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Abstract. Foundation species contribute to the recovery of animal communities from disturbance by

engineering, by improving habitat quality, and by regulating food availability. In a salt marsh impacted by

the Deepwater Horizon oil spill, we tested the hypothesis that nutrient subsidies would enhance the positive

effects of the foundation species Spartina alterniflora on the initial recolonization of benthic invertebrate

communities (e.g., copepods, annelids, nematodes) by augmenting food (i.e., microalgae) availability. After

two months, plantings of S. alterniflora significantly elevated the densities of the polychaete Capitella capi-

tata, meiofauna-sized annelids, and total macroinfauna over unplanted plots. After 7 months, the signifi-

cant effect of plantings persisted for meiofauna-sized annelids, but not for C. capitata and total

macroinfauna. Plantings had no effect on copepods (including Nannopus palustris, the dominant species),

nematodes, or microalgal biomass for either month. Nutrient additions did not influence any taxon,

despite initial increases in benthic microalgal biomass after 2 months. We hypothesize that the structural

effects of plants were important to early colonization, possibly by facilitating larval settlement or amelio-

rating temperature and desiccation stress. Our results emphasize the importance of re-establishing founda-

tion species in oil-impacted sites to enhance recolonization of saltmarsh annelids, but suggest that

recolonization is not promoted by the addition of nutrients.
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INTRODUCTION

Foundation species such as mangroves, oysters,
trees, corals, and grasses define an ecosystem or
community by regulating physical structure, abiotic
conditions, and trophic interactions (Dayton 1972,
Ellison et al. 2005, Angelini et al. 2011). Large-scale
disturbances often reduce the abundance of

foundation species, and as a result, ecosystem
recovery frequently tracks the recovery of its foun-
dation species (McGlathery et al. 2012, Fleeger
et al. 2015, Zengel et al. 2016). As a structuring
force for animal communities, foundation species
have both trophic and non-trophic roles. Ecologists
have long recognized the structural (non-trophic)
effects of foundation species on shaping animal
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communities by creating or modifying habitat (i.e.,
ecosystem engineering; Jones et al. 1994) or by
ameliorating physical and chemical stress (i.e., facil-
itation; Bertness and Hacker 1994, Bruno et al.
2003). Recently, ecologists have also highlighted the
trophic role of foundation species, which can
directly supply food (e.g., direct herbivory on
grass) or indirectly control food availability (e.g.,
via shading; Whitcraft and Levin 2007, Miller et al.
2015, van der Zee et al. 2016).

Resource subsidies can also shape animal com-
munities by enhancing existing energy sources or
providing alternative ones (i.e., bottom-up control;
Polis et al. 1997). From a restoration perspective,
resource subsidies may enhance the recovery of
animal communities by establishing or augment-
ing food availability. For instance, allochthonous
input of leaf litter from forests into streams is an
important energy subsidy that drives not only
total ecosystem production, but also food-web
structure, biodiversity patterns, and energy flow
(Johnson and Wallace 2005). As a result, restora-
tion of stream communities can track forest
restoration (Stone and Wallace 1998). Thus,
resource subsidies coupled with the establishment
of foundation species should accelerate recoloniza-
tion by animals after a disturbance. We explore
this hypothesis in the early development of a ben-
thic animal community in salt marshes severely
damaged by the Deepwater Horizon oil spill.

On 20 April 2010, the Deepwater Horizon dril-
ling platform exploded and the blowout of the
Macondo wellhead released 3.19 9 106 barrels
(5.07 9 108 L, judicially decreed) of crude oil
into the Gulf of Mexico (U.S. District Court.
2015). Of Gulf Coast wetlands oiled, ~95% were
in Louisiana, home to the nation’s largest and
most productive wetland–estuarine environ-
ment. As such, Louisiana’s vast coastal wetlands
contribute significantly to the $40 billion annual
Gulf economy generated from fisheries and tour-
ism (Deegan 1990, Engle 2011, Oil Spill Commis-
sion 2011). Marsh plant and animal mortality
were high in the areas that were heavily oiled,
leaving behind large areas of marsh denuded of
vegetation and bereft of animals (Lin and Men-
delssohn 2012, Mendelssohn et al. 2012, Fleeger
et al. 2015, Zengel et al. 2016). With billions of
dollars devoted to Gulf Coast restoration (NOAA
2016), critical evaluation of potential restoration
methods is needed.

Transplantation is a common technique to
restore degraded salt marshes (Broome et al.
1988, Lin and Mendelssohn 1998). Saltmarsh
plants such as Spartina alterniflora are foundation
species that regulate marsh structure (Kirwan
and Megonigal 2013), ecosystem processes
(Baustian et al. 2012), and community structure
(Johnson et al. 2007). In terms of structuring
communities, marsh plants are strong facilitator
species that enhance the survival of co-occurring
species by ameliorating physical stress (Bertness
and Hacker 1994, Bruno et al. 2003, Whitcraft
and Levin 2007; Johnson and Williams 2017). If
facilitation is an important process in community
regulation, then it may be an important mecha-
nism in promoting animal colonization (Silliman
et al. 2015). Saltmarsh plants also directly sup-
port herbivores and detritivores through their
production of plant material and indirectly by
regulating the production of other primary pro-
ducers such as benthic microalgae (Teal 1962,
Thompson 1984, Whitcraft and Levin 2007, John-
son and Jessen 2008).
Although saltmarsh food webs have long been

considered detrital-based (Teal 1962), micro- and
macroalgae are also important food for many ben-
thic invertebrate species (Haines 1976, Galv�an
et al. 2008, Pascal et al. 2013). In degraded or cre-
ated marshes, the slow (years-to-decades) devel-
opment of the detrital pool may be insufficient to
meet the energetic needs of primary consumers
early in recovery. However, benthic microalgae
are a rapidly responding food source. Salt
marshes are nitrogen limited, and thus, nitrogen
amendments, which promote algal production,
may accelerate the early re-establishment of ben-
thic communities when coupled with the struc-
tural effects of plantings. Additionally, nitrogen
additions may promote the development of an
algal-based food web (Levin et al. 2006).
We conducted manipulative experiments of

nutrient additions and S. alterniflora plantings in a
heavily oiled marsh in Louisiana to test the effect
of foundation species and a nutrient subsidy on
the early development of benthic microalgae and
invertebrate communities. We hypothesized that
the resource subsidy from fertilization coupled
with the plantings of S. alterniflora would
augment the invertebrate recolonization over the
presence of foundation species or fertilization
alone.
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METHODS

Twenty oil-spill restoration plots (2.1 9 2.1 m)
were established in April 2014 in northern Bara-
taria Bay, Louisiana, along a saltmarsh shoreline
(29.44105° N, 89.93337° W) that extends over a
linear distance of ~100 m (Fig. 1). Based on data
from the Shoreline Cleanup Assessment Tech-
nique developed in the aftermath of the Deepwater
Horizon spill, this shoreline was heavily oiled in
2010 (Michel et al. 2013, I. Mendelssohn and Q.
Lin, personal observation). We picked five locations
within this area, separated by 12–30 m, for the
experiment. Within each location, we established
four 2.1 9 2.1 m plots in unvegetated areas
within ~3 m of the shoreline. Each plot within a
location was then randomly assigned one of the

following treatments: (1) unmanipulated (no
transplants and no fertilizer) to serve as controls,
(2) transplants only, (3) fertilizer only, and (4) a
combination of transplants and fertilizer. Spartina
alterniflora plants (hereafter Spartina), up to 90 cm
tall, were transplanted in designated plots at a
density of 3–5 stems/plug, spaced 30 cm apart,
and planted 10 cm deep with a total of 64 plugs
for each plot. Fertilized plots received slow-
release fertilizer (Osmocote Plus; 15% N, 8%
P2O5, and 11% K2O) in April and September 2014
at a rate of 326 kg N�ha�1

�yr�1, 76 kg
P�ha�1

�yr�1, and 198 kg K�ha�1
�y�1. Fertilizer

was inserted 10 cm beneath the soil surface to
promote efficiency of nutrient release and to min-
imize leaching. Fertilizer was added below trans-
planted Spartina roots in plots receiving nutrient

Fig. 1. Location of restoration plots (square) in Barataria Bay, Louisiana.
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and Spartina amendments. Samples were col-
lected from restoration plots 2 and 7 months
(June and November) after initiation.

Biological sampling
Vegetation and benthic samples were taken from

a 60 9 60 cm quadrat haphazardly positioned
within each 2.1 9 2.1 m plot. The quadrat was
placed in a different location on each sampling
event to prevent resampling the same location.

Plant biomass and total nitrogen.—Because foun-
dation species are often used as indicators of
restoration success, we collected aboveground bio-
mass of our transplant plots by clipping all plants
rooted within the sampling quadrat to the ground
surface and separated into live and dead compo-
nents by species. Although we planted only S. al-
terniflora, other species such as Distichlis spicata
also colonized the plots. The aboveground plant
material was dried to a constant mass at 60°C and
weighed. We analyzed total nitrogen with elemen-
tal analysis from soil collected with a McCalley
peat corer (7.6 cm diameter) from each plot.

Soil total petroleum hydrocarbons.—To verify the
status of our restoration plots as previously oiled,
we determined residual total petroleum hydro-
carbons (TPH) in the surface soil (0–7.5 cm)
within each plot. Samples were placed in glass
jars, stored on ice, and transported to the labora-
tory in coolers for subsequent analysis. Soil TPH
was extracted with dichloromethane and deter-
mined gravimetrically to the nearest 0.0001 g
(Lin and Mendelssohn 2012). Soil TPH concentra-
tion was expressed as mg/g dry soil.

Benthic microalgae.—After vegetation harvest, a
hand-held corer (inner diameter = 1.2 cm) was
used to take two sediment cores to a depth of
3 mmwithin the sampling quadrat. The two cores
were combined in a single sample container and
immediately frozen on dry ice. In the laboratory,
samples were stored at �80°C. Photosynthetic
pigments were extracted from entire sediment
samples with 4 mL of 100% acetone. The sedi-
ment–acetone mixture was sonicated for 30 s. The
mixture was refrigerated overnight before cen-
trifugation for 10 min. Samples were filtered
(0.2 lm) before analysis. High-pressure liquid
chromatography was used to examine photosyn-
thetic pigment concentration and composition
(Buffan-Dubau and Carman 2000). A Hewlett
Packard 1100 liquid chromatograph consisting of

a 100-mL loop autosampler, a quaternary solvent
delivery system coupled to a diode array spec-
trophotometer, and a Hewlett Packard 1046A flu-
orescent detector were used. Hewlett Packard
HPChem-Station software (Agilent, Santa Clara,
California, USA) was used for data analysis.
Chlorophyll a (Chl a), expressed as lg Chl a/cm2,
is used here as a proxy for microalgal biomass.
Infauna.—Two additional sediment cores (inner

diameter = 3.5 cm) were taken to a depth of 2 cm
from the sampling quadrat. Both cores were com-
bined into a single sample cup and fixed in 4%
formalin in the field. Cups were shaken to break
up soil clumps and to mix with formalin. Forma-
lin was replaced within 24 h when a solution of
rose bengal was added. In the laboratory, samples
were sieved through a 500-lm sieve stacked on
top of a 63-lm sieve. All materials, including
roots, rhizomes, and macroinfauna, retained on
the sieve were preserved for later analysis. Fauna
retained on the 63-lm sieve were extracted from
sediments using Ludox. Eighty milliliters of
Ludox (Grace, Columbia, Maryland, USA) was
added to the sample, which was thoroughly sha-
ken to mix sediment and Ludox. Samples settled
for 1–1.5 h before the supernatant was carefully
poured through a 63-lm sieve and rinsed. This
procedure was repeated twice more.
Meiofauna (metazoans that passed through the

500-lm sieve and collected on the 63-lm sieve)
were identified and enumerated to higher taxo-
nomic rank (e.g., nematodes, copepods, poly-
chaetes) using a stereo-dissecting microscope,
though the number of the sabellid polychaete
Manayunkia aestuarina was recorded during rough
sorting. Adult copepods were picked from the
sample and identified to species. Macroinfauna
(invertebrates retained on the 500-lm sieve) were
picked from organic matter and identified to the
lowest possible taxon.

Statistical analysis
All analyses were conducted in R (R Develop-

ment Team 2014). To test the effect of fertilization,
S. alterniflora transplants, and month on microal-
gal biomass and the abundance of dominant ben-
thic taxa (nematodes, total copepods, the copepod
Nannopus palustris, meiofauna-sized annelids, the
polychaete Capitella capitata, and total macroin-
fauna), data were analyzed with a linear mixed-
effect model using the lme function in the nlme
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package in R (Pinheiro et al. 2015). Our statistical
model was a randomized complete block design
(different locations as blocks) with S. alterniflora
plantings, fertilization, and month as fixed effects
and blocks (locations) as random effects. All ani-
mal data were log (x + 1)-transformed prior to
analysis to meet assumptions. To generate P-
values from these models, we used the ANOVA
function. When significant interactions were
detected, we used the lsmeans function from the
lsmeans package to conduct contrasts within each
month (Lenth and Herva 2015).

RESULTS

While Spartina alterniflora plantings had a signif-
icant effect on the densities of the polychaete, Capi-
tella capitata (transplant, F1,25 = 5.25, P = 0.03),
the effect was influenced by the month of sam-
pling (transplant 9month interaction, F1,25 = 5.16,
P = 0.03). After 2 months, average C. capitata den-
sities were significantly higher in planted plots
than in unplanted plots (least-square means con-
trast, t25 = 3.24, P = 0.003); however, that trend
disappeared after 7 months (least-square means
contrast, t25 = �0.04, P = 0.97; Fig. 2). A similar
trend was seen when examining the densities of
the total macroinfauna community, in which there
was a significant transplant by month interaction
(F1,28 = 8.01, P = 0.009; Fig. 2), with significantly
higher densities in the planted plots after
2 months vs. unplanted plots (least-square means
contrast t28 = 4.99, P < 0.0001), but no differences
between planted and unplanted plots after
7 months (least-square means contrast t28 = 0.993,
P = 0.33). No main or interactive effect of fertilizer
was found for C. capitata or total macroinfauna.
Because C. capitata numerically dominate (63%)
the macroinfauna community (Appendix S1:
Table S1), the trend in the total macroinfauna com-
munity is likely driven by C. capitata responses.

In S. alterniflora transplant plots, aboveground
biomass was significantly impacted by an inter-
action between month and transplant treatment
(F1,28 = 32.64, P < 0.0001). After two months,
aboveground biomass was, on average, 34 9
higher in planted plots than in unplanted plots
(Fig. 2). After seven months, however, the above-
ground biomass in unplanted plots increased
greatly due to the successful colonization of Dis-
tichlis spicata, which averaged 63% of the total

aboveground biomass, with S. alterniflora com-
prising the remainder (Q. Lin, unpublished data).
This resulted in aboveground biomass being
2 9 higher in planted vs. unplanted plots. Fertil-
izer, regardless of S. alterniflora transplants,
increased aboveground biomass by a factor of
~1.5 9 compared to control plots, which was
marginally significant (F1,28 = 3.61, P = 0.07;
Appendix S1: Tables S2, S3). Mean TPH values
ranged from 0.58 to 0.90 mg/g soil in restoration
plots after two months (Appendix S1: Table S2).
Spartina alterniflora transplants significantly

increased the densities of meiofauna-sized anne-
lids (main effect of transplants, F1,28 = 17.13,
P < 0.0001; Fig. 2; Appendix S1: Tables S3, S4),
which did not interact with either fertilization or
month. There was a significant effect of month on
meiofauna-sized annelids (F1,28 = 32.06, P < 0.0001;
densities were higher after seven months compared
to month 2), which did not interact with either fer-
tilization or transplants. The most commonly
observed meiofauna-sized annelids were recently
settled juveniles of polychaetes (e.g., Capitella capi-
tata) and oligochaetes. No main or interactive effect
of fertilizer was found for this taxon. There was a
significant effect of month on the copepod Nanno-
pus palustris (F1,28 = 5.09, P = 0.03) and nematodes
(F1,28 = 23.06, P < 0.0001), in which their densities
were higher after two months than after seven
months (Fig. 2). There were no effects of transplants
or fertilizer on these taxa.
The interaction of fertilizer and month had a sig-

nificant effect on benthic chlorophyll a (F1,28 = 4.02,
P = 0.05). After two months, average chlorophyll a
biomass was significantly higher in fertilized plots
than in unfertilized plots (least-square means con-
trast, t28 = 2.20, P = 0.04); however, that effect dis-
appeared by month 7 (least-square means contrast,
t28 = �0.64, P = 0.53; Fig. 2). Neither fertilizer,
transplants, nor month affected the densities of
total copepods or soil nitrogen (Appendix S1:
Table S3; Fig. 2).

DISCUSSION

Within two months, plantings of the founda-
tion species Spartina alterniflora in a previously
unvegetated, oiled marsh enhanced annelid den-
sities—which were dominated by the polychaete
C. capitata—over unplanted sites. This effect per-
sisted after seven months for meiofauna-sized
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Fig. 2. Mean (� 1 SE, n = 5) response of infauna taxa and chlorophyll a to restoration treatments. �N = no

nutrients added, +N = nutrients added, �S = no Spartina transplant, +S = Spartina transplant.
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annelids (i.e., juvenile Capitella capitata and oligo-
chaetes), but not for macrofauna-sized annelids.
Fertilizer had no influence on animal densities
despite initial increases in benthic microalgal bio-
mass after two months. Our results suggest that
re-establishing foundation species is critical to
enhancing recolonization of C. capitata in the
saltmarsh benthos after an ecosystem distur-
bance. Capitella capitata is a frequent and promi-
nent early colonist in soft sediment ecosystems
that promotes the breakdown of organic matter.
Early colonization by C. capitata may therefore
contribute to community resiliency as a pioneer
species that facilitates later colonists.

After two months, the positive effect of Spartina
plantings was strongest on both macroinfaunal
and meiofaunal annelids, which were dominated
by the polychaete C. capitata, but had no impact on
other invertebrates. Given the large scale of the
oiled shoreline, and thus the disturbance (100s of
hectares; a type II disturbance; sensu Connell and
Keough 1985), these early marsh colonizers likely
arrived via the water column. Capitella capitata is an
opportunistic species with pelagic, free-swimming
larvae (though they can have direct-developing
larvae in certain instances, Henriksson 1969,
Rosenberg 1976) that is commonly one of the first
species to colonize disturbed or polluted salt-
marsh soils (Sacco et al. 1994, Posey et al. 1997).
The presence of vegetation may have facilitated
higher densities of C. capitata in a number of
ways. Plant canopies lower soil temperatures and,
in turn, enhance invertebrate densities (Whitcraft
and Levin 2007). Laboratory and field studies
confirm that the physical presence of stems slows
water flow and facilitates settlement (Palmer 1986,
Leonard and Croft 2006), which can influence
benthic community structure (Neira et al. 2006).
By 7 months, the effect of Spartina plantings
persisted on meiofauna-sized annelids, but not on
macrofauna-sized C. capitata. The lack of effect of
plantings on C. capitatamay be due, in part, to the
colonization of unplanted plots by Distichlis
spicata and S. alterniflora, which caused unplanted
plots to resemble planted plots in terms of
aboveground biomass.

Although we did not specifically test the struc-
tural (slowing water flow) vs. trophic (food)
effects of Spartina on infauna, we found no differ-
ence among treatments for soil organic matter (Q.
Lin, unpublished data). This result suggests that

trophic support from S. alterniflora was likely
equivalent across treatments. Moreover, S. alterni-
flora did not influence microalgal biomass, indi-
cating that the influence of this foundation species
on animal communities was due to structural
effects (e.g., stress amelioration, facilitating larval
settlement) rather than trophic stimulation (Miller
et al. 2015, van der Zee et al. 2016).
Fertilizer additions stimulated benthic microal-

gae within the first two months, but not inverte-
brate densities. Many benthic invertebrates are
generalist feeders (Galv�an et al. 2011), and this
trend may reflect the weak interaction strength
between benthic invertebrates and benthic
microalgae. The lack of a bottom-up effect of fer-
tilizer on saltmarsh infauna has been seen in
other fertilization experiments. For instance, in
two separate long-term fertilizer studies in salt
marshes, Wiltse et al. (1984) found no effect of
fertilizer on infauna density after 5 yr and John-
son and Fleeger (2009) and Mitwally and Fleeger
(2013) found limited density responses after 3–
6 yr. Mitwally and Fleeger (2014), however,
found that although nematode density was unaf-
fected by 6 yr of fertilization, the nematode com-
munity was greatly altered.
While we showed that nutrient subsidies had

no effect on the early recolonization of saltmarsh
invertebrates, other resource subsidies may be
important. For instance, Levin and Talley (2002)
found that additions of kelp detritus enhanced
macroinfauna colonization in a created marsh.
Craft and Sacco (2003) estimated that during
marsh restoration, 500 g/m2 of live belowground
biomass is necessary to support infaunal densi-
ties of reference marshes. Our sites did not reach
this value (Q. Lin, unpublished data), suggesting
that poor habitat quality was unable to support
the full complement of infauna. Belowground
biomass recovers slowly from oil spills (Culbert-
son et al. 2007, Lin et al. 2016, Fleeger et al.
2017), suggesting that the relative importance of
structural vs. trophic effects of foundation spe-
cies may vary over time. From a restoration per-
spective, interring detritus into saltmarsh soils at
large scales is impractical. From an ecological
perspective, we suggest that in the short term,
aboveground biomass is important for its struc-
tural effects, whereas belowground biomass
becomes more important in the long term for its
trophic support of infauna.
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The densities of most of the infauna were orders
of magnitude lower in our treatment plots than
those in nearby unoiled sites (D.S. Johnson and
J.W. Fleeger, unpublished data). Persistent hydrocar-
bon (e.g., polyaromatic hydrocarbon) contamina-
tion associated with marsh soils and/or re-oiling
events caused by storms (Rabalais and Turner
2016) may have contributed to the slow recovery,
which is common in marsh soils after an oil spill
(e.g., Culbertson et al. 2007), although oil toxicity
likely declined over time in marsh soils after the
Deepwater Horizon spill (Duan et al. 2017). In a
companion oil-spill recovery study in Louisiana,
Fleeger et al. (2017) found that some infaunal taxa
did not recover after six years in oiled sediment.
However, restoration of the infaunal community
in general (e.g., even in the absence of oiling) is
slow in salt marshes. For example, after eliminat-
ing tidal restrictions and restoring hydrology to
salt marshes in Connecticut, Warren et al. (2002)
found that it took 20 yr for the epibenthic (am-
phipods, isopods, snails) community to return to
reference levels. Craft and Sacco (2003) found that
densities of the polychaete Manayunkia aestuarina
in created marshes did not achieve equivalence to
natural marshes until 8 yr after creation.

CONCLUSIONS

Our results emphasize the importance of re-
establishing foundation species to enhance the
establishment of some early colonizers, such as
Capitella capitata, in salt marshes after a distur-
bance, but suggest that colonization is not
enhanced by nutrient subsidies. Nutrient additions
have been used in wetland restoration to stimulate
aboveground plant growth. Added nutrients,
however, can have negative effects on salt marshes
by reducing belowground biomass (Darby and
Turner 2008, Graham and Mendelssohn 2015) and,
in some instances, lead to marsh loss (Deegan
et al. 2012). Our work does not justify nutrient
subsidies in marsh restoration to stimulate animal
communities. Mechanistically, our work indicates
that structural effects of plants, specifically above-
ground biomass, are more important for initial
recovery of marsh animals than plant effects on
food supply. In the longer term, however, the
trophic role of plants may become more important
to the benthic community as animal densities
increase and the detrital pools develop.
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