
SAMOA: Framework for Synchronisation Augmented Microprotocol Approach∗

Paweł Wojciechowski, Olivier Rütti, and André Schiper

EPFL, School of Computer and Communication Sciences

1015 Lausanne, Switzerland

{First.Last}@epfl.ch

Abstract

We address programming abstractions for building pro-

tocols from smaller, reusable microprotocols. The existing

protocol frameworks, such as Appia and Cactus, either re-

strict the amount of concurrency between microprotocols,

or depend on the programmer, who should implement all

the necessary synchronisation using standard language fa-

cilities. We develop J-SAMOA: a framework for a Synchro-

nisation Augmented Microprotocol Approach in Java. It has

been designed to allow concurrent protocols to be expressed

without explicit low-level synchronisation, thus making pro-

gramming easier and less error-prone. In this paper, we

describe versioning concurrency control algorithms. They

are used by the runtime system of our framework to guaran-

tee that the concurrent execution of a protocol is equivalent

to a serial execution of its microprotocols. This guarantee,

called the isolation property, ensures consistency of session

or message-specific data maintained by microprotocols.

1 Introduction

Modularization is a well-known technique for simpli-

fying complex communication systems. Protocol frame-

works, such the x-kernel [12], Cactus [24], Appia [17], and

Ensemble [9] have been built. They allow complex pro-

tocols to be implemented as compositions of separate mi-

croprotocols that communicate using the framework’s in-

terface [23]. This approach helps to clarify the dependen-

cies among properties required by a given communication

system, allows for code reuse, and makes it possible to con-

struct systems that are customized to the specific needs of

the application or underlying network environment. The

protocol frameworks also support primitives that can sim-

plify the construction of network protocols, such as support

∗Research supported by the Swiss National Science Foundation under

grant number 21-67715.02 and Hasler Stiftung under grant number DICS-

1825.

for processing messages, marshalling messages to the net-

work format, and timeouts.

The design of modular protocols is however problematic:

some microprotocols may have to synchronise their actions

in order to maintain consistency of session or message-

specific data (the problem will be illustrated on the example

of group communication protocols in Section 3). The goal

of our work was to design programming support for leaving

the exact implementation of this synchronisation to a run-

time system rather than requiring programmers to identify

what synchronisation is needed, and where to acquire and

release locks. For the class of synchronisation problems we

consider here, a sufficient correctness condition is the isola-

tion property. Execution of concurrent microprotocols satis-

fies the isolation property if the protocol’s state is equivalent

to a state that can be produced by some serial execution of

the microprotocols. Our approach has close analogies with

the concept of transactions. The isolation property is like

isolation in database transactions, however, it is not accom-

panied by additional properties defined in the transactional

model, i.e. atomicity, consistency, and durability. In this pa-

per, we focus on a lightweight implementation for enforcing

the isolation property in protocol frameworks.

The existing software frameworks do not support the iso-

lation property in a completely satisfactory way. For in-

stance, Appia does not allow for concurrent execution of

microprotocols: all actions which result from a single ex-

ternal event (such as message arrival) are handled by mi-

croprotocols sequentially using FIFO communication chan-

nels; this excludes a number of reasonable concurrent exe-

cutions of microprotocols, e.g. for dealing with messages

from the application and network at the same time, for

processing time consuming I/O operations in background,

or in order to support multiprocessor architectures. Cac-

tus does not restrict the amount of concurrency but, on the

other hand, it depends on the programmer, who must im-

plement the required synchronisation policy using standard

language facilities (such as locks, semaphores, and mon-

itors). The synchronisation code is however rather subtle

and error-prone, especially for highly-concurrent protocols.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

In this paper, we try to find a better solution.

To study the problem of the isolation property in the pro-

tocol design, we develop SAMOA – a programming lan-

guage for a Synchronisation Augmented Microprotocol Ap-

proach. The main feature of the approach is separation of

the low-level synchronisation from the protocol’s logic. The

SAMOA programmer has only to declare which events are

external; the runtime system will use concurrency control

algorithms to enforce that the effects of one computation,

defined informally as the execution of all microprotocols

involved in processing of a single external event, are not

visible to other computations executing concurrently; from

the perspective of a computation, it appears that computa-

tions execute sequentially rather than in parallel. Compu-

tations correspond to (possibly multi-threaded) transactions

with no support for atomicity and durability. However, un-

like transactions whose termination is defined statically us-

ing “commit” and “abort”, computations are never aborted,

and have scope which depends on a given composition of

microprotocols.

In this paper, we describe J-SAMOA – a protocol frame-

work that ensures the isolation property. J-SAMOA is

based on the SAMOA language and implemented as a Java

[1] library; the implementation is available [6]. We have

designed several deadlock-free concurrency control algo-

rithms for our framework’s runtime system. They can be

classified into two groups: 1) versioning algorithms with

allocation of access to event handlers, and 2) timestamp-

ordering algorithms with rollback/recovery. In this paper,

we focus on the first group, and describe three algorithms

that we use in J-SAMOA: the basic version-counting al-

gorithm (VCAbasic) and two extensions of this algorithm,

VCAbound and VCAroute . The latter two algorithms can

support more parallelism, however, they achieve that by de-

manding some additional properties of the protocols to be

specified by the programmer. The VCAbound algorithm re-

quires the least upper bound on the number of times a given

microprotocol can be executed by a computation, VCAroute

requires the pattern of handler calls to be specified.

The advantages of our framework with respect to exist-

ing protocol frameworks are twofold: 1) it makes program-

ming of concurrent protocols easier since the programmer

does not need to implement the low-level synchronisation

(we illustrate this point in the paper), and 2) it can also

greatly simplify reasoning about protocols and doing the

correctness proofs. The latter claim follows from the fact

that the isolation property allows us to reason about concur-

rent computations as they would be executed sequentially.

The paper is organized as follows. Section 2 describes

our model. Section 3 gives a brief illustrative example of

J-SAMOA code. The code is used to show some non-trivial

programming errors in the design of concurrent protocols.

The construct of the SAMOA language that eliminates this

type of errors is informally described in Section 4. Sec-

tion 5—the heart of our paper—describes the concurrency

control algorithms that we designed for J-SAMOA. Section

6 discusses related work, and Section 7 sketches our plans

for the future development of J-SAMOA.

2 Model

Protocol frameworks, such as Cactus (which builds on

the x-kernel), Appia, and our framework, can be described

using a simple event model. In this model, protocols consist

of code blocks that communicate (synchronously or asyn-

chronously) using internal events, and may also react on ex-

ternal events and output values. Below we define the model,

and use a small example of a protocol in this model to illus-

trate the notion of the isolation property.

Protocols consist of code blocks called event handlers.

Several related handlers can be grouped into a single mi-

croprotocol and share a local state of the microprotocol’s

object. Execution of a handler can directly modify only the

local state of its own microprotocol. The protocol’s state

is the union of (disjoint) local states of all microprotocols,

and encompasses all of the in-memory and on-disk data

items that affect the protocol’s operation. For simplicity, we

confuse handlers and microprotocols (simply assuming that

each microprotocol has only one handler). In J-SAMOA

programs, a microprotocol can consist of many handlers.

Executions of handlers are triggered by events. An event

is a request (at run time) to call a handler. Each event must

specify an event type — only handlers that have been bound

to this event type will be executed as the result of the event.

Any events generated by the execution of handler(s) that

have been triggered by an event a, are causally dependent

on a; the causality relation is reflexive and transitive. Some

events are not causally related; they are concurrent. An

event a is pending if there is at least one handler requested

by a that has not commenced yet in response to event a.

We have two kinds of events: internal and external. An

internal event generated during a handler’s execution trig-

gers the execution of another (or the same) handler. The

execution of a handler can generate zero, one or more in-

ternal events. External events of a protocol are normally:

1) requests by the network layer (or application) to inject a

message received from the network (or application) to the

protocol, and 2) a timeout action. In practice, some internal

events may be also regarded as external.

Execution of a protocol is modelled as a run, defined as

a list of pairs (a,H), where a is an event and H is a handler

requested by a that has begun execution; if H has not com-

menced yet, we write H∂ . The list is ordered according to

the order of time when handlers commenced, or, in case of

pairs (a,H∂) where a is pending, when events were issued.

A run is complete if it does not have pending events.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

b0

S

R

P Q

a0

a1 b1

a2 b2

Figure 1. Events and handlers

To illustrate the notions introduced so far, let us take an

example protocol with four handlers P , Q, R, and S, as il-

lustrated in Fig. 1. It can, for example, receive UDP packets

either from ad-hoc network (to be processed by P) or fixed

network (to be processed by Q), and deliver them to han-

dler S; we abstract away from details. Handlers R and S

are assumed to be atomic (i.e. only one instance at a time).

We assume that two external events a0 and b0 have oc-

curred. In all possible executions of this protocol triggered

by these events, event a0 (correspondingly b0) triggers the

execution of handler P (correspondingly Q); and handler

R is executed twice, once as the result of internal event a1

(which causally depends on event a0), another time as the

result of internal event b1. The events a0 and b0 are concur-

rent, also events a1 and b1 are concurrent. Example com-

plete runs of the protocol are:

r1 = ((a0, P), (a1, R), (a2, S), (b0, Q), (b1, R), (b2, S))

r2 = ((a0, P), (b0, Q), (a1, R), (a2, S), (b1, R), (b2, S))

r3 = ((a0, P), (b0, Q), (a1, R), (b1, R), (b2, S), (a2, S))

An external event c spawns a computation, defined

as a subsequence of a run, containing c together with a

set of all events that causally depend on c but exclud-

ing any other (causally dependent) external events d, e, ...,

and any events that causally depend on d, e, Com-

putations spawned by such events d, e, ... are caused by

the computation spawned by c. In a protocol run, we re-

quire all computations to eventually complete. A com-

putation is complete when the execution of all handlers

triggered by (events of) the computation have completed,

and no event is pending. In the runs above, we have two

computations: ka = ((a0, P), (a1, R), (a2, S)) and kb =
((b0, Q), (b1, R), (b2, S)); they are not causally related.

Consider a complete run with a finite set of external

events E = {a0, b0, ...}. The protocol execution is serial

if for each two (distinct) external events a0 and b0 in E, ei-

ther (each handler of) the computation spawned by a0 com-

mences after the computation spawned by b0 has completed,

or vice versa. In the serial run, a computation k always pre-

cedes in time any computations caused by k, i.e. they can

commence only after k has completed. In our example, run

r1 is serial since computation kb begins in this run after ka

has completed; but runs r2 and r3 are not serial.

Two protocol executions are equivalent if, considering

the same sequence of external events and the same initial

state of the protocol, they produce the same (or equivalent)

state. A protocol execution satisfies the isolation property

if the execution is equivalent to some serial execution.

Consider runs r1, r2, and r3 (with the sequence of ex-

ternal events (a0, b0)). Note that in runs r1 and r2, the

computation ka visits all the microprotocol’s objects that

are shared with computation kb (i.e. R and S) before kb

visits these objects. Thus, the effects of computation ka in

these runs, such as any modifications of the protocol’s state,

do not affect computation kb that is executing concurrently.

Hence, runs r1 and r2 satisfy the isolation property. Note

however that run r3 does not, since ka can see any modifi-

cation of object S done by event b2 of computation kb, and

kb can see any modification of object R done by ka.

If we would express and execute our example protocol

in Cactus, all the example runs r1, r2, and r3 can occur, un-

less the protocol programmer would explicitly synchronise

the execution of given handlers to forbid some runs. In J-

SAMOA, the programmer can easily declare constraints on

the protocol’s concurrent executions so that only those runs

that satisfy the isolation property are permitted (e.g. r1 and

r2, but not r3). Appia also supports the isolation property,

however it only permits serial executions, such as r1; other

correct, concurrent runs, such as r2, cannot occur in Appia.

3 Example

Below are fragments of three microprotocols, which are

part of the group communication system that we develop

using J-SAMOA; the system’s architecture is described in

[15], see also [6]. In complex middleware protocols such

as ours, it is often necessary to execute some activities con-

currently, in order to: 1) achieve good response time (for

instance when performing slow I/O operations), 2) avoid

blocking while processing different types of messages, or

3) simply to gain benefit of the multi-processor architec-

tures. Unfortunately, introducing a lot of concurrency can

lead to programming errors that are notoriously difficult to

detect.

The goal of this section is to:

• illustrate on concrete protocols the model defined in

Section 2, and J-SAMOA’s programming constructs,

• explain the problem of errors that are due to lack of

synchronisation between concurrent events,

• describe some simple solutions to the problem that are

often used by protocol designers (in the next section,

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

we demonstrate a more straightforward and efficient

solution using J-SAMOA’s isolated construct).

The J-SAMOA framework, implemented as a Java library,

supports the event-based model of communication between

microprotocols, with basic primitives for binding event

types to event handlers and triggering the execution of

handlers. Microprotocols in J-SAMOA can be expressed

as subclasses of two (abstract) classes Protocol and

handler. Event types are defined as instantiations of a

class Event. Event types and names of handlers are first-

class programming objects. They can be passed as argu-

ments to functions and handlers, returned as results and

stored in data structures. Events can be bound to handlers

using bind; in our program this takes place upon creation

of the microprotocol objects.

Group Communication Example. The first microproto-

col, called RelCast, implements a reliable broadcast. It

builds upon a second microprotocol, called RelComm, that

implements reliable point-to-point communication. We as-

sume that sites can crash at any time. The third micropro-

tocol — Membership, maintains a view, i.e. a current set

of all sites that are considered to be nonfaulty. This set is

kept consistent across all sites. We omit a lot of uninterest-

ing details, focussing on the synchronisation problem and

the way how it can be solved in J-SAMOA. (For simplicity,

we present code in a Java-like language instead of giving a

concrete syntax in Java.)

Protocol Membership (ViewChange:Event, ...) =

{ ...

handler joinleave (op: {+,-}, site: Site)

trigger ABcast [op site];

handler deliverView (op, site: Site) {
view = view op site;

triggerAll ViewChange view; } ...

}

The Membership microprotocol transforms a view into a

new view each time a site joins or leaves the system (volun-

tarily or because it is suspected to have failed). To join a site

s, the joinleave handler must be called. It uses trigger

to synchronously call a (single) handler bound to the event

type ABcast, passing as the handler’s argument an opera-

tion ’+’ paired with the new site to be joined. The event is

handled by the atomic broadcast microprotocol that atom-

ically broadcasts the value [+ s] to other sites using the

distributed consensus microprotocol (both microprotocols

depend on RelCast, and are omitted here). Upon deliv-

ering the value to handler deliverV iew (on each site) by

the atomic broadcast protocol, the updated view view + s

is propagated locally to all interested microprotocols using

a (synchronous) event of type V iewChange. To issue the

event, the triggerAll construct is used, which accepts

event types that can be bound to many handlers.

Protocol RelCast (SendOut : Event,

DeliverOut : Event, Bcast : Event,

FromRComm : Event, ViewChange : Event) =

{
GroupView view = top.initialView();

handler bcast (m : Message) {
for all site in view

trigger SendOut (m, site); }
handler recv (m : Message) {

if (new message m) then {
bcast m;

asyncTriggerAll DeliverOut m; } }
handler viewChange (new_view)

{ view = new_view; }
bind Bcast bcast;

bind FromRComm recv;

bind ViewChange viewChange;

}

To reliably broadcast a message m to a group of sites, the

bcast handler of RelCast can be called. The body of bcast

(see above) issues an event of type SendOut (or, we simply

say “event SendOut”), one for each site in the view; the

events carry the message m and a target site site. The event

type SendOut is bound to a handler send of the RelComm

microprotocol (explained below), which tries to send the

message to a given target site. Note that upon receipt of the

message on another site for the first time (see handler recv

above), the message is rebroadcast again so that it will be

delivered to all sites in the current view, even if the sender

would crash in the middle. The message is delivered locally

using the (asynchronous) DeliverOut event.

Protocol RelComm (FromRComm : Event,

SendOut : Event, FromNet : Event,

ViewChange : Event) =

{
GroupView view = top.initialView();

handler send (m:Message, target:Site) {
if (target in view)

try to send m to target; }
handler recv (m:Message, sender:Site) {

if (sender in view)

asyncTriggerAll FromRComm m; }
handler viewChange (new_view)

{ view = new_view; }
bind SendOut send;

bind FromNet recv;

bind ViewChange viewChange;

}

To reliably send a network message to a target site, the han-

dler send of the RelComm microprotocol can be called; it

tries to deliver the message (with possible retransmissions

in case of failures, omitted here). The message is discarded

if the target is not known. Before delivering a message on

the target site, the microprotocol checks if the sender is in

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

the current group view (see handler recv); if so then the

FromRComm event is issued. All microprotocols bound

to this event (such as the recv handler of the RelCast pro-

tocol) will get the message.

Both RelComm and RelCast depend on a group view.

RelComm tries to deliver a message only to a site that is

in the current view (this requirement is necessary to imple-

ment finite buffers, we omit details). Therefore RelCast

can reliably broadcast only to those processes that are within

the view seen by RelComm. Thus, each time the view

has changed, a new consistent view must be propagated

to RelComm and RelCast by Membership, soon af-

ter Membership’s distributed view-change algorithm has

terminated on each site. For this, Membership notifies

each interested microprotocol about the new view by is-

suing the V iewChange event; to deliver views to all in a

sequential order a synchronous triggerAll is used (see

Membership’s code). Then, the viewChange handlers

of RelCast and RelComm, which have been bound to

V iewChange, can update their local copy of the view.

Problem. Imagine that Membership has just installed a

new view, with a new site s added, i.e. on each site it has

added s to its local view, and issued a local V iewChange

event. Suppose a message is being broadcast using this new

view. Then, if the message has been received by RelCast

on some site for the first time, it has to be rebroadcast again

(to satisfy RelCast’s algorithm). However, if RelComm

which is used by RelCast to reliably send the message has

not yet handled the local V iewChange event informing

(locally) about the new view, it will not send the message to

s, thus breaking the algorithm. The message will be silently

discarded since RelComm does now know about s.

Restricted Solutions. Simple, although restricted solu-

tions to this problem are, either to: 1) piggyback the view

with every message and require each microprotocol to refer

to it (then a local copy of the view is obsolete), 2) demand

the current view from Membership by each microprotocol

(in particular RelComm) before processing any incoming

message, or 3) provide some form of synchronisation be-

tween events so that the application/network messages can-

not be processed by any microprotocol while the micropro-

tocols are in the process of updating their local views. The

first two solutions provide a mechanism which is somehow

stronger then actually needed; they either require redundant

data in messages (in the first case), or depend on some ad-

ditional intermodule communication (in the second case).

The third solution may unnecessarily restrict the amount of

internal parallelism.

Solution by Isolation. Note that to solve our problem it is

sufficient if the (correct) computations of the protocol, i.e.:

processing each message from the network, and processing

each message from the application, would be executed con-

currently, but in such a way that the isolation property holds.

(So essentially, the outcome would be the same as when us-

ing synchronisation suggested in the paragraph above.) In

J-SAMOA, such desired behaviour can be simply declared,

by implementing any external events of a protocol using a

construct isolated. In the next section, we describe the

construct and explain how to use it in our example protocol.

4 Language Support for Isolation

Execution of isolated M e in J-SAMOA spawns a

new computation, where M is explained below, and e is

code that calls some handler (or handlers) of the new com-

putation. Each computation is executed by a separate J-

SAMOA thread (if parts of a computation need to be ex-

ecuted concurrently, new threads can be created dynami-

cally, either explicitly with a suitable construct, or implicitly

through asynchronous event triggers). The runtime system

guarantees that the concurrent execution of computations

satisfies the isolation property defined in Section 2.

The basic construct isolated M e requires to specify

a collection M of all microprotocols whose handlers may be

called by the computation. For instance, an external event

a0 in Figure 1 can be expressed as isolated [P R S]

{ trigger a0 m; }, where P , R and S are all micro-

protocols (handlers) that may be called, and m is a mes-

sage. An error exception is thrown in the thread that called

isolated, if the computation will attempt to call a han-

dler of a microprotocol that is not in M . There is no prob-

lem if some microprotocol declared in M is not called by

the computation. In the strongly-typed language, the proper

value of argument M could be inferred statically.

We currently do not deal with dynamic binding; all han-

dlers declared in M must be bound before isolated com-

mences and cannot be (re)bound inside any computation.

Example Revisited. In our example in Section 3, external

events are requests, which are made by Network Module to

call handler(s) of event type FromNet , and by Application

Module to call handler(s) of Bcast . Thus, a message m

received from the network must be injected to upper pro-

tocols by Network Module using isolated [relComm

relCast ...] {trigger FromNet m;}, where

relComm, relCast , ... are all microprotocol objects whose

handlers may be called by the spawned computation; simi-

larly for the other external event type.

We have also implemented a few more variants of

isolated (each one to be used exclusively) that permit

to have more parallelism by optimising unnecessary block-

ing (in the worst case, they behave like isolated). How-

ever, they demand some additional (orthogonal) properties

of protocols to be known. It may not always be possible to

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

identify these properties (e.g. to guess the least upper bound

required by the first variant, if programs use recursion). The

use of the variants is therefore limited. The algorithms used

in the implementation of the constructs presented here are

described in Section 5.

Least-Upper-Bound. The isolated bound M e re-

quires the least upper bound on the number of times each

microprotocol p declared in M can be visited by the execu-

tion of expression e (to “visit” means to call any handler of

p). A runtime error exception will be thrown if the number

is exhausted. There is no problem, however, if a micropro-

tocol will be visited less times than declared in M ; however,

less parallelism may be permitted than in the case when M

is more accurate.

Routing Pattern. Another variant, isolated route

M e, requires the pattern of handler calls to be specified.

The argument M in this construct is a collection of arrows

of a directed graph, declaring the routing pattern of the com-

putation spawned using the construct. An arrow in this

graph is a directed pair h1 �→ h2, declaring that the body

of handler h1 may call h2. If a handler h1 tries to call but

there is no directed route from h1 to h2 in the graph, then a

runtime error exception will be thrown.

5 Implementation

The implementation of J-SAMOA consists of the event-

based communication between microprotocols, message

flow control, and concurrency control. Below, we focus on

concurrency control, which is responsible for the isolated

execution of computations.

We defined isolation to mean that the effects of one com-

putation are not visible to other computations executing

concurrently; from the perspective of a computation, it ap-

pears that computations execute sequentially rather than in

parallel. Thus, the simplest possible solution would be to

block spawning of a new computation until any other com-

putations complete. It follows from the definition in Sec-

tion 2 that the isolation property is satisfied since the pro-

tocol’s execution is serial. However, this would mean that

executions of computations are not interleaved. Hence, the

protocol may make poor use of its resources, and so might

be too inefficient. Therefore a better solution is needed.

Essentially, we want the runtime system to process many

computations simultaneously while providing the illusion

of isolation. For this, we have designed several blocking

and optimistic concurrency control algorithms, each one

implementing a variant of the isolated construct (with a

different degree of optimization). Below, we describe three

example blocking algorithms that are part of the J-SAMOA

distribution [6]; they implement the three variants of the

isolated construct described in Section 4.

Our concurrency control algorithms regulate when han-

dlers bound to a given event type, are allowed to be trig-

gered by pending events of this type, so that all runs of

a protocol will satisfy the isolation property. In short, a

handler to be called by a computation that has invoked a

corresponding “trigger event” construct, can be effectively

called only if the computation holds a valid version number

for the microprotocol whose part the handler is. Otherwise,

the “trigger event” is blocked. The version numbers thus

protect the state of the microprotocol’s object (which is as-

sumed to be accessed externally only through calls to the

microprotocol handlers).

We assume below that all handlers are bound at the pro-

tocol’s start-up and cannot be rebound inside computations.

5.1 The Basic Version-Counting Algorithm

There is a global version counter gvp for each micro-

protocol p (initialised to 0). Each individual microproto-

col p maintains its local version counter lvp (also initialised

to 0). We assume that each occurrence of the isolated

construct in the source code identifies uniquely a compu-

tation type. Computations, denoted k1, k2, ..., relate to dy-

namic instances of computation types. The Basic Version-

Counting Algorithm (VCAbasic) is given by the following

set of rules or steps (we require Steps 1 and 2 to be atomic):

1. At the moment of spawning a new computation k

by isolated M e, for each microprotocol p ∈ M

whose handler may be called by this computation, in-

crease the gvp counter by one. Create a private copy

pvk of all version numbers computed as above, i.e. pvk

is a map (dictionary) containing bindings from all mi-

croprotocols p ∈ M to their upgraded versions gvp.

2. A computation k can call a handler h of microprotocol

p only when it holds a version for this microprotocol

that matches the current (local) version maintained by

the microprotocol, i.e.

pv[p]k − 1 = lvp . (1)

3. After a computation k has completed its execution (i.e.

all threads of the computation terminated), for each

microprotocol p ∈ M , wait until (1) is true, then up-

grade the local version of the microprotocol p, so that

we have lvp = pv[p]k; in the end, erase map pvk.

Lemma 1 (Isolation Property) If handlers are called only

when allowed by Step 2 of the algorithm then the isolation

property is satisfied.

Proof (sketch) Consider a protocol with just two com-

putations k1 and k2 that may call different handlers of the

microprotocols declared in, correspondingly M1 and M2.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Initially, all microprotocols have their local and global ver-

sions equal zero. The computation spawned first (say k1)

would atomically increase the global versions of micropro-

tocols in M1 by one, and build its private set of versions

(here, each version equal 1); see Rule 1. The computation

k2, spawned after k1, will also get its private set of versions

for all microprotocols declared in M2; however, versions

of those microprotocols that have been also declared in M1

will be equal 2 (again by Rule 1).

Consider a microprotocol p in M1 ∩ M2. Each handler

of this microprotocol can be freely called by k1 since its

private version of p decreased by one is 0, which is equal the

current local version of the microprotocol, thus satisfying

the equation (1) in Rule 2. However, by Rule 2 none handler

of p can be currently called by k2 since k2 holds a private

version of p equal 2 and 2−1 = 1 �= 0. However, by Rule 3

the local version of p will equal 1, that is the private version

of p hold by k1, after k1 terminates. Then, k2 is allowed to

call a handler of p (by Rule 2). Since at this moment k1 has

already terminated, any changes done by k2 to the state of

p’s object cannot affect k1, which is what we wanted.

Consider a microprotocol p in M1∩M2 that has not been

called yet by any of the two computations k1 and k2. If

computation k2 (whose private version of p is newer than

the private version of p hold by k1) is about to terminate

now (according to our assumptions, it does not need to call

a handler of p to be allowed to terminate) then it has to up-

grade the local version of p. However, by the wait condition

in Rule 3, it will be allowed to do so only after compu-

tation k1 which has an older version of p will terminate.

Essentially, by Rule 1 and the wait condition in Rule 3, we

ensure that the order of upgrading local versions of shared

microprotocols by concurrent computations in Step 3, is al-

ways the same as the order of increasing global versions by

these computations in Step 1, which is the necessary cor-

rectness condition for isolation provided by version-based

concurrency control. The rest of the proof is by induction

on computations. �

5.2 Version-Counting with Least-Upper-Bound

The Version-Counting with Least-Upper-Bound Algo-

rithm (VCAbound) requires to know the least upper bound

(supremum) on the number of times each microprotocol’s

object (that may be visited by a computation) can be visited

by the computation. This information allows the algorithm

to decide if a given microprotocol p which has been visited

by a computation k is not going to be revisited by k. If

so then the microprotocol’s local version can be safely up-

graded. After supremum is reached, any computation that

wants to call any handler of microprotocol p and holds a

winning private version, will be allowed to call the handler,

and proceed concurrently with k, thereby enabling more

parallelism than in the case of VCAbasic , where computa-

tion k must firstly complete.

The VCAbound algorithm is the same as VCAbasic in

Section 5.1, except that Rules 1, 2, and 3 are modified and

a new atomic Rule 4 is added:

1. As Rule 1 of VCAbasic but increment counter gvp by

bound [p]k, which is the least upper bound of times mi-

croprotocol p can be visited by computation k.

2. Replace (1) by

pv[p]k − bound [p]k ≤ lvp < pv[p]k . (2)

3. After a computation k has completed its execution

(i.e. all threads of the computation terminated), check

if there are any local versions lvp of microprotocols

p ∈ M that need to be upgraded, i.e. lvp < pv[p]k; if

so then for each such a microprotocol p, wait until (2)

is true, and then upgrade the local version of p, so that

we have lvp = pv[p]k; in the end, erase map pvk.

4. Each time the execution of a handler h of microproto-

col p has been completed by some computation k (i.e.

the handler’s main method returned and any threads

spawned by the handler terminated), the microproto-

col’s local counter lvp is incremented by one.

Proof (sketch) The proof of Lemma 1 for the VCAbound

algorithm is similar to the previous proof. The main dif-

ference is that computation k2 is allowed to call a handler

of microprotocol p soon after the local version of the mi-

croprotocol lvp is equal bound [p]k1
, that is either after k1

has called p the number of times declared in Rule 1 by

bound [p]k1
, or by Rule 3 after k1 has terminated (in the

case when k1 visited p less times than declared). Note

that if the least upper bound was actually too small, and

k1 would try to visit p more times than it has declared,

then by Rules 1 and 4, lvp will be at least equal or greater

than pv[p]k1
, and so by Rule 2, k1 is not allowed to call

any handler of p since lvp ≮ pv[p]k1
. Rule 3, applied af-

ter k1’s termination, takes care that any local version lvp

such as lvp > pv[p]k1
, i.e. upgraded by some other com-

putations than k1 after k1’s supremum is reached, is never

downgraded by Rule 3. Moreover, as in the previous proof,

by Rule 1 and the wait condition in Rule 3, the order of

upgrading local versions of shared microprotocols by con-

current computations in Step 3, is always the same as the

order of increasing global versions by these computations

in Step 1, which is the necessary correctness condition for

isolation provided by version-based concurrency control. �

5.3 Version-Counting with Routing Pattern

The Version-Counting with Routing Pattern Algorithm

(VCAroute) requires an event routing pattern to be speci-

fied; the pattern declares not only the microprotocol objects

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

that can be possibly visited by a given computation, but also

which handlers of these microprotocols may be called and

in which order. The pattern is represented as a directed

graph of handler names; an arrow h1 �→ h2 in this graph

declares that the body of handler h1 may call h2.

The algorithm is the same as VCAbasic in Section 5.1,

except that: (i) M is now a value declaring the routing pat-

tern of computation k, (ii) all handlers maintain their sta-

tus, which is equal either “active” or “inactive” (initially

all handlers are “inactive”); and finally, (iii) the meaning of

“p ∈ M” is that p is a vertex in graph M , and (iv) Rules 2

and 3 are modified and a new atomic Rule 4, which uses the

routing information, is added:

2. As Rule 2 of VCAbasic but to call a handler h, condi-

tion (1) (see Section 5.1) must hold and either h is a

handler to be called directly by expression e, or there

is a route (path) to h in graph M from the handler that

tries to call h. Execution of a call of handler h changes

the status of the handler to “active” (to satisfy Rule 4,

the handler making the operation must not be allowed

to complete before this change comes into effect).

3. As Rule 3 of VCAbound .

4. Each time the execution of a handler h of micropro-

tocol p has been completed by some computation k,

execute the following procedure (in the specified or-

der):

(a) change the status of handler h in M to “inactive”,

(b) for each microprotocol p that has all its han-

dlers “inactive” and not reachable from handlers

which are currently “active” (where “not reach-

able” means that there is no route in M leading

to each such handler from any “active” handler),

remove p’s handlers from graph M , and upgrade

a local version of p, so that lvp = pv[p]k.

Proof (sketch) The proof of Lemma 1 for the VCAroute

algorithm is similar to the proof of VCAbasic . The main

difference is that computation k2 is allowed to call a han-

dler of microprotocol p soon after the local version of the

microprotocol lvp is equal pv[p]k1
, that is either after p is

not reachable in the graph maintained by k1 anymore (af-

ter making modifications to the graph by Rule 4(b)), or by

Rule 3 after k1 has terminated (in the case when cycles in

k1’s graph prevent the algorithm to decide about handlers

reachability). Note that if the routing pattern got by k omit-

ted some routes, then by Rule 2, k is not allowed to call

any handlers that are not accessible. However, there is no

problem if the pattern provides routes to some handlers that

are never called by k, since by Rule 3, these handlers will

be released after k has completed. Applying Rule 3 as in

VCAbound ensures that versions are never downgraded.

By Rule 1 of VCAbasic and Rule 3 of VCAbound , the

order of upgrading local versions of shared microprotocols

by concurrent computations in Step 3, is the same as the

order of increasing global versions by these computations

in Step 1, which is the necessary correctness condition for

isolation provided by version-based concurrency control. �

6 Related Work

The work in this paper builds on research in two areas:

the design and implementation of programming language

features for concurrency and transactional properties, and

the construction of concurrency control algorithms.

Language Support for Isolation. Actions that guaran-

tee only some of the ACID properties of transactions (i.e.

a combination of Atomicity, Consistency, Isolation, and

Durability) are becoming ever more important in applica-

tions servers and transaction systems. Different forms of

transactions decomposed to satisfy only individual prop-

erties appeared in distributed operating systems, such as

Camelot [4], in modern transactional platforms, e.g. IBM

WebSphere [13], Microsoft MTS [16], and SunEJB [20], as

well as programming languages like Arjuna [18] and ML

[22]. Concurrency control in the Camelot system was fac-

tored out into a separate mechanism that the programmer

could use to ensure isolation. In [7], the authors propose

higher-order functions for clean (de)composability of trans-

actional features in ML, avoiding the need to have block-

structured constructs to delimit a transaction’s boundary.

While our programming construct can allow multi-

threaded sections of code to be executed in isolation, several

researchers have proposed programming language features

for atomicity of sequential actions executed by a thread. In

[5], Flanagan and Qadeer present a type system for specify-

ing and statically verifying the atomicity of methods in mul-

tithreaded Java programs. The type system allows meth-

ods to be annotated with the keyword atomic. If the pro-

gram type checks, then any interaction between an atomic

method executed by a thread and steps of other threads is

guaranteed to be benign, in the sense that these interactions

do not change the program’s overall behaviour. More re-

cently, Harris and Fraser have been investigating a similar

atomic construct in Java [8]. Their proposal implements

Hoare’s conditional critical regions (CCRs) [10]. The pro-

grammer can guard the region by an arbitrary boolean con-

dition, with calling threads blocking until the guard is satis-

fied. The implementation is based on mapping CCRs onto

a software transactional memory which groups together se-

ries of memory accesses and makes them appear atomic.

Concurrency Control Algorithms. Research on transac-

tion management began appearing in the early to mid 1970s.

Quite a large number of concurrency control algorithms

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

have been proposed for use in centralised and distributed

database systems. Database systems use concurrency con-

trol to avoid interference between concurrent transactions

that can lead to an inconsistent database. Isolation is used as

the definition of correctness for concurrency control algo-

rithms in these systems. The algorithms generally fall into

one of three basic classes: locking algorithms, timestamp

algorithms, and optimistic (or certification) algorithms. A

comprehensive study of example techniques with pointers

to literature can be found in [2]. Concurrency control prob-

lems had been also treated in the context of operating sys-

tems beginning in the mid 1960s. Most textbooks on oper-

ating systems survey this work, see e.g. [19, 21].

Our versioning algorithms have some resemblance with

basic two-phase locking. However, instead of acquiring all

locks needed (in the 1st phase) and releasing them (in the

2nd phase), a computation takes and dynamically upgrades

version numbers. Execution of the algorithms by the run-

time system orders conflicting operations of computations

(i.e. handler calls) according to version numbers, like in the

timestamp algorithms. However, we associate versions with

handler calls, not with transactions. Therefore all calls can

be made in the right order for the isolation property (the call

requests with too high versions are simply delayed), unlike

basic timestamp algorithms for transactions, where if an op-

eration has arrived too late (that is it arrives after the trans-

action scheduler has already output some conflicting oper-

ation), the transaction must abort and be rolled back. The

“ultimate conservative” timestamp algorithms avoid abort-

ing by scheduling all operations in timestamp order, how-

ever, they produce serial executions (except complex vari-

ants that use transaction classes) [2].

Methods of deadlock avoidance in allocating resources

[19, 21] are also relevant to our work. The banker’s algo-

rithm (introduced by Dijkstra [3]) considers each request by

a process as it occurs, and assigns the requested resource to

the process only if there is a guarantee that this will leave

the system in a safe state, that is no deadlock can occur.

Otherwise the process must wait until some other process

releases enough resources. The resource-allocation graph

[11] algorithm makes allocation decisions using a directed

graph that dynamically records claims, requests and alloca-

tions of resources by processes. The request can be granted

only if the graph’s transformation does not result in a cycle.

Resources must be claimed a priori in these algorithms.

In our case, a computation must also know a priori all its

resources (handlers or microprotocols) before it can com-

mence. However, the history of handler calls by different

computations is always acyclic since versions impose a total

order on call requests performed by different computations.

Since computations are assumed to complete, old versions

will be eventually upgraded. Therefore our versioning algo-

rithms are deadlock-free. Moreover, the calls are assigned

according to the order that is necessary to satisfy the iso-

lation property, unlike the resource allocation algorithms,

which do not deal with ordering of operations on resources.

7 Future Work

To test our framework, we have expressed in J-SAMOA

the Atomic Broadcast protocol, sketched in Section 3, and

executed it on distributed machines. We tried variants of

the concurrency control with a different grain of concurrent

execution among computations. Our preliminary results are

encouraging; the overhead incurred by J-SAMOA’s concur-

rency control algorithms while executing our example pro-

tocol is relatively low. We plan to make more experiments,

and also test our framework using parallel processor archi-

tectures.

A possible avenue for further development of our frame-

work is to introduce different types of handlers (e.g. read-

only, read-and-write) and several levels of isolation, follow-

ing a similar practice in database systems [14]. The iso-

lation requirements can be sometimes relaxed for certain

computations to yield better application performance. A

non-trivial extension of our versioning algorithms will be to

add support for dynamic binding of handlers to event types.

Acknowledgments. We would like to thank the anony-

mous reviewers for the feedback that they provided on the

ideas in this paper.

References

[1] K. Arnold, J. Gosling, and D. Holmes. The Java Program-

ming Language, Third Edition. Addison Wesley, 2000.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-

Wesley, 1987.

[3] E. W. Dijkstra. Cooperating sequential processes. Techni-

cal report, Technological University, Eindhoven, the Nether-

lands, 1965.

[4] J. Eppinger, L. Mummeft, and A. Spector. Camelot and

Avalon: A Distributed Transaction Facility. Morgan Kauf-

mann, 1991.

[5] C. Flanagan and S. Qadeer. A type and effect system for

atomicity. In Proc. PLDI 2003, June 2003.

[6] Correct Modular Group Communication Middleware.

http://lsrwww.epfl.ch/Research/Crystall.

[7] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and

J. M. Wing. Composing first-class transactions. ACM

TOPLAS, 16(6):1719–1736, Nov. 1994.

[8] T. Harris and K. Fraser. Language support for lightweight

transactions. In Proc. OOPSLA ’03, Oct. 2003.

[9] M. Hayden. The Ensemble system. Tech. Report TR98-

1662, Dep. of Comp. Science, Cornell University, Jan. 1998.

[10] C. A. R. Hoare. Towards a theory of parallel programming.

In Operating Systems Techniques, volume 9 of A.P.I.C. Stud-

ies in Data Processing, pages 61–71, 1972.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

[11] R. C. Holt. Some deadlock properties of computer systems.

ACM Computing Surveys, 4(3):179–196, 1972.

[12] N. C. Hutchinson and L. L. Peterson. The x-kernel: An ar-

chitecture for implementing network protocols. IEEE Trans-

actions on Software Engineering, 17(1):64–76, Jan. 1991.

[13] IBM. WebSpheres. http://www-3.ibm.com/software/info1

/websphere/index.jsp.

[14] T. Kempster, C. Stirling, and P. Thanisch. Diluting ACID.

SIGMOD Record, 28(4):17–23, 1999.

[15] S. Mena, A. Schiper, and P. T. Wojciechowski. A step to-

wards a new generation of group communication systems.

In Proc. of Middleware 2003, LNCS 2672, June 2003.

[16] Microsoft. Microsoft MTS. http://www.microsoft.com

/com/tech/MTS.asp.

[17] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible

protocol kernel supporting multiple coordinated channels. In

Proc. ICDCS 2001, Apr. 2001.

[18] G. Parrington and S. Shrivastava. Implementing concur-

rency control in reliable distributed object-oriented systems.

In Proc. ECOOP 1988, LNCS 322, Aug. 1988.

[19] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating Sys-

tem Concepts, Sixth Edition. John Wiley & Sons, Inc, 2002.

[20] Sun. Sun EJB. http://java.sun.com/products/ejb.

[21] A. S. Tanenbaum. Modern Operating Systems, Second Edi-

tion. Prentice Hall, Englewood Cliff, NJ, 2001.

[22] J. M. Wing, M. Faehndrich, J. G. Morrisett, and S. Nettles.

Extensions to Standard ML to support transactions. In Proc.

of Workshop on ML and its Applications, 1992.

[23] P. Wojciechowski, S. Mena, and A. Schiper. Semantics of

protocol modules composition and interaction. In Proc. of

Coordination 2002, LNCS 2315, Apr. 2002.

[24] G. T. Wong, M. A. Hiltunen, and R. D. Schlichting. A con-

figurable and extensible transport protocol. In INFOCOM

’01, Apr. 2001.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

