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Abstract A variety of fields would benefit from ac-

curate pKa predictions, especially drug design due to

the affect a change in ionization state can have on a

molecules physiochemical properties. Participants in the

recent SAMPL6 blind challenge were asked to submit

predictions for microscopic and macroscopic pKas of 24

drug like small molecules. We recently built a general

model for predicting pKas using a Gaussian process re-

gression trained using physical and chemical features

of each ionizable group. Our pipeline takes a molecular

graph and uses the OpenEye Toolkits to calculate fea-

tures describing the removal of a proton. These features

are fed into a Scikit-learn Gaussian process to predict

microscopic pKas which are then used to analytically

determine macroscopic pKas. Our Gaussian process is

trained on a set of 2,700 macroscopic pKas from mono-

protic and select diprotic molecules. Here, we share our

results for microscopic and macroscopic predictions in

the SAMPL6 challenge. Overall, we ranked in the mid-

dle of the pack compared to other participants, but our

fairly good agreement with experiment is still promising

considering the challenge molecules are chemically di-

verse and often polyprotic while our training set is pre-

dominately monoprotic. Of particular importance to us
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when building this model was to include an uncertainty

estimate based on the chemistry of the molecule that

would reflect the likely accuracy of our prediction. Our

model reports large uncertainties for the molecules that

appear to have chemistry outside our domain of applica-

bility, along with good agreement in quantile-quantile

plots, indicating it can predict its own accuracy. The

challenge highlighted a variety of means to improve our

model, including adding more polyprotic molecules to

our training set and more carefully considering what

functional groups we do or do not identify as ionizable.

Keywords pKa · SAMPL6 · blind challenge ·
Gaussian process

1 Introduction

Accurate predictions of pKa values are of interest in

a variety of fields including pharmaceutical research,
as absorption, distribution, metabolism, and toxicity

can be profoundly affected by changes in ionization

state [1,2]. Other key physiochemical properties, such

as lipophilicity, solubility, and permeability are also pKa-

dependent [3–6]. Knowing the likely ionization state of

a molecule is also important as preparation for other

modeling studies. For example, predictions of distri-

bution coefficients in SAMPL5 demonstrated how dra-

matically free energy calculations can be affected by

a choice in ionization state of a molecule [7,8]. Calcu-

lations of other biomolecular properties, such as pro-

tein ligand binding affinities, are similarly affected by

choices in ionization state [9].

Because of the importance of pKa prediction, and

the difficulty of predicting pKa values, the SAMPL

challenge organizers included a pKa prediction compo-

nent in SAMPL6. Experimental macroscopic pKas were

collected for 24 drug like molecules using an established

spectrophotometric technique limited to a pH range be-

tween two and twelve. As a part of follow up analysis, a
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few NMR experiments were performed to determine the

microscopic pKas of a select few molecules [10]. Micro-

scopic pKas refer to an equilibrium resulting from re-

moving a specific hydrogen from a molecule and macro-

scopic pKas describe the process of removing any hy-

drogen or an overall change in charge state [11,12]. All

experimental data was kept secret from the public to

allow participants in the challenge to make blind micro-

scopic and macroscopic predictions for the 24 molecules.

Specifically, there were three formats allowed for predic-

tion submission:

– type I: microscopic pKas,

– type II: fractional microstate populations as a func-

tion of pH, and

– type III: macroscopic pKas

where microstates refer to a single tautomer of a spe-

cific charge state of a molecule. For each type of submis-

sion participants were encouraged, but not required, to

submit all predictions their model generated for every

molecule. SAMPL6 organizers then evaluated predic-

tions based on experimental results for all macroscopic

and a select set of microscopic pKas [13]. Details for the

challenge including experimental results, all submitted

predictions, and an overview analysis are available on-

line (github.com/MobleyLab/SAMPL6).

There are many different methods and tools for pKa

prediction, and a variety can be seen in this special is-

sue on SAMPL6 results. These techniques vary dramat-

ically in scope, computational cost, and accuracy. His-

torically, a common approach for predicting pKa was

through linear free energy relationships using empir-

ically determined constants to relate an acid or base

to a parent molecule in a known database [14,15]. A

related technique, quantitative structure-property rela-

tionships (QSPR), remain popular. These incorporate

a variety of molecular and atomistic descriptors [16–

18]. Some of these techniques have been updated to use

more advanced machine learning models such as artifi-

cial neural networks [19,20]. A variety of quantum me-

chanical descriptors, including partial atomic charges,

have also been shown to be promising in QSPR models

– due to computational cost, these methods are imprac-

tical for a general model and have only been applied to

specific types of ionizable groups [6,21–23]. Quantum

mechanical calculations from first principles can also

be used to calculate pKa using a thermodynamic cycle

of deprotonation in the gas phase and the hydration

free energy of both the protonated and deprotonated

molecule [24]. QM calculations are often still limited in

accuracy due to the difficulty in calculating hydration

free energies of ionized molecules in implicit solvents.

The most successful quantum mechanical predictions

from first principles also apply an empirical linear cor-

rection factor [25,26].

Here, we introduce a new machine learning model

for predicting microscopic and macroscopic pKas. Our

goal was to create a universal model which provides

predictions that come with accurate estimates of their

uncertainty. Most general methods for pKa prediction

build separate models for each type of ionizable group.

Even preditions based on DFT calculations for model

input can require specialized models for different ioniz-

able groups [27]

In contrast, we set out to build a single general

model which could predict a microscopic pKa for any

identified ionizable group. We believe that if our fea-

tures, or input into the machine learning model, are

based on the underlying physical and chemical proper-

ties responsible for the variation in deprotonation en-

ergy, only one model would be necessary. Artificial neu-

ral networks have been successful for predicting pKa,

but require substantial training data. We were inter-

ested in a machine learning model that could be built

from less training data, but did not require an assump-

tion about the shape of the function being fit. Gaus-

sian process regression meets these requirements pro-

viding a model based on distributions in feature space.

It also automatically incorporates an assessment of un-

certainty based on how similar input data is to the

training data [28]. Here, we present this new model and

our results for the type I and type III components of

the SAMPL6 blind challenge.

2 Computational Methods

We built a pipeline to predict the microscopic and macro-

scopic pKas of a molecule starting from any molecular

representation, such as a SMILES string. Our model

directly predicts microscopic pKas and then calculates

macroscopic pKas. First, we identify all ionizable groups

in a molecule and iterate through them to identify all

transitions between microstates. In the next step, we

convert each microscopic transition into a list of quan-

titative features. These features are used as input into

our Gaussian process regression model which predicts

a pKa for each micro-transition. The output from these

steps is a list of all microscopic pKas for each molecule.

Lastly, macroscopic pKas are analytically calculated

from a thermodynamic cycle involving all microscopic

transitions. Below, each of these steps is described in de-

tail including an overview of how we trained, validated,

and tested our model before the SAMPL6 challenge.
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2.1 A heuristic approach is used to identify aqueous

ionizable groups

The first step in processing any molecule, either for

training or prediction, is to identify all microscopic tran-

sitions. Molecules, in the form of SMILES strings or

any common molecular file format, are processed us-

ing OpenEye’s OEChem toolkit [29] and one reasonable

tautomer of the neutral form of the molecule is chosen.

A substructure search is used to identify groups that

commonly ionize in water [15] as either acidic:

– any protonated oxygen atom

– any protonated aliphatic sulfur atom

– cyclopentadiene

– carbon or nitrogen between two strongly electron

withdrawing groups

– arylsulfonamide nitrogens

– pyrrole-like aromatic nitrogens

– any atom with a formal positive charge and a hy-

drogen

or basic:

– aliphatic nitrogen atoms, not a part of amide or sul-

fonamide groups

– pyridine-like aromatic nitrogens

– trivalent aliphatic phosphorous

– any atom with a formal negative charge.

Next, we protonate all basic groups and then iterate

through all ionizable groups recursively removing a pro-

ton from each in order to identify all micro-transitions.

For each transition we store the protonated and depro-

tonated form of the molecule. OpenEye’s Omega toolkit

is then used to generate a low-energy conformation for
each form of the molecule [30]. Next, a list of features

is calculated to describe the micro-transition between

these two forms of the molecule. This feature list will

then be used as input for into our Gaussian process

model.

2.2 Features were chosen to describe physical

characteristics

We chose features based on the chemical and physical

properties that affect pKa. The key properties chemists

are trained to think about in relation to ionization are

the ionizable atom, resonance, inductive effects, steric

effects, and solvation. These properties affect the abil-

ity of an ionizable group to support a protonated or

deprotonated state along with the associated change

in formal charge. We also considered the quantum me-

chanical approach for calculating pKa using a thermo-

dynamic cycle involving the gas phase acidity and the

Fig. 1 We use the partial charge on the deprotonated atom
(yellow) and the average partial charge on atoms one bond
(purple) and two bonds (orange) away from that atom in
both the protonated and deprotonated form of the molecule,
making a total of six features involving partial charges.

solvation free energy of each form of the molecule. Thus,

we calculate features to describe the micro-transition

using the protonated and deprotonated forms of the

molecule in gas and aqueous phase. Using OpenEye

Toolkits we calculate a total of ten features for each

transition, some for each form of the molecule and some

taking differences in properties between the two forms.

– Difference in enthalpy

– Mayer Partial Bond order on the bond between hy-

drogen and the ionizable group

– AM1-BCC partial charges on multiple atoms, re-

sulting in six charge-related features

– Difference of solvation free energy

– Solvent accessible surface area of the deprotonated

atom

To begin, we perform a semi-empirical AM1 calcula-

tion for each microstate and then extract several prop-

erties. The first feature mirrors gas phase acidity by tak-

ing the difference in enthalpy between the protonated

and deprotonated form of the molecule. For the pro-

tonated form of the molecule, the Mayer partial bond

order is also calculated for the bond between the ionized

atom and the hydrogen to be removed [31–33]. AM1-

BCC partial charges are calculated for atoms one and

two bonds away from the ionized atom [33–35]. Previous

work established partial charges as a useful feature to

predict pKa on molecules. These studies used molecule

sets with all the same ionizable groups considering the

charge on the deprotonated and surrounding atoms [22,

23,36]. In order to apply our model to all identified ion-

izable groups, we needed a more general approach. We

decided to consider the partial charge of (1) the depro-

tonated atom and the average partial charge on atoms

(2) one bond and (3) two bonds away from this atom,

for both the protonated and deprotonated forms of the

molecule (Figure 1). This leads to six features based

on the partial atomic charges. Since the AM1 calcula-

tions are performed in gas phase, the last two features
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attempt to capture the affect of solvation on the equi-

librium. The difference in solvation free energy of the

two forms of the molecule is estimated by a Poisson

Boltzmann surface area calculation as implemented in

OpenEye’s Szybki toolkit [37,38]. Lastly, the solvent

accessible surface area around the deprotonated atom

is determined with OpenEye’s Spicoli Toolkit [39–42].

2.3 Gaussian process regression provides a simple

machine learning model

We built our Gaussian process regression model using

the Python package Scikit-learn [43]. A Gaussian pro-

cess is a nonparametric model which uses a Bayesian

approach to sample a posterior distribution of func-

tions [28]. There are two priors set for a Gaussian pro-

cess, a mean function and a kernel (or covariance) func-

tion. As with most Gaussian process models, we set our

prior mean function to zero. When initially training and

validating the model, we considered a variety of the ker-

nel functions included in Scikit-learn. To choose a ker-

nel and optimize any required parameters, we used a

three-fold cross validation method considering the root

mean squared error (RMSE), mean error, and correla-

tion coefficient of the training and validating sets (Sec-

tion 2.5). The best performing kernel for our purposes

was a Matérn kernel – a generalized function between

the squared and absolute exponential kernels [28]. This

kernel requires a preset parameter ν which was opti-

mized to 2.5 for our model. The general form of Matérn

kernel is complex including a Bessel function, and with

ν = 2.5, our final kernel is the function:

k = c

(
1 +

√
5d

l
+

5d2

3l2

)
exp

(
−
√

5d

l

)
(1)

where c and l are trained constants and d is the

distance between two feature vectors.

2.4 Macroscopic pKas are calculated from microscopic

transitions

Our Gaussian process model is trained to predict mi-

croscopic pKas which can be used to analytically calcu-

late macroscopic pKas. Most experimentally measured

pKas are macroscopic, providing an equilibrium con-

stant for an overall change in total charge. These macro-

scopic transitions are comprised of multiple microscopic

transitions, each of which consists of the removal of one

specific hydrogen atom. If pKas, or equilibrium con-

stants, for all microscopic transitions are known, then

the macroscopic pKa can be analytically calculated us-

ing a thermodynamic cycle [15,6]. For example, for a

Fig. 2 We identify two ionizable groups in SAMPL6 com-
pound SM22; this thermodynamic cycle shows an example
of how microscopic transitions with equilibrium constants a,
b, c, and d are related to macroscopic equilibrium constants
(Ka1

and Ka2
).

molecule with two ionizable groups, the macroscopic

Ka’s are:

Ka1
= a+ b (2)

Ka2
=

1

c
+

1

d
(3)

where a and b are equilibrium constants for the first

deprotonation and c and d are for the second depro-

tonation with the thermodynamic cycle in Figure 2.

Similar, though more complex, cycles can be drawn for

polyprotic molecules, allowing us to calculate macro-

scopic pKas for any provided molecule.

2.5 Training, validation, and internal test sets include

monoprotic and select diprotic molecules

Our training set was derived from an extensive exper-

imental pKa database Tony Slater curated from four

original sources:

– Dissociation Constants of Organic Bases in Aque-

ous Solution, by D.D. Perin (3,775 molecules, 8,766

pKas) [15];

– Dissociation Constants of Organic Acids in Aqueous

Solution, by G. Kortum, W. Vogel and K. Andrus-

sow (1,063 molecules, 2,893 pKas) [44];

– Dissociation Constants of Organic Bases in Aqueous

Solution, Supplement 1972, by D.D. Perin (4,275

molecules, 7,844 pKas) [45];

– Ionisation Constants of Organic Acids in Aqueous

Solution, by E.P. Serjeant and Boyd Dempsey (4,584

molecules, 10,912 pKas) [46].

This is the same database used for the OpenEye appli-

cation pKa Prospector. To begin, we filtered database
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entries for experimental measurements which were aque-

ous (including removing measurements in D2O), taken

between 20 and 25 degrees Celsius, and not tagged as

very uncertain. This resulted in a set of 9,890 molecules

with 26,519 experimental measurements. The large num-

ber of experimental results compared to number of molecules

is not solely due to molecules with multiple pKas; rather,

it is primarily due to replicate measurements for certain

molecules. In such cases we performed a weighted aver-

age, propagating the estimated uncertainties. As we are

most interested in biologically relevant ionization, we

also removed molecules where the experimental pKas

were outside a range of 0 to 14.

We currently use SciKit-Learn’s out-of-the-box ver-

sion of Gaussian Process which assumes one expected

value for each feature vector, limiting the types of molecules

we can use for training. Specifically, polyprotic molecules

are not suitable for training input in this approach.

Specifically, for polyprotic molecules, there is a fea-

ture vector for each microscopic transition, leading to

more predicted values than experimental pKa values.

For example, there are four microscopic transitions for a

diprotic molecule but only two macroscopic pKa values.

Thus, we focused our training set on instances where a

microscopic transition can be directly mapped to an ex-

perimental macroscopic pKa. The first set of molecules

was perhaps the most obvious — those with only one

ionizable group where the microscopic and macroscopic

transition are identical. We checked that molecules we

identified as having a single ionizable group also only

had one experimental measurement. This resulted in

2,672 molecules. To expand the diversity of the training

set we added a selection of diprotic molecules. For this

set we also included molecules where we identified two

ionizable groups and two experimental values were re-

ported. Additionally, we required the difference in these

two experimental pKas be greater than three log units

to assure dominance of a single microstate in estimation

of the macroscopic pKa. There were a total of 286 dipro-

tic molecules in the database that met this requirement.

For these molecules, we assumed each macroscopic pKa

was dominated by only one microscopic transition.

Before training, we removed 10% of these molecules

to later serve as an internal test set, resulting in setting

aside 243 monoprotic and 29 diprotic molecules, for a

total of 301 data points. The training data then con-

sisted of 2,186 monoprotic and 257 diprotic molecules.

We then split the training data into thirds in order to

use a three-fold cross validation method to evaluate the

choice of a Gaussian process model and choose a ker-

nel [47]. To evaluate model performance, we considered

RMSE, mean error, and correlation coefficients for each

training and validation set pair. We judged model per-

formance on training and cross-validation datasets in

the context of learning curves for the purposes of model

and feature selection. All training data was recombined

for our final Gaussian process model used to evaluate

our internal test set and make predictions for SAMPL6.

3 SAMPL6 challenge results

We predict microscopic pKa values using a Gaussian

process model trained on 2,443 mono- and diprotic molecules

(2,700 data points). Physical and chemical features are

calculated for the protonated and deprotonated form

of the molecule using OpenEye toolkits (Section 2.2).

Macroscopic pKas are then analytically calculated from

a combination of microscopic transitions (Section 2.4).

We used our model to predict microscopic (type I) and

macroscopic (type III) pKas for 24 drug like molecules

in the SAMPL6 blind challenge [13]. While Mobley is a

co-organizer of the challenge, none of the authors had

any access to the experimental data nor any knowl-

edge of details of the measurements until experimental

values and details were publicly released to all partici-

pants. The SAMPL6 organizers also asked for optional

microstate populations as a function of pH (type II).

However, we elected not to participate in that portion

of the challenge.

3.0.1 Predictions were matched with experiment to

reduce error

In an ideal world we would have a one-to-one match

when comparing predicted and experimental results,

where each calculated pKa has a corresponding exper-

imental value. When SAMPL6 was announced, it in-

cluded specification for how the experimental pKa val-

ues would be measured. This included the limitation

to perform experiments in a pH range of 2 − 12. Fol-

lowing the organizer suggestions, we included predic-

tions for all macroscopic pKas our model predicted in-

cluding those outside the specified experimental range.

Thus, there are many molecules with fewer experimen-

tally determined pKas than we predicted. The organiz-

ers considered two matching algorithms and analyzed

all challenge submissions with both methods. The first

was a closest matching algorithm where each prediction

is matched to an experimental value based on the ab-

solute difference between them. If two predictions are

paired to the same experimental value then the match

with the larger absolute difference is thrown out lead-

ing to one less pair used in the analysis. To prevent the

loss of data due to multiple pairings, the organizers re-

did the analysis using a Hungarian matching algorithm

instead [48]. In the Hungarian algorithm, the absolute
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difference is calculated for each pair of prediction to

experiment. Then the combination of pairs which re-

duces the absolute error for that whole molecule is re-

tained. One potential problem in this approach is that it

does not account for the natural ordering of pKa values,

meaning it is possible that the larger of two predictions

could be paired with the smaller of two experimental

pKas. For example, if a molecule had two experimental

pKas 2.15 and 9.58 and a prediction reported values of

0.50 and 1.84, then the final pairs would be (9.58, 0.5)

and (2.15, 1.84) as that would result in the smallest

absolute error overall. In general, we believe the Hun-

garian approach is superior as it allows for all possible

data to be included, though an ideal algorithm would

restrict the order while matching. Fortunately, this re-

ordering did not occur when our predictions were paired

with experiment so we used the Hungarian matching

to evaluate our performance. All analysis by organizers

can be found online and in an overview article in this

issue (github.com/MobleyLab/SAMPL6) [13].

3.1 Microscopic pKa reported for type I predictions

We reported microscopic pKas for all ionizable groups

we identified in the SAMPL6 molecules. The first step

for any prediction we perform is to identify ionizable

groups and then iterate through those groups to find

all microscopic transitions. For SAMPL6, all resonance

structures of a given microstate were considered to be a

single state and assigned a single identification number

for the set. We matched each molecular microstate to

the proper identification number using a script adapted

from the SAMPL6 organizers that identifies identical

resonance structures. A full table of microscopic pKas

and the script used to find their identification numbers

is provided in the supplementary information.

The SAMPL6 organizers initially provided an ap-

proximate evaluation of predicted microscopic transi-

tions using macroscopic pKas. Experimental measure-

ments were only made for macroscopic pKas [10]. In

an attempt to provide feedback on type I predictions,

organizers compared experimental data for molecules

with only one experimental pKa or two pKas with a

difference greater than 3 relative to microscopic predic-

tions. For each molecule, the experimental values were

matched to microscopic predictions that resulted in the

lowest error. However, most of these molecules have

multiple ionizable groups which may contribute to each

macroscopic pKa. We chose not to focus on this anal-

ysis as we thought it would not be informative about

how well our model predicts microscopic pKas.

After the macroscopic pKa values and all predic-

tions were made public, molecule SM07 was analyzed in

Fig. 3 NMR experiments for SM07 identified only one mi-
croscopic transition for the protonation of the top nitrogen
(green). We identified the other two nitrogens (blue) as ion-
izable and reported microscopic pKas for all three sites.

Table 1 Specific, microscopic pKa predictions can be com-
pared to experiment based on NMR experiments on SM07
where the macroscopic pKa was dominated by a single mi-
croscopic transition (Figure 3).

SAMPL ID Experiment Prediction

SM02 5.03± 0.01 5.32± 1.28
SM12 5.28± 0.01 5.89± 1.28
SM09 5.37± 0.01 6.09± 1.28
SM13 5.77± 0.01 6.95± 1.37
SM04 6.02± 0.01 6.73± 1.37
SM07 6.08± 0.01 7.05± 1.39

an NMR experiment to determine microscopic pKas [10].

SM07 is a 4-amino quinazoline derivative with three

nitrogens our algorithm identified as ionizable (Figure

3). The NMR results indicated the macroscopic pKa

was dominated by a single microscopic transition ob-

served for this molecule. SAMPL6 included five other

molecules that are also 4-amino quinazoline derivatives.

If we assume all of these molecules have a dominant mi-

crotransition on the same nitrogen, then we can com-

pare a total of six predicted microscopic pKas with ex-

periment (Table 1). Our predictions for these micro-

scopic transitions have reasonable correlation with the

experimental values with an R2 of 0.9± 0.2 (Figure 4).

While there appears to be a slight bias with a mean er-

ror of 0.7±0.1, all predictions were within uncertainty of

experiment. Predicted uncertainties are also fairly large

(all greater than 1.2) which is not unexpected as our

training data only included molecules with one or two

ionizable groups so these 4-amino quinazoline deriva-

tives would not be well represented.
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Fig. 4 Predicted microscopic pKas are compared to experi-
ment for six 4-amino quinazoline derivatives based on NMR
experiments on molecule SM07. The shaded region region in-
dicates agreement within 1pKa unit.

In an attempt to evaluate a wider range of micro-

scopic pKas, we compared our predictions with some

of the top results from the macroscopic analysis. Sim-

ulationsPlus’ pKa Predictor [20] and ACD Lab’s pKa

GALAS [49] both performed better than our approach

in the macroscopic pKa challenge compared to experi-

ment and provided type I predictions [13]. The SAMPL6

challenge instructions encouraged all participants to sub-

mit whatever microscopic pKas their method identi-
fied. Each method we are considering for comparison

here reported a different number of microscopic pKas.

We found 254, SimulationPlus reported 313, while ACD

only predicted 65. For transitions where we both made

a prediction, we compared our results with these two

commercial products (Figure 5 a and b), then we also

compared SimulationPlus with ACD predictions with

each other (Figure 5c). In all cases there is no corre-

lation and without experimental data for more micro-

scopic transitions there is no way of evaluating how well

our methods performed relative to these other more es-

tablished methods.

3.2 Macroscopic pKa reported for type III predictions

We reported macroscopic pKa values (type III) for all

molecules in SAMPL6 (Table 2). These were calculated

analytically based on the microscopic pKas determined

for each molecule (Section 2.4). Using the Hungarian

Table 2 A list of experimental pKas for all molecules in
SAMPL6 by molecule ID and our predicted macroscopic pKa

that matches with each, based on the Hungarian matching
algorithm.

SAMPL ID Prediction Experiment

SM01 9.27± 0.17 9.53± 0.01

SM02 5.19± 2.47 5.03± 0.01

SM03 4.49± 3.47 7.02± 0.01

SM04 6.73± 1.39 6.02± 0.01

SM05 7.62± 1.04 4.59± 0.01

SM06 1.77± 2.43 3.03± 0.04

3.94± 0.54 11.74± 0.01

SM07 5.17± 2.47 6.08± 0.01

SM08 4.61± 0.23 4.22± 0.01

SM09 5.14± 2.47 5.37± 0.01

SM10 6.44± 0.98 9.02± 0.01

SM11 5.07± 3.59 3.89± 0.01

SM12 5.17± 2.47 5.28± 0.01

SM13 4.97± 2.49 5.77± 0.01

SM14 0.12± 3.42 2.58± 0.01

6.49± 0.58 5.30± 0.01

SM15 5.42± 0.45 4.70± 0.01

8.71± 0.20 8.94± 0.01

SM16 5.91± 0.34 5.37± 0.01

SM17 3.47± 4.20 3.16± 0.01

SM18 −0.26± 2.70 2.15± 0.02

5.00± 4.39 9.58± 0.03

10.98± 1.59 11.02± 0.04

SM19 6.04± 0.88 9.56± 0.02

SM20 7.31± 1.84 5.70± 0.03

SM21 4.07± 0.02 4.10± 0.01

SM22 2.73± 0.34 2.40± 0.02

6.60± 1.08 7.43± 0.01

SM23 5.48± 2.83 5.45± 0.01

SM24 1.71± 3.14 2.60± 0.01

algorithm described in section 3.0.1, SAMPL6 orga-

nizers compared experimental results with all 34 pre-

diction submissions using RMSE, mean error (ME),

and R2 correlation coefficient. Overall, we saw reason-

able agreement between our predictions and experiment

(Figure 6). The SAMPL6 molecules included a vari-

ety of polyprotic functional groups that are completely

outside the scope of our mono- and diprotic training

set. Despite this, over half (18 predictions) fall within

one pKa unit of experiment. By RMSE and ME we fall

within the middle 15 predictions which cannot be eas-
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Fig. 5 These plots compare microscopic pKa predictions for all combinations of our model, SimulationPlus’ pKa predictor
and ACD Lab’s pKa GALAS. The shaded region indicates an agreement within 1pKa unit.
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Fig. 6 This plot shows our macroscopic pKa predictions
compared to experiment. The shaded region represents agree-
ment within 1pKa unit. The most significant outlier (SM06)
is due to an acidic amide we did not identify as ionizable

ily ranked due to wide confidence intervals, determined

using bootstrapping, for most participants. By correla-

tion coefficient (R2) our method ranks very low, in the

bottom five submissions, but this appears to be due to

one rather extreme outlier we discuss in detail below. If

we were to remove this one outlier, our ranking would

improve significantly with a change in R2 from 0.4±0.1

to 0.62 ± 0.09 and a shift in RMSE from 2.2 ± 0.5 to

1.7± 0.3.

The molecule is SM06 can definitely be considered

an outlier, not just due to the large discrepancy between

our prediction and experiment, but also due to an ion-

izable group we did not properly identify (Figure 7). In

this case our predicted value of 3.94 ± 0.5 is matched

with the experimental value 11.74±0.01, as pointed out

Figure 6. This molecule contains three ionizable groups:

the pyridine nitrogen base, the quinoline nitrogen base

and the amide nitrogen either as a base at low pH or

as an acid at high pH. We did not train our model to

treat amides as either acids or bases (Section 2.1). Our

model predicted the transition from +2 to +1 to occur

at a pH of 1.77 ± 2.43 and to be dominated by depro-

tonation of the pyridine nitrogen. It predicts +1 to +0

transition at 3.94±0.54 dominated by deprotonation of

the quinoline nitrogen. In order to improve our model,

we consider how similar functional groups are repre-

sented in our training set and look to the literature to

attempt to determine which microstate dominates at

the 11.74± 0.01 transition. It seems probable that the

deprotonation from +3 charge to +2 charge would oc-

cur well below pH2.0, outside the experimental range,

and is most likely dominated by the deprotonation of a

charged and doubly protonated amide. The next tran-

sitions are less immediately obvious, so we look to our

training set which contains meta-substituted bromo-

pyridines and carboxamide pyridines, both with pKas

in the low 3s. It also includes several monoprotic quino-

line derivatives with pKas from 4.8− 5.5. One explana-

tion for this large error could be that the carbonyl of

the amide group could form an internal hydrogen bond

stabilizing the protonated form of the quinoline and

increasing its pKa. While internal hydrogen-bonding

may affect some of the features we already include, our

model does not directly consider it. Adding a more ex-

plicit descriptor to capture such affects may be some-

thing we should explore as we improve our model. A

more likely explanation for the error is that it is due to

the amide nitrogen our model misses. Our logic for not
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Fig. 7 SM06 provided feedback on our ability to accurate
identify ionizable groups as our method only finds two (blue),
notably missing the acid amide (red)

Fig. 8 Our prediction for SM20 was still rather inaccurate,
despite it being monoprotic (blue). This is likely due to a lack
of representation of imide groups in similar environments in
our training set.

including amides as ionizable sites in our model was

because they often have a basic pKa value less than

2.0 and an acidic pKa value greater than 14.0. How-

ever, in this highly conjugated system, that amide ni-

trogen could be an important contributor to the pKa of

11.74± 0.01. An analogous system to consider is N-(2-

pyrimidyl)benzamide, with its second ionization mea-

sured at 11.2 [50], demonstrating that acidic amide ni-

trogens can have pKa values in the appropriate range.

Improving our model will likely involve conducting a

more thorough investigation of which groups should be

considered ionizable.

We knew going into the SAMPL6 challenge that

complex polyprotic molecules would fall outside the

domain of applicability for our model, however, other

functional groups appear to also be poorly represented.

For example, molecule SM20 has only one ionizable

group, the acidic imide group (Figure 8). While our

training set includes some similar functional groups,

there was not a wide diversity. Specifically, none in the
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Fig. 9 This QQ plot provides an assessment for predicted
uncertainties compared to a normal distribution. Our pre-
dicted uncertainties (blue circles) out perform a fixed error of
0.75 taken from our test set RMSE (red squares), as evident
by the proximity of the point to the x = y black line and a
slope approaching one.

training set had a sulfur one bond away. This is also evi-

dent in our prediction 7.31±1.84 where the large uncer-

tainty reflects the lack of similarity between this ioniz-

able group and our training set. Expanding our training

data to include polyprotic molecules was already in our

plans, but considering more complex mono- or diprotic

molecules with overlapping microconstants could also

improve our model.

An important goal in building our model was to

be able to predict uncertainties which actually provide

some guidance as to expected accuracy and limitations

in the training data. Not all commercial products make

this a priority; for example, SimulationPlus did not

provide uncertainty estimates for any of their predic-

tions. One obvious feature in our data is that the pre-

dicted uncertainties are all very large, greater than 1

pKa unit for 19 of the matched predictions. Most of

the molecules with large uncertainties are polyprotic

and include functional groups outside the domain of

our training set. Therefore it seems these large uncer-

tainties are a good sign as they seem to correlate with

actual error.

Previous SAMPL challenges have included quantile-

quantile plots (QQ plots) which provide a more quanti-

tative assessment of a participants reported model un-

certainties [7,51]. QQ plots are based on the concept

that actual errors should be drawn from a normal distri-
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bution, and well-predicted uncertainties should be able

to predict the frequency of deviations of a given size.

Thus in QQ plots, y-axis has the fraction of predicted

minus experimental values that fall within a given num-

ber of uncertainties and the x-axis shows the fraction of

a normal distribution within that many standard devi-

ations. The closer the predicted uncertainties compare

to a normal distribution the closer they will come to an

x = y line. Thus, the slope of a regression is also often

used as a part of the evaluation. We compare two possi-

bilities for model uncertainty in our QQ plot. The first

uncertainty approach we consider uses the predicted

uncertainties from our Gaussian process model (blue

circles in Figure 9). Another common way to report

uncertainty is to assume it is the same for all predic-

tions based on past performance of the approach. For

the second set of data, we assumed the uncertainty for

each predicted pKa was equal to the RMSE for our in-

ternal test set, 0.75 (red squares in Figure 9). A method

producing accurate predicted uncertainties should lead

to a diagonal line on the resulting plot, with slope of

1; in this case, we find that the uncertainty model us-

ing predicted uncertainties from the Gaussian process

(slope=0.87) outperforms the model with a fixed un-

certainty (slope=0.73). This is promising evidence that

our model is capable of predicting how its reliability

varies with the chemistry being considered, rather than

just its overall typical performance.

4 Conclusions

Our Gaussian process model showed promising results

in the SAMPL6 challenge, but was limited by the scope

of our training set. The chemical space represented in

our training set was limited to mono- and diprotic molecules

(Section 2.5). Despite this limitation, we still saw fairly

good agreement between our predicted macroscopic pKas

and the experimentally measured values and performed

competitively compared to other participants. We rank

in the top ten by RMSE (1.7 ± 0.3) after removing a

single obvious outlier (Figure 6). This outlier, with an

acidic amide group, highlighted a potential hole in our

limited definition of ionizable groups. Improving our

model will require adding groups which are often ion-

ized outside the aqueous pKa range, but which can be

perturbed to ionize within that range. Our performance

in this blind challenge is evidence that a single model

trained on physically and chemically relevant features

can be competitive with established methods which rely

on specialized models for individual functional groups.

The other important step in improving our model

will be to augment our training set with additional

polyprotic molecules. Currently, the likelihood function

in Scikit-learn requires one feature vector for each ex-

perimental result. Using this function, we would require

a large dataset of experimental microscopic pKas in or-

der to include polyprotic molecules. Generally speaking,

it is easier to acquire experimental macroscopic pKa

data. Thus, a preferred approach would be to define

a new likelihood function which would take advantage

of the analytical relationship between microscopic and

macroscopic pKas and evaluate a set of microscopic pre-

dictions with one macroscopic value. We are confident

that with this expansion we will have a general model

which could predict pKa for molecules with any combi-

nation of ionizable groups.

Evaluating microscopic pKa predictions was limited

by the availability of experimental results. For the six

molecules with NMR supported microscopic pKas, our

predicted values agreed with experiment within uncer-

tainty. This was a rather limited set of the possible

microscopic transitions so we also attempted to com-

pare our performance to competitive commercial prod-

ucts. However, there was no correlation between any

combination of type I predictions from SimulationPlus,

ACD Labs, or our own model (Figure 5), indicating

that much research remains to be done to predict the

true microscopic pKa values for many important transi-

tions. A valuable addition to future SAMPL challenges

including pKa predictions would be to expand experi-

mental measurements to include more microscopic re-

sults when available.

We believe predictions are only valuable when they

include an accurate assessment of uncertainty, other-

wise downstream users have no guidance as to the reli-

ability of such predictions and thus no confidence as to

when they can usefully be used and when they should

be ignored. These uncertainties are even more valuable

if they are determined based on the input molecule, cap-

turing when reliability varies with chemistry. Unfortu-

nately, ten out of 34 type III submissions in SAMPL6

provided no uncertainties with their predictions. Per-

haps requiring such predictions for every submission

would improve future challenges and drive progress in

this respect. From the beginning, we considered pro-

viding an uncertainty evaluation for each prediction an

important component of our model. Thus, our ability

to determine accurate uncertainty predictions based on

input chemistry shows our model’s potential to be a suc-

cessful predictive method. Previous SAMPL challenges

have highlighted the importance and difficulty in ac-

curately assessing model uncertainty for hydration free

energies [51] and distribution coefficients [7]. The large

error bars for ionizable sites we consider outside our do-

main of applicability provide evidence our uncertainty

estimates are working as desired. QQ plots also support
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the conclusion that our model is capable of predicting

its own uncertainty (Figure 9).

SAMPL6 was an opportunity to test our Gaussian

process model on an external test set and our first

completely blind set of predictions. Our new Gaussian

process model performed semi-competitively, especially

considering its limited training set compared to more

established methods which participated. We look for-

ward to incorporating important lessons from this chal-

lenge, particularly, expanding our definition of an ion-

izable group and improving our likelihood function to

include polyprotic molecules in our next training set.

Overall, SAMPL challenges provide an important ser-

vice to the community allowing participants to test

their predictive models in a blind manner.
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4.1 Supplementary Materials

Included with this article you will find supplementary

materials in the form of a PDF with human readable

figures and tables and a compressed file with machine

readable data and analysis scripts. In the PDF we pro-

vide equations for computing macroscopic equilibrium

constants Ka1
, Ka2

, and Ka3
for a triprotic molecule

along with the corresponding thermodynamic cycle sim-

ilar to the one in Figure 2. Also included there is a full

list of all microscopic and macroscopic pKas our model

predicts for all 24 SAMPL6 molecules. In the electronic

materials we include the prediction files we submitted

for type I and type III, along with all the analysis scripts

we used to generate data and figures provided here. For

analysis of all SAMPL6 submissions [13] and details

on the experimental data [10] see the GitHub repos-

itory provided by challenge organizers (github.com/

MobleyLab/SAMPL6).
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