
SAMBA-BUS: A HIGH PERFORMANCE BUS ARCHITECTURE FOR SYSTEM-ON-CHIPS�

Ruibing Lu and Cheng-Kok Koh

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285

�lur,chengkok�@ecn.purdue.edu

ABSTRACT

A high performance communication architecture, SAMBA-bus, is
proposed in this paper. In SAMBA-bus, multiple compatible bus
transactions can be performed simultaneously with only a single
bus access grant from the bus arbiter. Experimental results show
that, compared with a traditional bus architecture, the SAMBA-bus
architecture can have up to 3.5 times improvement in the effective
bandwidth, and up to 15 times reduction in the average communi-
cation latency. In addition, the performance of SAMBA-bus archi-
tecture is affected only slightly by arbitration latency, because bus
transactions can be performed without waiting for the bus access
grant from the arbiter. This feature is desirable in SoC designs with
large numbers of modules and long communication delay between
modules and the bus arbiter.

1. INTRODUCTION

Due to the high design complexity and time-to-market pressure,
designing complex systems on a chip (SoC) usually requires stitch-
ing pre-designed IP cores together through various forms of com-
munication links. In addition, the delay of global interconnects be-
comes the dominating factor of system performance as the feature
size of integrated circuits scales down to nanometers. Therefore,
the design of high performance global communication architecture
becomes the key to successful SoC designs.

Shared-buses are among the most widely used on-chip com-
munication architectures. The main advantages of shared-bus ar-
chitectures include simple topology, low cost, and extensibility.
Several companies have developed their own on-chip bus archi-
tectures, such as CoreConnect [1], AMBA [2], and OpenCore [3].
Since only one module can access the bus at any time, the band-
width of a bus is limited when the number of modules attached to
the bus is large. The bandwidth can be improved by a hierarchical
bus architecture [1], in which multiple buses are connected with
each other through bridges. Studies in [4, 5] propose algorithms
to perform bus hierarchy optimization based on communication
profiles. However, hierarchical bus architectures may suffer long
communication latency for inter-bus communications. Other than
those studies that focused on improving bus performance, a split
shared-bus architecture is proposed in [6] to reduce power con-
sumption.

In this paper, we propose a high performance bus communi-
cation architecture called SAMBA-bus, which is capable of pro-
viding, with a Single Arbitration, Multiple Bus Accesses. In the
SAMBA-bus architecture, the arbiter grants only one module to
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access the bus as in traditional bus architectures. Each bus seg-
ment, defined as the bus connection between two neighbor mod-
ules, is used only if it is part of the communication path. The main
difference between SAMBA-bus and traditional buses is that idle
bus segments can be used by other pending communications au-
tomatically without introducing additional arbitration complexity.
Therefore, with a single arbitration, multiple bus accesses are al-
lowed to improve both bus bandwidth and communication latency.
Experimental results show that the proposed bus architecture can
have up to 3.5 times effective bandwidth improvement and up to
15 times latency reduction. Another advantage of the SAMBA-bus
architecture is that its performance is much less sensitive to the ar-
bitration latency than that of traditional bus architectures. This is
particularly preferable for an SoC design that has large numbers of
modules and high communication delay between modules and the
bus arbiter.

2. BACKGROUND OF BUS COMMUNICATION
ARCHITECTURES

In this section, we review some background of bus communication
architectures. Modules connected to a bus are typically divided
into two categories: masters and slaves. While a master can initiate
a communication transaction, slave modules merely respond to the
transactions initiated by masters. Arbitration is required for buses
with multiple masters. Commonly used methods include priority
based arbitration [2] and time-division multiplexing (TDMA) [3].
Randomized arbitration is also introduced in [7].

Current on-chip bus architectures typically have centralized
arbitration. A module seeking for communication must first ob-
tain bus access grant from the bus arbiter. This may introduce long
delay, which includes the arbitration delay, the interconnect delay
from a module to the arbiter, and that from the arbiter to the mod-
ule. In an SoC design with a large number of modules, it is hard
to avoid long communication delay between the arbiter and every
master module. The bus clock period may have to be significantly
increased due to the delay introduced by the arbitration process.
Pipelined arbitration can be used to reduce the bus clock period.
However, it is hard to reduce the communication latency, i.e., the
time spent to gain the bus access. In addition to the arbitration de-
lay, the response of slow slaves may also cause severe performance
loss, because the bus remains idle while the master is waiting for
the response. Split transactions are used to avoid such performance
loss. In split transactions, the bus access right of the master is re-
leased after the slave module obtains the communication request.
The slave module has to initiate a new bus transaction to transfer
the response. In the split transactions, the ‘slave’ module may also
have to initiate bus transactions. Therefore, split transactions lead
to an increase in arbitration complexity.
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Figure 1: An example of bus communications.

Traditional bus architectures have several limitations. The com-
munication ability of a traditional bus is strongly limited by the
arbitration policy that only one module can access the bus at any
time. Therefore, as the number of modules increases, the band-
width becomes more limited. At the same time, one bus trans-
action consumes all bus resources, resulting in a waste of bus re-
source. A bus with six modules in Figure 1 for example, has three
pending communication requests and the arbiter grants the bus ac-
cess to the data transfer from module 3 to 5. Clearly, the only
necessary bus segment for such a communication is between mod-
ules 3 and 5. The propagation of data from module 3 to other
parts of the bus disallows the data transfer from 1 to 2. Moreover,
the contention and the arbitration latency may prolong the waiting
time for a bus access. Furthermore, the implementation of a fast
arbiter become more complex as the number of modules on the bus
increases and the communication delay between modules and the
arbiter becomes large. Although split transactions may avoid the
performance loss due to slow responses, arbitration complexity is
further increased, leading to increased arbitration delay.

3. SAMBA-BUS ARCHITECTURE

In this section, we proposes the new SAMBA-bus architecture,
which has large improvements over both bus effective bandwidth
and communication latency. At the same time, it can also re-
duce the penalties on bus performance due to long arbitration la-
tency. Our bus architecture supports modules that can both initi-
ate bus transactions and respond to bus transactions initiated by
other modules. In other words, such modules can function as both
masters and slaves. We believe that such modules can reduce the
bus traffic and improve the communication performance in SoC
designs. The reason is that master-to-master communication can
be performed in one bus transaction compared to the two differ-
ent transactions required in a traditional bus architecture. In addi-
tion, it is easier to implement split transactions for such modules.
One disadvantage of this approach is the increase of arbitration
complexity. As we will discuss later however, the performance
of SAMBA-bus is affected only slightly by the arbitration latency.
The implementation difficulty of the arbiter can be mitigated by
an increase in the arbitration latency. In order to focus on the bus
structure, we first assume that the response data to any bus trans-
action is always available immediately after the slave obtains the
communication request. More general cases for slow slaves are
considered later.

3.1. Overview

The SAMBA-bus architecture requires that the addresses of mod-
ules from one end of the bus to the other end are in increasing or
decreasing order. As we shall see later, this assumption is reason-
able because not only can the assignment of in order addresses
to modules along the bus be easily implemented, but any pre-
designed out of order module addresses can also be converted to
in order addresses with minimal hardware cost.

Figure 2: Structure of SAMBA-Bus.
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Figure 3: Multiple bus accesses with single arbitration.

The overall structure of SAMBA-bus architecture is shown in
Figure 2. It consists of two sub-buses with opposite signal propa-
gation directions. Each of the two sub-buses is used for the trans-
mission of data in one direction. We refer to the sub-bus transfer-
ring data from low-address modules to high-address modules as
the forward sub-bus, and call the other one the backward sub-bus.
A module is attached to the bus through an interface unit, which
can communicate with other interface units through both forward
and backward sub-buses.

There are two bus operation phases in each bus cycle: request
phase and response phase. In the request phase, bus transaction
initiators send the communication requests to the destination mod-
ules on both the forward sub-bus and the backward sub-bus; the
destination modules respond to the received communication re-
quests in the following response phase. For any bus transaction,
communication request is sent through one sub-bus in the request
phase, and the other sub-bus is used for the response data in the
following response phase. As the bus architecture is symmetric
for the forward sub-bus and the backward sub-bus, we focus only
on the bus transactions initiated on the forward sub-bus.

Before a module performs a bus transaction, its interface unit
first decides which sub-bus should be used based on the destina-
tion address, and an bus access request is sent to the arbiter for
that sub-bus. At the same time, it monitors the bus activities and
the arbitration result. The arbiter broadcasts the arbitration win-
ner address to all interface units; therefore, every interface unit
knows which is granted the bus access. Note that it is possible that
one unit is the arbitration winner of the forward sub-bus, while
a different one is granted access for the backward sub-bus. As
shown in the Figure 2, multiplexers are used to combine all signal
sources, and each interface unit has a multiplexer on the forward
bus. Through the multiplexer, either the address/data information
received from the previous unit or the pending address/data of this
unit will be propagated to the next interface unit. The main dif-
ference between the SAMBA-bus architecture and traditional bus
architectures is that a unit may access the bus even if it is not the
arbitration winner. Instead, as long as the communication paths of
these bus transactions do not have common bus segments, they can
be performed simultaneously. When a unit has pending communi-
cations for the forward sub-bus, it can initiate a bus transaction on
the forward sub-bus if any of the following three sets of conditions
is met:

1. This unit wins the arbitration and obtains the forward sub-
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bus access right.

2. (a) The bus transaction destination of this unit is not after
the arbitration winner, i.e., the address of the destination
unit is lower than or equal to that of the arbitration winner;
and (b) no units before this unit perform bus transactions
with units after this unit.

3. (a) This unit is after the arbitration winner; and (b) no units
before this unit perform bus communication with units after
this unit.

It is obvious that the winner unit can access the forward sub-bus
in the first situation. The second situation is for those bus trans-
actions that can be finished in the portion of the bus before the
arbitration winner. Condition 2(b) avoids the bus access conflict
with transactions from other units before the arbitration winner,
whereas condition 2(a) avoids the conflict with the bus transaction
from the arbitration winner. The third set of conditions is for those
bus transactions performed on the bus segments after the arbitra-
tion winner. Since this unit and its communication destination are
all after the arbitration winner, there is no need to consider the
conflict with the arbitration winner as long as condition 3(b) is sat-
isfied.

Figure 3 shows an example for simultaneous multiple bus ac-
cesses in the SAMBA-bus architecture. The bold lines show the
data propagation paths in the request phase. Unit 3 is the arbitra-
tion winner, therefore, the bus transaction from 3 to 5 should be
performed. The destination unit of the pending communication of
unit 1 is unit 2, not after the arbitration winner, and no data is being
transferred through unit 1. These satisfy conditions 2(a) and 2(b).
Therefore, unit 1 can perform its communication on the bus in the
same bus cycle.

SAMBA-bus architecture has the following two advantages
over traditional bus architectures: high bandwidth and low latency.
Bus bandwidth is improved due to the ability to deliver multiple
transactions in one bus cycle. The improved bandwidth helps to
reduce the communication latency. The reduction of communica-
tion latency however, is not only from the increased bandwidth. In
traditional bus architectures, long arbitration delay may introduce
extra latency to bus communications, even if the bus is idle at that
time. The communication latency in the SAMBA-bus architecture
is less affected by long arbitration latency, because communica-
tions can be performed through automatic compatible transaction
detection, without waiting for the bus access grant from the arbiter.

3.2. Interface Unit Implementation

Figure 4 and Figure 5 show the logic functions of bus access con-
trollers, which play a central role in an interface unit. Note that
these access controllers are for interface units capable of both initi-
ating and responding to bus transactions. The operation and struc-
ture of this kind of bus access controllers can be easily adapted for
slave-only or master-only interface units. The functions of bus ac-
cess controllers include the detection of whether the interface unit
is the destination of the received bus transaction, and the determi-
nation of what should be propagated to other units. An interface
unit should have two access controllers for both forward and back-
ward sub-buses, because one access controller is required for each
sub-bus.

Figure 4 shows the logic operation of an access controller for
the forward sub-bus in the request phase. In this phase, trans-
action initiators send communication requests to their destination
modules. Signal fValidOuti�1 indicates whether the data/address
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Figure 4: Logic operation in request phase of a forward access
controller.
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Figure 5: Logic operation in response phase of a backward access
controller.

(identified as f DAOuti�1) received from the previous interface unit
i� 1 is for a valid bus transaction. The output of the address de-
coder is asserted if the received address belongs to this unit. Sig-
nal f Receivedi informs the attached module whether a bus trans-
action for this unit is accepted; the signal is asserted when both
fValidOuti�1 and the output of address decoder are asserted. The
data/address received from the previous unit will then propagate to
the next unit through f DAOuti if and only if fValidOuti�1 is as-
serted and the output of address decoder is negated. Signal f Readyi
is an internal signal generated by the interface unit. It is asserted
in the request phase if (a) the data/address on f DAsdi is the valid
data/address of a pending communication, and (b) the unit is the ar-
bitration winner, a unit after the arbitration winner, or a unit whose
transaction destination is not after the arbitration winner. Signal
fValidOuti informs the next interface unit whether the data/address
on f DAOuti is valid, and it is asserted if either f Readyi or f MuxSeli
is asserted. Signal Senti, which is equal to f Readyi � f MuxSeli,
informs the interface unit whether its pending communication on
f DAsdi is sent.

Figure 5 shows the logic operation of an backward access con-
troller in the response phase. Since the response data of a bus
transaction accepted in one sub-bus is always carried in the other
one, the operation status of the corresponding forward access con-
troller in the last request phase is used to determine the operation
of this access controller. f Receviedi@-1 and f Senti@-1 refer to
f Receivedi and f Senti in the last request phase of the forward ac-
cess controller, respectively. bReceivedi indicates whether a re-
sponse for this unit is received, which is equal to f Senti@-1�
bValidOuti�1. Here, the assertion of bValidOuti�1 means that
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the corresponding bDAOuti�1 is a valid response from an interface
unit after unit i. The valid response is further propagated to other
interface units if f Senti@-1 is negated, which means that interface
unit i has not initiated any bus transaction on the forward sub-bus
in the last request phase. bReadyi is asserted if f Receivedi@-1 is
negated or bDAsdi has the response for the accepted transactions.
bValidOuti is asserted if either unit i sends out its response or prop-
agates the response from another unit after unit i. In the response
phase, the logic AND of all bReady signals indicates whether all
bus responses are generated, and this can be used to extend the
response phase if not all bus responses are provided in time.

We have presented the operations of a forward access con-
troller in the request phase and a backward access controller in
the response phase. In fact, any access controller is required to
work in both request and response phases, because bus transactions
are initiated on both sub-buses in a request phase, and they are
all responded on both sub-buses in the following response phase.
Therefore, an access controller should perform either kind of op-
erations depending on the bus access phase.

The bus clock period is determined by the data/address propa-
gation delay from one bus end to the other end and the arbitration
delay. With properly pipelined arbitration, the bus clock period is
dominated only by the signal propagation delay on the bus. What
an interface unit shown in Figure 4 introduces to the critical path
delay of the entire bus is the delay of the path from the address
decoder to the multiplexer control, and then to the multiplexer out-
put. Note that the delay introduced by interface units for slave-only
and master-only modules are even smaller. The bus clock period
should not be affected significantly if the inter-unit bus intercon-
nect delay is much larger than the access controller logic delay.
This is true for most current and future SoC designs due to the
large gap between global interconnect delay and logic delay. Con-
sequently, the bus clock period of SAMBA-bus should be similar
to that of traditional buses.

3.3. Practical considerations

Interface unit addresses: An important basis of the proposed ar-
chitecture is that the addresses of interface units are in-order. For
a completely new system design, the assignment of in-order ad-
dresses to interface units can be easily implemented. However, for
some designs with fixed or partly fixed bus addresses, their ad-
dresses may be difficult to be ordered along the bus. To overcome
that, one approach is to introduce in each interface unit a look-up
table that maps the out-of-order addresses to their relative positions
on the bus. Note that the relative position of interface units are used
only in the selection of sub-bus to be used, and in the generation of
Ready signals of bus access controllers in the request phase. The
former introduces delay to the arbitration process, which can be
pipelined; the latter is not in the critical bus delay path because it
is not dependent on the bus operations of other units, and can be
computed as long as the arbitration winner address is available.

Slow response: In the previous sections, we assume that all
slave modules can provide the response immediately in the next
response phase. However, some systems may have slow modules,
which require more time to obtain the response data. Extending
the response phase can be used in such a case. Essentially, the re-
sponse phase takes more clock cycles for the slow slaves to obtain
their data. A response phase can be extended until Readyi for every
slave unit is asserted, which means that either the slave unit does
not obtain any communication request or it has already provided
the response. This method may decrease the bus performance due

to very slow modules. The loss of bus performance due to slow
slaves can be overcome by using split transactions. Through that,
a slow slave may terminate current transaction when it is deter-
mined that it will take a long time to get the response data; a new
transaction will be initiated to transfer the response data after the
slow slave acquires it.

4. EXPERIMENTS AND RESULTS

In this section, we present our experimental results. A simulator
for both the SAMBA-bus architecture and a traditional bus archi-
tecture is implemented using C++. All modules in the simulated
buses can either initiate bus transactions or respond to bus transac-
tions initiated by other modules. We also assume that the response
of all bus transactions can be provided in the next bus clock cycle.
Two-level TDMA arbitration [3] is used to decide the arbitration
winner for both traditional buses and SAMBA-buses.

Bus communication traffic is generated by a method similar
to those in [7] and [6]. Several parameters are used to direct the
generation of communication traffic. The frequency of bus access
requests is controlled by the inter-communication intervals. For
an interface unit, the inter-communication interval is defined as
the number of bus cycles after which a new bus transaction is gen-
erated since the previous bus access has been granted. The inter-
communication interval is randomly generated following Poisson
distribution. The probability that a unit is the destination of bus
transactions is assigned based on the distribution of communica-
tion distance. Here, the communication distance of a bus transac-
tion refers to the number of interface units between the transaction
initiator and the destination. Three different communication dis-
tance distributions are used: uniform, Poisson, and exponential. In
the uniform distribution, a unit has equal probabilities of initiating
transactions to all other units. In the other two distributions, an
average communication distance of �Number o f units��4 is also
used to direct the generation of bus traffic, where Number o f units
refers to the number of units attached to the bus.

Figure 6 shows the effective bandwidth and average latency
of SAMBA-buses and traditional buses with different number of
interface units. Here, the effective bandwidth is the number of fin-
ished bus transactions over the total number of bus cycles used.
The latency refers to the number of bus cycles an interface unit
spends to obtain bus access. In these experiments, we assume
that the arbitration latency is 1, which means that an interface unit
can be granted with bus access by the arbiter as early as in the
next bus cycle after requesting the bus access. The average inter-
communication interval is equal to 3. Note that for the traditional
buses, the communication distance distribution does not affect the
latency or bandwidth; therefore, we provide only one set of results
for traditional buses.

In order to perform a fair comparison, we assume that the tra-
ditional buses have two sub-buses, each of which can be used in-
dependently. Therefore, when the communication traffic on those
traditional buses is high enough, the effective bandwidth is always
2.

From Figure 6, we can see that both the effective bandwidth
and the average latency are greatly improved for all configurations.
Test cases with the exponential communication distance distribu-
tion have the highest improvement over both bandwidth and la-
tency. The bandwidth improvement can be as high as 3.5 times,
while the latency can be reduced up to by 15 times. The rea-
son is that for exponential distribution, there are more short dis-
tance communications, leading to higher possibilities of compat-
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ible multiple transactions. For this set of experiments, the inter-
communication interval distribution for every interface unit is the
same. As a result, there are more bus traffic and contentions for
test cases with more interface units. Another observation is that
SAMBA-buses have higher effective bandwidth improvement when
the bus access contention is higher. SAMBA-buses still have sig-
nificant latency reduction, which is as high as 15 times, when bus
access contention level is low and bandwidth is not the bottleneck
for communication.

Another set of experiments is performed to study the effect on
communication latency of bus access contentions and arbitration
latency. All the buses under test have 16 interface units, and the
communication distance distribution is uniform. We adjust the bus
contention level by setting different average inter-communication
intervals. The results are shown in Figure 7. The results clearly
show that high bus contention level will lead to high communi-
cation latency, but the SAMBA-buses always have significantly
lower communication latency than the traditional buses with same
average inter-communication interval and arbitration latency. Note
that these results are acquired on buses with uniform communica-
tion distance distribution, and the improvement is even larger un-
der other communication distance distributions. More important,
the results also show that the arbitration latency affects the com-
munication latency for traditional buses significantly when the bus

contention level is not very high. However, the average commu-
nication latency for SAMBA-buses is affected only slightly by the
arbitration latency. The reason is that bus accesses can be per-
formed through compatible transaction detection without waiting,
typically with long latency, for the bus access grants when the bus
access contention level is low. When the bus contention level is
high, the latency is largely dominated by bus transaction delivery
ability, or bus bandwidth. Therefore, SAMBA-bus architecture can
tolerate longer arbitration latency with minor penalty on bus per-
formance. This can alleviate the task of arbiter design.

5. CONCLUSION

A new high performance SAMBA-bus architecture is proposed
in this paper. Multiple compatible bus transactions can be per-
formed simultaneously without introducing additional arbitration
complexity. Experimental results show that SAMBA-bus architec-
ture can have up to 3.5 times improvement in the effective band-
width, and up to 15 times reduction in the average communication
latency. In addition, the performance of SAMBA-bus architecture
is affected only slightly by long arbitration latency. This feature is
desirable in SoC designs with large number of modules and long
communication delay between modules and the bus arbiter.
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