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Human infections by the bacterial pathogen Salmonella enterica represent major disease

burdens worldwide. This highly ubiquitous species consists of more than 2600 different

serovars that can be divided into typhoidal and non-typhoidal Salmonella (NTS) serovars.

Despite their genetic similarity, these two groups elicit very different diseases and

distinct immune responses in humans. Comparative analyses of the genomes of multiple

Salmonella serovars have begun to explain the basis of the variation in disease manifesta-

tions. Recent advances in modeling both enteric fever and intestinal gastroenteritis in mice

will facilitate investigation into both the bacterial- and host-mediated mechanisms involved

in salmonelloses. Understanding the genetic and molecular mechanisms responsible for

differences in disease outcome will augment our understanding of Salmonella pathogen-

esis, host immunity, and the molecular basis of host specificity. This review outlines the

differences in epidemiology, clinical manifestations, and the human immune response to

typhoidal and NTS infections and summarizes the current thinking on why these differences

might exist.
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INTRODUCTION

Salmonella enterica is a highly diverse Gram negative bacte-

rial species containing more than 2600 different serovars dif-

ferentiated by their antigenic presentation. Various serovars

are characterized by their host specificity or by the clini-

cal syndrome they cause ranging from asymptomatic carriage

to invasive systemic disease. Most S. enterica serovars asso-

ciated with diseases in humans and other warm blooded

animals belong to subspecies I consisting of both typhoidal

and non-typhoidal serovars. Several excellent recent reviews

have highlighted different aspects of invasive salmonellosis (De

Jong et al., 2012; Feasey et al., 2012), discussed the mech-

anisms behind host restriction (Baumler and Fang, 2013),

and detailed salmonelloses in immunocompromised individu-

als (Gordon, 2008; Maclennan, 2014). Here, we will discuss how

typhoidal and non-typhoidal serovars differ in epidemiology,

clinical manifestations, and the immune response they trigger

in humans.

EPIDEMIOLOGY

While many non-typhoidal Salmonella (NTS) serovars such as

Typhimurium and Enteritidis are generalist pathogens with broad

host specificity, a few S. enterica serovars including Typhi, Sendai,

and Paratyphi A, B, or C are highly adapted to the human host

that is used as their exclusive reservoir. These specialist pathogens,

collectively referred to as typhoidal Salmonella serovars, are the

causative agents of enteric fever (also known as typhoid or paraty-

phoid fever if caused by serovar Typhi or Paratyphi, respectively).

Enteric fever is an invasive, life-threatening, systemic disease with

an estimated global annual burden of over 27 million cases, result-

ing in more than 200,000 deaths (Crump et al., 2004; Buckle

et al., 2012). Enteric fever is endemic in the developing world

in regions that lack clean water and adequate sanitation, facil-

itating the spread of these pathogens via the fecal-oral route. In

recent years, for unknown reasons, the incidence of infections with

serovar Paratyphi A is on the rise and in some regions of the globe,

particularly in South–East Asia, this serovar is accountable for up

to 50% of all enteric fever cases (Ochiai et al., 2005; Meltzer and

Schwartz, 2010).

In contrast to typhoid fever which is common in the developing

world, NTS salmonelloses occur worldwide. There are an esti-

mated 93.8 million cases of gastroenteritis due to NTS infection

each year, resulting in approximately 155,000 deaths (Majowicz

et al., 2010). Despite global morbidity, mortality due to NTS infec-

tion is primarily restricted to the developing world. In addition

to contaminated animal-derived food products such as poultry,

eggs, and dairy products, NTS transmission can result from per-

son to person contact or from contact with pets such as cats, dogs,

rodents, reptiles, or amphibians (Hohmann, 2001; Mermin et al.,

2004; Braden, 2006; Haeusler and Curtis, 2013). Another impor-

tant source of infection is consumption of contaminated produce

especially sprouts, tomatoes, fruits, peanuts, and spinach which

have all been associated with recent outbreaks (Berger et al., 2009,

2010; Barton Behravesh et al., 2011; Cavallaro et al., 2011; Jackson

et al., 2013; Bayer et al., 2014).

While normally NTS infections in humans induces gastroen-

teritis, in up to 5% of NTS cases, bacteria cause an inva-

sive, extra-intestinal disease leading to bacteremia and focal
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systemic infections, henceforth referred to as invasive NTS (iNTS;

Mandal and Brennand, 1988). Interestingly, various NTS serovars

(e.g., Typhimurium, Dublin, Choleraesuis, 9,12:l,v:−) tend to

have more potential to cause extraintestinal infections than others.

This implies there is a genetic basis for the emergence iNTS dis-

ease; however, these differences are still not understood (Wilkins

and Roberts, 1988; Marzel et al., 2014). In Sub-Saharan Africa,

iNTS is a major cause of bacteremia in adults and children,

with an estimated annual incidence of 175–388 cases per 100,000

children and 2000–7500 cases per 100,000 HIV-infected adults.

Especially S. Typhimurium sequence type (ST) 313 is associated

with invasive disease. Startlingly, in 20–25% of cases, invasive

infection results in the death of the patients. Other major risk

factors for invasive disease in addition to HIV are co-infection

with malaria and malnutrition (Feasey et al., 2012; Maclennan,

2014).

CLINICAL MANIFESTATIONS

Enteric fever caused by typhoidal serovars differs dramatically

from the gastroenteritis normally associated with NTS. Infec-

tions caused by different typhoidal serovars (e.g., Typhi and

Paratyphi A) cannot be distinguished by clinical presentation

(Meltzer et al., 2005; Patel et al., 2010). The average incubation

period for typhoidal serovars is 14 days with symptoms persist-

ing for up to 3 weeks (Olsen et al., 2003; Wangdi et al., 2012).

Patients most typically present with a gradual onset of sus-

tained fever (39–40◦C). Other frequent symptoms include chills,

abdominal pain, hepatosplenomegaly, rash (rose spots), nau-

sea, anorexia, diarrhea or constipation, headache, and a dry

cough (Stuart and Pullen, 1946). In contrast to enteric fever,

individuals infected with NTS have self-limiting, acute gastroen-

teritis and watery diarrhea. Nausea, vomiting, abdominal pain,

and fever are also common symptoms (McGovern and Slavutin,

1979). With NTS infection, symptoms appear 6–12 h after the

ingestion of the pathogen and clinical symptoms last less than

10 days (Glynn and Palmer, 1992). In the case of iNTS infections,

which are often associated with patients with immunodeficiency,

disease more closely resembles enteric fever in that patients

often suffer from high fever, hepatosplenomegaly, and have res-

piratory complications with intestinal symptoms often being

absent.

Both typhoidal and NTS serovars initially adhere to and invade

the intestinal epithelium of the small intestine (Liu et al., 1988).

Unlike NTS infection, infection by typhoidal serovars does not

induce a high inflammatory response during the initial invasion

of the intestinal mucosa (Sprinz et al., 1966; Kraus et al., 1999;

Nguyen et al., 2004). Minimal intestinal inflammation during

enteric fever is correlated with negligible neutrophil transmi-

gration across the intestinal epithelium in contrast to massive

neutrophil recruitment during intestinal inflammation caused by

NTS serovars (McCormick et al., 1995). In immunocompetent

patients, NTS gastroenteritis is self-limiting, with infection being

confined to the terminal ileum and colon. In the case of typhoidal

salmonellae, after passing the intestinal mucosa, bacteria gain

access to underlying lymphoid tissues and multiply intracellularly

within mononuclear phagocytes. Infection quickly becomes sys-

temic with spreading of the pathogen from the intestine to the

mesenteric lymph nodes, liver, spleen, bone marrow, and gallblad-

der. Secondary infection of typhoidal organisms to the small bowel

can occur via secretion in the bile through the enterohepatic cycle

(Gordon, 2008). The absence of robust intestinal inflammation

and the lack of neutrophil transmigration are thought to facil-

itate the invasion of typhoidal serovars into the deeper tissues

of the gut and its dissemination to systemic sites (House et al.,

2001).

Interestingly, up to 10% of convalescing, untreated patients

continue to shed S. Typhi in their stool for up to three months

after infection (Parry et al., 2002). One to four percent of individ-

uals infected with S. Typhi become asymptomatic, chronic carriers

that continue to excrete 106–1010 S. Typhi bacteria per gram of

feces for more than 12 months. The role of such chronic carriers

in disease transmission was notoriously demonstrated by the case

of Mary Mallon (Typhoid Mary). During her work at different

households as a cook in the New York City area in the early 20th

century, Mary Mallon infected between 26 and 54 people (Marr,

1999). Another example of an asymptomatic S. Typhi carrier was

“Mr. N” who worked as a cowman and milker in South–East

England and was responsible for a 207 case outbreak of typhoid

fever, which peaked in 1899 but continued until 1909 (Mortimer,

1999). The suspected site of persistence of S. Typhi in carriers

is the gallbladder and gallstones are thought to be an important

risk factor for developing chronic carriage (Levine et al., 1982) as

they are conducive for biofilm formation which protects bacte-

ria from antimicrobial compounds and the host immune system.

Long-term carriage of S. Paratyphi has received much less atten-

tion and is currently less characterized than S. Typhi, but a recent

study in Nepal suggests a similar rate of persistence for serovars

Typhi and Paratyphi A in endemic regions (Khatri et al., 2009;

Dongol et al., 2012).

Long-term carriage of NTS has not been described. How-

ever, even though symptoms usually last only for a few days,

adults excrete Salmonella on average for 1 month after infec-

tion and children under the age of 5 years shed bacteria in their

feces for an average of 7 weeks (Buchwald and Blaser, 1984;

Hohmann, 2001). Interestingly, several studies have shown that

treatment with antibiotics can prolong shedding of NTS bacte-

ria (Aserkoff and Bennett, 1969; Murase et al., 2000), although

these findings are controversial (Dryden et al., 1996; Hohmann,

2001). In comparison to NTS serovars, the long-term persistence

of typhoidal serovars in humans suggests an enhanced ability of

these pathogens to evade the human immune system (Raffatellu

et al., 2008b).

HUMAN IMMUNE RESPONSE

Infection in humans by NTS serovars induces a strong Th1

response with high levels of IFN-γ, IL-18, IL-12, IL-15, TNF-α,

and IL-10 detected in serum from patients (Mizuno et al., 2003;

Stoycheva and Murdjeva, 2005). Expression of several chemokines

is also induced upon NTS infection, which leads to the recruitment

and activation of macrophages and dendritic cells, and a signif-

icant influx of neutrophils into the intestinal lumen, which is a

hallmark of NTS gastroenteritis. The fact that typhoidal serovars

are not typically associated with acute diarrhea or a strong influx

of neutrophils into the intestinal lumen (Sprinz et al., 1966; Kraus
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et al., 1999; Nguyen et al., 2004) suggests that their initial interac-

tion with the human gut mucosa is less inflammatory than that of

NTS serovars.

Recent studies have shown that patients with inherited

deficiency of the IL-12/IL-23 system (IL-12p40/IL-12Rβ1) are

highly susceptible to NTS infections, but not to S. Typhi or

S. Paratyphi infections, even though some of these patients

live in endemic areas (MacLennan et al., 2004; Van de Vosse

and Ottenhoff, 2006). These observations support the possi-

bility that different inflammatory pathways may be involved in

NTS vs. typhoidal infections including a distinct role for the

IL-12 pathway. This idea is further supported by additional

epidemiological observations indicating that invasive infections

caused by NTS, but not by typhoidal serovars, are often associ-

ated with immunocompromised adults, in particular individuals

infected with HIV (Gordon, 2008; MacLennan and Levine, 2013).

This implies that certain immune responses, malfunctioning

during HIV infection, are required for the immune defense

against systemic infection of NTS, but not against typhoidal

serovars.

The immune response to infection with typhoidal serovars is

complex and involves both humoral and cell-mediated immune

responses (Sztein, 2007). Clinical studies that examined the

immune response of patients infected with S. Typhi showed a

significant CD4 and CD8 T cell response to specific S. Typhi

antigens during typhoid fever, with elevated levels of IFN-γ dur-

ing the acute phase of the disease (Butler et al., 1993; Sheikh

et al., 2011). Transcriptome analysis of peripheral blood mononu-

clear cells (PBMCs) from patients with acute typhoid fever also

demonstrated up-regulation of the genes from the IFN-γ path-

way compared to healthy individuals (Thompson et al., 2009).

Induction of other cytokines in response to S. Typhi infection

include IL-6 and IL-8 which are secreted into the serum dur-

ing the acute phase of typhoid fever (Butler et al., 1993; Keuter

et al., 1994; Gasem et al., 2003). PBMCs from immunized volun-

teers orally vaccinated with an attenuated S. Typhi vaccine secrete

Th1 cytokines including IFN-γ, TNF-α, and IL-10, following sen-

sitization with a number of S. Typhi antigens including flagella

(Wahid et al., 2007). Collectively, these findings indicate that the

human immune response to S. Typhi infection is predominantly

Th1-associated.

Given that typhoidal serovars do not typically illicit septic

shock, in contrast to many other Gram-negative pathogens that

induce bacteremia and leukopenia (Pohan, 2004; Tsolis et al., 2008;

Gal-Mor et al., 2012), suggests a restrained immune response

mediated by these pathogens in the human host. This view is

consistent with the clinical observation that serum levels of pyro-

genic cytokines IL-1β and TNF-α are relatively low in patients

with typhoid fever compared to the levels found in patients

with sepsis caused by other Gram-negative pathogens. In fact,

IL-1β and TNF-α production by PBMCs has been shown to

be suppressed during the acute phase of typhoid fever (Butler

et al., 1978; Girardin et al., 1988; Keuter et al., 1994; Gasem et al.,

2003).

Despite the increasing prevalence of S. Paratyphi A in endemic

regions, the immune response to S. Paratyphi infection is much

less characterized than the one to S. Typhi. A recent study done

in our group examined the circulating cytokine profile of healthy

Israeli travelers that became infected with S. Paratyphi A during

an outbreak in Nepal. Comparison of 16 cytokines demonstrated

considerable (more than 10-fold) increase in the serum concentra-

tion of IFN-γ, but only a moderate elevation in the concentration

of IL-6, IL-8, IL-10, and TNF-α between convalescence and the

peak time of clinical presentation (Gal-Mor et al., 2012). These

results suggest that the prominent IFN-γ and the moderate TNF-

α, IL-6, and IL-8 responses are common to both typhoid and

paratyphoid fever. Interestingly, no changes in IL-12 serum con-

centrations were detected during the acute phase of the disease

(Gal-Mor et al., 2012), in contrast to its induction seen during

gastroenteritis caused by NTS serovars (Stoycheva and Murdjeva,

2005).

CURRENT THERAPIES AND VACCINES

Antibiotic therapy can prolong the duration of excretion of

NTS and therefore is only recommended for people with severe

illness, invasive disease, or for certain risk groups includ-

ing infants, the elderly, and immunocompromised individu-

als. Enteric fever, on the other hand is always immediately

treated with antibiotics. In the 1990s, physicians moved away

the first-line antibiotics chloramphenicol, ampicillin, and cot-

rimoxazole due to widespread resistance amongst S. enterica

serovars. Since then, fluoroquinolones (like ciprofloxacin) have

been the primary treatment for salmonelloses, as this class

of drug is particularly effective against intracellular Gram-

negative bacteria. While there is increasing resistance to flu-

oroquinolones, new fluoroquinolones like gatifloxacin hold

promise. Third generation cephalosporins are often the second-

line treatment to treat salmonelloses. In addition, azithromycin

is relatively new drug with activity against both nalidixic acid

resistant and multidrug resistant (MDR) strains (Hohmann, 2001;

Arjyal and Pandit, 2008).

Multidrug-resistance is an increasing problem in S. enterica

serovars. Resistance to multiple antibiotics is especially common

in serovars Typhimurium and Newport and multidrug-resistant

strains are also linked to more severe disease outcome (Krueger

et al., 2014). Notably, many strains of S. Typhimurium Definitive

Type (DT) 104, which have caused multiple outbreaks since the

1990s, are resistant to ampicillin, chloramphenicol, streptomycin,

sulphonamides, and tetracycline (Mather et al., 2013). Moreover,

new resistant strains of S. enterica are continuously emerging

worldwide. For example, an MDR strain of serovar Infantis now

accounts for up to 35% of the NTS infections in Israel (Gal-Mor

et al., 2010; Aviv et al., 2014). Additional examples are the emer-

gence of resistant strains of serovars Virchow (Weill et al., 2004)

and Heidelberg (Dutil et al., 2010). Similarly, many iNTS strains

are resistant against ampicillin, chloramphenicol, kanamycin,

streptomycin, trimethoprim, and cotrimoxazole (Gordon, 2008;

Kingsley et al., 2009; Msefula et al., 2012). Therefore, there is a

high need to (i) prevent further resistance development through

the prudent use of antibiotics, (ii) improve measures that pre-

vent spread of MDR strains, and (iii) discover new therapies

for salmonelloses. Interestingly, the re-emergence of chloram-

phenicol sensitive strains in areas where resistance was previously

prevalent suggests that cycling or rotation of antibiotics could also
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be an effective strategy to deal with antibiotic resistance, render-

ing older antibiotics useful once again (Abel Zur Wiesch et al.,

2014).

Three types of vaccines against S. Typhi are currently com-

mercially available, but unfortunately, there is still not a single

licensed vaccine available against S. Paratyphi A, with very lit-

tle, if any, cross-protection provided by the available S. Typhi

vaccines. Vaccination strategies against typhoid fever including

a description of ongoing trials were recently reviewed in detail

(Waddington et al., 2014). The currently licensed S. Typhi vac-

cines include (i) a killed whole cell parenteral vaccine (Engels

et al., 1998), (ii) a live attenuated oral vaccine, designated Ty21a

(Germanier and Fuer, 1975) and, (iii) a Vi polysaccharide capsule-

based vaccine (Tacket et al., 1986). There are vaccines against NTS

serovars Enteritidis and Typhimurium which are effective in poul-

try (Desin et al., 2013). However, there are no vaccines available

for NTS in humans or other animal reservoirs such as cattle or

pigs. This represents a significant limitation in the existing preven-

tion strategies. Understanding the host specificity determinants

of S. enterica serovars will aid in future therapeutic and vaccine

development.

WHY DO TYPHOIDAL AND NTS SEROVARS ELICIT SUCH

DIFFERENT HOST IMMUNE RESPONSES?

How do pathogens so similar, belonging to the same subspecies (S.

enterica ssp. I), with >96% DNA sequence identity between shared

genes (McClelland et al., 2001) induce such different clinical man-

ifestations and immune responses in humans? Despite significant

advances in the field, this question is still far from being answered.

Understanding the genetic and molecular mechanisms responsible

for differences in disease outcome will aid in our understanding of

Salmonella pathogenesis, host immunity, and the molecular basis

of host specificity (Table 1).

In vitro tissue culture studies suggest that S. Typhi induces

restrained inflammatory responses that do not trigger a pro-

inflammatory response via TLR5. Similarly, polarized human

colonic epithelial (T84) cells infected with S. Typhi induce sig-

nificantly lower levels of the neutrophil chemoattractant IL-8

compared to S. Typhimurium infection (Raffatellu et al., 2005).

Raffatellu et al. (2008b) have therefore postulated that S. Typhi

expresses unique virulence factors that allow this pathogen to

overcome the innate immune response in the intestinal mucosa

resulting in the absence of neutrophil infiltration and inflamma-

tory diarrhea. One of the current hypotheses in the field suggests

that the polysaccharide capsular antigen Vi in S. Typhi enables this

pathogen to resist phagocytosis and complement killing (Rob-

bins and Robbins, 1984) and masks access to pattern recognition

molecules, resulting in less IL-8 production (Raffatellu et al., 2005),

limited neutrophil influx, and thereby reduced small bowel inflam-

mation (Sharma and Qadri, 2004; Wilson et al., 2008). The role of

the Vi antigen regulator TviA, and its putative contribution to S.

Typhi’s ability to evade the immune system have been recently

reviewed (Wangdi et al., 2012). Nevertheless, since the Vi capsule

is largely restricted to serovar Typhi and is absent from serovars

Paratyphi A and Sendai, it cannot explain why the clinical manifes-

tations of these other typhoidal serovars differ from that of NTS.

Furthermore, the fact that Vi-negative mutants of S. Typhi are still

able to cause a typhoid-like illness in human volunteers (Zhang

et al., 2008), suggests that additional mechanisms are involved

(Figure 1).

Of the approximately 4400 S. Typhi and S. Paratyphi A genes,

about 200 are inactivated or functionally disrupted, while most

of their homologs in S. Typhimurium are intact. Many of the

degraded genes found in the genomes of the typhoid serovars are

involved in motility and chemotaxis or encode for type 3 secretion

system effectors, fimbriae, or adhesins that play a role in Salmonella

pathogenicity (McClelland et al., 2004). Furthermore, Salmonella

pathogenicity island (SPI)-7 (encoding the Vi antigen), SPI-15,

SPI-17, and SPI-18 are present in the genome of S. Typhi, but

not in the genome of S. Typhimurium, while SPI-14, present in

S. Typhimurium, is absent from the genome of typhoidal serovars

(Sabbagh et al., 2010). Therefore, it is highly possible that dif-

ferences in virulence and colonization factor composition affect

host–pathogen interactions and disease outcome in humans. This

notion has recently been demonstrated by the expression of the

S. Typhimurium effector, GtgE, in S. Typhi. When secreted into

host cells, GtgE proteolytically degrades Rab29 and confers the

ability of S. Typhi to survive and replicate within macrophages

and in tissues from mice, a normally non-permissive host

(Spano and Galan, 2012).

Recent evidence suggests that NTS serovars have evolved to

flourish in the inflamed gut environment and use inflamma-

tion to outcompete microbiota (Stecher et al., 2007; Thiennimitr

et al., 2011). It has been proposed that typhoidal strains may

have lost this ability and therefore have evolved to not induce

inflammation in the gut but rather thrive systemically. For exam-

ple, a by-product of the acute intestinal inflammation triggered

by S. Typhimurium and other NTS serovars is the generation

of the terminal electron acceptors nitrate and tetrathionate in

the lumen of the inflamed gut. These compounds can be used

by S. Typhimurium and other NTS serovars to outcompete the

fermenting gut microbes that are unable to utilize these elec-

tron acceptors (Winter et al., 2010). In another recent report,

Nuccio and Baumler (2014) have identified a network of 469 genes

involved in central anaerobic metabolic pathways that are intact in

NTS, but are decayed in the genome of typhoid serovars. Some of

these degraded genes include the ethanolamine utilization path-

way (eut genes) as well as the vitamin B12 biosynthesis pathway (cbi

and cob genes) required for ethanolamine utilization (Nuccio and

Baumler, 2014). These pathways are hypothesized to enable NTS

to utilize inflammation-derived nutrients to outcompete other gut

microbes.

Collectively, a substantial degree of metabolic and virulence

gene degradation exists in the genomes of typhoidal serovars which

may explain the restricted host-tropism of these pathogens and

may also provide at least a partial explanation as to why typhoidal

and NTS-infections induce such different clinical presentations

and immune responses in humans.

ANIMAL MODELS

ANIMAL MODELS OF NON-TYPHOIDAL SALMONELLOSES

There are several animal models used to model human gastroen-

teritis caused by NTS. The model which most resembles human

disease is arguably infection of non-human primates (Kent et al.,
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Table 1 | Summary of the differences between NTS and typhoidal serovars associated with disease in humans.

NTS serovars Typhoidal serovars

Serovars Represented by the ubiquitous serovars Typhimurium and

Enteritidis, but ∼1500 other serovars of S. enterica ssp. I

are known

Typhi, Paratyphi, and Sendai

Host range Broad Human-restricted

Epidemiology Worldwide Endemic in developing countries especially

Southeast Asia, Africa, and South America

Reservoirs Farm animals, produce, pets None, human to human transmission

Clinical manifestations Self-limiting gastroenteritis in immunocompetent

individuals (diarrhea, vomiting, cramps)

In immunocompromised patients (including patients with

inherited deficiency of the IL-12/IL-23 system and HIV),

disease is associated with invasive extraintestinal

infections

Invasive, systemic disease in immunocompetent

individuals (fever, chills, abdominal pain, rash,

nausea, anorexia, hepatosplenomegaly, diarrhea

or constipation, headache, dry cough)

Disease course Short incubation period (6–24 h)

Brief duration of symptoms (less than 10 days)

Long-term carriage has not been observed

Long incubation period (7–21 days)

Extended duration of symptoms (up to 3 weeks)

One to four percent of infected individuals

become long-term (≥1 year) carriers

Human immune response Robust intestinal inflammation, neutrophil recruitment,

Th1 response

Minimal intestinal inflammation, leukopenia,

Th1 response

Genetic basis of disease differences

and host specificity

Low degree of genome degradation

Able to use terminal electron acceptors for anaerobic

respiration in the inflamed gut

Unique virulence factors (e.g., fimbriae, SPI-14)

∼5% of the genome is degraded (e.g.,

inactivated metabolic and virulence factor genes)

Unique virulence factors and pathogenicity

islands (e.g., Vi antigen, SPIs 7, 15, 17, and 18)

Vaccination No vaccine available for humans (i) killed whole cell parenteral vaccine, (ii) live

attenuated oral vaccine (Ty21a), (iii) Vi

polysaccharide capsule-based vaccine

Animal models of human disease Streptomycin-pretreated mice

Calves

Non-human primates

Mouse infection with S. Typhimurium

Tlr11−/− mice

Humanized mice

1966; Rout et al., 1974). Rhesus macacques are especially use-

ful for investigating co-infection with simian immunodeficiency

virus. For example, infection of SIV-infected macacques with

S. Typhimurium results in a blunted immune response and inva-

sive bacterial disease similar to what is seen in HIV-infected

patients (Raffatellu et al., 2008a). Furthermore, this model is use-

ful for testing the efficacy and safety of potential live Salmonella

vaccines for HIV infected people (Ault et al., 2013). However,

the use of primates is limited by ethical concerns, cost, and

the inability for genetic manipulation. Infection of calves with

S. Typhimurium results in similar pathology to humans. Further-

more, S. Typhimurium is a natural pathogen of cattle and beef is a

common reservoir for human infection (Santos et al., 2001; Costa

et al., 2012). Data from the calf model have provided valuable

insights into host–Salmonella interaction. However, this model

is also restricted by cost and the limited possibility for genetic

manipulation of the host.

Due to the low cost, ease of housing/handling, and genetic

manipulation possible, mouse models are the most widely

used animal models to study bacterial disease. NTS infection

of mice does not mimic gastroenteritis as seen in humans

but results in a typhoid-like systemic disease. However, after

pretreatment of mice with antibiotics such as streptomycin

or kanamycin, S. Typhimurium can overcome the “colo-

nization resistance” presented by the natural microbiota and

thus efficiently colonize the cecum and colon. In the now

widely used streptomycin pretreatment model, NTS infection

has been shown to lead to overt inflammation characterized

by transmural inflammation including epithelial destruction,

infiltration of inflammatory cells into the mucosa, forma-

tion of crypt abscesses, submucosal edema, and hyperplasia

(Barthel et al., 2003; Hapfelmeier and Hardt, 2005; Sekirov et al.,

2008; Woo et al., 2008). This model is now being exploited

by many research groups to dissect both the bacterial- and

www.frontiersin.org August 2014 | Volume 5 | Article 391 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Immunology/archive


Gal-Mor et al. Typhoidal and non-tyhoidal Salmonella serovars

FIGURE 1 | Molecular bases for differences between typhoidal and

NTS serovars. (A) Typhoidal serovars possess several inactive/degraded

genes compared to NTS serovars such as genes for chemotaxis, adhesion,

and anaerobic metabolism. (B) Both typhoidal and NTS serovars possess

unique virulence factors. For example, some S. Typhi strains express Vi

(Continued)

FIGURE 1 | Continued

capsule that reduces TLR-dependent IL-8 production in the intestinal

mucosa. However, while the Vi capsule plays a role in typhoid fever

manifestation, it is not necessary as it is absent from other typhoidal

serovars and Vi-negative mutants of S. Typhi are still able to cause a

typhoid-like illness in humans. (C) In contrast to typhoidal serovars, NTS

cause severe intestinal inflammation. NTS serovars have evolved to utilize

inflammation-derived metabolites (e.g., nitrate and tetrathionate), thereby

enhancing their growth in the inflamed intestine. Typhoidal serovars have

lost the ability to benefit from inflammation-derived metabolites and

disseminate to systemic sites to a much greater extent.

host-mediated mechanisms involved in intestinal inflammation

induction by NTS.

ANIMAL MODELS OF ENTERIC FEVER

S. Typhi, S. Paratyphi, and S. Sendai are human-restricted

pathogens. Historically, attempts at eliciting enteric fever in ani-

mal models by infection with S. Typhi have proven to be rather

inadequate. Chimpanzees infected with S. Typhi develop a mild

disease that resembles enteric fever, but only when infected with

a very high dose of 1 × 1011 CFU (Edsall et al., 1960). Another

model for S. Typhi consists of inoculating mice intraperitoneally

with S. Typhi suspended in hog gastric mucin (Pasetti et al.,

2003). However, this model has not been found to correlate well

with human enteric fever and with the expected attenuation of

key Salmonella virulence regulators, such as PhoP (Baker et al.,

1997).

Therefore until recently, due to the lack of suitable ani-

mal models, much of our understanding of enteric fever had

been extrapolated from S. Typhimurium infection in mice. Mice

infected with S. Typhimurium display minimal intestinal pathol-

ogy but become systemically colonized as seen in humans with

enteric fever. This model also allows for investigation of gall-

bladder colonization which is most likely the niche for chronic

S. Typhi carriage in humans (Menendez et al., 2009; Gonzalez-

Escobedo et al., 2013). Susceptible (Slc11a1−/−, also known as

Nramp1) mouse strains have been widely used but also resistant

(Slc11a1+/+) mice have proven useful. Mice with a wild-type

Slc11a1 gene (e.g., 129Sv, DBA) are relatively resistant to high doses

of S. Typhimurium and have been particularly useful to investi-

gate chronic infection, carriage (Lawley et al., 2006; Monack et al.,

2004), and transmission (Lawley et al., 2008; Gopinath et al., 2012;

Monack, 2012). In general, infection of mice with NTS has pro-

vided invaluable insight into the role of specific virulence factors in

host invasion, dissemination, and transmission and although the

murine inflammatory response to NTS in some ways resembles

the human response to typhoidal serovars (Santos et al., 2001),

conclusions from this model regarding the relevance to human

typhoid disease must be carefully inferred.

In recent years, more sophisticated mouse models have been

developed to study S. Typhi infection. Mathur et al. (2012) have

shown that Salmonella flagellin is recognized in the mouse intes-

tine by Toll-like receptor 11 (TLR11), which is absent from

humans. Tlr11 knockout mice are severely attenuated in innate

epithelial responses to S. Typhi (and S. Typhimurium) and exhibit

significant systemic infection following oral administration
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(Mathur et al., 2012; Shi et al., 2012). It will be exciting to see

if this model can also be used for infection with S. Paratyphi.

Another promising novel model is the use of humanized

mice whereby immunodeficient mice (either Rag2−/− Il2rg−/−

or NOD·Cg-Prkdcscid Il2rg−/−) lacking murine T, B, and NK

cells are engrafted with human CD34+ hematopoietic stem

cells (Shultz et al., 2007). These chimeric mice contain human

immune cells including B cells, CD4+ and CD8+ T cells, NK

cells, monocytes, and myeloid and plasmacytoid dendritic cells.

Such humanized mice facilitate S. Typhi replication in the liver,

spleen, and gallbladder and allow long-term persistence to be

modeled (Song et al., 2010; Firoz Mian et al., 2011). In addi-

tion, infection results in a progressive, lethal infection within

two to three days with inflammatory cytokine responses resem-

bling human typhoid (Libby et al., 2010). These models suggest

that the presence of human immune cells is prerequisite for sys-

temic infection and in vivo replication of S. Typhi in the mouse.

Although these humanized mice have proven informative to the

study of S. Typhi infection, they are expensive and labor-intensive

models and (so far) not widely used. Another limitation of

such models is that they are subject to considerable inconsis-

tency as a result of the genetic heterogeneity of donors and the

variable degree of engraftment (Libby et al., 2010; Mian et al.,

2011).

PERSPECTIVES

In-depth comparative analyses of the genomes of Salmonella

serovars have begun to explain the basis for the variation

seen in disease manifestations; however, this is still far from

being fully understood. An interesting question in this regard

is whether there is a genetic basis for the emergence of iNTS

strains and why some NTS serovars (e.g., Typhimurium, Dublin,

Choleraesuis, Schwarzengrund) tend to cause more invasive

disease than others. In addition, the mechanisms by which

co-infections (e.g., with Plasmodium falciparum, HIV) con-

tribute to the increased risk of iNTS bacteremia must be fur-

ther investigated. From the perspective of the host response,

one unanswered question is whether there are unique immune

responses to different typhoidal strains (e.g., Typhi vs. Paraty-

phi). And lastly, a fast-developing area of research that has

already had implications on our understanding of salmonelloses

is that of the role of the microbiota in disease outcome (see

review by Santos in this issue). In the case of gastrointestinal

pathogens, the influence of the host microbiota on pathogen-

esis, host immunity, and disease progression can no longer be

overlooked.

Exploitation of the recent advances in modeling typhoid and

NTS infection in mice is likely to provide novel insights into how

these serovars are able to cause such different diseases. Opportu-

nities remain, however, in the development of “next generation”

humanized mouse models with enhanced human cell engraftment

and function. These models hold much promise as they allow one

to study the pathogenesis of human-restricted serovars, as well as

to test the efficacy of therapeutic agents and experimental vaccines.

Understanding the genetic and molecular mechanisms responsible

for differences in disease outcome will aid in our understanding

of Salmonella pathogenesis, host immunity, and the molecular

basis of host specificity. Together, this information may be applied

to control Salmonella infection, with specific determinants being

targeted for therapeutic and vaccine development.
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