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Abstract
Condition-specific speed–accuracy trade-offs (SATs) are a pervasive issue in experimental psychology, because they some-
times render impossible an unambiguous interpretation of experimental effects on either mean response times (mean RT) 
or percentage of correct responses (PC). For between-participants designs, we have recently validated a measure (Balanced 
Integration Score, BIS) that integrates standardized mean RT and standardized PC and thereby controls for cross-group 
variation in SAT. Another related measure (Linear Integrated Speed–Accuracy Score, LISAS) did not fulfill this specific 
purpose in our previous simulation study. Given the widespread and seemingly interchangeable use of the two measures, we 
here illustrate the crucial differences between LISAS and BIS related to their respective choice of standardization variance. 
We also disconfirm the recently articulated hypothesis that the differences in the behavior of the two combined performance 
measures observed in our previous simulation study were due to our choice of a between-participants design and we dem-
onstrate why a previous attempt to validate BIS (and LISAS) for within-participants designs has failed, pointing out several 
consequential issues in the respective simulations and analyses. In sum, the present study clarifies the differences between 
LISAS and BIS, demonstrates that the choice of the variance used for standardization is crucial, provides further guidance 
on the calculation and use of BIS, and refutes the claim that BIS is not useful for attenuating condition-specific SATs in 
within-participants designs.

Keywords Speed–accuracy trade-off · Methods in experimental psychology · Integration of errors and response times · 
Repeated-measures designs

Since the early studies by Woodworth (1899) it is well 
established that performing something faster comes at the 
cost of less accuracy (see also Fitts, 1954, and many others). 
This observation has become known as the speed–accuracy 
trade-off (SAT; for reviews, see Heitz, 2014; Wickelgren, 
1977). Interesting in itself as a topic of research (e.g., Fiedler 
et al., 2020; Hedge et al., 2019), an SAT can also cause 
interpretational problems in studies assessing mean response 
times (mean RT) or the percentage of correct responses (PC) 
as the main dependent variable(s).

More precisely, participants in such studies are typically 
confronted with a conundrum: they are asked to perform the 

task “as fast and as accurately as possible,” “as fast as possi-
ble without sacrificing accuracy,” and the like. What is more 
important according to such instructions, speed or accuracy? 
And how low can PC fall and still count as not “sacrificing 
accuracy”? As instructions do not provide answers to these 
questions, participants must answer them for themselves. In 
other words, because responding faster necessarily incurs a 
higher risk of committing an error, participants always have 
to decide for some trade-off between speed and accuracy. 
The relation between speed and accuracy on this continuum 
has, for example, been described as an exponential approach 
to a limit that follows the form
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where RT is mean RT, δ is the x-offset, γ the steepness of the 
curve, and λ the PC asymptote (see Wickelgren, 1977; see 
also Usher & McClelland, 2001, and for a broader discus-
sion, see Luce, 1986). An example is visualized in Fig. 1. 
Up to a certain mean RT level (200 ms in the example), mere 
guessing takes place and PC remains at about 50% (assum-
ing two response alternatives with one being the correct one, 
thus a two-alternative forced-choice task). With increasing 
mean RT, then, PC increases as well until an asymptotic 
level is reached. What becomes clear from this visualization 
is that SAT is conceived of as a unidimensional phenom-
enon: Each point on the curve refers to one particular setting 
on the SAT and a change in SAT affects mean RT and PC 
at the same time (see Appendix 1 for an alternative view).

The issue of uncontrolled SATs in psychological stud-
ies is most evident when comparing groups of participants: 
due to differences in their personality (e.g., when compar-
ing age groups) or due to differences between conditions 
(e.g., different stimuli or instructions), one group might—on 
average—choose a different SAT than the other group and 
therefore perform faster and less accurately or vice versa, 
even if average ability and/or task difficulty is comparable 
across groups. The study by Liesefeld and Janczyk (2019) 
suggests that out of several available measures to combine 
mean RT and PC, the Balanced Integration Score (BIS; 
Liesefeld et al., 2015) works best for solving this issue in 
between-participants designs. This measure attenuates vari-
ations in SAT better than other measures that have been used 
for this purpose (Inverse Efficiency Score and Rate Correct 
Score; Akhtar & Enns, 1989; Bruyer & Brysbaert, 2011; 
Townsend & Ashby, 1983; Woltz & Was, 2006), including 
a more recently developed measure, the goal of which is 
similar to that of BIS: integrating speed and accuracy in a 

balanced manner. This alternative measure has been termed 
the Linear Integrated Speed–Accuracy Score (LISAS; Van-
dierendonck, 2017, 2018, 2021b).

BIS combines mean RT and PC according to the follow-
ing formula (Liesefeld & Janczyk, 2019):

where zx
i,j

 is the z-standardized1 performance (mean RT or 
PC, respectively) for participant i in condition j, SRT  refers 
to the standard deviation (SD) of mean RTs used in the cal-
culation of BIS,  refers to the grand mean RT—that is, 
the average of mean RTs of all conditions and participants—
and PC refers to the average of PCs of all conditions by 
participant combinations. Importantly, z standardization is 
based on the variance across averaged data points (mean RT 
and PC), that is, on those data points that would also go into 
a standard t test or analysis of variance (ANOVA), rather 
than the variance across individual trials (RT and accuracy). 
Typically, this standardization is performed across all cells 
of the design (e.g., n × J data points in a one-way ANOVA 
with J conditions and n participants per condition). As dem-
onstrated below, it turns out to be crucial that the variance 
for the standardization comes from the aggregated data, that 
is, to use the standard deviations across mean RTs and PCs 
rather than the standard deviations across trials.

LISAS is calculated according to the following formula2:

where SRT refers to the SD of RTs across trials and SE 
refers to the SD of errors across trials (which equals 
√

PE(1 − PE) ). Thus, in contrast to BIS, LISAS uses the 
SDs across trials for individual participants, but otherwise 
the intention of the two measures is similar: mean RT and 
percentage of errors (PE) (= 1 − PC) is brought to the same 

(1)

(2)LISASi,j = RTi,j +

SRT
i

SE
i

⋅ PEi,j

Fig. 1  Illustration of a speed–accuracy curve with δ = 0.20, γ = 5, 
and λ = 95 (adopted from Wickelgren, 1977)

1 We suggest using the sample SD for standardization, that is, 
the SD with k in the denominator rather than the square root of the 
estimate of the population variance with k − 1 in the denominator 
(with k referring to the number of data points entered into the calcula-
tion; here: k = n · j). Except for very small sample sizes, the effect of 
using one or the other SD should be negligible though.  It might be 
helpful to reproduce the examplary calculation in Table 1 of Liesefeld 
and Janczyk (2019). Functions to easily calculate BIS are provided 
at: https:// github. com/ Liese feld/ BIS.
2 For clarity, we deviate from previous notations of the formula for 
LISAS, which have used “SPE” instead of “SE” (see Liesefeld & Janc-
zyk, 2019; Vandierendonck, 2017, 2018, 2021b). Strictly speaking, 
there is no PE for individual trials and thus one cannot calculate SPE 
across trials. “SPE” really makes sense only for averaged data, such as 
in the calculation of BIS. Accordingly, we now use “ SRT  ” (i.e., with a 
bar above “RT”), rather than “SRT” in the formula for BIS to highlight 
this crucial difference to LISAS.
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scale and added up (see Vandierendonck, 2021b, Appendix 
A). Yet, as will be demonstrated below, the choice of the 
SD is crucial for how the respective measure behaves with 
regard to SATs. Vandierendonck has used two versions of 
the formula, one where  SRT and  SE are calculated across all 
conditions of a given participant (which we assume is the 
default and which is displayed in Eq. 2; Vandierendonck, 
2017, 2021b) and one where  SRT and  SE are calculated sepa-
rately per condition and participant (Vandierendonck, 2018; 
which in the following we refer to as  LISAScond as a short-
hand for condition-specific LISAS).3

Given the widespread use of within-participants designs 
in behavioral research and the frequent use of LISAS and 
BIS in within-participants comparisons, including many 
studies in which we have been involved (e.g., Allenmark 
et al., 2019; Barrientos et al., 2020; Bratzke & Ulrich, 
2021; Chen et al., 2021; English et al., 2021; Liesefeld 
et al., 2015, 2019; Liesefeld & Müller, 2021; Madrid & 
Hout, 2019; Mueller et al., 2020; Schuch & Pütz, 2021; 
Serrien & Spapé, 2021; Smith et al., 2019), it is impor-
tant to note that LISAS was explicitly developed for the 
within-participants case (Vandierendonck, 2021b, p. 22). 
By contrast, BIS is by no means restricted to within-par-
ticipants designs, but we and others consider many use 
cases even going beyond experimental psychology (e.g., 
Bakun Emesh et al., 2021; Draheim et al., 2019; Liesefeld 
& Janczyk, 2019; Liu et al., 2019; Mueller et al., 2019; 
Palmqvist et al., 2020; Stojan et al., 2021; Unsworth et al., 
2020; White et al., 2021). This difference in scope of the 
two measures, in retrospect, also implies that our previ-
ous comparison of BIS and LISAS based on a between-
participants design might not have been the fairest case 
(see Vandierendonck, 2021b, p. 22). To make up for this, 
Vandierendonck (2021b) has recently validated and com-
pared the two measures on data explicitly simulated to con-
form to a typical within-participants design, concluding 
that the two measures behave highly similar and neither 
of them satisfactorily attenuates variations in SATs in this 
case. By contrast, the present study provides first evidence 
that BIS (but not LISAS) fulfills this purpose very well. 
These opposing conclusions can be traced back to vari-
ous consequential mistakes in Vandierendonck’s analyses, 
which we correct for in reanalyses of one of his simulated 
data sets. We also point out problems with the simulations 
reported in Vandierendonck (2021b) and clarify several 
additional points that have been brought up since the pub-
lication of Liesefeld and Janczyk (2019). Although it does 
not aim to provide a comprehensive validation of combined 

measures in within-participants designs, the present paper 
demonstrates the differences between LISAS and BIS from 
various perspectives, thereby informing the choice between 
these two seemingly similar measures. Along the way, we 
also offer advice on how to avoid various pitfalls in the cal-
culation of BIS and in the simulation of within-participants 
data.

Simulating differential speed–accuracy 
trade‑offs in within‑participants designs

To explore how a given measure handles variation in SATs, 
it is useful to produce data for which variations in SATs are 
known a priori. As there currently is no undisputed experi-
mental method of inducing specific levels of SAT and as 
developing, validating, and using such a method is highly 
resource intensive, simulating data with an established 
mathematical model of human performance seems the most 
straightforward and efficient first step to tackle this question.

From among the many cognitive models that would fulfill 
this purpose, Liesefeld and Janczyk (2019) used a relatively 
simple version of the drift-diffusion model (Ratcliff, 1978; 
Ratcliff et al., 2016; for a similar approach, see Dutilh et al., 
2012; Hedge et al., 2018a, b, 2021; Lerche & Voss, 2018; 
Vandierendonck, 2021b). This model simulates a decision 
process, assuming that, from a starting point z, evidence 
for the correct response continuously and noisily accumu-
lates with a certain drift rate v until a preset threshold a is 
reached, thus producing a correct response. Because of the 
noise, typically modelled as a scaled Wiener process, the 
activation reaches the lower threshold at zero by chance on 
some trials, thus producing an incorrect response.4 Increas-
ing the value of v decreases mean RT and increases PC at 
the same time and is thus often thought to reflect decreases 
in task difficulty or increases in cognitive ability. By con-
trast, increasing the value of a (i.e., increasing the distance 
between the upper and lower threshold and thereby increas-
ing the distance of the starting point to the thresholds as 
well) increases mean RT and PC at the same time (see 
also Lerche & Voss, 2018), thus capturing changes on the 
SAT continuum towards a more conservative responding. 
As such, this model is suited to simulate variations in SAT 
and difficulty/ability independently by variations in a and 
v, respectively.

Arbitrary as this selection might be, the drift-diffusion 
model has several characteristics that are highly desirable 

3 This is the version calculated by Liesefeld and Janczyk (2019), 
because in their between-participants design, each participant con-
tributed data to only one condition (see Vandierendonck, 2018; but 
see Vandierendonck, 2021b, p. 22).

4 Defined in this way, the parameter a denotes the separation of the 
lower (erroneous) and the upper (correct) threshold and the starting 
point is set at z = 0.5 · a.

1177Behavior Research Methods (2023) 55:1175–1192



1 3

for our purposes: (a) It makes predictions on mean and 
trial-wise RTs and accuracies, (b) the model is widely used 
and is well established in terms of being able to account for 
empirical data from a huge range of cognitive tasks, and 
(c) there are separate parameters that can be interpreted as 
reflecting SAT settings (threshold separation a) or difficulty 
(drift rate v).

To see how simulations need to be adapted for the pre-
sent purposes (in comparison to Liesefeld & Janczyk, 
2019), it is necessary to consider what differentiates a 
between-participants from a within-participants design 
and how that affects the data. The core feature of within-
participants designs is that the same participant performs 
both (or all) conditions and that each participant is com-
pared to themselves via, for example, repeated-measures 
ANOVAs or paired t tests. This ensures that pre-exper-
imental interindividual variability (between-participants 
variance) does not affect the error term of significance 
tests (the participant × condition interaction) and thereby 
typically increases their statistical power. As this pre-
experimental variability is the same in all conditions, per-
formance across conditions is highly correlated in within-
participants designs. In fact, the higher these correlations 
are, the higher the increase in statistical power compared 
to between-participants designs (e.g., Lakens, 2013). That 
is, it is for measures highly correlated across conditions 
(as is typically the case for mean RTs in different condi-
tions of an experiment), where within-participants designs 
play out their full strength and differ most from between-
participants designs.

Method

Based on these considerations, we simulated two sets of 
data, one with a variation in drift rate v (“real” effect5) 
and one with a variation in threshold separation a (SAT 
effect) to get a first impression of how LISAS and BIS 
react to these manipulations. All data were modeled as 
Wiener diffusion processes (see Ratcliff, 1978; Ratcliff 
et al., 2016; Ulrich et al., 2015; Vandekerckhove & Tuer-
linckx, 2007; Voss & Voss, 2007; Wagenmakers et al., 
2007), that is, activation at time t, X(t), is modelled as 
a scaled Wiener process with a time-independent drift 
rate v

X(t) = W(t) ⋅ � + v ⋅ t

with a fixed value of the noise parameter σ = 4 (as in Liese-
feld & Janczyk, 2019).6 A decision is made when the acti-
vation, starting at 0.5 · a exceeds either the upper thresh-
old a (correct) or the lower threshold at zero (error). The 
time point where this happens is interpreted as the decision 
time. Time spent on additional processes of encoding and 
responding is captured via an additional non-decision time 
parameter, tER, which is added to the decision time to yield 
the overall RT.

In the first simulation, a “real” effect was induced by 
varying the drift rate between conditions. In this case, we 
chose v1 = 0.246 and v2 = 0.254 while keeping the threshold 
separation constant at a = 125. In the second simulation, 
an SAT was induced by varying the threshold separation 
between conditions. In this case, we chose a1 = 120 and a2 
= 130, while keeping the drift rate constant at v = 0.25.7

Based on these standard parameters, two sources of vari-
ability were added to the respective varied parameter. First, 
interindividual variability was implemented by adding the 
same value �between

i
 to both conditions of a simulated partici-

pant i. Second, to induce error variance (which, in a within-
participants design, is the participant × condition interac-
tion), an additional �within

i,j
 was added to each condition j 

(j ∈ {1, 2}) of each participant i. Thus, for a participant i in 
condition j, the parameter μi, j (i.e., drift or threshold separa-
tion) used for the simulations is the following sum:

The (error) terms �between
i

 and �within
i,j

 were drawn from a set 
o f  r a n d o m  va r i a b l e s  E

between
∼ N

(

0, �2

B

)

 a n d 
E
within
j

∼ N
(

0, �2

W

)

 , respectively. For the drift rate simula-
tion, we set �2

B
= 0.01

2 and �2

W
= 0.005

2 ; for the SAT simula-
tion we set �2

B
= 20

2 and �2

W
= 10

2 . Note that the theoretical 

�i,j = �j + �between
i

+ �within
i,j

5 We are aware that SAT effects are also “real,” but for lack of a bet-
ter word, we will reserve the term here to refer to effects that are due 
to between-condition differences in ability or difficulty.

6 To efficiently simulate the decision component, we exploited the 
R package DMCfun (Mackenzie & Dudschig, 2021), which can effi-
ciently simulate data and fit the Diffusion Model for Conflict tasks 
(DMC; Ulrich et al., 2015) by using C++ code. For the present pur-
poses, we set the amplitude of the automatic process (modelled as a 
Gamma function in DMC) to A = 0. Note that the noise parameter 
acts as a scaling parameter affecting the absolute value of the other 
parameters. In line with the more typical usage, the values of the 
parameter a given here refer to the threshold separation and not to 
the distance between starting point and threshold as implemented in 
DMCfun.
7 This choice of parameters is somewhat arbitrary and more exten-
sive simulations are planned for future studies, but the selected 
parameters fulfill three criteria of relevance for the present study: (1) 
The mean of two parameters in one simulation is the fixed value in 
the other simulation to improve the comparability of the two simula-
tions. (2) Mean RT and PC arguably had reasonable values. (3) The 
percentage of significant t tests was below ceiling for all performance 
measures.
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correlation of the parameters between the two conditions 
across participants can be calculated as

and is accordingly r = .80 for the chosen values (see Appen-
dix 2 for a proof). The non-decision time tER was drawn 
separately for each participant i, but was the same for 
both conditions j with tER

i
∼ N(300, 20) , thus adding extra 

between-participants variance in mean RTs. Both simula-
tions were repeated to yield 1000 experiments with n = 
20 participants each and 1000 trials per condition (i.e., we 
simulated 2 × 1000 × 20 × 1000 = 40 million individual 
diffusion processes in total).

Analyses

In our simulations, raw data were aggregated at the end of 
each simulated experiment to improve computational effi-
ciency. In this course, the statistics required to calculate BIS, 
LISAS, and  LISAScond as detailed above were obtained and 
stored (mean correct RTs and PCs for both measures, and 
the respective across-trial SDs for LISAS [including all trials 
of a participant and separately per participant × condition 
cell; only correct trials were included for RT SDs]). For each 
of the 1000 experiments, a paired-sample t test was calcu-
lated between the two conditions on each obtained depend-
ent variable (mean RT, PC, BIS, LISAS) and the percentage 
of significant results (at α = .05) was recorded. In addition, 
the effect size dz =

t
√

n
 was calculated per experiment and 

averaged across experiments.

Results

The means, effect sizes, and percentages of significant t tests 
for the drift rate and the SAT simulation are summarized in 
Table 1. Four aspects of these simulated data are of major 
relevance here:

First, the data of both simulations produced positive cor-
relations between the two conditions; they thus correspond 
to typical observations in within-participants designs. More 
precisely, for the drift rate simulation, the mean correlation8 
for the drift rates (range in square brackets) was r = .811 [.309; 
.960], for mean RT r = .979 [.869; .995], and for PC r = .684 
[−.198; .948]. Similarly, for the SAT simulation, the mean 
correlation for the threshold separations was r = .807 [.282; 

r =
�2

B

�2

B
+ �2

W

.974], for mean RT r = .831 [.310; .975], and for PC r = .793 
[−.295; .965].

Second, as becomes evident from Table 1, our manipula-
tions of drift rate and threshold separation across conditions 
yielded “real” effects and effects on SATs, respectively, with 
the former indicated by opposing trends and the latter indi-
cated by same-directional trends in mean RT and PC.

Third, when considering BIS and the various versions of 
LISAS with regard to the “real” effect in Table 1, it appears 
that all combined measures yielded more significant t tests 
than either mean RT or PC and thus can potentially increase 
the statistical power when an effect is distributed across 
mean RT and PC.

Fourth, and most importantly for the present purposes, 
are the results for BIS and LISAS with regard to the SAT 
effect in Table 1 (lower part). Remember that variations in 
mean RT and PC were only due to varying the SAT setting 
by manipulating the threshold separation parameter a in the 
underlying simulation. While the percentage of significant 
t tests on LISAS and  LISAScond is around the same as for 
mean RT, this percentage is strikingly reduced for BIS (and 
 LISASBIS, which is designed to mimic BIS and is introduced 
and discussed further below), namely from 85% (mean RT) 
or 79.7% (PC) to 6.7% (BIS).

To make sure that the relative insensitivity of BIS to vari-
ations in threshold separation is not just a chance finding 
related to the specific parameters used, we ran additional 

8 Mean correlations were calculated by averaging, across all simu-
lated experiments, Fisher z-transformed raw correlations between the 
two conditions of each experiment and back-transforming the result-
ing mean value.

Table 1  Means of mean RT, PC, BIS, and versions of LISAS, com-
plemented by mean effect size dz, and the percentage of significant 
paired t tests (at α = .05) when a “real” effect was implemented via 
different drift rates while keeping the threshold separation constant at 
a = 125 (upper part) or when an effect on SATs was implemented via 
different threshold separations while keeping the drift rate constant at 
v = 0.25 (lower part)

LISASBIS is introduced and discussed further below, but reported 
here already for ease of comparison

Measure Mean 1 Mean 2 Effect size dz % significant

“Real” effect (v1 = 0.246 vs. v2 = 0.254)
  mean RT 499 496 0.69 79.7
  PC 0.88 0.89 –0.78 87.8
  BIS –0.374 0.374 –0.96 96.4
  LISAS 556 550 1.1 99.3
   LISAScond 556 550 0.9 96.3
   LISASBIS 719 705 0.96 96.4

SAT effect (a1 = 120 vs. a2 = 130)
  mean RT 487 510 –0.73 85.0
  PC 0.87 0.89 –0.67 79.7
  BIS –0.009 0.009 –0.06 6.7
  LISAS 545 561 –0.73 85.0
   LISAScond 539 564 –0.73 85.0
   LISASBIS 679 678 0.06 6.7

1179Behavior Research Methods (2023) 55:1175–1192
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simulations with other values to cover a broader range of 
parameters, while focusing only on SAT effects, that is, 
variations in threshold separation a (see Table 2). These 
simulations yield the same conclusions as those reported 
in Table 1.

In sum, both BIS and LISAS maintain “real” effects (and 
even improve statistical power; Table 1), but—contrary to 
the conclusions of Vandierendonck (2021b) —only BIS con-
siderably attenuates SAT effects in our simulated within-
participants data (Tables 1 and 2). This converges with what 
Liesefeld and Janczyk (2019) had observed in a much more 
extensive simulation study for between-participants data. 

Most importantly for the present purposes, based on these 
results we can exclude the possibility that the difference 
between BIS and LISAS observed in our previous study “is 
quite likely due to the usage of between-subject designs in 
the Liesefeld-Janczyk paper” (Vandierendonck, 2021b, p. 
22). All simulations, analyses, and data used here can be 
found at: https:// osf. io/ x9h3n/

Reanalysis of Vandierendonck (2021b, Exp. 
2)

In the previous section, we have arrived at a conclusion 
diametrically opposed to Vandierendonck (2021b): While 
we find that BIS is highly effective in attenuating effects 
that result from mere variations in SATs and that its behav-
ior deviates strongly from that of LISAS, Vandierendonck 
(2021b) found that BIS and LISAS behave almost identically 
and neither of them satisfactorily attenuates effects resulting 
from variations in SATs. To clarify why that is the case, we 
reanalyzed data from one of his simulations and reviewed 
the analysis code that is publicly available at https:// doi. org/ 
10. 5281/ zenodo. 45930 16. This exercise fulfills several addi-
tional purposes: It clarifies how BIS is calculated and points 
out some potential issues with simulating (within-partici-
pants) data with the drift-diffusion model, emphasizing the 
importance of simulating realistic amounts of between- and 
within-participants variance.

Out of the available data sets, we decided against using the 
simulation from Vandierendonck’s (2021b) Study 1 (which 
follows a logic similar to all simulations in Vandierendonck, 
2017), because we do not believe that this approach is valid 
for simulating variations in SAT. Most problematically, in 
this simulation, the relative size of effects on mean RT and 
PC is arbitrary (as also discussed in Appendix 1). A non-
arbitrary relationship between effects on mean RT and PC is 
achieved by simulations using the psychologically plausible 
drift-diffusion model and by manipulating the threshold 
separation parameter a, as was done above and already in 
Liesefeld and Janczyk (2019). Therefore, we were happy to 
see that in Study 2 and Study 3, Vandierendonck (2021b) 
adopted this approach and simulated variations in SAT and 
difficulty (“real” effects) using the drift-diffusion model. 
Because the data structure and the underlying reasoning of 
Study 3 are unnecessarily complex for the present purposes, 
we decided to work with the data from Study 2.

This study contains 40 (4 PE levels9 ×10 speed–accu-
racy steps) simulated data sets, each with a 2 (drift rate) × 3 

Table 2  Additional simulations with SAT effects (for details, see 
Table 1)

Measure Mean 1 Mean 2 Effect size dz % significant

Case 1: v = 0.35, a1 = 110 vs. a2 = 130
  mean RT 438 472 –1.46 100
  PC 0.92 0.94 –1.18 100
  BIS –0.22 0.22 –0.11 10.4
  LISAS 474 496 –1.47 100
   LISAScond 467 500 –1.45 100
   LISASBIS 547 545 0.11 10.4

Case 2: v = 0.35, a1 = 115 vs. a2 = 125
  mean RT 447 464 –0.73 83.7
  PC 0.93 0.94 –0.63 73.2
  BIS –0.015 0.015 –0.08 7.9
  LISAS 479 490 –0.72 83.7
   LISAScond 475 492 –0.72 83.3
   LISASBIS 547 546 0.08 7.9

Case 3: v = 0.11, a1 = 200 vs. a2 = 220
  mean RT 860 951 –1.45 100
  PC 0.80 0.82 –1.29 100
  BIS 0.009 –0.009 0.07 11.0
  LISAS 1094 1161 –1.44 100
   LISAScond 1072 1176 –1.43 100
   LISASBIS 1715 1717 –0.07 11.0

Case 4: v = 0.11, a1 = 205 vs. a2 = 215
  mean RT 884 930 –0.73 86.7
  PC 0.81 0.82 –0.67 79.9
  BIS 0.004 –0.004 0.03 6.7
  LISAS 1112 1146 –0.73 85.8
   LISAScond 1101 1153 –0.72 86.2
   LISASBIS 1719 1720 –0.03 6.7

Case 5: v = 0.11, a1 = 110 vs. a2 = 130
  mean RT 501 569 –1.41 100
  PC 0.69 0.72 –1.34 100
  BIS –0.004 0.004 –0.04 8.2
  LISAS 634 690 –1.44 100
   LISAScond 608 703 –1.42 100
   LISASBIS 1261 1260 0.04 8.2

9 Here and in the following, it is important to note that PC = 1 − 
PE. While we decided to use PC (above and in Liesefeld & Janczyk, 
2019), Vandierendonck (2017, 2018, 2021b) uses PE. To maintain 
comparability to Vandierendonck (2021b), we plot and discuss his 
results in terms of PE.
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(threshold separation) within-participants manipulation. “PE 
levels” refers to four different sets of drift rate/threshold sepa-
ration combinations that approximately yielded the desired 
PEs (.05, .10, .15, and .20) and “speed–accuracy steps” refers 
to the size of the threshold-separation manipulation in the 
respective simulated data set. Further details on the simula-
tions can be found in Vandierendonck (2021b). From these 
data, Vandierendonck extracted (among other measures) 
mean RT, PE, LISAS, and what we call here  BISV (with “V” 
standing for “Vandierendonck”) for each of the six cells of 
each of the 40 studies.

Surprisingly, at first, we were unable to replicate the pat-
tern for “BIS” as displayed in Vandierendonck’s (2021b) 
Figures 4–6 with his simulated data (cf. “BISV” and BIS 
in Fig. 2). Working through his code revealed a program-
ming error (in getgen.pl, l. 24–28) that eventually resulted 
in entering mean error RT into the calculation of BIS rather 
than mean correct RT.

An even more consequential, conceptual, problem in the 
analyses is that instead of using the variance across the par-
ticipants × condition cells in aggregated mean RT and PC as 
intended (Liesefeld et al., 2015; Liesefeld & Janczyk, 2019), 
Vandierendonck (2021b) has used the variance in RTs and 
accuracies across trials to standardize mean RT and PC dur-
ing the calculation of BIS. Thus, to plot  BISV in Fig. 2, we 
(incorrectly) used mean error RT and the across-trial vari-
ance in error RTs and accuracies, thereby perfectly replicat-
ing the “BIS” pattern in Fig. 4 of Vandierendonck (2021b).10

When correcting for these mistakes, BIS attenuates SAT 
effects to a higher degree than all competing evaluated meas-
ures and it seems almost unaffected by the size of the thresh-
old separation manipulation in the simulations (i.e., by the 
“Speed–Accuracy Steps”; see Fig. 2, row “BIS”). However, 
as discussed further below, the simulated SAT effect still 
affects BIS (to a higher degree than in our analyses above or 
in the more extensive between-participants simulations of 
Liesefeld & Janczyk, 2019), as evidenced by the difference 
between the colored lines in Fig. 2 and the moderate effect 
sizes as visualized in Fig. 3.

These observations must be interpreted with some 
caution, due to various potentially non-ideal choices in 
Vandierendonck’s (2021b) simulations as detailed in 
turn. First, in contrast to our simulations above, all vari-
ance contributing to the error term of the statistical 
within-participant tests in Vandierendonck’s (2021b) 
simulations comes from the stochastic diffusion process 
itself rather than being explicitly controlled. This vari-
ance can be controlled by drawing parameters from a 
random distribution for each participant × condition 
cell of the design as done in the above simulations 
( �within

i,j
).

More problematically, the data does not contain suffi-
cient between-participants variance ( �between

i,j
 ; reflecting, 

e.g., pre-experimental variation in ability). While not men-
tioned in the manuscript, a close inspection of the simula-
tion code reveals that for each participant a random value 
was drawn from a normal distribution with M = 0 and SD 
= 0.001 and this value was added to the drift rate and 
threshold separation parameter. That the induced between-
participants variance might not be realistic in the data 
simulated by Vandierendonck (2021b) can be seen by con-
sidering that interindividual differences that are stable 
across experimental conditions result in correlations 
between conditions, because a participant who responds 
relatively fast in condition A will also respond relatively 
fast in condition B. However, in contrast to typical within-
participants data (e.g., Lakens, 2013), the correlation 
between conditions in the data set reanalyzed here is almost 
zero on average (see Table 3). Thus, unfortunately and in 
contrast to our simulations reported above, the data simu-
lated by Vandierendonck (2021b) are not representative of 
within-participants data, despite the purpose of that study 
to evaluate measures combining speed and accuracy in 
within-participants designs.

Equally problematic—in particular with regard to BIS—
is a potential consequence of drawing only one value per 
participant and adding it to both the drift rate and the thresh-
old separation parameters: An increase in drift rate decreases 
RTs and PEs, whereas an increase in threshold separation 
increases RTs and decreases PEs. Therefore, if drift rate and 
threshold separation increase in parallel, mean RTs remain 
relatively stable, while PEs decrease much more; if drift rate 
and threshold separation decrease, mean RTs remain rela-
tively stable, while PEs increase much more. Thus, by add-
ing the same value to both parameters, more between-partic-
ipants variance in PEs is induced than in mean RTs. As this 
variance goes into the denominator of the z standardization 
in the calculation of BIS, any such-induced between-partic-
ipants variance diminishes the influence of PE on the final 
BIS score (as if PE was down-weighted). Thus, artificially 
adding the same term to drift rate and threshold separation 

10 While the present manuscript was under revision, a correction 
notice to Vandierendonck (2021b) has been published aiming to cor-
rect for these mistakes by using variance of the aggregated measures 
for standardization (Vandierendonck, 2021a). Unfortunately, instead 
of using correct RTs and the variance across the participants × condi-
tion cells in the calculation of BIS as recommended by Liesefeld and 
Janczyk (2019), p. 42, p. 52; see also their Table  1), incorrect RTs 
were included and only the between-participants variance was used 
for standardization. Still, the original error remains instructive for the 
present purposes, because it illustrates the importance of standardiz-
ing based on the variance of the aggregated measures. Issues with the 
version of BIS calculated in the correction notice seem related to the 
way this specific set of data was simulated (as discussed below) and 
are therefore of less general relevance.
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parameters to induce between-participants variance exagger-
ates RTs in the calculation of BIS. The reason why this is not 
so dramatically the case in the simulated data (see Figs. 2 
and 3) is that insufficient between-participants variance was 
induced in the first place. Note that this is not an issue with 
BIS, but an issue with the assumption in Vandierendonck’s 
(2021b) simulations that participants with a high drift rate 
necessarily also apply a high threshold separation.

Another issue is that Vandierendonck (2021b) simulated 
only a single experiment per data point in Figs. 2 and 3, so 
that the resulting data are unlikely to be representative of all 
possible data sets that could have been generated with the 
respective employed parameter set. This results in the jag-
ged shape of the curves in Figs. 2 and 3, where, for example, 
PE can rise or fall with an increase in threshold separation 
(“Speed–Accuracy Steps”) due to quasi-random fluctuations 
in the simulations. The individual points in such a graph 
would become more representative of all potential simula-
tion outcomes by simulating a large number of experiments 
per parameter combination and then averaging across these 
simulated experiments as done in our simulations above and 
in Liesefeld and Janczyk (2019).

Finally, based on these data one could get the impression 
that just analyzing PE is the best way to handle variations in 
SAT, because, overall, PE was the measure least affected by 
variations in threshold separation (in contrast to the effects 
of variations in threshold separation on PC observed in our 
simulations, see Tables 1 and 2), while being rather sensi-
tive to variations in drift rate, in particular for high PE levels 
(when there is room for effects on PE; see Figs. 2 and 3). 
This unrealistic insensitivity of PE to variations in threshold 
separation (in part) explains the relatively bad performance 
of BIS with regard to attenuating variations in SAT (which is 
still better than the other combined measures and mean RT): 
if—as is the case in the data simulated by Vandierendonck 
(2021b)—there is insufficient corresponding variation in PE, 
variation in mean RT induced by differential SATs cannot 
be compensated for by any combined measure (see also the 
section on “Comparisons of three conditions using ANO-
VAs” and on “Transforming the constituents” in Liesefeld 
& Janczyk, 2019).

In sum, due to these various issues with the analyses and 
simulations in Vandierendonck (2021b), for the time being, 
we recommend referring to our preliminary simulations 
and analyses above with regard to the question of whether 
combined speed–accuracy measures can attenuate effects 
resulting from variations in SAT in within-participants 
designs, the tentative answer being that BIS can, at least for 
pairwise comparisons. More comprehensive simulations are 
desirable, but would overly extend the present article. Fur-
thermore, our reanalyses and comments on the simulation 
hopefully convey several crucial points in the simulation 
of within-participants data, and prevent future users of BIS 
from committing the same mistakes in their calculation of 
BIS.

The crucial difference between LISAS and BIS

Having established that BIS and LISAS differ in their behav-
ior and—taking also the extensive simulations and analyses 
in Liesefeld and Janczyk (2019) into account—that only 
BIS attenuates spurious effects that are due to differential 
SATs, we now turn to the question of what differentiates 
the two measures. While Vandierendonck (2021b) stresses 
that BIS scores cannot be compared across experiments as 
a major difference to LISAS11, the above reanalyses of his 
data set indicate that the choice of the variance used for 
standardization matters most. To see where the opposing 
views come from and to support users of combined measures 
to make an informed choice, the following dwells on these 
two characteristics in some detail. Following these theoreti-
cal considerations, we will demonstrate that indeed variance 
in standardization rather than the different scaling matters 
most. In particular, by using BIS’ standardization variance, 
we can easily modify LISAS, so that it attenuates the effects 
of differential SATs while maintaining “real” effects in our 
simulated data, just like BIS does.

On the surface, BIS is indeed highly similar to LISAS (as 
demonstrated in Appendix A of Vandierendonck, 2021b). 
This superficial similarity is not surprising, because both 
measures combine mean RT and PC/PE by first bringing 
them to the same scale. Which scale they are brought 
to is, we would argue, a relatively arbitrary choice that is 
non-consequential for the measure’s behavior (as already 
discussed in Liesefeld & Janczyk, 2019, p. 50). LISAS is 

Fig. 2  Rows 1–3 reproduce parts of Fig.  4 in Vandierendonck 
(2021b), recalculated based on the publicly available simulation 
results and our reading of the analysis code. “BISV” (row 3) refers to 
the (erroneous) calculation of BIS in that article. Row 4 presents the 
pattern for BIS obtained when all required corrections were applied 
to the calculation. Filled and unfilled circles represent the experi-
mental (lower drift rate) and the control (higher drift rate) condition, 
respectively. Colors code the three SAT conditions of each simulation 
and “Speed–Accuracy Steps” refers to the size of the respective SAT 
manipulation

◂

11 Vandierendonck (2021b) also claims that with BIS “RT changes 
by one subject can be compensated by PE changes in another subject” 
(p. 4), but does not explain this further and we can only speculate that 
this is related to a different conception of what exactly SATs are (see 
our Appendix 1).
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Fig. 3  Effect sizes ( �2
p
 ) for mean RT, PE,  BISV, and BIS for the data of Study 2 of Vandierendonck (2021b). �2

p
 was calculated as SSeffect

SSeffect+SSerror
 and 

slightly deviates from the �2
p
 reported in Vandierendonck (2021b)

Table 3  Average correlations (and their range across speed–accuracy 
steps in square brackets) between the two drift rate conditions for 
mean RT and PE of Study 2 in Vandierendonck (2021b)

PE level SAT condition

Speed Neutral Accuracy Average

mean RT
  .05 .07 [−.07; .28] −.07 [−.23; .05] .17 [.08; .32] .06
  .10 .04 [−.33; .12] .13 [−.14; .28] −.11 [−.34; .13] .00
  .15 .00 [−.28; .17] −.02 [−.29; .20] .02 [−.23; .20] .00
  .20 .11 [−.14; .27] .07 [−.18; .27] .13 [−.12; .28] .10

PE
  .05 −.03 [−.16; .18] .06 [−.12; .32] −.03 [−.17; .06] .00
  .10 .10 [−.04; .26] −.11 [−.28; .08] .16 [−.17; .44] .05
  .15 .03 [−.15; .26] .19 [−.15; .38] .14 [−.01; .33] .12
  .20 .01 [−.11; .13] −.08 [−.34; .07] .23 [.04; .37] .05

scaled in terms of RTs and, according to Vandierendonck 
(2021b), “can be interpreted as an RT corrected for errors” 
(p. 24). Liesefeld and Janczyk (2019) suggested (but by no 
means prescribed) scaling BIS in terms of above-average 
(BIS > 0) or below-average (BIS < 0) performance across 
participants and conditions in the analyzed experiment, with 
higher absolute values reflecting stronger deviation from 
the average. To us, this appeared to be the most interesting 
scaling, because absolute RTs are typically not in the focus 
of psychological studies and comparisons of absolute 
performance across studies is not usually desired or even 
possible, because absolute performance is affected by many 
incidental choices regarding stimuli and experimental designs 
that would differ between studies. Rather, experimental 
research usually focuses on performance differences between 
conditions (and maybe participants) within an experiment, 
which is directly reflected in BIS with the scaling suggested 
by Liesefeld and Janczyk (2019).
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Having said this, if, for whatever reason, a scaling in 
terms of RTs (like for LISAS) is desired, BIS can easily be 
rescaled accordingly (Liesefeld & Janczyk, 2019, p. 50):

where SRT  refers to the SD of mean RTs used in the cal-
culation of BIS (usually, across all participant × condition 
cells) and  refers to the grand mean RT, that is, mean 
RTs averaged across all conditions and participants. Such 
linear transformations do not affect the behavior of BIS in 
any way (see Appendix 3 and Liesefeld & Janczyk, 2019, 
Footnote 9). Actually, on its first application (before it even 
got its name), BIS was scaled and interpreted as mean RT 
corrected for errors (Liesefeld et al., 2015; as pointed out in 
Liesefeld & Janczyk, 2019, Footnote 3).

By contrast, which variance is used for standardization 
is crucial: BIS uses the variance across the data points 
of interest. In typical experimental designs of the type 
simulated here, these data points are mean RT and PC, that 
is, the aggregated data. The underlying idea is to combine 
mean RT and PC within one score (BIS) so that both 
constituent measures (mean RT and PC) contribute the same 
amount of variance to this score (i.e., correlate with it to the 
same degree; see Liesefeld & Janczyk, 2019, pp. 45–46). 
For this goal, it is of no direct relevance how raw RTs (and 
accuracies) are distributed across trials, but the distribution 
of the derived measures (mean RT and PC per participant 
× condition cell) that are actually submitted to standard 
statistical tests (e.g., ANOVAs or a t tests) is what counts. 
That the distribution of means differs from the distribution 
of the raw data is probably most widely known for RTs: 
While distributions of raw RTs are heavily left-skewed 
(have a long right tail), the distribution of mean RTs more 
closely approximates a (symmetric) normal distribution if 
a sufficient number of trials is aggregated. Typically, the 
best estimate of the variance of the aggregated measures is 
achieved by calculating it across all participant × condition 
cells, but there are situations where it is desirable to equate 
BIS across two or more groups of participants (e.g., 
when the focus is on a group-by-condition interaction; 
see Liesefeld et al., 2015). We cannot readily see, nor did 
we find any respective discussion in Vandierendonck’s 
publications, as to why it is desirable to scale aggregate 
measures by across-trial variance as done for LISAS.

To demonstrate that the choice of the standardization 
variance is crucial, we tweaked LISAS so that it mimics the 
behavior of BIS as a result. This is done by simply replacing 
the across-trial variance of raw performance used to scale 

(3)

PE by the across-cell variance of the aggregated data (as 
used by BIS):

Please compare Eq. 4 to the original version of LISAS (in 
our notation) in Eq. 2 and note that we merely adapted the 
term for scaling PEi,j. As shown in Tables 1 and 2,  LISASBIS 
indeed strongly attenuates effects from differential SATs 
while maintaining “real” effects, just like BIS does. Finally, 
Appendix 3 demonstrates that  LISASBIS is essentially a ver-
sion of BIS linearly transformed to the scale of mean RTs 
 (LISASBIS =  BISRTscaled + C), taking—in contrast to Appen-
dix A of Vandierendonck (2021b), which is based on a single 
participant—also the crucial standardization variances into 
account.

Are combined performance measures 
needed at all?

To us, the major aim of combined performance measures is 
to integrate measures of speed (mean RT) and accuracy (PC) 
in a way that attenuates SAT effects while maintaining “real” 
effects. The same goal can be achieved by fitting cognitive 
models such as the drift-diffusion model (i.e., the very 
model used here for simulating data) to empirical data and 
then analyzing the parameter estimates that are considered 
to reflect “real” effects. In fact, the drift rate of the drift-
diffusion model closely corresponds to what BIS is assumed 
to reflect and, in a way, calculating BIS here and in Liesefeld 
and Janczyk (2019) can be conceived of as recovering effects 
on the drift rate parameter from the simulated data. Thus, 
fitting the drift-diffusion model to each individual cell of 
the design and submitting the drift rate estimates to further 
statistical tests (as has been done before; e.g., Janczyk & 
Lerche, 2019; Schuch, 2016) would achieve the same 
purpose as calculating BIS. In fact, the modeling approach 
is far superior in many ways (e.g., Ratcliff et al., 2016). For 
example, it provides estimates of many additional parameters 
and allows to impose useful constraints on parameter 
estimates (e.g., Vandekerckhove & Tuerlinckx, 2007) and 
to directly test psychological theories by comparing different 
models (e.g., Koob et al., 2021). Furthermore, an estimate of 
some basic parameters of the drift-diffusion model has been 
suggested that is equally easy to apply as BIS (Wagenmakers 
et al., 2007; which is not without critiques, though, Ratcliff, 
2008). Clearly, the purpose of BIS is not to replace this 
powerful approach, but to offer an alternative in cases where 
model fitting does not seem applicable. The two approaches 
complement each other, because decision models such as the 

(4)LISASBIS
i,j

= RTi,j +
SRT

SPE
⋅ PEi,j
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drift-diffusion model assume a very specific set of cognitive 
processes and, in particular, that SAT effects reflect variation 
in the decision criterion. Whenever the model assumptions 
are likely to apply to the psychological phenomenon under 
investigation, this specificity is desirable. By contrast, BIS 
is constructed based on purely statistical considerations, 
namely equal weighting of the two constituent measures, 
mean RT and PC, and does not make any assumptions with 
regard to the underlying cognitive processes. We expect 
BIS to be useful as long as psychological phenomena are 
investigated for which there is no easily accessible model 
that can be used instead or whenever there is doubt in the 
validity or applicability of these models (see also Liesefeld 
& Janczyk, 2019, pp. 52–53).

Another consideration that would, in our opinion, ren-
der combined measures largely dispensable was brought 
forward by Vandierendonck (2021b), who argues that dif-
ferential SATs were impossible when trials from the various 
experimental conditions are randomly intermixed in within-
participants designs and therefore recommends to use such 
designs, rather than combined performance measures, in 
order to avoid the issues with potential condition-specific 
variation in SAT. If this was true, it would indeed resolve 
the issue of differential SATs and, thus, neither combined 
measures nor model fitting would be needed for that pur-
pose. Problematically, however, (a) such random intermixing 
is not always possible or desirable and (b) it is an empiri-
cal question whether intermixing makes differential SATs 
impossible that, we believe, must be tested for each specific 
situation.

Regarding point (a), many research questions require 
across-group comparisons, such as those involving differ-
ent age groups or the comparison of intervention and control 
groups. Furthermore, even in within-participants designs, 
random intermixing is not always possible or desirable. An 
example close to our own work is response-effect compat-
ibility in the action-control literature (Janczyk & Lerche, 
2019; Kunde, 2001), but there are many further reasons that 
might prevent an experimenter from intermixing experimen-
tal conditions of interest in a fully random fashion. 

Regarding point (b), as powerful as this technique might 
be, random intermixing does not guarantee the absence of 
differential SATs. For example, it seems likely that in tasks 
with longer mean RT, participants decide that they have 
spent sufficient time on a given, particularly difficult trial 
and respond prematurely in a higher number of cases than 
on easy trials (e.g., Liesefeld et al., 2015, where difficult 
mental rotations were randomly intermixed with easy mental 
rotations). Such behavior could, for example, be based on 
a time-out strategy. Also, an adaptation of SATs based on 
a preliminary scanning of the stimulus does not seem too 
unrealistic after all. Consider for example a visual search 
task with a strong difference in difficulty between randomly 

intermixed inefficient search and efficient search conditions. 
All else being equal, participants might be less willing to 
spend much time on the inefficient search trials but rather 
tend to make their decision based on less evidence and 
proceed with the next (probably easier) trial prematurely. 
A coarse and preliminary scan of the scene can often tell 
whether a search display is difficult or easy (e.g., whether 
non-targets are homogeneous or heterogeneous, see Liese-
feld & Müller, 2020) and result in a trial-wise adaptation of 
the search strategy (e.g., Tay et al., 2022). Another example 
are intertrial effects, that is, the observation that features 
of a preceding trial affect performance on the current trial, 
potentially by changing SATs. As a matter of fact, inter-
trial effects on the threshold parameter have been observed 
previously (e.g., Schuch, 2016). In sum, in contrast to the 
viewpoint expressed in Vandierendonck (2021b), we argue 
that the intermixing technique does not generally solve the 
issue of condition-specific SATs and we believe that com-
bined performance measures remain useful for this purpose.

Appendix 1: Incompatible conceptions 
of speed–accuracy trade‑offs

In order to examine and discuss SATs it is certainly useful 
to agree on a common definition of what an SAT actually is. 
Unfortunately, Dr. Vandierendonck seems to use a definition 
that is incompatible with the one that we (and many others, 
as we will demonstrate below) hold. In fact, it is difficult for 
us to fully grasp the definition of SATs in Vandierendonck 
(2017, 2018, 2021b) and therefore the best thing we can do 
in order to achieve progress in the debate is to explain in 
considerable depth how we conceive of SATs and variations 
therein and why the alternative conception does not make 
sense to us. These differences in definitions obviously have 
implications for how SATs should be simulated and for the 
criteria that determine whether a combined measure han-
dles SATs well (or whether these measures should handle 
SATs at all; see Vandierendonck, 2021b, pp. 23–24). We 
assume that this appendix is of interest for only very few 
readers: those who were confused by the way we simulated 
or discussed SATs in the main article and those who were 
confused by the respective aspects of Vandierendonck (2017, 
2018, 2021b) and want to find out where that uneasiness 
comes from.

From various interactions, including careful reads of his 
works and reflections on his simulations, we believe that 
Dr. Vandierendonck thinks of SATs as two independent 
dimensions, (1) increase or decrease speed and (2) increase 
or decrease accuracy, with a true neutral point where none 
is either increased or decreased. This would be best illus-
trated by a Cartesian coordinate system (Fig. 4a), where the 
“neutral point” is the origin. By contrast, we think of SATs 
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as a single continuum with the poles “maximize accuracy” 
and “maximize speed” (Fig. 4b). Notably, no “neutral point” 
exists in this case: Participants must in any case trade one 
aspect of performance for the other. Even if they chose a 
point just in the middle between the two poles, this would 
still be a trade-off. A useful analogy might be a car that 
has only a limited amount of fuel. The driver must at any 
moment decide whether to drive fast and therefore cover 
only a short distance or to drive slow and therefore reach 
a more distant goal (with a given amount of fuel). There is 
no neutral point of driving fast without sacrificing range or 
driving far without sacrificing speed.12

Given this fundamental difference in viewpoints, dis-
agreements on many points regarding the simulation of SATs 
and the evaluation criteria that should be applied to com-
bined performance measures are inevitable. However, clearly 
elaborating the crucial disagreement allows the reader to 
decide for one or the other viewpoint and therefore to decide 
whether to put trust in our results and interpretations or in 
those of Vandierendonck (2017, 2018, 2021b)

Contemplating on where the conception of SATs dis-
played in Fig. 4a could come from, we presume the follow-
ing train of thought and put it in italics to clearly demarcate 
it from our standpoint:

If instructions do not emphasize either speed or accu-
racy, participants adopt the neutral point with no 
SAT, that is, neither is speed traded for accuracy nor 
is accuracy traded for speed. If now in addition to this 
baseline condition with neutral instructions, another 
condition stresses the importance of speed, partici-
pants will respond faster; if a third condition stresses 
accuracy, participants will perform more accurately.

Of course, one can come up with other manipulations 
instead of instructions (e.g., payoff schemes, time pressure) 
that would have similar effects on SATs, but it is useful to 
bear with this example just to have something specific to talk 
about. As it stands, these thoughts on SATs seem reasonable 
and are in line with Fig. 4a. So, why are we not convinced 
by this conception of SATs?

First, it is easy to see that “participants respond faster” misses 
the empirical fact that with these instructions, participants will 
also respond less accurately and, respectively, “participants 
respond more accurately” misses the empirical fact that 
participants will then also respond more slowly (see the driving-
fast-or-far analogy above). Therefore, when Vandierendonck 
(2017) simulates variations in SAT by independently 
manipulating mean RT or PE, he creates data that, in our 
opinion, do not comply with reality. Even when possible, 
increasing speed without sacrificing accuracy or vice versa (as 
in the mentioned simulations) does not reflect an SAT proper 
as we conceive of it, but would require some extra processing 
capacity (e.g., extra effort; Kahneman, 1973). The issue 
becomes even more evident when adding a fourth condition 
(that is also part of Vandierendonck’s, 2017, simulations):

…if a fourth condition stresses both speed and accu-
racy, participants will perform faster and more accu-
rately.

Second, instructing participants to equally weight speed 
and accuracy and what participants actually do are two 
different things. It appears unlikely to us that participants 
can somehow balance responding fast and responding 
accurately like two children can justly share a piece of cake 
by dividing it exactly in half. Quite the opposite: participants 
have no way of objectively judging how much gain in speed 
is worth how much loss in accuracy, because the two are 
fundamentally different aspects of performance that cannot 
readily be compared by the same yardstick. Again, this 
becomes clear when using the driving analogy: A driver 
cannot justly share the fuel to obtain comparable values of 
speed and distance, because speed is measured in miles/h 
and distance is measured in miles, and there is no objective 
transformation between the two (let alone that participants 
would know this transformation and be able to apply it on 
the fly). Sure, the driver could drive fast until half of the fuel 
is used and then maximize distance with the second half 
of the fuel, but such sequential strategies are not possible 
for performance on a single trial of an experiment and 
therefore overstrain the analogy. Attesting to the hypothesis 
that participants cannot simply adopt any desired SAT (such 
as a neutral point), it has been shown that experimental 
manipulations (such as instructions) designed to manipulate 
SATs can affect parameters of the drift-diffusion model 
beyond the threshold parameter (e.g., Katsimpokis et al., 
2020); the reasons for this mismatch might be found in 

Fig. 4  Incompatible conceptions of SATs. Panel a illustrates the con-
ception as, in our understanding, underlying Vandierendonck (2017, 
2018, 2021b); panel b illustrates the conception underlying the pre-
sent work (as well as that of many others)

12 It might be relevant to point out here that the fast-guess model 
(Ollman, 1966; Yellott, 1971) could be interpreted as postulating a 
true neutral point, namely when the percentage of guesses is zero. In 
that case, maximal accuracy (maximal range) would be the neutral 
point, but the model would still conform to a one-dimensional rela-
tionship between speed and accuracy.
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how participants react to the experimental manipulations as 
well as in the assumptions of the drift-diffusion model with 
current evidence favoring the former possibility (Lerche & 
Voss, 2018).

Third, one may still declare that the behavior participants 
produce under “neutral” instructions (assuming that instruc-
tions can be neutral) is the “neutral point.” Importantly, this 
“neutral point” must still lie somewhere on the continuum in 
Fig. 4b (likely at different points for different participants). 
Even if the point was just in the middle of the two extremes 
(which is quite unlikely for the reasons discussed above), it 
is still not really neutral, because participants still commit 
to a certain relative weighting of speed and accuracy; in 
other words, they decide on a trade-off between speed and 
accuracy in each single condition (that appears fair or in 
line with task instructions to them as far as they feel able to 
judge this at all).

Assuming the absence of a “neutral point,” one might 
wonder how experimental psychologists can even attempt to 
“control for SATs” or to “rule out that an observed pattern of 
results is due to an SAT.” The answer is that these statements 
indeed do not make any sense if taken literally and should be 
interpreted as abridgments for “control for variations in SAT” 
and “rule out that the observed pattern of results is only due 
to differential SATs.” In fact, we recommend using the latter, 
more accurate phrasings in future papers. The goal is not to 
avoid SATs, but to make sure that the same SAT is used in 
all conditions or to transform the data in a way that the SAT 
is statistically constant across all conditions (in the sense of 
partializing out a variable such as age to render that variable 
statistically constant rather than removing it, i.e., producing 
“age-free” participants). The latter is what, in our opinion, 
combined performance measures are supposed to do.

While the simulations of Vandierendonck (2017) rely on 
the independent-dimensions conception of SATs in Fig. 4a, 
the diffusion model, by varying the threshold separation 
parameter a, implements the continuum view illustrated in 
Fig. 4b. Indeed, varying the threshold separation parameter 
is the standard way of simulating SATs in the diffusion 
model employed by many experts in the field (e.g., Dutilh 
et al., 2012; Hedge et al., 2018a, b, 2021; Lerche & Voss, 
2018). Therefore, we appreciate seeing that Vandierendonck 
(2021b) now uses the drift-diffusion model in his Study 2 
and Study 3, thus at least partially adopting our conception 
of SATs. Such a partial adoption of our conception is also 
evident in his Study 1, where he varies mean RTs and PEs 
concurrently with opposing sign. The issue with his Study 
1 is that the relative size of the mean RT and PE variation is 
fully arbitrary and therefore not representative of real data 
or useful for examining how combined measures handle 

variations in SATs (an issue that applies to all simulations in 
Vandierendonck, 2017).

Thus, the simulations in Vandierendonck (2021b) seem 
to comply more with the conception of SATs depicted in 
Fig. 4b than that depicted in Fig. 4a. There are at least two 
indications that the view depicted in Fig. 4b is not fully 
adopted though: (a) Vandierendonck (2021b) still clings to 
the notion of some “neutral point”; and (b) Vandierendonck 
(2021b) claims that in between-participants designs, “the 
increased speed by one subject may be compensated by the 
increased accuracy of another subject” (p. 6) and that this 
“issue” would somehow invalidate BIS (p. 4). Perhaps this 
last claim assumes that the first participant can increase 
speed without sacrificing accuracy and the second partici-
pant can increase accuracy without sacrificing speed by 
merely adjusting the SAT. Without these assumptions, we 
do not see any issue here.

On this background, we can now try to work out which 
conception of SATs other researchers hold. Although the 
dimensionality of SATs or the existence of some “neutral 
point” is hardly ever a topic in the literature, we compiled a 
list of statements from papers on various research questions 
that will conclude this appendix. These authors do not—at 
least according to our reading—conceive of SATs as consist-
ing of two independent dimensions or as having a neutral 
point as in Fig. 4a, but would likely subscribe to the con-
tinuum view in Fig. 4b, and some of these statements even 
explicitly mention a “speed–accuracy continuum” (empha-
ses added):

• “People can often control their level of SAT, that is, 
select or change their position along a continuum of 
speed versus accuracy” (Rinkenauer et al., 2004, p. 1)

• “to examine the mechanisms by which people control 
their position along an SAT continuum” (Osman et al., 
2000; Abstract)

• "...because speed and accuracy are inversely related [...]. 
It is not unlikely, therefore, that subjects try to find some 
reasonable compromise or tradeoff between these com-
peting objectives" (Adam, 1992, p. 174)

• “Under time pressure, it is usually not possible to respond 
quickly and accurately at the same time. Therefore, peo-
ple must trade speed for accuracy...” (Hübner et al., 
2021, Abstract)

• “Decision threshold is thought to map onto a person’s 
decision strategy regarding their speed–accuracy trade-
off, where participants can either raise their threshold 
to respond more slowly with greater accuracy, or lower 
their threshold to respond more quickly with lesser accu-
racy.” (Evans, 2021, p. 2)
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• "The accuracy group produced very accurate but slow 
movements, whereas the speed group produced very fast 
but inaccurate movements. This speed–accuracy trade-
off phenomenon was statistically confirmed by a strong 
negative between-subject correlation between movement 
time and variable error (r = −.84)" (Adam, 1992, p. 175)

• "From Figure 5, it is clear that movement time and VE 
are indeed inversely related, such that subjects trade 
movement speed for endpoint accuracy to form a speed–
accuracy tradeoff continuum." (Adam, 1992, p. 180)

• “There remains, however, a concern that SART [sustained 
attention to response task] performance might, in part, 
reflect strategic choices in responding along a speed–
accuracy trade-off curve [...]. One of the more venerable 
observations of experimental psychology is that errors 
tend to increase with response speed (Woodworth, 
1899).” (Seli et al., 2012).

• “What accounts for the trade-off relation between the 
two main components of fluency (speed and accuracy) 
so that we can generate behavior more rapidly only at 
the expense of a higher probability of error...” (MacKay, 
1982, p. 483)

• In his comprehensive review of (the history of) SATs, 
Heitz (2014) writes, “Outside of this asymptotic perfor-
mance lay a nether region of neither wholly accurate nor 
wholly fast” (pp. 1–2), certainly also implying a continuum 
(with the poles “wholly accurate” and “wholly fast” but 
without any neutral point).

Appendix 2: Correlation of parameter values 
across participants

In the simulation, we defined the respective parameter of a 
particular participant i in condition j as

where �between
i

 and �within
i,j

 (j ∈ {1, 2}) are realizations of a set 
of independent random variables [ Ebetween
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1

,E
within
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 ] 
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We now want to derive the expected correlation between the 
two conditions, that is, the correlation of the random variables

We begin by calculating the covariance as

Because μ1 and μ2 are constants and all three error terms 
are assumed as being independent (resulting in zero covari-
ances), the covariance reduces to

We continue with calculating the variances of X1 and X2 
as

and

Using (B1), (B2), and (B3), we can now calculate the 
correlation between X1 and X2 as

Appendix 3: BIS and  LISASBIS

As mentioned in the main document, our tweaked version 
of LISAS,  LISASBIS, is essentially a version of BIS linearly 
transformed to the scale of mean RTs. To see this, we need the 
formula for BIS scaled to mean RTs (Eq. 3; note that we here 
use PE instead of PC and want to make higher values stand for 
worse performance—as is the case for RTs—so that we need 
to add up the two constituents rather than subtract one from the 
other; see Liesefeld & Janczyk, 2019, p. 56 and Footnote 3):
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expanding and rearranging yields:

Note that the last term has no index and therefore is 
constant and the rest is the formula for  LISASBIS (Eq. 4), 
therefore:

As linear transformations do not affect the behavior of 
the combined measures (see section The crucial difference 
between LISAS and BIS in the main article), the behavior of 
BIS and  LISASBIS is identical (see Tables 1 and 2).

Open practice statement All simulated data and analysis code are 
available at https:// osf. io/ x9h3n/. Functions to easily calculate BIS 
(Matlab, R, Excel) are provided at: https:// github. com/ Liese feld/ BIS
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