
Salus: A System for Server-Aided

Secure Function Evaluation

Seny Kamara ∗ Payman Mohassel † Ben Riva ‡

Abstract

Secure function evaluation (SFE) allows a set of mutually distrustful parties to evaluate a function
of their joint inputs without revealing their inputs to each other. SFE has been the focus of active
research and recent work suggests that it can be made practical. Unfortunately, current protocols and
implementations have inherent limitations that are hard to overcome using standard and practical
techniques. Among them are: (1) requiring participants to do work linear in the size of the circuit
representation of the function; (2) requiring all parties to do the same amount of work; and (3) not
being able to provide complete fairness.

A promising approach for overcoming these limitations is to augment the SFE setting with a
small set of untrusted servers that have no input to the computation and that receive no output,
but that make their computational resources available to the parties. In this model, referred to as
server-aided SFE, the goal is to tradeoff the parties’ work at the expense of the servers. Motivated
by the emergence of public cloud services such as Amazon EC2 and Microsoft Azure, recent work
has explored the extent to which server-aided SFE can be achieved with a single server.

In this work, we revisit the sever-aided setting from a practical perspective and design single-
server-aided SFE protocols that are considerably more efficient than all previously-known protocols.
We achieve this in part by introducing several new techniques for garbled-circuit-based protocols,
including a new and efficient input-checking mechanism for cut-and-choose and a new pipelining
technique that works in the presence of malicious adversaries. Furthermore, we extend the server-
aided model to guarantee fairness which is an important property to achieve in practice.

Finally, we implement and evaluate our constructions experimentally and show that our protocols
(regardless of the number of parties involved) yield implementations that are 4 and 6 times faster
than the most optimized two-party SFE implementation when the server is assumed to be malicious
and covert, respectively.

Keywords: secure computation, server-aided computation, multi-party computation, cloud com-
puting

1 Introduction

Secure function evaluation (SFE) allows a set of n parties, each with a private input, to securely and
jointly evaluate an n-ary function f over their inputs. Roughly speaking, a SFE protocol guarantees (at
least) that: (1) the parties will not learn any information from the interaction other than their output
and what is inherently leaked from it; and (2) that the functionality was computed correctly. SFE is
useful in any setting where mutually distrustful parties need to cooperate but do not wish to reveal
their inputs to each other. This often occurs in practice, for example, during negotiations, auctions,
data mining, and voting.

∗Microsoft Research. senyk@microsoft.com
†University of Calgary. pmohassel@cspc.ucalgary.ca.
‡Tel Aviv University. benriva@tau.ac.il. Work done at Microsoft Research.

1

Towards practical SFE. Early work on SFE—and the more general notion of multi-party computa-
tion (MPC)—focused on feasibility results; that is, demonstrating that every function can be computed
securely [57, 58, 24, 10]. Motivated by these results, much of the work in SFE focused on improving
the security definitions [44, 9], on strengthening the adversarial models, on decreasing the round and
communication complexity and on improving efficiency [43, 45, 7, 38, 41, 4, 6, 52]. The special case
of two-party SFE (2SFE) in particular has been improved extensively with more efficient semi-honest-
to-malicious compilation techniques [43, 45, 56, 38, 41, 35, 40, 55], garbled circuit constructions and
implementations [49, 35, 52, 29, 42], and oblivious transfer protocols [48, 30, 50]. In fact, recent work
on practical SFE has even led to the design and implementation of several SFE/MPC frameworks such
as Fairplay [43, 4], VIFF [15], Sharemind [5], Tasty [28], HEKM [29] and VMCrypt [42].

Limitations of standard SFE. While these advances have resulted in great improvements in effi-
ciency and have effectively taken SFE from a purely theoretical idea to a potentially practical technol-
ogy, there are inherent limitations to these optimizations. Indeed, in all current implementations—even
with the state-of-the-art protocols and optimizations—the parties’ running time is linear in the size of
the circuit representation of the function they wish to evaluate.

Unfortunately, the circuit representation of most functions of practical interest can be quite large.
For example, note that the circuit for evaluating the AES function requires roughly 30, 000 gates, while
a circuit that evaluates the edit distance between two 50 character strings requires about 250, 000 gates
(see Section 4.2). It is easy to think of interesting functionalities with circuits that go up to billions of
gates.

An additional limitation of standard SFE is that the workload is symmetric in the sense that each
party has to do the same amount of computation. In many real-world applications, however, some
parties are weaker than others. Consider, e.g., a mobile device that retrieves location-based information
from a server; or a PC that searches a distributed database hosted by a large-scale cluster of machines.
In each case, SFE would allow the parties involved to perform the computation while keeping their
inputs (i.e., the location and the search term) private. Unfortunately, standard protocols— all of which
require a symmetric amount of work—are ill-suited for these settings since the size of both parties’
inputs is bounded by the resources available to the weakest device. In other words, the mobile device
would only be able to search through a small amount of location data, and the PC could only search
through a small fraction of the database.

Finally, achieving fairness is not always possible with standard SFE. Roughly speaking, fairness
ensures that either all the parties learn the output of the function being evaluated or none will. This
is crucial in many real-world applications such as auctions, electronic voting, or collective financial
analysis, where a dishonest participant should not be able to disrupt the protocol if it is not satisfied
with the outcome of the computation. In 1986, Cleve showed that complete fairness is impossible
in general, unless the majority of the players are honest [12]. A number of constructions try to
achieve fairness for a specific class of functionalities [27], or consider limited (partial) notions of fairness
instead [51, 19, 26].

Server-aided SFE. Several approaches to SFE have been proposed to address the inherent limita-
tions outlined above and to achieve a sub-linear amount of work (in the size of the circuit representation
of the function). Of course, one possibility is to design special-purpose protocols, i.e., protocols that
work for a single functionality or a class of functionalities (see, e.g., [46, 25]). Another approach,
referred to as server-aided or cloud-assisted SFE, augments the standard setting with a small set of
servers that have no inputs to the computation and receive no output but that make their computa-
tional resources available to the parties. In this paradigm, the goal is to tradeoff the parties’ work at

2

the expense of the servers. Server-aided SFE with two or more servers has been considered in the past
[16, 17] and even deployed in practice [6].

Currently, there are two approaches to designing single-server-aided SFE protocols: (1) combining
fully-homomorphic encryption (FHE) [21] with a proof system [3, 1]; or (2) using Yao’s garbled circuit
technique [57, 58]. The latter was proposed by Feige, Killian and Naor [18] in the semi-honest model
and recently formalized and extended to stronger models by Kamara, Mohassel and Raykova [32]. The
FHE-based approach is asymptotically optimal, but currently only of theoretical interest. The garbled
circuit approach is slightly less efficient asymptotically but yields protocols that are efficient in practice.
In addition, it can benefit from almost all the optimizations discussed above so it is complementary to
previous work on practical SFE.

While the garbled-circuit approach yields practical protocols, we note that it is in a weaker adver-
sarial model than the FHE-based solutions. In standard SFE it is assumed that if two or more parties
are dishonest, they will collude. The protocols of [18] and [32], however, are only secure in settings
where some of the dishonest parties do not collude. There are many settings in practice where collusion
does not occur, e.g., due to physical restrictions, legal constraints and/or economic incentives. In a
server-aided setting where the server is a large cloud provider (e.g., Amazon, Google or Microsoft), it
is reasonable—given the consequences of legal action and bad publicity—to assume that the server will
not collude with the parties.

Another limitation of the garbled circuit approach is that it yields protocols where at least one of
the parties (other than the server) has to do linear work (throughout we will assume this party to be
the first party P1). It is shown in [32] that any non-interactive single-server-aided protocol without
this limitation would imply a secure non-interactive delegated computation scheme which, currently,
we only know how to construct based on FHE.

Deploying server-aided SFE. Even with the limitations outlined above, we believe that the
garbled-circuit approach to single-server-aided SFE could be useful in many real-world scenarios. Con-
sider, for example, the case of an enterprise (e.g., a small-to-medium-sized one) that may want to
use SFE to provide better privacy for itself and its customers. The limitations of standard SFE out-
lined above would make this completely impractical—especially if the enterprise’s clients are resource-
constrained devices such as smartphones or tablets.

A better approach would be to use server-aided SFE where the server is instantiated by a public
cloud (e.g., Amazon EC2, Windows Azure or Google Compute Engine), the enterprise plays the role
of P1 and its clients play the roles of the remaining parties. Note that such a setup is very natural
in the setting of cloud computing since many business’s already make use of public clouds to deliver
services to their own clients (e.g., Netflix, Instagram) and since they have significantly more resources
than their clients.

1.1 Background on Garbled Circuits

We make use of several cryptographic building blocks in our protocols, including garbled circuits,
oblivious transfer (OT) [53] and secret sharing [54]. We omit formal descriptions of these building
blocks due to lack of space and refer the reader to [22]. However, we briefly review garbled circuits
before describing our contributions.

Yao’s garbled circuit technique [57, 58] transforms circuits in such a way that they can be evaluated
on encrypted inputs. We refer the reader to [39] for details on Yao’s garbled circuit construction. At a
very high level, a garbling scheme consists of: (1) a circuit garbling procedure that transforms a circuit
into a garbled circuit consisting of garbled gates; (2) an input garbling procedure that generates a set
of input labels; (3) an evaluation procedure that evaluates a garbled circuit over a set of input labels,

3

resulting in a set of output labels; and (4) a decoding procedure that recovers the output from the
output labels.

The main security property provided by garbled circuits is input privacy, which guarantees that no
information about the inputs is revealed by the evaluation and decoding procedures beyond what can
be inferred from the output. Our protocols will rely on a slightly different property called input/output
privacy which guarantees that no information about the inputs or outputs are revealed by the evaluation
procedure (these properties are implied by the security proof of [39]). Another useful property of garbled
circuits is unforgeability which, informally, guarantees that an incorrect evaluation can be detected with
all but negligible probability. This property has also been noted and used in works as early as [49], but
pointed out more explicitly in [20].

Cut-and-choose and input-consistency. A difficulty that often comes up when designing proto-
cols based on garbled circuits is verifying whether a circuit was garbled correctly (this occurs when
adversaries can be malicious). Several mechanisms exist to address this but the most efficient is cut-
and-choose [47, 43, 45, 34, 56, 38]. With cut-and-choose, the garbler starts by constructing many
garbled circuits. The evaluator chooses a random subset of these circuits and verifies their correctness
by asking the garbler to reveal the secrets it used. If the verification goes through, the evaluator
is left with several unopened garbled circuits and, with high probability, most of them are properly
constructed (otherwise at least one malconstructed garbled circuit would have been detected during
verification). The evaluator then evaluates the remaining garbled circuits and outputs the majority
value.

This last step, however, introduces new problems and to avoid subtle attacks the evaluator has to
check that the garbler used the same inputs for all the remaining circuits. This input checking step can
be handled using several techniques. Mohassel and Franklin [45] and Lindell and Pinkas [38] extend
the cut-and-choose technique to cover the input labels as well. Unfortunately, this requires a quadratic
(in the security parameter) number of commitments. Another approach is to use specially-designed
zero-knowledge proofs [40, 55] which, under specific number-theoretic assumptions, require only a linear
number of exponentiations.

The techniques of [45] and [38] are extended to the server-aided setting in [32], where an input
checking mechanism is described that requires a quadratic number of commitments.

Pipelined execution. Finally, since circuits can grow very large, garbling and evaluating them in
memory can be expensive. Several implementations, therefore, pipeline the generation and evaluation
of garbled circuits [31, 28, 29, 42] by having the garbler send (or stream) the garbled gates immediately
after generating them and having the evaluator evaluate (or verify) them on the fly. Using this approach,
the parties store in memory only the intermediate wires needed for the rest of the evaluation. This
leads to very efficient implementations since the parties only need to store intermediate values and
garbled gates on disk. Moreover, it improves the latency of the protocol since the garbler and the
evaluator can operate simultaneously. Previous work, however, has only shown how to pipeline garbled
circuits in the presence of semi-honest adversaries.

1.2 Our Contributions

Secure function evaluation is an important and powerful cryptographic primitive and many of its
underlying techniques, such as garbled circuits, oblivious transfer and secret sharing, are important
in their own right. As such, SFE and the underlying primitives that enable it have a wide array of
applications and if made practical could have a large impact on the design of secure and privacy-
preserving technologies.

4

Today, the server-aided approach seems to be one of the most promising directions for scaling SFE
and overcoming the inherent limitations of the optimization techniques discovered in previous work.
In addition, given the recent emergence of public clouds, such as Amazon EC2 and Microsoft Azure,
server-aided SFE can be implemented broadly and at low-cost.

In this work, we revisit the server-aided setting from a more practical point of view and explore
the extent to which we can take advantage of this model and design protocols that are more efficient
and practical than what was previously known [18, 32]. Our findings are quite positive as we make the
following contributions.

Fairness. We extend the server-aided model to provide fairness, which guarantees that either all
parties will receive their outputs or none will. Fairness is an important property to achieve in the
context of practical SFE as it provides an incentive for parties not to abort the protocol after receiving
their outputs.

A generic transformation. We give a black-box transformation from any two-party SFE protocol
secure against malicious adversaries to a multi-party server-aided SFE protocol. This yields a generic
compiler for designing efficient server-aided SFE protocols and provides a point of comparison for
custom-designed constructions.

Efficient server-aided protocols. We design two new single-server-aided multi-party SFE pro-
tocols. Both are based on garbled circuits, achieve fairness and are more efficient than any of the
previously-known protocols [18, 32], or the generic construction mentioned above. In addition, the
efficiency of the first protocol can be increased if it is used in the presence of a covert server (i.e., a
server that wants to cheat but does not want to be caught) [2].

One of the reasons behind the improved efficiency is a new input checking mechanism for the cut-
and-choose step that only requires a linear number of commitments (in the total length of the inputs),
as opposed to previously-known alternatives that either require a quadratic number of commitments
(in the security parameter) or a linear number of exponentiations.

In settings where the total input length is relatively small compared to the square of the security
parameter (which is roughly 17, 000) our approach is significantly more efficient. For example, for the
AES circuit our construction reduces the total size of the commitments from more than 100MB (in the
quadratic case) to around 1MB.

Pipelining with malicious adversaries. We introduce a new pipelining technique that works in
the presence of a malicious adversary. As discussed above, previous solutions were only applicable to
the semi-honest setting and did not work when considering malicious adversaries. We note that in
independent and concurrent work, Kreuter, shelat and Shen [36] describe an approach similar to ours.

Experimental evaluation. We implement our protocols and evaluate their efficiency empirically
over two large circuits: (1) the AES circuit which has roughly 30, 000 gates; and (2) the edit distance
circuit for 50 character strings of 8 bits each which has roughly 250, 000 gates. Naturally, all parties
but P1 have to do very little work. Interestingly, however, our experiments show a significant reduction
in the total running times—even for the server and P1. For AES, our first protocol (which is secure
against a covert server) is roughly 6× faster than the covert protocol of [52]. Our second protocol (which
secure against a malicious server), is roughly 4× faster than the most optimized 2SFE implementation
[55]. Moreover, a nice property that our experiments illustrate is that the running time of our second
protocol is almost independent of the number of the parties involved.

5

2 Model and Definitions

Practical server-aided SFE with a single server has only been achieved in certain specific adversarial
models. In particular, as shown in [32], the garbled-circuit-based protocol of Feige, Killian and Naor
from [18] is a secure sever-aided SFE protocol against a set of non-colluding semi-honest adversaries,
that is, adversaries that follow the protocol and are independent in the sense that they do not share
any information before or after the protocol execution. [32] also gives protocols that are secure in
the presence of non-cooperating adversaries which, roughly speaking, are adversaries that deviate from
the protocol but do not send information other than what prescribed by the protocol (note that a
non-cooperating adversary is stronger than a semi-honest adversary).

A natural question, therefore, is whether these relaxations of the adversarial model are necessary
in order to achieve practical server-aided SFE and all the advantages it provides, such as asymmetric
efficiency (i.e., different parties needing different amounts of resources) and sub-linear work.

Asymmetric efficiency in the standard model? Consider a solution that does not make use of
the relaxations described above. In particular, one might attempt to design an efficient server-aided
protocol between parties (P1 . . . , Pn) and a server S, such that: (1) a subset of the parties do sub-linear
work; and (2) the server and the remaining parties do work that is polynomial in the size of the circuit.
Such a protocol with security in the standard adversarial model, however, would yield a 2SFE protocol
with low communication and computation for one party 1 which, currently, can only be constructed
based on FHE [14].

Server-aided SFE from any two-party SFE. A second promising attempt (and a successful one)
is to take advantage of the fact that the server and P1 are never simultaneously malicious. With this
assumption in place, one can indeed design practical protocols wherein all the parties but P1 perform
very little work (only proportional to their own input). The idea is as follows: the players (P2, . . . , Pn)
share their inputs between S and P1, and let them run a general-purpose 2SFE protocol (with security
against malicious adversaries) for computing the desired function on the players’ inputs. This approach
is promising but for it to work one needs to enhance the 2SFE protocol with mechanisms to convince
the players that: (1) their real inputs were used (note that the security of 2SFE does not imply this);
and (2) the output of the 2SFE is delivered back to them (2SFE guarantees output correctness but not
honest delivery of the output to P2 through Pn).

We now describe an efficient solution that addresses both issues, and works with any general-
purpose 2SFE protocol with security against malicious adversaries. This, of course, is the most general
case one can hope for in the context of server-aided SFE so we get a positive feasibility result that
2SFE implies server-aided SFE—though perhaps not with optimal efficiency.

Recall that we have parties (P1, . . . , Pn), each with a secret input xi, and a server S with no input
or output. Let C be the circuit they wish to evaluate. The high-level idea of the reduction is as follows:
the parties (P2, . . . , Pn) share their inputs between S and P1 who run the 2SFE protocol (with security
against malicious adversaries) to evaluate the circuit CSh computes C(x01 ⊕ x11, . . . , x0n ⊕ x1n), where x0i
and x1i are the shares of xi. This solution is not sufficient, however, since the 2SFE protocol cannot
prevent malicious S and P1 from changing their inputs. Similarly, the party that learns the output of
the 2SFE can simply lie about it to the other parties.

To solve these problems, we make use of a one-time message authentication code (MAC) in the
2SFE evaluation. To verify the outputs, each party Pj picks at random two l-bit strings v0j and v1j .

1Given such a server-aided SFE protocol one can construct a standard two-party protocol by having the first party
simulate the subset of the parties who perform sub-linear work and having the second party simulate the server S and
the remaining parties.

6

Now, instead of evaluating the circuit C they evaluate the circuit CR that receives x and the n − 1

pairs (v0j , v
1
j)j∈[n−1], evaluates C(x) and outputs the values v

C(x)
2 , . . . , v

C(x)
n . The parties then share

their inputs (including the pairs (v0j , v
1
j)j∈[n−1) between P1 and S who run the 2SFE protocol with the

circuit CSh ◦CR. P1 / S send to party Pj the value v
C(x)
j . Pj verifies that the string he receives is one

of v0j and v1j and determines the right output based on that. Note that this technique increases the
input length by 2ln for each bit of the output. This overhead could be decreased by a factor of n by
using only a single pair (v0, v1) that is generated obliviously by all parties. We omit the details of this
optimization.

A similar but slightly more sophisticated technique can be used for the verification of the inputs.
Let b be a bit of a share that party j sent to P1 in the above protocol. The process we explain next
needs to be repeated for every such b. Party Pj picks two l-bit strings k0 and k1 at uniformly at
random, shares them between P1 and S, and sends kb to P1. Now, P1 and S execute a 2SFE protocol
where, P1’s input is the shares of k0, k1 and kb, and S’s input is its shares of k0, k1. The circuit they
evaluate is a circuit the reconstructs k0, k1 from the given shares, checks to see if kb is equal to one
of the keys (if not it aborts), and uses the value of b as the input for the circuit CSh ◦CR. Note that
in order to flip the bit b, P1 has to guess S’s share of k1−b, and assuming we use the XOR of random
l-bit values for secret sharing, this happens with only negligible probability in l. Of course, the same
technique should be repeated for each bit of the shares held by P1 and S, therefore increasing the total
input length by a factor of 2l.

We also point out that the same technique can be used to design a multi -server-aided SFE protocol
from standard multi-party SFE in a black-box way. One can simply have the parties share their input
between k servers, and run a k-party SFE protocol between them that evaluates a circuit similar to
the one described above. The security of the multi-party SFE protocol will imply the security of the
multi-server-aided SFE protocol as long as at least one of the servers is not malicious.

Better efficiency than 2SFE? An important question is whether the server-aided setting can lead
to more efficient protocols than the standard setting or whether the best we can hope for is to achieve
the complexity of existing 2SFE protocols. Unfortunately, the latter is indeed the case in general, i.e.,
if we insist on security with respect to all possible adversarial settings. Suppose, for example, that we
require the server-aided protocol to be secure in the presence of either: (1) a malicious server and a
single malicious party (say Pt); or (2) an honest server and all but one malicious parties. The overall
complexity of such a protocol (even if carefully optimized) will always be greater than the complexity
of the most efficient 2SFE protocol with security against malicious adversaries.

To see why, we sketch how one can use such a protocol to construct a 2SFE protocol secure against
malicious adversaries. Let A and B be the two parties who want to engage in a 2SFE protocol. A
runs the server-aided protocol simulating the server and Pt with A’s input, and B runs the protocol
simulating the rest of the parties (and sharing his input between them). If A is malicious, the security
of the server-aided protocol against a malicious server and a malicious Pt guarantees security. If B is
malicious, the security of the server-aided protocol against an honest server and a colluding set of all
but one malicious parties (Pt in this case) implies security for the 2SFE protocol.

On a positive note, we show that if we restrict ourselves to certain adversarial settings then we can
indeed do better than 2SFE. More precisely, we show that by only requiring security in the presence
of a non-cooperative server, we can do much better.

7

2.1 Formal Model

We recall the ideal/real-model security definition for MPC in the presence of non-cooperative adver-
saries presented in [32]. At a high level, the definition compares the real-model execution of a protocol
for computing an n-party function f to the ideal-model evaluation of f by a trusted party in the
presence of m independent adversaries (A1, . . . ,Am) that are assumed not to collude.

Non-collusion in MPC. The standard adversarial models for MPC include: (1) semi-honest adver-
saries which follow the protocol but attempt to learn extra information from their view of the execution;
and (2) malicious adversaries which can deviate arbitrarily from the protocol. The recently proposed
notion of non-cooperative adversaries [32] captures adversaries that may deviate from the protocol but
that do not share any information that is not prescribed by the protocol.

Definition 2.1 (Non-cooperative adversary [32]). An adversary Ai is non-cooperative with respect to
adversary Aj if the messages Ai sends to Aj reveal no information about Ai’s private values (i.e., its
coins and input) to Aj beyond what can be inferred from Aj’s output fj(x).

Note that the notion of non-cooperation only restricts the information revealed by Ai’s messages
and does not imply thatAi is semi-honest. Indeed, Ai could deviate from the protocol without revealing
any information to Aj about its private values, e.g., by garbling a function f ′ 6= f when required to
garble f .

2.2 Security Definition

Our security definition is similar to the one presented in [32] with the exception that it guarantees
fairness and handles the case when the server is covert. (See [22] for more details about the idea-
model/real-model security for MPC.) At a high level, fairness is guaranteed by modifying the behavior
of the trusted party in the ideal-model execution so that it sends ⊥ to all parties if any party chooses
to abort (note that the fairness guarantee does not extend to the server). We capture covertness
using the explicit cheat formulation of [2] which augments the ideal-model execution by allowing a
covert adversary A to send a cheat instruction to the trusted party. Upon receiving this instruction,
the trusted party sends A all the inputs and takes one of two possible actions: with probability ε it
discloses to all parties that A cheated and with probability 1− ε it does not.

Real-model execution. The real-model execution of protocol Π takes place between parties (P1, . . . , Pn),
server Pn+1 and adversaries (A1, . . . ,Am+1), where m ≤ n.

At the beginning of the execution, each party (P1, . . . , Pn) receives its input xi, a set of random
coins ri, and an auxiliary input zi while the server Pn+1 receives only a set of random coins rn+1 and
an auxiliary input zn+1. Each adversary (A1, . . . ,Am) receives an index i ∈ I that indicates the party
it corrupts, while adversary Am+1 receives a set of indices that indicate the parties it will corrupt (this
captures the fact that these parties collude).

For all honest parties Pi, let outi denote its output and for all corrupted parties Pi, let outi denote
its view during the execution of Π. The ith partial output of a real-model execution of Π between
parties (P1, . . . , Pn+1) in the presence of adversaries A = (A1, . . . ,Am+1) is defined as

real(i)(k,x; r)
def
=
{
outj : j ∈ H

}
∪ outi.

where H denotes the set of honest parties and r = (r1, . . . , rn+1).

8

Ideal-model execution. In the ideal-model execution, all the parties interact with a trusted party
that evaluates f . As in the real-model execution, the ideal execution begins with each party (P1, . . . , Pn)
receiving its input xi, its coins ri and an auxiliary input zi, while the server Pn+1 receives only its coins
rn+1 and an auxiliary input zn+1. Each party (P1, . . . , Pn) sends x′i to the trusted party, where x′i = xi
if Pi is semi-honest and x′ is an arbitrary value if Pi is either malicious or non-cooperating. If any
x′i = ⊥ or if the server sends an abort message, the trusted party returns ⊥ to all parties. If the server
Pn+1 is covert, it can send a cheat instruction to the trusted party. Upon receiving this instruction,
the trusted party tosses some coins and with probability 1− ε discloses the server’s cheating (and the
other parties output ⊥) and with probability ε does not. In the latter case, the trusted party sends
(x′1, . . . , x

′
n) to the server, receives (y1, . . . , yn) in response, and returns yi to Pi. If the server did not

send cheat, the trusted party returns fi(x
′
1, . . . , x

′
n) to party Pi.

For all honest parties Pi, let outi denote the output returned to Pi by the trusted party, and for
all corrupted parties let outi be some value output by Pi. The ith partial output of an ideal-model
execution between parties (P1, . . . , Pn+1) in the presence of independent simulators S = (S1, . . . ,Sm+1)
is defined as

ideal(i)(k,x; r)
def
=
{
outj : j ∈ H

}
∪ outi.

where H denotes the set of honest parties and r = (r1, . . . , rn+1).
We now present our formal definition of security which, intuitively, guarantees that executing a

protocol Π in the real model is equivalent to executing Π in an ideal model with a trusted party.

Definition 2.2 (Security). A n-party protocol Π securely computes f if there exists a set {Simi}i∈[m+1]

of polynomial-size transformations such that for all polynomial-size adversaries A = (A1, . . . ,Am+1),
for all x and z, and for all i ∈ [m+ 1],{

real(i)(k,x; r)

}
k∈N

c
≈
{
ideal(i)(k,x; r)

}
k∈N

where S = (S1, . . . ,Sm+1) and Si = Simi(Ai) and where r is chosen uniformly at random.

We now present a Lemma from [32] that we will use to prove security. Informally, it asserts that
to prove a protocol Π secure in the presence of a non-cooperative adversary Ai it suffices to show that
the protocol is secure in the semi-honest model (i.e., where all the adversaries follow the protocol) and
that it is secure when Ai is malicious and all the other parties are honest.

Lemma 2.3 ([32]). If a multi-party protocol Π between n parties (P1, . . . , Pn) securely computes f
in the presence of (1) independent and semi-honest adversaries and (2) a malicious Ai and honest
{Aj}j 6=i; then Π is also secure in the presence of an adversary Ai that is non-cooperative with respect
to all other semi-honest adversaries.

3 Our Protocols

We describe our server-aided SFE protocols which are secure in the presence of a covert and malicious
server, respectively. For simplicity of the description, we assume the output of the computation is a
single bit. Extending it to more than one output bit is straightforward.

Notations and primitives. Denote by inp(Pi) the set of input wires for Pi’s input bits and let m
be the total number of input bits, i.e., m =

∑
|inp(i)|. Here we assume the output of the computation

is a single bit, but both protocols can be easily adapted to handle multiple bit outputs.

9

Let C be a circuit that computes the function f . Let GC(C; r) be an algorithm that, given a boolean
circuit C and random coins r, outputs a garbled circuit C̃. Let GI(m; r) be an algorithm that, given
an input length m and coins r, returns 2m input labels:

W =

(
w0
1 . . . w0

m

w1
1 . . . w1

m

)
,

such that w0
i and w1

i are the labels of 0 and 1, respectively, for the ith input wire. If x is an m-bit
string, we denote by W|x the label vector (wx11 , . . . , w

xm
m). Let GO(r) be an algorithm that, given coins

r, returns two output labels (ω0, ω1) and let Dec(ω; r) be a decoding algorithm that, given an output
label ω and coins r, returns a bit b. Finally, let Eval(C̃,W|x) be an evaluation algorithm that, given

a garbled circuit C̃ and a set of input labels W|x, returns an output label ω. We require that for all
circuits C and all coins r,

Eval

(
GC
(
C; r

)
,W|x

)
= ωf(x),

and that for b ∈ {0, 1}, Dec
(
ωb; r

)
= b, where W := GI(m; r) and (ω0, ω1) := GO(r). For security, we

also require input/output privacy which guarantees that a pair (C̃,W|x) reveal no partial information
about x and f(x); and unforgeability which guarantees that an incorrect evaluation can be detected.

Our protocols make use of several standard cryptographic primitives, including pseudo-random
functions, commitments, secret sharing and symmetric key encryption (see [23] and references therein
for thorough discussion of their security property and pointers to instantiations). We will denote by
FK(·) a pseudo-random function with key K. Let H(·) be a one-way function (we use SHA, but we
only need its one-wayness property); Com(m) be a commitment to message m; and Enc(k,m) be a
(deterministic) symmetric encryption of a message m under a key K. Any standard instantiation
of the above primitives works for us but following previous implementations [52], we use SHA-1 and
SHA-256 as pseudo-random functions and use them to implement all other primitives (see Section 4.1).
Share will denote the sharing algorithm of a n-out-of-n secret sharing scheme, i.e., Share(n, x) outputs
n shares (σ1, . . . , σn) of x such that no partial information about x can be recovered unless all shares
are held. Throughout, we will assume that sharing is instantiated with the simple XOR secret sharing
scheme which, given an input x, returns n shares (r1, . . . , rn−1,

⊕n−1
i=1 ri ⊕ x), where each ri is a |x|-bit

string chosen uniformly at random. Last, we denote by [n] the set {1, . . . , n}.

3.1 Security Against a Covert Server

Our first protocol is fair and secure in the presence of a covert server which, roughly speaking, means
that the server is dishonest but does not want to get caught. The covert adversarial model was intro-
duced by Aumann and Lindell [2] and allows for more efficient protocols than the standard malicious
model. Assuming that the server is covert (as opposed to fully malicious) seems natural in settings
where there are strong incentives not to cheat. If the server is a large cloud provider (e.g., Amazon
or Microsoft), this assumption is quite reasonable since the provider’s reputation is at stake. We note
that for our protocol, if the communication between all parties and the server is digitally signed, the
parties can use the transcript as a proof that the server cheated.

As for fairness, we observe that although it is unachievable in the standard SFE setting (with a
dishonest majority), it is achievable in the server-aided setting, hence providing a stronger security
guarantee than standard SFE in this respect.

Recall the server-aided setting where a set of parties (P1, . . . , Pn) each with a private input and a
server S with no input or output, want to collectively compute a function f over their private inputs.
Let C be a Boolean circuit of size |C| that evaluates f and let x = (x1, . . . , xm) be a binary string

10

that represents the joint input of all the parties. Our construction makes use of garbled circuits and a
distributed OT protocol. Next, we provide a high level overview of the protocol. A detailed description
can be found in Figures 1 and 2.

Overview. S garbles a small number s1 (e.g., 16) of circuits and sends them to P1. It then shares the
input labels for all the wires between all the parties (i.e., each party receives a share of each label of each
wire) and sends them some secret information. Each party Pi communicates with all the other parties
once and uses the secret information it received from S and the messages exchanged to generate the
label corresponding to his input. This mechanism can be viewed as a special distributed OT protocol
(where the server plays the role of the sender) that allows each party Pi to learn the label for its input
xi, without the server or the other parties {Pj}j 6=i learning anything about it.

P1 then picks a circuit at random and asks the server to reveal the randomness it used to construct
all the other circuits. This randomness also includes the coins used for the secret sharing of the labels.
P1 checks that this randomness is indeed correct and all the parties verify that their shares are derived
from it. Finally, all the parties send their labels to P1 who evaluates the remaining circuit and returns
the result to all the parties.

Distributed OT. As discussed above, the distributed OT protocol allows the parties to privately
retrieve their labels from the server, i.e., without the server or the other parties learning anything
about them. We construct such a protocol based on black-box access to a PRF and without invoking
a standard OT protocol.

The server holds two inputs a0 and a1, and one of the parties Pj holds a bit b. The distributed
OT should let Pj learn ab without revealing any additional information. The intuition behind the
construction is as follows: the server secret shares a0 and a1 between all the parties, permuting each
pair of shares randomly. The server sends to Pj the permutations that he used for all the parties. Pj
asks for one share from each party according to the bit b and the random permutations he receives
from the server. Note that the parties do not learn any information about b since they do not know
the random permutations and Pj only learns one of a0 and a1 (assuming that at least one party does
not cooperate with Pj). This solution, however, is not enough since if one of the shares is wrong, there
is no way to determine if it is the server’s fault or one of the parties. Thus, the server commits to
all the shares and sends those commitments to the parties. Before requesting a share, Pj checks with
the other parties that they received the same commitments, and only then proceeds with choosing the
share.

Achieving fairness. Unfortunately, the protocol as described above does not provide fairness since
P1 can abort after seeing the output. We fix this by hiding the output from P1 until all the parties
receive the same output label. Consider a single output wire wi. The output of the garbled circuit on
this wire is a label and its translation to the real output bit is only known to S. After P1 sends this
label to all the parties, the server sends hashes of the two possible labels (one for the wire bit 0 and
one for wire bit 1) in random order. The parties check that the hash of the label they have is equal
to one of those hashes, and if so, they return an ACK message to S. After all the parties return an
ACK, S sends the two labels to all the parties along with their mappings to the output value. Now
each party can map its label to a corresponding output bit. One problem that arises in this protocol
is that the server can change the output to whatever he wants by sending an incorrect mapping. We
solve this by simply asking S to commit to the mappings in advance and having the parties check those
commitments as part of the randomness revealing stage.

11

Setup and inputs: Each party Pi has an mi-bit input while the server has no input. Let m =
∑
i∈[n]mi.

The server S holds a secret key K for a pseudo-random function F . s is a statistical security parameter.
C is the circuit that computes f .

Distributed OT :

For all ` ∈ [s1]:

1. S computes r` := FK(`). All the coins used by S for the `th circuit will be derived from r`,

2. S computes W` := GI(m; r`) and for all i ∈ [m], (σ0
1,i, . . . , σ

0
n,i) ← Share(n,w0

i) and

(σ1
1,i, . . . , σ

1
n,i)← Share(n,w1

i),

3. S then samples a n×m binary matrix P` uniformly at random and generates the n×m matrix
S` defined as:

S` =

P`11
[
σ0
1,1, σ

1
1,1

]
. . . P`1m

[
σ0
1,m, σ

1
1,m

]
...

...

P`n1
[
σ0
n,1, σ

1
n,1

]
. . . P`nm

[
σ0
n,m, σ

1
n,m

]
 ,

where P`ij
[
v0, v1

] def
=

(
vP

`
ij , v1−P

`
ij

)
,

4. S then constructs the n × m matrix C` such that C`ij =

(
Com

(
S`ij [1]

)
,Com

(
S`ij [2]

))
, where

S`ij [a] for a ∈ {1, 2} denotes the ath element of the pair stored at location ij of S`,
5. for all i ∈ [n],

(a) S sends the ith rows of S` and C` and the associated decommitments to Pi,

(b) if the decommitments are invalid Pi accuses S and aborts,

(c) for all j ∈ inp(Pi), S sends the jth column of P` to Pi,

6. S sends to all parties Q`
0 := Com(ω0

`) and Q`
1 := Com(ω1

`), and, H(ω0
`) and H(ω1

`) permuted
in a random order, where (ω0

` , ω
1
`) := GO(r`).

Cut-and-choose :

1. For all ` ∈ [s1], S sends C̃` := GC(C; r`) to P1.

2. P1 sends e
$← [s1] to S.

3. S sends {ri}i∈[s1]−e to P1 who in turn sends it to all the parties.

4. All parties verify that all the values received from S in the previous steps were constructed
properly from the appropriate randomness. If not, they accuse S and abort.

Input label reconstruction for Pi :

For all j ∈ inp(Pi)

1. for all i′ 6= i:

(a) Pi sends bi′j := xj ⊕ Pei′j to P ′i
(b) Pi′ returns Sei′j [bi′j] (recall that Pi′ received the i′th row from S in step 5(a) of th distributed

OT phase).

2. Pi reconstructs w
xj
j using the n shares obtained in the previous steps.

Figure 1: Protocol 1 - Covert Server (Part 1)

12

Commitment consistency check :

For all i ∈ [n], j ∈ inp(Pi) and i′ 6= i:

1. S sends Cei′j to Pi,

2. Pi and Pi′ check that they have the same commitments (simply by sending them to each other).
If not, they accuse S and abort. More precisely:

(a) for all j ∈ inp(Pi)∪ inp(Pi′) they check that they both received the same commitments Ceij
or Cei′j (depending on who owns wire j),

(b) they check that they received the same Qe
0 and Qe

1,

3. Pi′ sends to Pi decommitments to Cei′j [bi′j]. If any decommitment is invalid, Pi accuses Pi′ and
aborts.

Garbled circuit evaluation :

1. All the parties send their input labels for C̃e to P1.

2. P1 evalautes C̃e and returns the garbled output z to all the parties.

Revealing the output :

1. Each party Pi computes a hash of z and verifies that it matches one of the two hashes H(ω0
e)

and H(ω1
e) the server sent earlier. If so, it sends an ACK message to the server.

2. After receiving an ACK messages from all players, S sends the decommitments to Qe0 and Qe1
to all parties.

3. Using the decommitments and z, each party can determine the output bit.

Figure 2: Protocol 1 - Covert Server (Part 2)

Asymptotic efficiency. Let s be a statistical security parameters, n the number of parties, and m
be the combined length of all parties’ inputs. With our protocol, S and P1 work in time O(s·|C|+smn)
while the other parties work in time O(sm), where for the specific values s = 16 (as suggested in [52])
we obtain a complexity of O(16 · |C| + 16mn) and O(16m), respectively. We emphasize that we only
use inexpensive cryptographic primitives such as hash functions and commitments.

Security. We now turn to security and show in the following Theorem that our protocol is secure
according to Definition 2.2.

Theorem 3.1. The protocol fairly and securely computes the circuit C in the following two corruption
scenarios: (1) The server is covert (but non-cooperative with respect to the parties), while all other
parties are semi-honest, (2) the server is semi-honest, while all but one of the parties is malicious (but
non-cooperative with respect to the server).

Proof. Fairness is achieved because the server reveals the translation of the outputs only after all the
parties confirm that they have received the same answer. Next we focus on a simulation-based proof
of privacy and correctness.

For the above protocol, our server-aided security definition requires a simulation-based privacy and
correctness guarantee in the following two scenarios: (1) the server S is covert and non-cooperative,
while the parties are semi-honest ; and (2) the server is semi-honest, and all but one of the parties are
malicious. The malicious parties can collude between themselves.

Note that due to Lemma 2.3, we can divide the proof into three different claims: first we prove
security when the parties and server are independent and semi-honest. Then, we prove security for

13

the case when the server is covert and the parties are honest, and finally we prove security in the case
where the server is honest and all but one of the parties are malicious. The Lemma then extends these
security guarantees to the case where the honest parties/server are replaced by semi-honest ones as
mentioned above. We consider each claim separately.

Claim. The protocol securely computes the circuit C in presence of a semi-honest server AS , and
semi-honest parties (all parties are independent).

We describe three independent simulators SimS , Sim1 and Simi, simulating the independent ad-
versaries AS , A1 and Ai who corrupt the server, party P1 and parties Pi (for i > 1) respectively.

• SimS simulates AS as follows. The simulation in this case is quite straightforward. AS ’s view in
the real execution only consists of the random index e sent to it by P1 and the final ACK messages
from all parties at the end. SimS generates an identical view for AS in the ideal execution. Note
that since the parties are semi-honest there will be no abort.

• Sim1 receives P1’s input x1 and sends it to the trusted party in order to receive C(x). It then
randomly guesses the index e′ and creates the correct garbled circuits C̃j for j ∈ [s1]− e′, but a

fake garbled circuit C̃e′ that evaluates to C(x) on all inputs. When they reach the cut-and-choose
step, A1 sends an index e. If e 6= e′, Sim1 rewinds the protocol and starts the process again.
After an expected O(1/s1) times, its guess e′ will be right one. At this point, Sim1 creates A1’s
view in the ideal execution by sending it all the messages an honest server would (he can do so
since the server has no inputs), and does the same on behalf of all the other parties, but using fake
inputs for them (since he doesn’t know their real inputs). The claim is that A1’s view in the real
and ideal executions are indistinguishable. The two main differences in the views are that a fake
garbled circuit C̃e is sent to A1 in the ideal execution. But as shown in previous work on Yao’s
garbled circuit construction [38], it is possible to efficiently generate a fake garbled circuit with
the same output, such that the real and the fake circuits are computationally indistinguishable
to A1. Another component of A1’s view that is different in the ideal execution is the fact that
Sim1 uses fake inputs for other parties. Since A1 only sees random XOR shares of those inputs,
however, this component of the views will be uniformly random and identical in both executions.

• Simi’s description is very similar to Sim1 and is even simpler since Ai for i > 1 does not need to
receive the complete garbled circuits but only commitments to outputs and shares of the garbled
inputs.

This ends the proof of our first claim.

�

Claim. The protocol securely computes the circuit C in the presence of a covert server and honest
parties.

For this claim, we only need to provide a simulator SimS for the adversary AS but unlike the previous
claim, AS is not semi-honest and can actively cheat.

SimS plays the role of the honest parties using fake inputs for each. It receives garbled circuits,
commitments and hash values from AS . It then plays the role of the honest P1 by sending a random
e ∈ [s1], checks to see if C̃j or any of the related commitments are not computed correctly for j = e (or
if AS aborted). It then rewinds and sends a different random e. Note that in this stage the simulator

14

knows, for all circuits and commitments, whether they are correct or not. There are three cases now.
First, if at least two circuits (or their commitments or hashes) are incorrect, it sends an abort message
to the trusted party, simulates P1 aborting and outputs whatever AS does. Second, if exactly one
of the circuits/commitments/hashes is incorrect, it sends the “cheat” instruction to the trusted party
to notify it of being corrupted. If the trusted party discloses the cheating, SimS rewinds to the cut-
and-choose step, chooses a value e where the server gets caught, simulates P1 aborting, and outputs
whatever AS does. If the trusted party does not disclose the cheating, it rewinds to the cut-and-choose
step, chooses e such that the server does not get caught, and outputs whatever AS does. Third, if all
circuits/commitments/hashes are correct, it sends an ACK message on behalf of each party to AS and
outputs what he does.

This ends the simulation. Note that if more than two bad circuits/commitments/hashes exists, the
honest parties in the ideal execution and the real execution both abort. If there is exactly one bad
circuit, this will happen in both models with probability 1− 1/s1, and if everything is done correctly,
both the real and the ideal executions finish successfully and with correct outputs for the honest parties.

�

Claim. The protocol securely computes the circuit C in presence of an honest server, and an all-but-one
set of malicious parties.

Our final claim is for the case where all-but-one of the parties may be malicious and even collude.
Consider the adversary A corrupting a subset of the parties. Without loss of generality, we assume
that P1 is among the corrupted parties. The reason is that the case where P1 is not among the corrupted
parties can easily be proved as a special case of the former.

One may wonder if the proof for this case is identical to the proof of the first claim in the case
where P1 is semi-honest. Unfortunately, however, a complication arises here that is not present in that
case. Since P1 is malicious, we need to extract his input during the simulation in order to obtain the
output from the trusted party, and then use the output to create a consistent fake garbled circuit. But
the input distribution stage does not take place until after the garbled circuits are sent to P1. Hence,
we need a slightly different simulation strategy.

Simulator Sim plays the role of the honest server S and at least one honest party Pi during the
interaction with the rest of the parties. It starts by guessing e (the index of the evaluated circuit) and by
preparing correct garbled circuits for all C̃i where i ∈ [s1]−{e}. For C̃e, it garbles a circuit that outputs
P1’s first input bit (of course, with many dummy gates to make the garbled circuit indistinguishable
from a valid circuit). The simulator runs the protocol until the cut-and-choose stage. If e was not
selected by P1, it rewinds the protocol and starts again. After an expected O(1/s1) times, its guess
will be right. In that case, the simulation continues, and in the step in which P1 (and the rest of the
parties) ask Pi for their shares, the simulator learns the inputs of those parties (since it knows the
permutations). The simulator then sends to the trusted party those inputs and receives the output of
the computation.

Now, it changes the share that Pi has for P1’ s first input bit in such a way that P1’s garbled circuit
evaluation will yield an output token that decodes to the correct output. Note that this can be done
because we use XOR to share the input tokens. Indeed, the simulated Pi can flip P1’s input bit by
simply XORing the shares with the input tokens it wants P1 to recover. The commitments for those
shares are recomputed and the protocol continues until the end, when the server and Pi send the same
commitments to the other parties. Note that now A evaluates the circuit that returns the first bit of
his input, and his first bit is the actual output bit. If P1 returns an invalid output, he sends an abort
to the trusted party, simulates honest Pi aborting and outputs what A does.

15

It is easy to show that the corrupted parties’ view when interacting with the simulator is indistin-
guishable from their view in the real protocol: first, due to the security properties of Yao’s garbled
circuits, the fake circuit generated by the simulator is indistinguishable from a real one, and second,
the corrupted parties’ view of the honest Pi’s input only consist of uniformly random shares and hence
is identical in both executions.

�

The above three claims combined, complete the proof of security for our first server-aided SFE
protocol with a covert server.

3.2 Security Against a Malicious Server

Our second protocol is secure against a malicious server and is described in detail in Figure 3. We now
provide an overview.

Overview. In this protocol we assume the parties share randomness in the beginning. This can be
achieved by simply running a simulatable coin tossing protocol [37, 33]. Such a protocol emulates
the usual coin-flipping functionality in the presence of arbitrary malicious adversaries and allows a
simulator who controls a single player to control the outcome of the coin flip.

Here, P1 is the garbler and S is the evaluator. P1 uses the shared randomness to generate s garbled
circuits which it sends to the server S. To verify the correctness of the garbling step, S and P1 execute
a cut-and-choose protocol. At the end of the cut-and-choose, S is left with λ circuits, the majority
of which are properly garbled (with high probability). Then, all the parties send the labels for their
input wires to S (they can compute these labels using the shared randomness). Since this is done for
multiple circuits, we have to ensure that each party uses the same input in all the circuits.

Input checking. There are several mechanisms to check and enforce input consistency [45, 38, 40,
55, 32] but we deviate from previous approaches and introduce a new mechanism that is more efficient.
In particular, we require that for each wire i ∈ [m], each party send to S the following two hashes
permuted at random: H

(
w0
1,i| · · · |w0

λ,i

)
and H

(
w1
1,i| · · · |w1

λ,i

)
, where wbj,i is the input label for bit b of

the ith wire of the jth circuit (for j ∈ [λ]). The server verifies that the hashes it received from different
parties are the same. Assuming that at least one party is honest, this implies the hash was honestly
computed. Then, given the labels for the ith input wire, S can compute their hash and verify that the
result indeed matches one of the two previously accepted hashes for the same wire. If the check passes
for all input wires, the server proceeds to the evaluation of the remaining λ circuits. At the end of the
evaluation, S is left with λ output labels (the results of the λ evaluations). If the server directly sends
these labels to the parties, however, it will leak additional information to them (as already pointed out
in [32]).

We use a new technique for resolving this issue, that allows the server to output a single value that
represents the majority output without revealing any additional information. This new technique is
more efficient than the oblivious cut-and-choose technique of [32].

Asymptotic efficiency. The complexity of the protocol is as follows: let s be the security parameter
(the number of garbled circuits), λ < s be the number of circuits used for evaluation, n be the number
of parties, and m be the total length of all the parties’ inputs combined. S and P1 work in time
O(s · |C| + sm) and the other parties work in time O(λm), where for the specific values s = 132 and

16

Setup and inputs: Each party Pi has an mi-bit input while the server has no input. Let m =
∑
i |mi|.

All the parties share a secret key K. s and λ are statistical security parameters.

Setup shared randomness :

1. For all ` ∈ [s], the players compute r` = FK(`) (these will be used to garble s circuits).

2. The players compute γ0 := FK(s + 1) and γ1 := FK(s + 2) (these will be used to decode the
final output).

Circuit Garbling :

For all ` ∈ [s], P1 sends C̃` := GC(C; r`) to S.

Garbled Circuit Verification :

1. S picks a set T ⊂ [s] of size s− λ at random, and sends T to P1.

2. P1 sends to r` for all ` ∈ T , to S.

3. For all ` ∈ T , S checks that C̃` was created using r`. If so, it sends r` to all the parties who
verify that it is equal to the randomness they computed earlier.

Input label transfer :

Let E = [n]−T be the set of indices of non-verified circuits. Each party Pi computes W` := GI(m; r`)
for all ` ∈ E. It then sends all its input labels to S. Denote by w`,j the label S receives for the jth
input wire of the `th circuit.

Input label consistency check :

For j ∈ [m]:

1. All the players send the hash values hw,b = H(wb`1,j | · · · |w
b
`λ,j

) for b ∈ {0, 1} in a random order,
where `1, . . . , `λ ∈ E.

2. S checks that it receives the same hash values from all the players.

3. S checks that one of the hashes equals H(w`1,j | · · · |w`λ,j).

Garbled circuit evaluation :

S evaluates the circuits C̃` for all ` ∈ E. Denote the output of C̃` by z`.

Majority output :

For all ` ∈ E:

1. each party sends the two ciphertexts Enc(ω0
` , γ0) and Enc(ω1

` , γ1) to S permuted in a random
order, where (ω0

` , ω
1
`) := GO(r`),

2. S checks that the pairs of encryptions it receives from all the players are identical and aborts
otherwise,

3. S decrypts the two ciphertexts using z` and recovers γ` and γ′`.

S sends to all parties the value W that appears the most among the set {γ`, γ′`}`∈E .

Output recovery :

Players output the bit b such that γb = W .

Figure 3: Protocol 2 - Malicious Server

λ = 2s/5 (as suggested in [55]) we get a complexity of O(132 · |C|+ 132m) and O(52m), respectively.
Again, we stress that we only use inexpensive cryptographic primitives.

17

Comparison to oblivious cut-and-choose. The oblivious cut-and-choose technique of [32] (exe-
cuted between S and P1) works in time O(s · |C| + s2m) and each party Pi (for i > 1) works in time
O(λ2mi) where mi is the length of his own input. Hence, the price of checking input consistency is
quadratic in the security parameter (alternatively, using the techniques of [40, 55] this can be done
at the cost of a linear number of exponentiations). In many settings, the size of the input is not too
large, and as such, it is more efficient to have the parties work in time that is proportional to the total
input size than in time that is quadratic in the security parameter. Furthermore, our approach can be
composed with the oblivious cut-and-choose technique so that a party Pi can either work in time that
is quadratic in the security parameter (but only linear in his own input length), or add to the work of
all other parties, by having them do additional work linear to Pi’s input length.

Security. In the following Theorem, we show that our protocol is secure according to Definition 2.2.

Theorem 3.2. The protocol fairly and securely computes the circuit C in the following two corruption
scenarios: (1) The server is malicious (but non-cooperative with respect to the parties), while all other
parties are semi-honest, (2) the server is semi-honest, while all but one of the parties is malicious (but
non-cooperative with respect to the server).

Proof. Fairness is achieved naturally here since the server reveals the same output to all the parties.
Next we focus on a simulation-based proof of privacy and correctness.

Our server-aided security definition requires a simulation-based privacy/correctness guarantee in
the following two scenarios: (1) the server S is non-cooperative, while the parties are semi-honest ; and
(2) the server is semi-honest, and all but one of the parties are malicious. The malicious parties can
collude between themselves.

The proof has a very similar structure to that of the first protocol and contains three different
claims. Lemma 2.3 ensures that proving the following three claims is sufficient to prove security in the
above two scenarios.

Claim. The protocol securely computes the circuit C, in the presence of a semi-honest server AS , and
semi-honest parties (all parties are independent).

As before, we describe three independent simulators SimS , Sim1 and Simi, simulating the independent
adversaries AS , A1 and Ai corrupting the server, party P1 and parties Pi (for i > 1) respectively.

• SimS simulates AS in the following simple fashion: SimS plays the role of the semi-honest
parties using fake inputs for each, and following the steps of the protocol. We need to show
that this strategy produces a view that is indistinguishable from the real one. AS ’s view in the
real execution consists of the garbled circuits, the party’s input labels for the unopened circuits,
and randomly permuted hashes of the output labels. His view, however, does not include the
output of the computation. By the security properties of Yao’s garbled circuits, we have that the
combination of the input labels and the garbled circuit are indistinguishable for any two inputs.
Combined with the hiding property of the commitment scheme, and the fact that the hashes are
randomly permuted, this implies that AS ’s view is indistinguishable in the real and the ideal
executions.

• Sim1 receives P1’s input x1 and sends it to the trusted party in order to receive C(x). He also
extracts the shared randomness r as part of the secure coin-tossing algorithm. It then plays
the role of the honest Pi’s and the server while interacting with A1 until the final step when
the majority output label is returned to the parties. Since Sim1 knows the randomness used

18

in creating the garbled circuits and the final output C(x), he can compute the output label
corresponding to C(x) on his own and send it to A1. It is easy to see that A1’s view is identical
in the real and ideal execution given a secure coin-tossing algorithm.

• Simi’s description and proof of security are essentially identical to that of Sim1 and hence
omitted.

This ends the proof of our first claim.

�

Claim. The protocol securely computes the circuit C in the presence of a malicious server and honest
parties.

For this claim, we only need to provide a simulator SimS for the adversary AS but unlike the previous
claim, AS is no longer semi-honest and can actively cheat.

Once again SimS plays the role of the semi-honest parties using fake inputs for each, and following
the steps of the protocol. If AS returns the wrong majority output, SimS sends abort to the trusted
party, simulates the honest parties aborting in order to simulate AS ’s view in the real protocol, and
outputs whatever AS does. To show indistinguishability of the views note that if AS behaves semi-
honestly, the argument for our first claim still holds, but if AS returns an incorrect majority output
label, he will receive an abort message from the honest parties with all but negligible probability in s
(in the real model) and receives an abort from SimS (in the ideal execution). The honest parties’ views
are also the same in both models as they receive an abort from the trusted party in the ideal model
when AS cheats by sending the wrong majority output, and otherwise receive their correct output.

�

Claim. The protocol securely computes the circuit C in presence of an honest server and an all-but-one
set of malicious parties.

Sim needs to simulate A who corrupts a subset of the parties in the real execution. The simula-
tion works as follows. Sim extracts the shared randomness r by playing the role of the honest party
Pi during the coin-tossing protocol and uses it to recover the input labels for all possible inputs. Then,
when the parties send to the server the labels for their inputs, the simulator can learn their actual
inputs and send it to the trusted party in order to receive the output of the computation. It then
follows the protocol (sending an abort to the trusted party if it detects cheating by A) until the stage
in which it returns the output to A. Here, instead of returning the majority value, it returns the output
label ωb for the output it received from the trusted party (it knows this value since it knows r). Note
that although the simulator uses correct garbled circuits with random inputs, the output it returns to
the parties is exactly the output of the ideal functionality.

As a result, A’s view is indeed indistinguishable in the two models, and the honest Pi will either
abort or learn the correct output with similar distributions in both models.

�

19

3.3 Pipelining with Malicious Garblers

As demonstrated in [29, 42], pipelining the execution of garbled circuits (i.e., garbling and evaluation)
can lead to better running times and less memory consumption. In a pipelined execution, each gate
is garbled and evaluated “on the fly” and the result of the evaluation is only stored while still needed
for future gates. This results in better running times since the evaluator can start the evaluation while
the garbler is still garbling the circuit. Furthermore, there is no need to store the entire garbled circuit
(which can be several Gigabytes large) at any point during the execution, which leads to better memory
usage.

Unfortunately, the pipelining technique is not applicable in the malicious setting and particularly
when one applies cut-and-choose techniques. The difficulty with pipelning when one uses cut-and-
choose is that for the evaluator to verify/evaluate a garbled gate he needs to know from the beginning
of the execution either the circuit’s randomness (for verification) or the garbler’ s label (for evaluation).
However, if the garbler can determine which circuits will be verified and which will be evaluated while
the execution is occurring then he can easily cheat, e.g., by sending an invalid garbled circuit for those
being evaluated and valid circuits for those being verified.

Our solution to this problem is to let the evaluator learn the required information obliviously in the
beginning of the protocol, without giving it any information. This is done by executing an OT protocol
for each circuit, where the garbler plays the sender in the OT and has two inputs: (1) the randomness
used to garble the circuit; and (2) its input labels for the circuit. The evaluator plays the receiver in
the OT and decides whether it wants to either learn the randomness and verify the garbled circuit, or
learn the garbler’s labels and evaluate the circuit. Transforming our protocols to use this technique
is straightforward. For example, for our second protocol, we replace the Garbled Circuit Verification
and Input Label Transfer stages with the following: for each ` ∈ [s], all players share an input key
K`. Before the Circuit Garbling stage, all players send their inputs to all circuits, encrypted under the
input keys. Then, the above OT is executed, where P1’s inputs are the pairs (r`,K`), and S’s inputs
are its choices in the cut-and-choose. Now, P1 sends the garbled circuits and S can either evaluate or
verify them on-the-fly. Last, S reveals its choices and they continue the rest of the protocol.

While we use this new pipelining technique in the server-aided setting, the same approach can be
used in the standard SFE setting against malicious adversaries.

4 Evaluation

To evaluate the performance of our protocols we designed and built a framework on top of which we
can implement any server-aided (and even standard 2SFE) protocol.

4.1 Our Framework

Our framework consists of the following modules:

Circuit generator - Generates a textual representation of a boolean circuit. The circuit can be
specified using the FairPlay format [43], or using object-oriented python code similarly to [29, 42].

Crypto library - Provides implementations of hash functions, pseudo-random functions, commit-
ments and symmetric encryption. These are all based on the JAVA SHA-1 and SHA-256 im-
plementations as suggested in [52]. It also includes our implementation of the Peikert, Vaikun-
tanathan and Waters OT protocol [50] built on top of the JAVA BigInteger package.

20

Garbled circuit - Given a circuit representation and a PRF key, it garbles the circuit using ran-
domness generated by the PRF. Given input labels and a garbled circuit, it evaluates the circuit
and returns the result. Given a garbled circuit and a key to a PRF, it verifies that the given
circuit was generated properly using that key. All these functionalities are designed to work in a
pipelined fashion (more details below).

Communication library - Handles communication between a set of parties, either peer-to-peer or
broadcast.

Since the focus of our work is on efficiency, we do not consider the cost of generating circuit
representations. Our design allows us to use any circuit generator, even ones that generate circuits
“on-the-fly” such as [29, 42].

Circuit representation. The particular circuit representation we use is similar to FairPlay’s format
[43] where each gate has a unique identifier and the circuit is represented by specifying the identifiers
of the inputs for each gate. As an example, the string "354 120 380 AND" represents an AND gate
with identifier 354 that uses inputs from gates 120 and 380. We slightly augment the FairPlay format
with information that is needed for pipelining the circuits. This is because during pipelining we have
to determine in realtime whether a gate is needed to evaluate future gates or not (in which case we can
free the memory used for storing its value).

Pipelining. We now discuss how pipelining is implemented. Note that the work of garbler is fairly
simple and space-efficient. It goes over the circuit specification and, for each gate, uses the PRF to
generate the labels for the input and output wires of the gate. Similar work is done by the evaluator
when verifying a circuit.

If, on the other hand, the evaluator evaluates the circuit, pipelining becomes more difficult since
it needs to store intermediate values. We can view the pipelining process as a topological ordering of
the gates that minimizes the number of live gates (i.e., gates that are still needed) in each part of the
ordering. Obviously, the optimal ordering can be pre-computed during a pre-processing phase so we
assume that the circuit representation is already ordered optimally. During the protocol execution, the
evaluator maintains a list of all live gates. When a gate is not needed anymore, the garbler notifies the
evaluator that it can free that gate. As a result, the evaluator maintains only the required intermediate
values for the rest of the process.

Free XOR. Finally, we mention that we also use the free XOR technique of Kolesnikov and Schneider
[35] that is now standard in any garbled circuit implementation. This technique allows us to construct
a circuit in such a way that XOR operations are “free” in the sense that they do not require any
cryptographic operations.

4.2 Experimental Results

We use two circuits in our experiments: (1) a circuit that given a 128-bit message and a 1408-bit
(expanded) key, computes the AES encryption of the message under the key 2; and (2) a circuit that
computes the edit distance of two 50 character strings of 8 bit characters. The size of the AES circuit

2AES encryption is currently the standard benchmark for 2SFE implementations. Specifically, we use the circuit of
[52] in order to correctly compare it with the results of both [52] and [55]. We remark that any optimization of the AES
circuit itself, e.g. as done in [8], could improve performance in a similar way.

21

is 31512 gates of which 13904 are non-XOR gates. We generated the edit distance circuit according to
the suggestions of [29]. The size of that circuit is 254930 gates, 94472 of which are non-XOR gates.

For our experiments we used two Intel Core 2 Duo 3GHz machines with 4GB RAM connected
through a switched LAN. The first was used for executing the protocol of S, and the second one for P1

and the rest of the parties. As suggested in [52] we use a security level of 2−40 for the malicious case
and of 2−4 for the covert case.

In Tables 1 we present a summery of our experiments. These results are with SHA-1 as the under-
lying hash function. The use of SHA-256 increases the total time by 5%−10% and the communication
of P2 (and the other weak parties) by 30% on average in the first protocol (since the size of the
commitments is affected). We do not include the running time of the weaker parties since they were
significantly smaller than S and P1 (e.g., 2 seconds for protocol 2 with AES).

We conclude from the above numbers that: (1) our first protocol requires more communication from
the weak parties which makes it suitable mainly for weak devices that have high bandwidth; (2) the
complexity of our second protocol is almost independent in the number of parties. The communication
and running time of our first protocol, however, increases as the number of parties grows. The main
overhead in both protocols is the communication of the garbled circuits.

Comparison to previous implementations. There are many factors that affect performance in
practice. For example, size and structure of the circuit, communication latency, the security parameters,
etc. However, the important and most objective parameters for evaluating any system are the total
running time and the communication time. Thus, we try to compare our results with previous ones
with respect to these parameters as much as possible 3

As we showed in Section 2, any secure 2SFE can be used to achieve the security we require. The
question, however, is whether current 2SFE constructions give us better performance. The most efficient
2SFE implementation for semi-honest adversaries is the one of [29], which can securely compute AES
in 0.2s. For the case of a covert adversary, the best result is 60 seconds [52] (in the random oracle
model), whereas our first protocol takes around 9 seconds for 2 parties.

As for the more interesting case of 2SFE secure in the malicious model, the implementation of [52]
runs in 1114 seconds, whereas the best known result is 192 seconds [55]. We note that the latter excludes
communication and that our second protocol is more than four times faster including communication
(which is of similar size to that of [55]).

A different but relevant class of protocols is, of course, that of secure multi -party SFE. In this
case, the performance of current implementations is a step behind that of 2SFE implementations. For
example, in the work of [13], one 32-bit multiplication takes roughly 9ms. Since it is based on arithmetic
circuits, however, it is not clear how to best compare it to our work. If we multiply its running time
by the number of non-XOR gates of the AES circuit, we get around 125s—which is almost three times
slower than our second protocol. This performance, however, is for four parties with at most one
malicious party, whereas our protocol with four parties allows up to three malicious parties. Moreover,
it is shown in [13] that as the number of parties grows, the performance per multiplication gate gets
worse (e.g., for seven parties with at most two malicious, it takes 28ms) whereas the performance of
our protocol is almost independent of the number of parties.

The work of [11] considers secure multi-party computation with boolean circuits, but only for semi-
honest parties. They do not use the AES benchmark but they show that it takes roughly 3− 8 seconds
for three parties to evaluate a circuit with 5500 AND gates. This means that in order to be faster than
our second protocol, a semi-honest-to-malicious transformation would need to have an multiplicative

3We note that some works try to compare the different steps of the protocols, but we find such comparisons to be of
little value.

22

overhead smaller than 6. Recall that in the two-party case, the efficiency ratio between semi-honest
and malicious security is more than several hundreds.

Side-channels in pipelined execution. We note that during our experiments, we experienced
different timings for the processing of the circuits that were evaluated and those that were verified.
This seems inevitable since the receiver works harder in case he checks a garbled circuit. Indeed, simple
solutions like restricting the receiver to work in constant time could work, at the cost of efficiency.
However, clever techniques that parallelize the work on several circuits could be more efficient. We
leave this direction for future work.

AES Edit distance
Protocol 1 Protocol 1 Protocol 2 Protocol 2 Protocol 1 Protocol 2
2 parties 4 parties 2 parties 4 parties 2 parties 2 parties

Total Time 9.12 14.8 45 46 33.5 240
Communication Time 6.5 9.5 32 32 26 185

P1 / S Communication 27777KB 27777KB 216749KB 216749KB 165918KB 1296319KB
P2 Communication 2443KB 5539KB 33KB 33KB 862KB 2KB

Table 1: Experimental results. Total time is the sum of communication time and computation time (in
seconds). P1 / S communication is the communication size of the party who communicates the most
(either P1 or S). P2 communication is the communication size of any one of the weaker players.

Acknowledgments

We would like to thank Benny Pinkas and Nigel P. Smart for providing us the AES circuit from [52],
and Peeter Laud for his valuable comments.

References

[1] G. Asharov, A. Jain, A. Lopez-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty
computation with low communication, computation and interaction via threshold FHE. In EU-
ROCRYPT, 2012.

[2] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. In TCC, 2007.

[3] B. Barak and O. Goldreich. Universal arguments and their applications. In CCC, 2002.

[4] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party computation.
In CCS, 2008.

[5] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving
computations. In ESORICS, 2008.

[6] P. Bogetoft, D. Christensen, I. Damgard, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen, J. B.
Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes
live. In FC, 2009.

23

[7] P. Bogetoft, I. Damgard, T. P. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. A practical imple-
mentation of secure auctions based on multiparty integer computation. In FC, 2006.

[8] J. Boyar and R. Peralta. A small depth-16 circuit for the aes s-box. In Information Security and
Privacy Research, 2012.

[9] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptol-
ogy, 2000.

[10] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In STOC,
1988.

[11] S. G. Choi, K. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party computation
of boolean circuits with applications to privacy in on-line marketplaces. In CT-RSA, 2012.

[12] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC, 1986.

[13] Ivan Damgaard, Martin Geisler, Mikkel Kroigaard, and Jesper Buus Nielsen. Asynchronous mul-
tiparty computation: Theory and implementation. In PKC, 2009.

[14] I. Damgard, S. Faust, and C. Hazay. Secure two-party computation with low communication. In
TCC, 2012.

[15] I. Damgard, M. Geisler, M. Krøigaard, and J.-B. Nielsen. Asynchronous multiparty computation:
Theory and implementation. In PKC, 2009.

[16] I. Damgard and Y. Ishai. Constant-round multiparty computation using a black-box pseudoran-
dom generator. In CRYPTO, 2005.

[17] I. Damgard, Y. Ishai, M. Krøigaard, J.-B. Nielsen, and A. Smith. Scalable multiparty computation
with nearly optimal work and resilience. In CRYPTO, 2008.

[18] U. Feige, J. Killian, and M. Naor. A minimal model for secure computation (extended abstract).
In STOC, 1994.

[19] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability of
cryptographic protocols. TCC, 2006.

[20] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourcing compu-
tation to untrusted workers. In Advances in Cryptology - CRYPTO ’10, volume 6223 of Lecture
Notes in Computer Science, pages 465–482. Springer-Verlag, 2010.

[21] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[22] O. Goldreich. Foundations of Cryptography – Volume 2. Cambridge University Press, 2004.

[23] O. Goldreich. Foundations of Cryptography – Volume 1. Cambridge University Press, 2006.

[24] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In STOC, 1987.

[25] D. Gordon, J. Katz, V. Kolesnikov, T. Malkin, M. Raykova, and Y. Vahlis. Secure computation
with sublinear amortized work. Technical Report 2011/482, IACR ePrint Cryptography Archive,
2011.

[26] S. Gordon and J. Katz. Partial fairness in secure two-party computation. EUROCRYPT, 2010.

24

[27] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party computa-
tion. Journal of the ACM (JACM), 58(6):24, 2011.

[28] W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: tool for automating
secure two-party computations. In CCS, 2010.

[29] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled
circuits. In USENIX Security, 2011.

[30] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO, 2003.

[31] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled circuits for leakage-
resilience: hardware implementation and evaluation of one-time programs. In CHES, 2010.

[32] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party comptuation. Technical Report
2011/272, IACR ePrint Cryptography Archive, 2011.

[33] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a dishonest
majority. In EUROCRYPT, 2003.

[34] M. S. Kiraz and B. Schoenmakers. An efficient protocol for fair secure two-party computation. In
CT-RSA, 2008.

[35] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and applications. In
ICALP, 2008.

[36] B. Kreuter, a. shelat, and C.-H. Shen. Towards billion-gate secure computation with malicious
adversaries. Technical Report 2012/179, IACR ePrint Cryptography Archive, 2012.

[37] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. In CRYPTO,
2001.

[38] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In EUROCRYPT, 2007.

25

[39] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal
of Cryptology, 2009.

[40] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In
TCC, 2011.

[41] Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with security
against malicious adversaries. In SCN, 2008.

[42] L. Malka. Vmcrypt: modular software architecture for scalable secure computation. In CCS, 2011.

[43] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation system.
In USENIX Security, 2004.

[44] S. Micali and P. Rogaway. Secure computation (abstract). In CRYPTO, 1992.

[45] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation. In PKC,
2006.

[46] M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. In
STOC, 2001.

[47] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC, 1999.

[48] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, 2001.

[49] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In EC,
1999.

[50] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious
transfer. In CRYPTO, Berlin, Heidelberg, 2008.

[51] B. Pinkas. Fair secure two-party computation. EUROCRYPT, 2003.

[52] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical.
In ASIACRYPT, 2009.

[53] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken Com-
putation Lab, Harvard University, 1981.

[54] A. Shamir. How to share a secret. Commun. ACM, November 1979.

[55] A. Shelat and C. H. Shen. Two-output secure computation with malicious adversaries. In EURO-
CRYPT, 2011.

[56] D. Woodruff. Revisiting the efficiency of malicious two-party computation. In EUROCRYPT,
2007.

[57] A. Yao. Protocols for secure computations. In FOCS, 1982.

[58] A. Yao. How to generate and exchange secrets. In FOCS, 1986.

26

	Introduction
	Background on Garbled Circuits
	Our Contributions

	Model and Definitions
	Formal Model
	Security Definition

	Our Protocols
	Security Against a Covert Server
	Security Against a Malicious Server
	Pipelining with Malicious Garblers

	Evaluation
	Our Framework
	Experimental Results

