SAM: Security Adaptation Manager

Heather Hintonf Crispin Cowan

T Ryerson Polytechnic University, Canada

E-mail: heather@eecg.utoronto.ca

Abstract

In the trade-offs between security and performance,
it seems that security is always the loser. If we allow for
adaptive security, we can at least ensure that security
and performance are treated somewhat equally. Using
adaptive security, we can allow a system to exist in a
less secure, more performant state until it comes un-
der attack. We the adapt the system to a more secure,
less performant implementation. In this paper, we in-
troduce the Security Adaptation Manager, or SAM.
We describe SAM and how we have implemented SAM
to take advantage of the different protection strengths
offered by the StackGuard compiler. Using SAM to
provide StackGuard-based adaptive security provides
a form of misuse-based intrusion detection, capable of
detecting known and novel attacks.

1. Introduction

It seems that the criteria on which software is eval-
uated is given in order of “importance” as functional-
ity, performance, and finally security. Given that we
are not likely to fundamentally change this ordering
we turn to to the practice of adaptive security. Adap-
tive security allows us to implement a system in a high
performance, highly functional state for normal use,
and then adapt the system to a less performant/less
functional /more secure state in the presence of attacks.
That is, we adapt the amount of security offered based
on the severity of the attack environment in which a
system exists.

In this paper, we describe the Security Adapta-
tion Manager (SAM) tool and the adaptive security
it provides. We describe the implementation of SAM
and its use with the StackGuard compiler [CPM198;
CBD*99] to adaptively protect against buffer-overflow
based stack-smashing attacks. The Security Adap-
tation Manager (SAM) is a front-end adaptation co-
ordinator that monitors unsuccessful stack-smashing

Lois Delcambre Shawn Bowers

Oregon Graduate Institute
{crispin, Imd, shawn }@cse.ogi.edu

attacks. Together with a General Adaptation Space
Navigator, SAM implements adaptive security: more
or less protection, providing less or more performance
in the presence of a more or less hostile environment.
The SAM tool allows us to adapt the level of Stack-
Guard protection in a system to correspond to the (per-
ceived) attack environment.

It is not our position that we implement systems
with minimal or no protection. However, recognizing
that many such systems are already in place, we offer
this approach as a means of mitigating the risk of using
such a system.

This paper is structured as follows: the remain-
der of this Section provides a brief introduction and
overview of Adaptation Spaces. Section 2 describes
buffer-overflow attacks and defenses. In Section 3 we
describe the buffer-overflow adaptation space. The
implementation of the Security Adaptation Manager
(SAM) is described in Section 4. We briefly discuss the
(expected) performance results of SAM in Section 5.
Section 6 contains a brief discussion of other software-
centered pproaches to intrusion detection.

1.1. Adaptation Spaces

An adaptation space consists of a condition space
and a transition graph: these define when and how we
implement adaptations. The condition space is a com-
plete lattice of all possible conditions of interest and
their settings. Conditions are “of interest” if they are
used to define when to adapt an application. As a sim-
ple example, a condition might indicate that a resource
has experienced a non-maskable failure. If the system
is to continue to offer some (reduced level of) service
then it must adapt to this non-maskable failure. In a
security context, the conditions of interest correspond
to different “attack environments” experienced by the
system. Each attack environment represents a class of
attacks against the environment and the system.

Given a condition space, there is a corresponding
transition graph. The transition graph has one node for

each system configuration (as defined by the condition
space) and defines how we can transition between con-
figurations. For the application defined in this paper,
it is possible to transition from any one configuration
to any other configuration (all possible transitions are
allowable). The transition graph therefore represents
an implementation space. This defines the system con-
figurations that can survive and thrive under a given
set of conditions. Each individual configuration is re-
ferred to as an implementation alternative. It is up to
the adaptive application designer to define the available
implementation alternatives for an adaptation space.

An implementation alternative is specified by a set
of conditions. An implementation alternative is con-
sidered a feasible choice when its conditions are true.
Conditions are defined over event variables that mon-
itor some aspect of the external environment. Note
that for any given condition, there may be more than
one implementation alternative that is feasible. For
example, it is an artifact of the implementation space
that when the system is in its optimal state, we may
legitimately implement any of the defined alternatives,
including that defined for the worst possible state.

In general, if the most desirable implementation al-
ternative is feasible then all lesser implementation al-
ternatives are also feasible. We specify a default pref-
erence order, indicating the “desirability” of the im-
plementation alternatives. This is used to indicate the
preferred implementation from the set of feasible im-
plementation alternatives.

An adaptation space formalism is used to navigate
among combinations of adaptations [CDM199]. The
adaptation space is represented as a partially-ordered
graph (a lattice) with a upper and a lower bound. The
upper bound corresponds to the ideal situation, where
all required resources are available. In a security con-
text, this is the case where no attacks are experienced.
The lower bound corresponds to the worst possible sit-
uation, where no resources are available. In a security
context, this implies that the system is experiencing
indefensible attacks. The lower bound represents the
least desirable state; conditions that are higher in the
lattice are more desirable.

The adaptation and implementation spaces are rich,
in that they specify a complete set of resources and
their possible configurations. The adaptation space ap-
proach allows us to prune the implementation space so
that we define an “optimal” set of implementation al-
ternatives for the system. Similar implementations can
be coalesced into a single implementation, triggered by
multiple conditions.

2. Buffer Overflow Defenses

Buffer overflows are one of, if not the, most
commonly exploited vulnerability in security-sensitive
code. These vulnerabilities are commonly exploited in
stack-smashing attacks to gain privileged access to a
system. There are two “types” of protection against
these attacks. We can protect a system against these
attacks, using techniques such as non-executable stacks
and stack integrity checks. Alternatively, we can at-
tempt to eliminate or reduce the vulnerabilities that
lead to these attacks using techniques such as array
bounds checking, memory access checking, type-safe
languages and debugging tools.

2.1. Protecting the Stack

Non-executable stacks have been implemented with
patches to Solaris and Linux [Dik, Des]. These patches
make the stack portion of a user process’s virtual ad-
dress space non-executable. Injected attack code can-
not therefore be executed. This approach offers a zero
performance penalty but requires a specially-patched
kernel. These patches are not trivial to implement.

Integrity checks against the stack are also used to
protect against buffer-overflow attacks. StackGuard
is an example of an integrity check approach. Stack-
Guard is a compiler enhancement to protect programs
against stack-smashing attacks [CPM1T98, CBD*99)
using integrity checks against the stack prior to return-
ing from a function call. StackGuard detects that the
return address has been altered before returning from a
function (and executing the attacker’s injected code).
Stack protection is independent of the software exe-
cuted on a system; protection is provided, regardless
of the quality of the code.

2.2. Reducing Vulnerabilities

Reducing a system’s vulnerability to buffer-overflow
attack occurs at the code level. Richard Jones and Paul
Kelly have developed a gcc patch [JK95] that does full
array bounds checking for C programs. This method
prevents all buffer overflow attacks, not just those at-
tempting to alter function activation records. Unfor-
tunately, this method also imposes a substantial per-
formance overhead: a pointer intensive function (ijk
matrix multiply) experienced a 30x slowdown. This
compiler is also not mature: complex programs such
as elm fail to execute when compiled with this com-
piler.

Purify [HJ92] is a memory debugging tool for C pro-
grams. Purify does integrity checking of memory on ev-

ery memory access. The performance penalty imposed
by Purify is 2 to 5 times the execution time of opti-
mized code. Purify is more suitable for debugging code
than for use with production code. More advanced de-
bugging tools have also been developed, such as fault
injection tools [GOM9S].

Debugging techniques can only minimize the num-
ber of buffer overflow vulnerabilities. They provide
no assurance that all buffer overflow vulnerabilities
have been eliminated. Thus for high assurance, protec-
tive measures such as StackGuard and non-executable
stacks should be employed.

2.3. StackGuard Protection

The StackGuard compiler provides protection
through integrity checks against the function activa-
tion record on the stack. StackGuard places a “ca-
nary” word next to the return address on the stack
(between the return address and the function’s local
variables). Every function, including main, gets a ca-
nary word. When a function returns, it first checks the
canary word. If the canary word is still intact (i.e., un-
changed), the function will jump to the address pointed
to by the return address word.

If the canary word is not intact then the function
will invoke the canary_death_handler. This will send a
canary-death message to the syslog files and cause the
program to (gracefully) terminate. The format of this
message is

Immunix type ? Canary[?] = ? died with

This message reports the number of the canary (the ith
canary corresponds to the ith function protected), the
value of the canary (reported in hexadecimal format)
and the procedure name that contains the corrupted
canary !

StackGuard protection is not infallible. An attack
that proceeds without altering the canary value, either
by carefully stepping over the canary word or by in-
cluding the canary word in the attack string, would
fail to be detected.

The initial release of StackGuard protected the ca-
nary value by choosing a 32-bit random number as a ca-
nary value at program exec() time (a random canary).
This makes it intractable for the attacker to guess the
canary value [CPM198]. The StackGuard protection
has subsequently been extended to use a “terminator”

IWhen placed into the syslog files, Date, Time, Host and
Program Name information is prepended to the canary death
message. For example, one possible prepended message is:

Apr 22 19:52:06 localhost badnulll:

canary [CBDT99]. It is reasoned that an attacker can-
not simultaneously deposit a terminator value (for ex-
ample, a null character) in the canary’s location and
move on to alter the return address above the canary.
The terminator canary is a 32-bit word comprised of a
null byte, a carriage return (0x0D), a line feed (0x0A),
and an “EOF” (0xFF in the libc representation). Most
string copying functions will halt when they encounter
one of these bytes.

The random canary is impervious to all string op-
erations, not just those that terminate on the “usual”
termination symbols. The random canary is therefore
more secure than the terminator canary. Conversely,
the terminator canary is faster than the random canary
check because it does not have to look up the current
canary value.

A final flavor of StackGuard protection is the “ter-
minator with diversity” canary word(s). With this ap-
proach, we add a random number of words after the
canary word (and before the function’s local variables)
on the stack, so that the length of the canary word
is not predictable. This StackGuard flavor protects
against an attack against the terminator canary im-
plemented using do-while gets to overwrite and rebuild
the terminator canary word. While not as secure as the
random canary, the terminator with diversity is more
secure than the terminator canary implementation.

3. StackGuard Adaptation Space

The StackGuard Adaptation Space is defined by
the attack environment, that is, the types of buffer-
overflow stack-smashing attacks that can be imple-
mented against a system. In the ideal situation, there
are no attacks implemented and no special protection
is required. In the worst possible situation, it is not
possible to defend against the attacks that can be im-
plemented and the only recourse is to take the vulnera-
ble code off-line. The ideal and worst situations bound
the adaptation space, which is defined by the (total)
ordering shown in Figure 1(a).

Figure 1(b) gives the corresponding implementation
space. Note that in Figure 1(b) we do not have an im-
plementation that corresponds to the bounds checking
compiler. This is because we have not been able to
find a good, working bounds checking compiler for a
Linux-based system 2.

The least upper bound of the lattice refers to Un-
protected code. We do not recommend, as a rule, that
a system contain Unprotected code. However, there
may be situations where we can tolerate Unprotected

2Purify is Solaris-based and the Jones-Kelly bcc is not mature
enough for use.

General Buffer Overflows

No Attack Ideal Unprotected Code Least

| |

Simple Stack Smashing StackGuard with
with libc routines Terminator Canary
| |
DO-WT”e gets Terminator with Diversity

Striding Copies and StackGuard with
Sniffing Canaries Random Canary

| |

Y

Bounds Checking Compilers Y
I

|
Indefensible Attacks

Worst

Possible Most

No-op

(a) Adaptation Space b) Implementation Alternatives

Figure 1. Buffer-Overflow-Based Stack-Smashing
Attack Adaptation Space

code, including: we cannot protect the code because
we do not have access to the source code and cannot
recompile it with the StackGuard compiler; we have
a sufficiently good guarantee that the code cannot be
accessed (and therefore attacked); the code has been
formally verified and proven to be immune to any and
all attacks.

The Terminator, Terminator with Diversity,
and Random implementations are all flavors of
StackGuard-protected code and refer to the type of
canary that is used to protect the function pointer.
Each flavor protects against the types of attack
defined in the corresponding adaptation configuration
(Figure 1(a)).

The greatest lower bound of the lattice refers to No-
op code. In this situation we are in the presence of an
omnipotent and omnipresent attacker and we cannot,
by definition, protect the code from attack. This means
that our only recourse is to take the affected code off-
line and “No-op” it. Because No-op’ing code is a seri-
ous action, we do not recommend that entire classes of
programs be No-op’ed. Once a vulnerable program is
discovered, that program and only that program should
be taken off-line 3.

As with a properly defined implementation space,
protecting our system at any of the implementation
levels defined in Figure 1(b) will provide protection
against attacks at that level and all attacks that are
higher in the lattice. This means that, for example,
the protection provided against general buffer-overflow
attacks also implies protection against stack-smashing
attacks using libc.

3This is consistent with real-world practice. For example,
CERT will often issue a warning with the advice that a certain
piece of code be taken off-line until a work-around can be dis-
covered and put in place.

Protected

Protected

3.1. StackGuard Monitoring

The SAM tool can be configured to monitor any
type of event that is deemed relevant to the system.
We provide two types of (StackGuard-relevant) events.
The first type of event is the set of death messages
reported to the syslog by StackGuard-protected code.
We refer to these as monitored events. The second type
of event is the set of manual triggers, toggled by the
user.

Monitored events are used by SAM to automatically
adapt the level of protection within the system. Man-
ual events allow a security administrator to force the
adaptation to a more secure implementation than is in-
dicated by the monitored events. This would allow the
SA to move to a more secure state as a precautionary
measure, for example, after reading a CERT advisory.
Note that we cannot use manual events to force an im-
plementation that is less secure than the one specified,
and required, by the monitored events.

3.2. StackGuard Monitored Event Vari-
ables

SAM monitors the canary death messages reported
in the syslog files. Each syslog message contains syslog-
generated information (describing the date, time,
and “originator” of the message) and StackGuard-
generated information (the canary death message).
The data contained in this message is parsed and sep-
arated into Month, Date, Time, HostName, Program-
Name, CanaryType, CanaryValue, and AttackedPro-
cedure fields.

The Month, Date, and Time information is used to
determine the frequency of unsuccessful attacks. The
CanaryType and CanaryValue fields are used to ver-
ify which StackGuard implementation is currently in
place. Although not currently used by SAM, the At-
tackedProcedure field can be used as part of an off-line
analysis of the vulnerabilities that are being exploited
by the unsuccessful attacks.

The HostName and ProgramName are used to iden-
tify the sensitivity of the host and program under at-
tack. We consider three classes of host sensitivity: se-
curity server, other server and workstation. A security
server is one that is critical to the security function
of the network. An example of a security server is a
Kerberos authentication or a RADIUS server. An ex-
ample of a non-security, other, server is a file server or
a compute server. We respond to attacks against these
classes of servers differently: we take a much more con-
servative view when considering attacks against a se-
curity server.

We classify programs as having nobody, user, or root
sensitivity. Attacks against root-level programs are the
most serious (have greatest associated risks). Attacks
against nobody-level programs are judged to be the
least serious. We tolerate fewer unsuccessful attacks
against root-level programs than against user-level or
nobody-level programs.

3.3. SAM Conditions

The SAM adaptation conditions are given by the
following tuple:

(pgm_host_attack_grid, manual_selector)

The manual_selector event variable represents the user-
specified implementation alternative.

The pgm_host_attack grid defines the (monitored)
conditions for moving to a more or less secure imple-
mentation based on the class of program and host that
is being (unsuccessfully) attacked. A typical grid is
shown below in Table 1. The value in each corresponds
to the number of (unsuccessful) attacks that are ob-
served before we move to a more secure implementa-
tion. Once the conditions specified by any cell in this
grid are satisfied, we must adapt the system. In Table
1, for example, if there is more than one unsuccessful
attack on (any) root-level program on a security server,
then we will upgrade the system to a more secure im-
plementation.

Originally, we had defined adaptability based on the
percentage of possible programs and hosts within a
class being under attack. This approach offered flexi-
bility because we cannot know the numbers of different
types of servers within an unknown system. For a given
system, defining a trigger based on 1% of these servers
has the same effect as specifying one server. Defining a
trigger based on 50% of the workstations in a system,
however, is easier to understand (and justify) than re-
quiring 13 workstations be under attack.

| || Security | Other | Workstation |

Root 1 5 10
User 5 10 15
Nobody 10 20 25

Table 1: Pgm _Host_Attack Grid

We have found that it is just as easy to base our de-
cisions on a “raw” number of perceived attacks against
a given class. While this might result in a more sensi-
tive set of adaptability conditions, this is not seen as
a detriment. Indeed, this approach is more flexible in
that it does not allow an attacker to hide their actions
by moving from host to host.

3.4. Protection Postures

The possible implementation space that SAM needs
to consider is quite large. This follows given that we
monitor three classes of programs (root, user, nobody),
on three classes of hosts (security server, other server,
workstation), with five possible security levels (Unpro-
tected, Terminator, Terminator with Diversity, Ran-
dom, No-op). This leaves us with 9% possible imple-
mentation alternatives to consider.

We can immediately prune this space by noting that
two of the five possible security states are not recom-
mended for entire classes of programs or hosts (Unpro-
tected and No-op). Taking an entire class of programs
or an entire class of hosts off-line, or leaving them un-
protected, is a drastic action. We postulate that the
number of Unprotected and No-op’ed programs will be
small and can be represented by N. Based on these as-
sumptions, we can prune our implementation space to
9% + N. Even this space, however, is too large to be
practical.

We therefore consider pre-configured states, or Pro-
tection Postures. A protection posture is a predefined
system implementation, where each program-host class
may have different implementation alternatives. Pro-
tection postures allow us to prune the implementation
space by pre-configuring a small number of postures
that are the most effective system implementations.
We define three postures, called Calm, Nervous, Panic
in order of preference.

When a system has adopted a Calm protection pos-
ture, we trade-off protection for performance as shown
in Table 2. The most critical code (root-level permis-
sion on a security server) is always implemented at the
highest (most-protected) protection level, even in the
Calm state. The remainder of the code is protected
at the least StackGuard-protected level (note that this
differs from the least protected level, which is Unpro-
tected).

| || Security | Other | Workstation |
Root Random Terminator | Terminator
User Terminator | Terminator | Terminator
Nobody || Terminator | Terminator | Terminator

Table 2: Calm Protection Posture

Once we believe that a system is under attack, we
move up to the Nervous protection posture. This pos-
ture offers protection against a broader range of at-
tacks than the Calm posture. We protect at the highest
StackGuard level (with the Random canary) the root-
permission code on the security and other servers and
the user-permission code on the security server. The

remainder of the code is upgraded to the Terminator

with Diversity level of StackGuard protection.

| || Security | Other | Workstation |
Root Random | Random TermDiv
User Random | TermDiv TermDiv
Nobody || TermDiv | TermDiv TermDiv

Table 3: Nervous Protection Posture

If a system is heavily attacked, we move into the
Panic state. In this state we implement the strongest
security we have by taking all code to the Random
canary level of StackGuard protection. We also take
any root-level programs that are under attack into the
No-op state.

| | Security | Other | Workstation |
Root Rand/NoOp | Rand/NoOp | Rand/NoOp
User Rand Rand Rand
Nobody Rand Rand Rand

Table 4: Panicked Protection Posture

A protection posture is implemented when a
corresponding set of conditions, defined by a
pgm_host_attack grid, is true. Table 5, below, defines
the pgm_host_attack grids corresponding to the protec-
tion postures defined above 4. If any of the conditions
in a grid are true, then we must adapt the system to a
more secure implementation, where all conditions are
true. If all of the conditions of the grid are false, then
we may restore the system to the less secure implemen-
tation (for which the conditions are all true).

| | Security | Other | Workstation |

Root 1 5 15

User) 10 20

Nobody 5 15 25

Table 5(a): Monitored Event Conditions for Calm
Posture
| || Security | Other | Workstation |

Root 2 10 20

User 10 15 30

Nobody 10 20 40

Table 5(b): Monitored Event Conditions for Nervous

Posture

According to Table 5(a), once we have seen one at-
tack against a root-level program on a security server,
we can no longer remain calm: we must move into the
nervous posture.

4The values reported in this table correspond to the test val-
ues used with SAM.

| || Security | Other | Workstation |

Root 3 15 25
User 15 20 40
Nobody 15 25 50

Table 5(c): Monitored Event Conditions for Panicked
Posture

The protection postures and pgm_host_attack grids
are used together to determine the implementation al-
ternatives for a given system given its (attack) environ-
ment. For example, let the monitored events indicate
that there have been 13 attack attempts against user
programs on other servers. This indicates that there
is at least one condition required by the Calm posture
that is false: we cannot continue with the Calm im-
plementation. From Table 5(b) and (c), we see that
this monitored event does not violate the conditions
of the Nervous or Panicked postures. Either posture
is allowable. However, we prefer to be in the Nervous
posture over the Panicked posture for performance rea-
sons, and so the preference ordering will indicate that
the Nervous posture is the preferred implementation.

4. Implementation

The Security Adaptation Monitoring tool is im-
plemented in Java and Perl (using JDK 1.1 on a
StackGuard-protected Linux distribution). SAM has
been tested on a stand-alone system using simulated
test data (based on real attack patterns observed at
both Ryerson Polytechnic University and the Oregon
Graduate Institute). SAM successfully adapted the
system: simple attacks that were possible (but difficult
to implement and therefore gave rise to auditable fail-
ure notices) became impossible as the system adapted
to a more secure state. SAM also successfully transi-
tioned the system to a more performant state in the
absence of any failed attack attempts.

SAM takes as an input a file generated by the
Swatch tool [Atk]. Swatch is a Perl utility used
to filter all non-SAM relevant messages from syslog.
Currently, only canary death messages are considered
SAM-relevant. SAM also receives user inputs from a
user interface. SAM parses the relevant event vari-
ables from these inputs and passes the information to
the Generic Adaptation Space Navigator.

The Generic Adaptation Space Navigator is a (Java-
based) tool that enables software applications to adapt
to changing environments [Bow99]. The Navigator
takes as an input an XML [XML] file specifying an
adaptation space. The Navigator also takes as input
the values of the monitored event variables, and pro-

duces as an output the path to the preferred implemen-
tation for the given environment.

Using the preferred implementation returned by the
Navigator, SAM must “replace” the existing implemen-
tation with the preferred implementation. This is ac-
complished using a Perl script that is triggered by the
Java component of SAM. We maintain three complete
“systems”, one for each protection posture. That is,
we prepend to all directory paths the protection pos-
ture that is currently implemented. This means that
below the root directory, we have three sub-directories,
/calm, /nerv, /panic, as shown in Figure 2.

/
A\
/bin /dev /home /mnt /sbin /var
/boot /dos /lib /proc /tmp
[core /etc lost+found /root Jusr
/nerv Jpanic

/bin Ivar /bin Ivar

/boot /boot

/core Jcore

Figure 2. Implementing the Protection Postures

For example, we will have three versions of /etc:
/calm/etc, /nerv/etc, /panic/etc. In the /calm direc-
tory, all root-level code on a security server will pro-
tected with a Random canary, while the remaining code
on the remaining servers is protected at the Terminator
canary level.

This implementation implies that the details of the
protection postures are locally configurable. While we
cannot change the fact that there are three postures, we
are free to implement these postures as most effective
and efficient for a given system.

4.1. When to Adapt

When to adapt is based on the number of programs
at a host that are under attack. We have stated, for
example, that if there has been an unsuccessful attack
against a root-level program at a non-security (other)
server, then we cannot stay in the calm posture and
must adapt to a more secure implementation alterna-
tive. Do we consider attacks over all time or over the
last x seconds?

If we were to consider attacks over all time, it is triv-
ial to argue that once the system adapts into the most
secure implementation, it can never return to a less se-
cure/more performant implementation. If we consider
attacks over some period of time, how do we define this
period? This is not a trivial problem.

If we pick a period that is too short, we may not
“detect” attacks that should cause us to adapt to a
more secure state (a technique known in the hacker
literature as a “slow scan”). If we pick a period that is
too long, it will be very difficult to “recover” from past
attacks. Simply by picking a value, we open ourselves
up to a denial-of-service attack: all the attacker must
do is ensure that the minimum number of attacks are
recognized within this time period.

Associated with this problem is the problem of re-
covering to a more performant state after the number
of detected attacks drops off. Do we use the same wait-
ing period? Do we place stricter requirements on this
“direction” of adaptation and use a longer waiting pe-
riod? If we pick a waiting period that is too short,
we can easily set ourselves up for a concerted attack
against the system in its weaker state. We also run
the risk of thrashing the system, that is, wasting cycles
adapting between two alternatives, to the point that
there are no cycles available for compute jobs. If we
pick a period that is too long, then we are not taking
full advantage of the adaptive approach to maximize
performance.

We recommend that the downgrade window be set
at least 10 times as long as the downgrade window.
This value is based solely on our observations of the
timing of attacks; it will more than likely need to be
fine tuned for each individual system.

Because of the difficulty in picking these adapt and
wait times, we do not hard-wire this into SAM. In-
stead, we allow security administrators to pick these
values when configuring SAM for their local systems.
We have tested SAM (and set up as default values,
easily changed within SAM) using an upgrade window
of 60 seconds (measured in milliseconds), and a down-
grade window of 3600 seconds. This means that an at-
tacker can attempt at most one attack an hour against
the least-protected system.

4.2. Security of SAM

One, very good, means of attacking a system is to
attack the system’s defense mechanisms. We must
consider the security of StackGuard and the Security
Adaptation Manager. In order to subvert the Stack-
Guard mechanism, we must recompile code with a non-
StackGuard compiler. This implies that even if SAM

is subverted, the protection offered by StackGuard will
continue to be in place.

SAM relies on the outputs of the syslog files, filtered
by the PERL utility swatch. If we can subvert either
swatch, the swatch configuration files, or the output
produced by swatch, we can fool SAM into thinking
that the system is not under attack. SAM will there-
fore not adapt the system to a more secure or more
performant implementation. This implies that we must
protect all aspects of swatch.

An easier way to subvert SAM is to replace
the various StackGuard-compiled programs with non-
StackGuard compiled programs. When SAM adapts
the system, it will then (unknowingly) adapt less se-
cure code instead of more secure code. This means
that we must tightly control write access to the loca-
tions where StackGuard compiled code resides.

Another way to attack SAM is to inject false ca-
nary death records to the syslog files. This will give
the appearance of a system heavily under attack and
will cause SAM to upgrade the system to a low perfor-
mance/high security implementation. This is a form of
denial-of-service attack against the system.

5. Performance Results

We have run a preliminary performance analysis on
a 133 MHz Pentium with 16M of RAM, 16K cache
memory and a 256K level 2 cache. The SAM compo-
nents are implemented in Java and Perl scripts. Be-
cause SAM is a continuous process (always running) it
will affect the performance (elapsed time, or through-
put) for all processes. Using a better Java compiler
would help this aspect of performance. Nevertheless,
we do not believe that this is a serious drawback as
SAM should not be running on a “general user” ma-
chine. SAM is a priviliged, security-relevant program.
As such, it should be run on a bastion host.

We do not yet have performance results for the tool
as used in a production-type environment (i.e., with a
more powerful processor) or a “true” attack environ-
ment, when we must implement attack-based transi-
tions. All testing of SAM has been done using simu-
lated attack data. A preliminary performance justifi-
cation follows.

Performance analyses of the StackGuard flavors tell
us that the Terminator canary is the most performant,
followed by the Terminator with Diversity, and the
Random canaries. We also know that the performance
overhead imposed by StackGuard’ed code is not sig-
nificant [CBD199]. This leads us to postulate that the
major contributor to performance slowdown with SAM
will be the adaptation time. The adaptation time is the

time it takes to re-configure the system to reflect the
new SAM-specified protection posture.

As the majority of the performance penalty is that
incurred by the creating of symbolic links, the perfor-
mance hit incurred is negligible. Implementing SAM-
specified re-configurations on a heavily loaded laptop
had no noticeable effect on other jobs.

One ramification of using symbolic links for im-
plementation transitions is that any processes that
are currently running will not be re-configured, mid-
execution, to a {more, less} secure state. Instead, they
will finished executing in their current state. The next
time the process is invoked, it will be invoked in the
“new” configuration, corresponding to the current im-
plementation.

We have implemented the transition mechanism
with the assumption that processes are short-lived and
start-on-demand. There are however, several persistent
daemons, including nfsd, sendmail, and inetd (which
handles the start on demand for all other daemons).
Future versions of SAM must develop a solution that
allows these persistent daemons to be killed and re-
started automatically. Until then, these daemons will
need to be re-started manually when the system is tran-
sitioned to a more secure state.

6. Discussion

Ghosh et al proposed a software level approach to
intrusion detection [GWC98]. They concentrate on the
software level because “attacks against computer sys-
tems are in fact attacks against specific software pro-
grams”. Although their approach works best with soft-
ware that has been modified to provide internal state
information, they do allow for intrusion detection based
solely on the observable external states of the program.
Thus they are not limited to applying this approach to
programs for which the source code is available.

Forrest et al. have also proposed a system process
level approach [HFS98] to misuse detection. Misuses
are those sequences that deviate from those occurring
empirically in traces of known normal behavior. This
approach requires a modified kernel to trap system
calls.

The StackGuard based approach does not require
the modification of programs or the kernel. It does,
however, require that we have access to the source code,
so that we can re-compile it with the StackGuard com-
piler. We hope that the benefits of a tool such as the
Security Adaptation Manager as used with StackGuard
will convince more people to release open source.

Together, StackGuard and SAM provide a form of
misuse detection, where the misuse pattern is the ca-

nary death message reported by a failed StackGuard-
compiled program. StackGuard (and therefore SAM)
are different from misuse detection approaches in
that it is able to “recognize” novel attacks. For
example, StackGuard was developed before the re-
cent attack against a particular edition of lsof was
known/published [Zbo99]. Where other misuse detec-
tion systems may not be able to detect this type of
misuse, StackGuard had no trouble in preventing lsof-
based stack-smashing attacks. This implies that Stack-
Guard and SAM will be able to detect new, previously
unknown buffer-overflow based stack-smashing attacks,
and adapt the system correspondingly.

7. Conclusions and Future Work

Although not a “classic” intrusion detection mech-
anism, the Security Adaptation Manager (SAM) does
provide detection of and response to possible attacks.
SAM monitors audit logs to detect unsuccessful attacks
and to provide an adaptive response. Based on the
attack characteristics, SAM will adapt the system to
more or less secure states, optimizing the performance
of the system in the presence of attacks. SAM also
allows the user to force the adaptation to a more se-
cure state than is required by the attack characteristics.
This allows security administrators to take pre-emptive
steps in the face of (e.g.) CERT advisories.

In future work, SAM can be generalized to arbitrary
intrusion detection sources and arbitrary intrusion re-
sponse adaptations. Because of the generality of the
use conditions in an adaptation space, any form of in-
trusion detection is suitable for driving SAM. Similarly,
any portion of the system’s security posture that is dy-
namically configurable can be driven by an intrusion
detection-response policy encoded in SAM. For exam-
ple, SAM can be easily configured to provide adaptabil-
ity to firewalls and firewall rules. The sample policies
presented here only scratch the surface of possibilities.

References

[Atk] Todd Atkins. The simple
watcher and filer. available from
ftp:/ /ftp.stanford.edu/general/
security-tools/swatch or from
ftp://ftp.redhat.com/pub/contrib/
SRPMS/swatch-2.2-2.src.rpm.

[Bow99] Shawn Bowers. The general adaptation
space navigator, April 1999. Heterodyne

Project.

[CBD*99] Crispin Cowan, S. Beattie, R. Day, C. Pu,
P. Wagle, and E. Walthinsen. Protecting
systems from stack smashing attacks with
stackguard, 1999. to appear at Linux Expo
1999, http://www.bitmover.com/ linux-
expo/ papers.html.

[CDM*99] Crispin Cowan, L. Delcambre, A. Le Meur,
L. Liu, D. Maier, D. McNamee, M. Miller,
C. Pu, P. Wagle, and J. Walpole. Adap-
tation space: Surviving non-maskable fail-
ures, 1999. Heterodyne Project.

[CPM*98] Crispin Cowan, C. Pu, D. Maier, H. Hin-
ton, P. Bakke, S. Beattie, A. Grier, P. Wan-
gle, and Q. Zhang. Stackguard: Auto-
matics adaptive detection and prevention
of buffer-overflow attacks. In Proceedings
1998 Usenix Security Conference, January
1998. San Antonio, Texas.

[Des] Solar Designer. Non-executable user
stack. http://www.false.com /security/
linux-stack/.

[Dik] Casper Dik. Non-executable stack for so-
laris. Posting to comp.security.unix Jan-
uary 2 1997.

[GOM98] Anup K Ghosh, Tom O’Conner, and Gary

McGraw. An automated approach for iden-
tifying potential vulnerabilities in software.
In Proceedings of the IEEE Symposium on
Security and Privacy, pages 104-114, May
1998.

[GWC98] Anup K. Ghosh, James Wanken, and Frank
Charron. Detecting anomalous and un-
kown intrusions against programs. In Pro-

ceedings of Fourteenth ACSAC, 1998.

[HFS98] S.A. Hofmeyr, S. Forrest, and A. Somaya-
jii. Intrusion detection using sequences of
system calls. Journal of Computer Security,

6:151-180, 1998.

[HJ92] Reed Hastings and Bob Joyce. Purify: Fast
Detection of Memory Leaks and Access Er-
rors. In Proceedings of the Winter USENIX

Conference, 1992. Also available at

http://www.rational.com/support/techpapers/

fast_detection/.

[JK95] Richard Jones and Paul Kelly.
Bounds Checking for C. http://www-
ala.doc.ic.ac.uk/ phjk/BoundsChecking.html,

July 1995.

[XML]

[Zbo99]

XML. World wide web consortium
extensible markup language (xml).
http://www.w3.org/XML/.

Anthony C. Zboralski. [HERT] Advisory
#002 Buffer overflow in Isof. Bugtraq mail-
ing list, http://geek-girl.com/bugtraq/,
February 18 1999.

10

