja, 2010a,b). Mannose-6-P isomerase 
(phosphomannose isomerase), mannose-6-phosphate reductase, 
and mannose-1-phosphate phosphatase are among the enzymes 
that start the production of mannitol in plants from Fructose-6-P 
(Loescher et al., 1992). As mannitol accumulates spontaneously in 
all plant species, adding it to non-mannitol accumulators can 
improve their resistance to adverse environmental conditions. 
Similarly, the incorporation of mannitol biosynthetic genes from 
accumulator species to non-accumulator species enhances their 
resistance to abiotic challenges, which is also a successful strategy 
for mitigating adverse impact of climate change. Eggplants 
engineered with mtlD gene have established tolerance against high 
NaCl stress (200 mM) (Prabhavathi et  al., 2002). Populus 
tomentosa, a transgenic woody plant transformed with the mtlD 
gene encoding mannitol-1-phosphate dehydrogenase, has 
survived salt stress as a result of mannitol’s oxidative stress 
protection (Hu et al., 2005). This E. coli related mtlD gene encodes 
non-specific phosphatases that convert mannitol-1-phosphate to 
mannitol in transgenic plants.

Further, mannitol-synthesizing transgenic peanut plants 
resulted in the accumulation of mannitol by over-expression of the 
mtlD gene from E. coli under salt stress (Bhauso et al., 2014). 
Moreover, the antioxidant genes might influence the expression of 
the mtlD gene in maintaining cellular homeostasis through 
detoxification of ROS species during salt stress (Patel et al., 2016). 
Recently, an attempt to the production of mannitol synthesis in 
Arabidopsis thaliana has been reported by expression of two 
biosynthetic genes, namely, mannitol-1-phosphate dehydrogenase 
and mannitol-1-phosphatase genes from brown algae Ectocarpus 
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sp. strain Ec32, that results in the production of 42.3–52.7 nmol g−1 
fresh weight of mannitol, sufficient to impart salinity stress 
tolerance (Rathor et al., 2020).

Inositol
Inositol or more preciously myo-inositol is a sugar-like 

carbohydrate produced in many plants (Valluru and Van den 
Ende, 2011; Nisa et  al., 2016). Being an osmoprotectant, its 
derivatives including pinitol, galactinol and ononitol, also perform 
diverse functions as osmoprotectant (Handa et al., 2018). It also 
regulates the synthesis of phytohormone such as auxin, phytic acid 
biosynthesis, and plant defense mechanism (Hazra et al., 2019). 
Inositol and other related molecules are suggested to prove salt 
tolerance in two ways: (1) protection of cellular structures from 
ROS, (2) maintaining cell turgor pressure inside the cell. The 
production of inositol is a two-step metabolic route that begins 
with the enzymatic conversion of d-glucose 6-P into 
myo-inositol-1-P catalyzed by myo-inositol-1-P synthase 
(Majumder et  al., 1997), followed by dephosphorylation of 
myo-inositol-1-P resulting to form myo-inositol that further 
produces different inositol-containing compounds such as 
phospholipids (Dastidar et al., 2006). Introgression of salt tolerant 
MIPS (L-myo-inositol 1-phospahte synthase) protein encoded by 
PcINO1 gene of Porteresia coarctata resulted in inositol 
accumulation in tobacco plants (Majee et al., 2004). Transcriptome 
analysis studies revealed the potential of over-expression of the 
IbMIPS1 gene in transgenic sweet potato plants induced via salt 
stress (Zhai et  al., 2016). Another MIPS gene, MdMIPS1 
(myo-inositol-1-phosphate synthase1) overexpressed in transgenic 
apple plants, has promoted the biosynthesis of myo-inositol along 
with the accumulation of other osmoprotectants to alleviate 
salinity-induced osmotic stress (Hu et al., 2020).

Polyamines

Polyamines (PAs) are nitrogen-containing compounds having 
a low molecular weight that are present in cellular compartments. 
The most common PAs found in plants are spermidine (Spd), 
putrescine (Put), and spermine (Spm), classified as plant growth 
substances (Bano et  al., 2020). Several other PAs such as 
cadaverine, homospermidine, canavalamine, and 1, 3-diamino 
propane are synthesized from amino acids. PAs generally occur in 
free or conjugated form with macromolecules or phenolic 
compounds. Put, Spd, and Spm are the most abundant PA that can 
be formed from arginine with the help of N-carbamoyl putrescine 
and agmatine (Urano et  al., 2003). This putrescine is also 
converted into spermine and spermidine by synthase enzyme. In 
saline conditions, out of these polyamines, putrescine is mainly 
accumulated. They interact with the membrane surface and with 
the help of their polyanionic nature, stabilize the membrane 
structure (Gill and Tuteja, 2010a,b). PAs also increase the 
membrane fluidity and act as nitrogen reserve so that plants use 
them after stress conditions are over. They also support in 

maintaining cellular pH and ionic balance. The main functions of 
polyamines are osmotic adjustment, scavenging hydroxyl radicals 
via modulating enzyme activities and ammonia detoxification 
(Kuznetsov et al., 2007; Mustafavi et al., 2018; Chen et al., 2019). 
It has been suggested that Spd level is a salt tolerance indicator (Li 
and He, 2012). Exogenously application of Spd, improved plant 
development via increased reactive oxygen metabolism and 
photosynthesis under salinity stress (Meng et al., 2015; Baniasadi 
et al., 2018). Various transgenic approaches are used to improve 
stress tolerance by expressing polyamine biosynthesis enzymes 
such as arginine decarboxylase (ADC), ornithine decarboxylase 
(ODC), spermidine synthase (SPDS) and S-adenosyl methionine 
decarboxylase (SAMDC; Gill and Tuteja, 2010a,b). Regulation of 
PAs becomes important in salt-stressed plants after confirmation 
of poor performance of transgenic plants mutated with PA 
synthesis genes (Urano et  al., 2004; Marco et  al., 2015). 
Up-regulated expression of Calvin-cycle-related genes mediated 
by PAs is responsible for the mitigation of detrimental effects of 
salinity in Brassica napus L. (ElSayed et al., 2022). The key enzymes 
involved in the Calvin cycle consist of FBPase, PRKase, SBPase, 
and Rubisco, which are important for CO2 fixation (Raines, 2003). 
Limitation in Rubisco activity has been deduced as one of the 
major constraints in the down-regulation of photosynthesis in 
salinity stress (Lu et al., 2009). However, exogenous application of 
Spd has altered the expression of RbcL and RbcS genes, which 
subsequently influences the Rubisco structure and function 
(Spreitzer, 2003). Polyamine oxidases (PAOs) are catabolic 
enzymes of PAs that are flavin adenine dinucleotide- dependent 
(Wu et al., 2022). Different PAOs, such as AtPAOS and ZmPAO, 
have been identified in Arabidopsis and tobacco plants (Cona 
et  al., 2006; Moschou et  al., 2008). For instance, atpao5  in 
Arabidopsis stimulated the metabolic and transcriptional activities 
induced via salt stress (Zarza et al., 2017). Rice and wheat plants 
are identified with genes encoding proteins having PAO activity, 
suggesting an important function in salinity tolerance (Liu et al., 
2014a,b; Xiong et  al., 2017). Plant Polyamine oxidase (PAO) 
enzyme is responsible for H2O2 production during Put and Spd 
catabolism in plant tissues (Wang et al., 2019). Contrary to this, 
the OsPAO3 gene has exhibited a positive effect in rice plants 
through the enhanced accumulation of polyamines, which is 
sufficient to eliminate overproduction of H2O2 and exclude Na+ 
(Liu et al., 2022).

Salt overlay sensitive pathway

In terms of metabolic energy, plants use ions to balance water 
potential in tissues, unlike the use of carbohydrates or amino 
acids, which requires a significantly larger amount of energy. On 
the other hand, concentrations of ions should be maintained at an 
optimum level otherwise, it could be  toxic to many cytosolic 
enzymes; therefore, compartmentalization of ions in the vacuoles 
becomes necessary (Binzel et  al., 1998). As NaCl is the most 
common salt encountered by the plants during salinity stress, the 
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salt overlay sensitive pathway is one of the main strategic 
approaches adopted by the plants. Plants perceive high Na+ 
concentration through downstream signaling of stress responses 
(Gong, 2021). The activation of Ca2+ channels always accompanies 
changes in ion concentrations and osmotic pressure. A putative 
osmosensor, OSCA1, is responsible for downstream Ca2+ signaling 
induced via osmotic stress (Yuan et al., 2014; Zhang et al., 2020). 
Similarly, the Arabidopsis mutant moca1 (monocation-induced 
Ca2+) delivered a hypersensitive response to salt stress. These are 
identified as Na+-gated Ca2+ channels involved in the enhancement 
of Ca2+ concentration. GIPs (glycosyl inositol phosphorylceramide) 
are Na+ sensors encoded by MOCA1 to increase the influx of Ca2+ 
ions (Jiang et  al., 2019). Cell-wall integrity is maintained by 
plasma membrane-positioned receptors-like kinases, FERONIA 
(FER), under salt stress (Feng et al., 2018). FER, along with BAK1 
phosphorylate CNGCS (cyclic nucleotide-gated ion channels) 
involved in Ca2+ signaling (Pan et al., 2019; Tian et al., 2019). Since 
salt stress triggers an overproduction of ROS, i.e., H2O2, a HPCA1 
sensor located in the plasma membrane senses an increase in 
H2O2 concentration (Wu et al., 2020).

In a salt overlay sensitive pathway, SOS1, SOS2 and SOS3 are 
three genes commonly involved (Wu et  al., 1996). During 
salinity stress, elevated Na+ stimulates a rise in cytosolic Ca2+ 
concentration, which interacts with Ca2+ binding protein SOS3, 
and further interaction with Serine/threonine kinase protein 
SOS2 mediates the efflux of Na+ from the cells through Na+/H+ 
antiporter (SOS1; Shi et  al., 2003; Kim et  al., 2007). SOS3  
and  SOS2 kinase complex directly phosphorylates SOS1. 
Furthermore, SOS1, SOS2 and SOS3 work together to provide 
resistance to salinity stress (Mahajan and Tuteja, 2005; Park 
et  al., 2016). Furthermore, another member of SOS3 family, 
Calcineurin B-like (CBL10), forms a complex with SOS2, which 
is thought to regulate both the exclusion of Na+ ion through 
SOS1 and the compartmentalization of Na+ ion into the vacuole 
by activating Na+/H+ antiporter (NHX). A schematic 
representation of salt overlay sensitive signaling has been 
depicted in Figure 2.

Salt stress signaling pathways 
regulates osmoprotectants 
accumulation

Plants perceive abiotic stress by activating signal-transduction 
pathways that allow them to adapt to even minor environmental 
changes. A wide array of complex transduction pathways are 
involved in sensing salt stress and generating a response during 
salinity stress. Pathways such as Salt overlay sensitive (SOS) 
pathway, phytohormone signaling, Calcium signaling, and 
Mitogen-Activated Protein Kinase (MAPK) network are involved 
in production and accumulation of osmolytes in regulating 
osmotic homeostasis during salinity stress (Roychoudhury and 
Banerjee, 2017).

The biosynthesis and accumulation of osmolytes is one of the 
important events in the activation of stress signaling pathways in 
plants during exposure to abiotic stress such as salt, heavy metals, 
cold, drought etc., that enables the plants to adapt quickly to 
changing environmental conditions. The SOS pathway is reported 
to be  regulated by MAP Kinase pathways and the level of 
osmoprotectant GB also affects this pathway (Ashraf and Foolad, 
2007). Similarly, abscisic acid signaling regulates proline 
accumulation in response to salinity stress as well as drought 
(Verslues and Bray, 2005).

In order to withstand constant stressful conditions, 
phytohormone mediating stress tolerance has been found to 
be crucial in plant response to salinity stress. Since phytohormones 
makes a great contribution is sensing salinity stress and adaption, 
nine plant hormones are commonly involved, which are divided 
into two groups: growth promoting hormones and stress response 
hormones (Yu et al., 2020). Auxins, gibberellins (GAs), cytokinins 
(CKs), brassinosteroids (BRs) and strigolactones (SLs) are growth-
promoting hormones, while abscisic acid (ABA), ethylene, 
salicylic acid (SA) and jasmonic acid (JA) are stress response 
hormones. Among all, abscisic acid is most important in 
regulating salinity stress responses. Under stressful conditions, 
ABA accumulation takes place, which further activates kinase 
cascades and initiates stress defense reactions (Zhu, 2016). The 
Sucrose-nonfermenting-1-protein kinases 2 s (SnRK2s) are the 
main components in abscisic acid signaling pathways.

Phytohormone signaling mediates 
osmoprotectants biosynthesis 
under salinity stress

The plant responds to salinity stress by the accumulation of 
compatible solutes as already discussed above. In order to alleviate 
osmotic stress, osmolytes further modulate the enhanced 
expression of genes involved in synthesis of plant hormones such 
as abscisic acid (ABA), cytokinins (CK), salicylic acid (SA), 
jasmonic acid (JA), auxins, polyamines, brassinosteroids (BRs) 
and gibberellins (GRs) (Fahad et al., 2015; Rao et al., 2016). These 
hormones has diverse role in modulating the signaling pathways 
during the emergence of salinity stress (Ali et al., 2020). Since, 
osmolytes and phytohormones have been elucidated to have a 
significant role under demanding environmental conditions; it is 
therefore becoming crucial to understand the regulation of 
osmolytes and phytohormones and further correlate the roles of 
the same. The interaction of phytohormones with osmoprotectants 
has been explained in Figure 3.

Brassinosteroids

Many physiological processes in plants are controlled by 
brassinosteroid signaling during salt stress. BRL3, a member of 

https://doi.org/10.3389/fpls.2022.1006617
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Singh et al. 10.3389/fpls.2022.1006617

Frontiers in Plant Science 12 frontiersin.org

the brassinosteroid (BR) receptor family, regulates biosynthesis 
of many key osmoprotectants (Fabregas et al., 2018). Soluble 
osmolytes sugars maintain osmotic homeostasis and helps in 
ROS scavenging (Parvaiz and Satyawati, 2008). Proline acts as 
a molecular chaperone by scavenging free radicals and also 
stabilizes redox reactions inside cytosol (Kumar et al., 2013). 
Applications of proline in addition to brassinosteroid 
(24-epibrassinolide) to cultivars of Brassica juncea that grow in 
saline environment minimize harmful effects of salinity and 
improves yield (Wani et al., 2019). GB is a type of compatible 
osmoprotectant, which never changes at neutral pH; hence 
highly water soluble but in the hydration sphere of proteins, is 
insoluble. So these sugar osmolytes withhold water and 
preserve the protein structure (Kurepin et al., 2017). Artificial 
supply of brassinosteroids provides salt stress tolerance to 
plants by enhancing GB secretion as illustrated in Figure 3. 
Exogenous application of 24-epibrassinolide to tolerant and 
sensitive varieties of Pisum sativum plants was reported in 
enhancing the GB content and further helps in mitigation of 
salinity stress (Shahid et  al., 2014). In another study, Cd 
stressed Pisum sativum plants when subjected to 
24-epibrassinolide it causes an additional increase in the level 
of GB, providing a stress tolerance ability to plants (Ahmad 

et  al., 2018). Treatment of Zea mays L. seedlings with HBL 
(28-homobrassionolide) and EBL (epibrassinolide) resulted in 
the modulation of antioxidative enzyme activities and 
compatible osmolytes that accounts for osmotic adjustment 
during salt stress (Rattan et al., 2020). Hence, brassinosteroid 
has stress defending capacity by increasing osmolyte.

Ethylene

Ethylene performs various physiological processes in the plant 
involving seed germination, plant development, senescence, fruit 
ripening, it has also been known to have a significant role in  
stress tolerance. It regulates abiotic stress by accumulating 
osmoprotectants (Iqbal et  al., 2015). S-adenosyl methionine 
(SAM), the precursor for ethylene biosynthesis, is also a precursor 
for GB biosynthesis (Figure 3). Increasing GB and lower ethylene 
content (by inhibiting the activity of ACC synthase enzyme) in 
salinity stress enhances glutathione concentration (GSH) hence 
reducing oxidative stress (Khan et al., 2014). Proline along with 
ethylene gives salt tolerance capacity to Brassica juncea (Iqbal 
et al., 2015). Exogenous application of ethephon (ethylene source) 
with both doses of N and S on salt-stressed mustard plants 

FIGURE 3

A schematic representation describing the interaction of different osmoprotectants with phytohormones under salinity stress. Glycine betaine and 
Ethylene are interlinked by a common pathway involving enzymes, BADH (betaine aldehyde dehydrogenase), CMO (choline monooxygenase), 
SAM (S-adenosylmethionine), ACC synthase and ACC oxidase. Polyaminebiosynthesis includes ornithine and arginine decarboxylation, catalyzed 
by ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), respectively. Spermidine (Spd) is synthesized from putrescine via spermidine 
synthase (SPDS) with the addition of aminopropyl moiety donated by decarboxylated S-adenosylmethionine (dcSAM). Similarly, Spermine (Spm) is 
produced from spermidine (Spd) via spermine synthase (SPMS) with the same aminopropyl rendered by dcSAM. Cytokinins are deactivated by 
CKX1 (cytokinin oxidase/dehydrogenase) gene on exposure to high salinity stress.
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increased the metabolism of proline, which is responsible for 
reducing oxidative stress (Jahan et al., 2021). The reason behind 
this fact is that increased nitrogen levels subsequently enhanced 
proline accumulation to provide salt tolerance (Iqbal et al., 2015). 
The biosynthesis of polyamines is also linked to ethylene 
production in terms of presence of precursor (S-adenosylmethionine, 
SAM; Petruzzelli et al., 2000). According to reports, ethylene and 
PAs are highly correlated in response to (ROS) production in the 
leaves of spring wheat seedlings under osmotic stress (Li et al., 
2004). Increased PAs content, reduced ROS production, and 
ethylene synthesis were found in plants in response to stressful  
conditions.

Cytokinins

Cytokinins are growth-promoting phytohormones and 
regulate plant growth and development (Pavlu et al., 2018). It 
promotes cell division in plant tissue culture and also regulates the 
cell cycle (Schaller et  al., 2014). For osmolytes synthesis and 
accumulation in stress, ethylene cell signaling, MAPK plays a 
crucial function in plants (Shen et al., 2014). In abiotic stress, 
Cytokinin Oxidase/Dehydrogenase (CKX1) gene encodes for the 
enzyme that deactivates active cytokinins and increases the 
accumulation of GB content (Kathuria et al., 2009). Similarly, in 
Physcomitrella patens, overexpression of PpCKX1 lowers cytokinin 
levels and increases salt tolerance (Hyoung et al., 2019). These 
CKX-induced cytokinin-deficient plants are more valuable for 
researching the role of cytokinin than ipt mutants (Werner et al., 
2003). The supply of cytokinin with NaCl gives signals that 
stimulate PEP carboxylase accumulation along with proline. 
Cytokinin activates PEP carboxylase that is responsible for 
increased proline levels in M. crystallinum (Thomas et al., 1992) 
and improved salinity stress tolerance (Figure 3). Cytokinins also 
regulate GB biosynthesis by modulating the GB pathway. In 
Solanum lycopersicum, the potential of Kinetin (Kn) and 
epibrassinolide (EML), either separately or in combination, was 
investigated under salinity stress. Results suggest that by 
enhancing the other physiological process, also leads to 
accumulation of GB through a crosstalk mechanism (Ahanger 
et  al., 2020). Interestingly, several studies demonstrate that 
cytokinins and PAs govern various physiological and biochemical 
processes in plants, with a strong link between their levels, and 
operate as inter and intracellular messengers, regulating biotic and 
abiotic stresses (Galston, 1983; Wimalasekera and Scherer, 2009). 
However, the mechanism by which cytokinins influence the 
accumulation of PAs in plants is still unknown.

Abscisic acid

Abscisic acid (ABA) maintains osmotic adjustment in salt-
stressed plants by regulating physiological processes for osmolyte 
regulation (Karimi and Ershadi, 2015). At a molecular level, ABA 

controls synthetic pathways of osmolytes by acting as signaling 
molecules (Pal et al., 2018). It also increases proline synthesis and 
accumulation to protect plant cells from damaging effects (Karimi 
and Ershadi, 2015). This increased proline accumulation is due to 
an increase in the transcription of genes encoding essential 
enzymes in proline biosynthesis. In Medicago truncatula, it was 
reported that proline accumulation occurs under water deficit 
stress conditions controlled by ABA levels (Planchet et al., 2014). 
ABA increases the biosynthesis route of GB, resulting in increased 
accumulation of this osmolyte in plant cells, which aids in abiotic 
stress resistance (Zhang et al., 2012). Under abiotic stress after 
adding ABA to plant synthesis of GB level enhanced due to 
increased activity of GB biosynthetic enzyme betaine-aldehyde 
dehydrogenase (BADH; Yang et al., 2015; Figure 3). By analyzing 
drought-stressed plants after fluridone treatment, these 
researchers were able to confirm the significance of ABA in 
betaine-aldehyde dehydrogenase upregulation. In PAs production, 
ABA regulates critical transcriptional processes. For instance, gene 
transcript of arginine decarboxylase 2 (ADC2), spermidine 
synthase1 (SPDS1), and spermine synthase (SPMS) were found to 
be up-regulated under drought conditions (Alcázar et al., 2006). 
Similar trends were also reported in arginine decarboxylase 
(ADC) expression patterns in response to salinity stress (Urano 
et al., 2004). In plants, such as Atriplex halimus, Oryza sativa, 
Phaseolus vulgaris and Zea mays, the impact of ABA levels in 
response to salinity stress has also been reported (Liu et al., 2005; 
Ben Hassine et al., 2009; Shevyakova et al., 2013). ABA priming 
has been used to provide tolerance to abiotic stress such as 
drought, cold, or salt stress (Savvides et al., 2016). In addition, 
one-time ABA priming in Vicia faba grown under 50 mM salinity 
has been found to alleviate salt stress through alteration in gene 
expression patterns over time, maintaining the ionic and osmotic 
balance and increasing photosynthesis and growth (Sagervanshi 
et al., 2021).

Jasmonic acid

In abiotic stress, jasmonic acid (JA) includes several plant 
reactions such as gene regulation, synthesis of particular 
proteins, and secondary metabolism. JA regulates the 
detrimental effects of environmental stress through a cascade of 
plant responses (Choudhary and Agrawal, 2014a,b; Choudhary 
et  al., 2021). For example, JA increased the levels of 
non-enzymatic antioxidants such as proline, which has been 
reported in several studies (Anjum et  al., 2011; Shan et  al., 
2015). Under salinity stress, methyl jasmonate greatly mitigated 
the adverse effects of salinity on soybean growth (Yoon et al., 
2009). Exogenous jasmonates (JAs) supplement enhances plant 
growth because of their effect on metabolites. Application of JAs 
increases the accumulation of constituents of Krebs cycle and 
finally gives resistance to stressed plants (Sharma et al., 2016). 
In Solanum lycopersicum, the application of JAs increases the 
production of GB and thus enhance plant growth and 
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development under salinity stress conditions (Ahmad et  al., 
2017, 2018; Figure 3). Salinity-induced peroxidation have been 
observed under exogenous application of methyl jasmonate in 
Brassica napus due to enhanced soluble sugar levels in leaves 
(Ahmadi et al., 2018). Furthermore, JA signaling have also been 
implicated in the production of PAs in fruit ripening, insect-
pathogen tolerance, low-temperature injuries. Due to their 
primary role in activating essential antioxidant enzymes, Spd 
levels increased in barley genotypes and protected membranes 
from peroxidation (Bandurska et al., 2003). Similarly, under any 
form of stress, sugar level rises, JA has been demonstrated to 
enhance sugar content in a variety of crop plants, including 
Triticum aestivum, Brassica napus, and Ipomea batata, as well as 
improve overall plant performance under abiotic conditions 
(El-Khallal, 2001; Harpreet et al., 2013).

Salicylic acid

Salicylic acid (SA), as a vital phytohormone, has multifaceted role 
in plant growth and developmental processes such as photosynthesis, 
mineral ion absorption and assimilation, antioxidant, and tolerance 
to stress (Choudhary and Agrawal, 2014a,b; Moravcová et al., 2018; 
Choudhary et al., 2021). The importance of SA in increasing resilience 
to environmental challenges has been well documented (Ahmad 
et al., 2011; Khan et al., 2015). During abiotic stress, the synthesis of 
osmolytes like GB, proline and sugar are influenced by SA (Misra and 
Misra, 2012; Jangra et al., 2022). The elevation in proline accumulation 
in salt-stress plants attributed to a stress tolerance mechanism (Misra 
and Saxena, 2009). In Rauvolfia serpentina, SA involves in enhancing 
proline production under salt stress and regulating cell turgor. It also 
mitigates salt stress in the seedling of Torreya grandis by accumulating 
proline. More proline concentration enhances the synthesis of stress 
protective proteins increasing stress tolerance (Li et al., 2014). SA 
enhances the accumulation of proline by regulating proline 
biosynthesis gene expression pattern. For instance, the exogenous 
application of SA mediates upregulation of important genes like 
P5CSA and P5CSB (encodes pyrroline-5-carboxylate synthase) and 
downregulation of PDH (encoding proline dehydrogenase; Lee 
et al., 2019).

SA improves the overall growth of the plant by influencing the 
concentration of GB (Misra and Misra, 2012; Farhadi and 
Ghassemi-Golezani, 2020). On the other hand, by applying 
exogenous SA and its analogs, scientists have determined its 
imperative role in ameliorating salt stress on various plants 
(Gharbi et al., 2017; Shaki et al., 2018). Recently, in Vigna radiata 
plants, supply of 0.5 mM SA enhanced the accumulation of GB by 
more than 40% with respect to control and thus minimizing the 
adverse of salinity (Syeed et al., 2021; Figure 3). On application of 
exogenous SA to salinity stressed Zea mays, SA increases the level 
of soluble sugars in this plant (Khodary, 2004). On the other hand, 
SA, prevents the accumulation of PAs under salt stress conditions 
(Palma et al., 2013).

Conclusion and future prospects

Salt stress in crop plants is a potential threat for agricultural 
crop productivity and ultimately to food security under the 
current and futuristic Climate-changing scenarios, worldwide. 
The mechanism of salinity tolerance in plants is complex 
involving osmotic stress and ion toxicity causing a major loss of 
yield and quality. The role of phytohormones in regulating 
responses to adverse effects of salinity has been well documented 
however the studies related to phytohormone mediating 
osmolyte biosynthesis require more research insight to get a 
clear mechanism of crops tolerance. Therefore, in the present 
article we  have summarized the roles of phytohormones in 
regulating osmolytes and further enhance our knowledge by 
explaining the cross talk at the physiological level on exposure 
to salinity. Apart from this, still, molecular dissection studies 
are required to unravel the mechanism behind the modulation 
of osmolytes. Among all phytohormones, the role of cytokinin 
remains contradictory, which needs to be  focused. Various 
transgenic approaches have been elucidated in salt-sensitive 
plants that successfully impart salinity tolerance in plants. 
However, the deployment of novel approaches involving 
phytohormone engineering metabolism could be considered a 
method of choice to produce salt-resilient crops with 
higher yields.
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