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Abstract

In this paper we study optimization problems with second-order stochastic dominance con-

straints. This class of problems has been receiving increasing attention in the literature as it allows

for the modeling of optimization problems where a risk-averse decision maker wants to ensure that

the solution produced by the model dominates certain benchmarks. Here we deal with the case of

multi-variate stochastic dominance under general distributions and nonlinear functions. We intro-

duce the concept of C-dominance, which generalizes some notions of multi-variate dominance found

in the literature. We apply the Sample Average Approximation (SAA) method to this problem,

which results in a semi-infinite program, and study asymptotic convergence of optimal values and

optimal solutions, as well as the rate of convergence of the feasibility set of the resulting semi-infinite

program as the sample size goes to infinity. We develop a finitely convergent method to find an

ǫ-optimal solution of the SAA problem. We also give methods to construct practical statistical

lower and upper bounds for the true optimal objective value.

Key Words: Stochastic Programming, Stochastic Dominance, Sample Average Approximation,

Semi-infinite Programming, Convex Programming, Cutting Plane Algorithms



1 Introduction

Stochastic dominance is used to compare the distributions of two random variables (e.g., see Shaked

and Shanthikumar 1994 and Müller and Stoyan 2002), thus providing a way to measure risk. The

concept of stochastic dominance is also related to utility theory (von Neumann and Morgenstern,

1947), which hypothesizes that for each rational decision maker there exists a utility function u

such that the (random) outcome X is preferred to the (random) outcome Y if E[u(X)] ≥ E[u(Y )].

Often the decision maker’s utility function is not known; in such cases one would say that X is

preferred to Y if E[u(X)] ≥ E[u(Y )] for all u. If we have more information on the decision maker

then we can restrict the set from which u is taken. In our case, we consider the situation where the

decision maker is risk-averse; thus, X is preferred to Y if E[u(X)] ≥ E[u(Y )] for all nondecreasing

and concave utility functions u. When X and Y are unidimensional random variables, such notion

is called second order stochastic dominance in the literature. This is the notion of dominance we

deal with in this paper.

Dentcheva and Ruszczyński (2003, 2004) first introduced optimization problems with stochas-

tic dominance constraints. This is an attractive approach for managing risks in an optimization

setting. While pursuing expected profits, one avoids high risks by choosing options that are prefer-

able to a random benchmark. Recently, optimization models using stochastic dominance have

increasingly been the subject of theoretical considerations and practical applications in areas such

as finance, energy and transportation (Karoui and Meziou, 2006; Roman et al., 2006; Dentcheva

and Ruszczyński, 2006; Dentcheva et al., 2007; Drapkin and Schultz, 2007; Gollmer et al., 2007;

Luedtke, 2008; Nie et al., 2009).

Much of the work on optimization with stochastic dominance has focused on the case where

the underlying random quantities being compared are unidimensional. This is in great part due

to the fact that, in that situation, it is well known that testing whether E[u(X)] ≥ E[u(Y )] for

all nondecreasing and concave utility functions u is equivalent to testing whether E[(η − X)+] ≤

E[(η−Y )+] for all η ∈ R (where (a)+ := max{a, 0}), a property that greatly simplifies the analysis

and allows for the development of algorithms. In a recent paper, Dentcheva and Ruszczyński (2009)

study a random vector space where stochastic dominance is defined using a concept of positive linear

second order. For two random vectors in Lm
1 (Lm

1 is the space of integrable mappings from the

underlying probability space to Rm), X is said to dominate Y in positive linear second order,

written X DPlin
(2) Y , if1

vTX D(2) v
TY for all v ∈ Rm

+ ,

where D(2) means the second order stochastic dominance. Homem-de-Mello and Mehrotra (2009)

further expand the definition of positive linear second order dominance to polyhedral second order

dominance, written X D(P) Y and called P-dominance in short, as

vTX D(2) v
TY for all v ∈ P,

where P is a polyhedron. Obviously, we have that X D(P) Y ≡ X DPlin
(2) Y when P = Rm

+ .

1Dentcheva and Ruszczyński (2009) define this notion as linear second order stochastic dominance; the concept
is also related to the definition of positive linear convex order found in the literature, see for instance Müller and
Stoyan (2002).
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A more general definition of stochastic dominance over random vectors is a natural extension

of the concept of P-dominance:

Definition 1.1 Given a non-empty convex set C ⊆ Rm, a random vector X ∈ Lm
1 dominates

Y ∈ Lm
1 in linear convex second order (written X D(C) Y and called C-dominance in short) with

respect to C if

vTX D(2) v
TY for all v ∈ C. (1.1)

All three definitions above of random-vector stochastic dominance impose (unidimensional)

second order dominance between certain weighted combinations of components of the two contrasted

random vectors. One can think of such weights as a way to combine multiple criteria involved in the

decision. The set of weights is Rm
+ for the positive second order dominance, an arbitrary polyhedral

set for P-dominance, and a general convex set for C-dominance. Clearly, positive linear second

order dominance is a special case of P-dominance, which in turn is a special case of C-dominance.

We now introduce a characterization from Homem-de-Mello and Mehrotra (2009) which will be

convenient for our analysis.

Proposition 1.1 Let C be a convex set. Then (1.1) holds if and only if vTX D(2) v
TY for all

v ∈ C̃ := cl(cone(C)) ∩ ∆, where cl denotes the closure of a set, cone denotes the conical hull, and

∆ := {v ∈ Rm : ‖v‖1 ≤ 1}.

Using this concept, we build an optimization model with stochastic dominance constraints as

follows:

min f(z) (SD)

s.t. H(z,X) D
(❡C)

Y, (1.2)

z ∈ Z.

where Z ⊆ Rn represents a deterministic feasible region, f : Rn → R represents the objective to be

minimized, and X ∈ Ld
1 and Y ∈ Lm

1 are two random vectors. We denote by Ξ ⊆ Rd+m the support

of the probability distribution of joint random vector (X,Y ). Further, let ΞX be the projection

of Ξ on the space Rd for random vector X and ΞY be the projection of Ξ on the space Rm for

random vector Y . The function H : Rn×ΞX → Rm is a given constraint mapping. We assume that

H(z,X) ∈ Lm
1 for all z ∈ Z. Using the properties of second order dominance and the definition of

C-dominance, we translate (1.2) into the equivalent representation

E[(η − vTH(z,X))+] ≤ E[(η − vTY )+] for all (η, v) ∈ R × C̃. (1.3)

We can see that problem (SD) can be formulated as a stochastic program with uncountably many

expected-value constraints. Dentcheva and Ruszczyński (2009) study models of the form (SD) where

the constraints correspond to the notion of positive second order linear dominance. Many useful

theoretical results are derived, but no algorithms are proposed. Homem-de-Mello and Mehrotra

(2009) investigate the case of P-dominance constraints for a linear function, H(z,X) = Xz, where

X is a m×n random coefficient matrix with finite support. A key result in that paper is the proof

that the set of constraints in (1.3) can be represented by finitely many deterministic linear inequali-

ties, i.e., the feasible set is a polyhedron. Using that property, the authors develop a cutting surface
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algorithm where the constraints are generated one at a time. That approach, however, assumes

that one can enumerate all possible scenarios of the problem and therefore evaluate expectations

exactly.

In the literature, stochastic programming problems with a finite number of expected-value

constraints have been widely investigated (O’Brien, 2000; Atlason et al., 2004; Wang and Ahmed,

2008). These papers demonstrate the difficulty in exactly evaluating an expected-value constraint,

which results from the need to compute the mean of a random function by multi-dimensional

integration. One way to circumvent the problem is to use the Sample Average Approximation

(SAA) method (see e.g. Kleywegt et al. (2001) and references therein) which substitutes the

mean with the average of Monte Carlo samples to formulate an approximation of the original

program. Under some mild conditions, Wang and Ahmed (2008) prove that the feasible region

of the approximation model converges exponentially fast to true counterpart in probability as the

sample size N increases. With a suitable sample size, good approximations can be obtained for the

true optimal solution and objective value with high confidence. However, in our case the sample

approximation of (1.3) is a semi-infinite program, so solving the problem — both theoretically and

algorithmically — requires additional results.

In this paper, we study an approach to solve (SD) based on the SAA method. First, we show

the asymptotic convergence of the approach by adjusting the right-hand-side of (1.3) with ±ǫ.

The resulting restriction or relaxation of the original feasible region provides a convenient way to

probabilistically measure the quality of the approximation. As in the case of finitely many expected

value constraints (Wang and Ahmed, 2008), by using large deviations analysis we show that the

probability that the feasible region of the semi-infinite SAA problem is close to the original feasible

region converges to one exponentially fast with the sample size. Next, we consider how to solve the

SAA problem with infinitely many constraints. In the case of P-dominance requirement, we can

adapt the cutting surface algorithm in Homem-de-Mello and Mehrotra (2009) that terminates after

generating a finite number of cuts, although we need to overcome certain technical difficulties arising

due to the fact that in a cutting surface method the expected value constraints are not available

in an explicit formulation. We extend this algorithm to solve general models with C-dominance

constraints using an outer approximation approach. Finally, we propose and analyze methods for

computing statistical bounds for the optimal value of the original problem. Such bounds are crucial

for a practical use of the algorithm, as they provide concrete optimality gaps that can be used to

determine whether the sample size is large enough.

2 Notions, Assumptions and Basic Propositions

We start by introducing a reformulation of the problem and some notions and assumptions that

will be used in the sequel. As in Dentcheva and Ruszczyński (2003), to overcome some technical

difficulties associated with the dominance constraint we consider a relaxed version of (1.3) where

η is restricted to a compact interval A ⊂ R. The optimization model is changed to

min f(z) (RSD)

s.t. E[(η − vTH(z,X))+ − (η − vTY )+] ≤ 0 for all (η, v) ∈ A× C̃ (2.1)

z ∈ Z.
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Clearly, if H(z, .) is uniformly bounded a.e. for all z ∈ Z, (2.1) is equivalent to (1.2) for an

appropriately chosen A. Otherwise, (2.1) is a relaxation of (1.2).

We write the expected-value function in (2.1) as

g(z, η, v) := E[G(z, η, v,X, Y )]

where the integrand is

G(z, η, v,X, Y ) := (η − vTH(z,X))+ − (η − vTY )+.

We use Monte Carlo sampling to generate N sample pairs {(X1, Y 1), (X2, Y 2), . . . , (XN , Y N )}.

The sample average function is denoted as

gN (z, η, v) :=
1

N

N∑

j=1

G(z, η, v,Xj , Y j). (2.2)

The sample average approximation of (RSD) is then stated as

min f(z) (SASD)

s.t. gN (z, η, v) ≤ 0, (η, v) ∈ A× C̃ (2.3)

z ∈ Z.

Given ǫ ∈ R, we define the following ǫ-approximation of the feasible regions of (RSD) and (SASD)

Sǫ := {z ∈ Z : g(z, η, v) ≤ ǫ, (η, v) ∈ A× C̃}, (2.4)

Sǫ
N := {z ∈ Z : gN (z, η, v) ≤ ǫ, (η, v) ∈ A× C̃}. (2.5)

Note that S0 and S0
N are the feasible regions of (RSD) and (SASD) respectively. Let

θǫ := min
z∈Sǫ

f(z), (ǫ-RSD)

θǫ
N := min

z∈Sǫ
N

f(z) (ǫ-SASD)

be the optimal values of (ǫ-RSD) and (ǫ-SASD) respectively. Let Υǫ and Υǫ
N be the sets of optimal

solutions of (ǫ-RSD) and (ǫ-SASD) respectively. In addition, define

Φ(z,X, Y ) := ‖H(z,X)‖ + ‖Y ‖, (2.6)

and its expected value and sample average approximation as

φ(z) := E[Φ(z,X, Y )], (2.7)

φN (z) :=
1

N

N∑

j=1

Φ(z,Xj , Y j). (2.8)
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Note that ‖.‖ defaults to the standard Euclidean norm in this paper unless otherwise specified.

As we shall see later, the function Φ(·) plays an important role in the analysis, since for all given

(z,X, Y ) ∈ Z × Ξ, Φ(z,X, Y ) dominates G(z, η, v,X, Y ) for any (η, v) ∈ A × C̃. Thus, we can

identify some good behavior of G(·) by verifying the behavior of Φ(·).

Define the diameter of a nonempty compact set K as

D(K) := max
y,y′∈K

‖y − y′‖, (2.9)

and the distance between a point x and K as

d(x,K) :=

{
infy∈K ‖x− y‖ if K is nonempty,

∞ o.w.
(2.10)

The following assumptions are made:

(A1) Z ⊂ Rn is a nonempty compact set.

(A2) H(·, X) is Lipschitz continuous on Z a.e. with respect to X, i.e., there exists a function

Π : ΞX → R+ such that ‖H(z1, X) − H(z2, X)‖ ≤ Π(X)‖z1 − z2‖ a.e. for all z1, z2 ∈ Z.

Assume that Π(X) is an integrable random variable, and define π := E[Π(X)].

(A3) For all z ∈ Z, the Moment Generation Function (MGF)2 M z
Φ(·) of Φ(z,X, Y ) is finite in a

neighborhood of zero.

(A4) The MGF MΠ(·) of Π(X) is finite in a neighborhood of zero.

Assumptions (A1) and (A2) impose some regularity conditions on the structure of the problem

constraints. Assumptions (A3) and (A4) ensure that the random variables in the problem are

reasonably well behaved, and hold in particular whenX and Y have bounded support. Assumptions

of the form (A1)-(A4), which are required for the analysis, are common in the literature.

We now study some features of the integrand G(·) and its expected value function g(·), as well as

the sample average function gN (·). Under Assumptions (A1)-(A4), the analysis that follows shows

boundedness, continuity and convergence of these functions. The following two basic propositions,

which discuss these properties, provide the foundation for the remaining results in the paper.

Proposition 2.1

(1) For all (η, v) ∈ A× C̃, G(z, η, v,X, Y ) is dominated by Φ(z,X, Y ).

(2) G(z, η, v,X, Y ) is Lipschitz continuous on (η, v) ∈ Rm+1 a.e. for all z ∈ Z. If Assumptions

(A1) and (A2) hold, G(z, η, v,X, Y ) is Lipschitz continuous on Z ×A× C̃ a.e.

(3) If Assumption (A3) holds, the MGF of G(z, η, v,X, Y ) is finite in a neighborhood of zero for

all (z, η, v) ∈ Z ×A× C̃.

Proof:

(1) It is easy to see that

sup
(η,v)∈A×❡C

|G(z, η, v,X, Y )| ≤ sup
(η,v)∈A×❡C

|vTH(z,X) − vTY | ≤ sup
(η,v)∈A×❡C

‖v‖Φ(z,X, Y ) ≤ Φ(z,X, Y ).

2The MGF of a random variable W is defined as M(s) = E[esW ].
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Here, the last inequality uses ‖v‖ ≤ 1, which follows from the fact that ‖v‖1 ≤ 1 for all v ∈ C̃.

(2) Given z ∈ Z, for any s = (η, v), s′ = (η′, v′) ∈ Rm+1, we have

|G(z, s,X, Y ) −G(z, s′, X, Y )|

≤ |G(z, η, v,X, Y ) −G(z, η′, v,X, Y )| + |G(z, η′, v,X, Y ) −G(z, η′, v′, X, Y )|.

Further,

|G(z, η, v,X, Y ) −G(z, η′, v,X, Y )| ≤ |(η − vTH(z,X))+ − (η′ − vTH(z,X))+|

+ |(η − vTY )+ − (η′ − vTY )+|

≤ 2|η − η′|, (2.11)

and

|G(z, η′, v,X, Y ) −G(z, η′, v′, X, Y )| ≤ |(v − v′)TH(z,X)| + |(v − v′)TY |

≤ ‖v − v′‖Φ(z,X, Y ). (2.12)

Thus, it follows that

|G(z, s,X, Y ) −G(z, s′, X, Y )| ≤ (Φ(z,X, Y ) + 2)‖s− s′‖. (2.13)

Moveover, for all t = (z, η, v), t′ = (z′, η′, v′) ∈ Z ×A× C̃, we have

|G(t,X, Y ) −G(t′, X, Y )| ≤ |G(z, s,X, Y ) −G(z, s′, X, Y )| + |G(z, s′, X, Y ) −G(z′, s′, X, Y )|

≤ (Φ(z,X, Y ) + 2)‖s− s′‖ + |vT (H(z,X) −H(z′, X))|

≤ (Φ(z,X, Y ) + Π(X) + 2)‖t− t′‖. (2.14)

Assumptions (A1) and (A2) imply that there exists a constant B = B(X,Y ) such that Φ(z,X, Y )+

Π(X) + 2 ≤ B <∞ for all z ∈ Z a.e.

(3) It follows that

E
[
esG(z,η,v,X,Y )

]
≤ E

[
e|sG(z,η,v,X,Y )|

]
≤ E

[
e|s|Φ(z,X,Y )

]
≤ M z

Φ(|s|).

The proof is complete because M z
Φ(·) is finite in a neighborhood of zero for all z ∈ Z by Assumption

(A3). �

Proposition 2.2

(1) If (A1) holds, then g(·) is bounded and gN (·) is bounded a.e.

(2) If (A1) holds, then g(z, ·) is uniformly Lipschitz continuous for all z ∈ Z, i.e., there exists a

constant Γ <∞ such that at every z ∈ Z we have

|g(z, s) − g(z, s′)| ≤ Γ‖s− s′‖

for any s, s′ ∈ Rm+1. Also, gN (z, ·) is uniformly Lipschitz continuous for all z ∈ Z a.e.. If,
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in addition, Assumption (A2) holds, then g(·) is Lipschitz continuous on Z×A×C̃ and gN (·)

is Lipschitz continuous on Z ×A× C̃ a.e..

(3) If Assumptions (A1) and (A2) hold, then gN (·) converges to g(·) a.e. uniformly on Z×A×C̃.

Proof:

(1) Proposition 2.1 (1) implies that |g(z, η, v)| ≤ φ(z) for all (z, η, v) ∈ Z × A × C̃. Moreover,

Assumption (A1) implies that φ(z) is bounded. Similarly, we have that |gN (z, η, v)| ≤ φN (z) and

φN (z) is bounded a.e.

(2) Assumption (A1) implies that maxz∈Z φ(z) <∞. Let

Γ := 2 + max
z∈Z

φ(z). (2.15)

From the proof of Proposition 2.1 (2), we know that given any z ∈ Z, we have |g(z, s)− g(z, s′)| ≤

Γ‖s− s′‖ for any s, s′ ∈ Rm+1. Analogously, ‖gN (z, s) − gN (z, s′)‖ ≤ (2 + maxz∈Z φN (z))‖s− s′‖.

Moreover, that proof also shows that |g(t) − g(t′)| ≤ (Γ + π)‖t− t′‖ for all t, t′ ∈ Rm+n+1. Let

πN :=
1

N

N∑

j=1

Π(Xj). (2.16)

Then |gN (t) − gN (t′)| ≤ (2 + πN + maxz∈Z φN (z))‖t− t′‖ for all t, t′ ∈ Rm+n+1.

(3) Proposition 2.1 shows that G(z, η, v,X, Y ) is dominated by an integrable function and is

continuous on Z×A×C̃ a.e. Assumption (A1) ensures the compactness of Z×A×C̃. Under these

conditions, the uniform convergence a.e. immediately follows Proposition 7 in Shapiro (2003). �

3 Rate of Convergence Analysis of Sample Average Approxima-

tion

In this section we discuss the application of the SAA method to (RSD) and study conditions for

convergence. As we shall see below, it is possible to show that (i) the optimal value and the set of

optimal solutions of the SAA problem converge to the true values, and (ii) the feasible set of the

SAA problem becomes arbitrarily close to the original feasible set with a probability that goes to

one exponentially fast with the sample size.

Based on the distance function (2.10) of a point to a set, we denote the deviation of set K1

from K2 as

D(K1,K2) :=

{
supy∈K1

d(y,K2) if K1 is nonempty,

0 o.w.
(3.1)

and their Hausdorff distance as

H(K1,K2) := max{D(K1,K2), D(K2,K1)}. (3.2)

We first show the consistency of the estimator θǫ
N of θǫ, which are respectively the optimal

values of (ǫ-SASD) and (ǫ-RSD) for a given ǫ ∈ R, in the following theorem.
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Theorem 3.1 Suppose Assumptions (A1) and (A2) hold. Fix ǫ ∈ R and suppose also that

D(Sǫ, Sǫ−γ) → 0 as γ ↓ 0. Then,

(1) H(Sǫ
N , S

ǫ) → 0 a.e as N → ∞;

(2) If the objective function f(·) is continuous in a neighborhood of Sǫ, then θǫ
N → θǫ and

D(Υǫ
N ,Υ

ǫ) → 0 as N → ∞ a.e.

Proof:

(1) We first argue that D(Sǫ
N , S

ǫ) → 0 as N → ∞ a.e. by contradiction. Suppose that there exists a

measurable set Q ⊆ Ω with P (Q) > 0 such that, given any ω ∈ Q, we have δ > 0 with the property

that for any k > 0 there exists Nk ≥ k satisfying D(Sǫ
Nk
, Sǫ) > δ > 0, i.e., there exists zNk

∈ Sǫ
Nk

such that d(zNk
, Sǫ) > δ > 0. Thus, by the compactness of Z, we can choose k and Nk to obtain a

sequence {zNk
} converging to some point ẑ ∈ Z. Since d(zNk

, Sǫ) > δ, it follows that d(ẑ, Sǫ) ≥ δ.

Now,

∣∣∣∣∣ sup
(η,v)∈A×❡C

gNk
(zNk

, η, v) − sup
(η,v)∈A×❡C

g(ẑ, η, v)

∣∣∣∣∣

≤ sup
(η,v)∈A×❡C

|gNk
(zNk

, η, v) − g(zNk
, η, v)| + sup

(η,v)∈A×❡C
|g(zNk

, η, v) − g(ẑ, η, v)|

≤ sup
(z,η,v)∈Z×A×❡C

|gNk
(z, η, v) − g(z, η, v)| + sup

(η,v)∈A×❡C
E|vTH(zNk

, X) − vTH(ẑ, X)|

≤ sup
(z,η,v)∈Z×A×❡C

|gNk
(z, η, v) − g(z, η, v)| + E‖H(zNk

, X) −H(ẑ, X)‖.

From Proposition 2.2 (3), gN (·) converges uniformly to g(·) a.e.. Moreover, by Assumption (A2),

H(·, X) is Lipschitz continuous a.e.. Since P (Q) > 0, we can assume without loss of generality

that, on the sample path ω, gN (·) converges uniformly to g(·) and H(·, X) is Lipschitz continuous.

It follows that for that ω we have

lim
k→∞

∣∣∣∣∣ sup
(η,v)∈A×❡C

gNk
(zNk

, η, v) − sup
(η,v)∈A×❡C

g(ẑ, η, v)

∣∣∣∣∣ = 0,

and hence we have

sup
(η,v)∈A×❡C

g(ẑ, η, v) = lim
k→∞

sup
(η,v)∈A×❡C

gNk
(zNk

, η, v) ≤ ǫ.

This contradicts the fact that ẑ /∈ Sǫ. Therefore, D(Sǫ
N , S

ǫ) → 0 as N → ∞ a.e..

We now show that D(Sǫ, Sǫ
N ) → 0 a.e.. Using Proposition 2.2 (3), given γ > 0 there exists

Nγ > 0 such that, for all N ≥ Nγ ,

sup
(z,η,v)∈Sǫ−γ×A×❡C

|gN (z, η, v) − g(z, η, v)| ≤ γ a.e.

and hence

sup
(z,η,v)∈Sǫ−γ×A×❡C

gN (z, η, v) ≤ γ + sup
(z,η,v)∈Sǫ−γ×A×❡C

g(z, η, v) ≤ γ + ǫ− γ ≤ ǫ.
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It follows that Sǫ−γ ⊆ Sǫ
N , so D(Sǫ−γ , Sǫ

N ) = 0 for N ≥ Nγ . Using the triangular inequality

D(Sǫ, Sǫ
N ) ≤ D(Sǫ, Sǫ−γ) + D(Sǫ−γ , Sǫ

N ),

and the assumption D(Sǫ, Sǫ−γ) → 0, by letting N → ∞ and γ → 0 we have that D(Sǫ, Sǫ
N ) → 0

a.e.. Hence we have proved that H(Sǫ
N , S

ǫ) → 0 as N → ∞ a.e..

(2) Suppose that Sǫ is a nonempty set. For z∗ ∈ Υǫ, let zN = arg minz∈Sǫ
N
‖z∗ − z‖. Since

H(Sǫ
N , S

ǫ) → 0 a.e., it follows that zN → z∗ asN → ∞ a.e.. By the continuity of f , lim supN→∞ θǫ
N ≤

limN→∞ f(zN ) = f(z∗) = θǫ. Also, for any convergent sequence {z̄N} with z̄N ∈ Υǫ
N , the limit

point z̄ is in Sǫ. Hence, lim infN→∞ θǫ
N ≥ θǫ. Suppose D(Υǫ

N ,Υ
ǫ) 9 0 for all ω in a subset of

Ω with a positive measure. Following arguments similar to those in the proof of part (1), we can

construct a convergent sequence {z̄N} with z̄N ∈ Υǫ
N such that d(z̄N ,Υ

ǫ) > δ > 0. Let z̄ be its

limit point, so z̄ ∈ Sǫ\Υǫ. But f(z̄) = limN→∞ f(z̄N ) = limN→∞ θǫ
N = θǫ, which is a contradiction.

Thus, D(Υǫ
N ,Υ

ǫ) → 0 a.e..

If Sǫ is empty, Sǫ
N must be empty for large enough N a.e.. Otherwise, D(Sǫ

N , S
ǫ) = ∞ for all

N ≥ 1 a.e. so that limN→∞ D(Sǫ
N , S

ǫ) = ∞ a.e.. Therefore, Υǫ and Υǫ
N are empty as well and thus

both θǫ and the limit of θǫ
N are ∞. �

The condition D(Sǫ, Sǫ−γ) → 0 as γ ↓ 0 ensures the stability of (ǫ-RSD). An arbitrary small

perturbation of the function g(·) cannot result in a big change in the optimal solutions. Consider

the case, for example, where Z = R, H(z,X) ≡ −z2 and Y is a Bernoulli random variable which

takes values ±1 with probability 1/2. Thus, g(z, η) = (η + z2)+ − 1/2[(η − 1)+ + (η + 1)+]. It

is easily verified that S0 = {z ∈ R : z2 ≤ 0} = {0}. Then, S−γ is empty for all γ > 0 so that

D(Sǫ, Sǫ−γ) → ∞. Suppose that we sample 2k + 1 (k ∈ N) points consisting of k (-1)’s and k + 1

(1)’s. Clearly, S0
N = {z ∈ R : z2 ≤ −1/(2k + 1)} is empty under the perturbation.

Proposition 3.1 below shows that the condition D(Sǫ, Sǫ−γ) → 0 is automatically satisfied when

(ǫ-RSD) is a convex problem and the Slater condition holds.

Proposition 3.1 Suppose that (i) Z is convex, (ii) for all (η, v) ∈ A×C̃ the integrand G(·, η, v,X, Y )

is convex a.e. with respect to (X,Y ), and (iii) the Slater condition holds for (ǫ-RSD). Then

D(Sǫ, Sǫ−γ) → 0 as γ ↓ 0.

Proof: Let q(z) := sup
(η,v)∈A×❡C g(z, η, v). Since G(·, η, v,X, Y ) is convex a.e. for all (η, v) ∈ A× C̃,

q(·) is a convex function.

Next, observe that the sequence {D(Sǫ, Sǫ−γ)} is monotonically decreasing as γ ↓ 0 since Sǫ−γ1 ⊆

Sǫ−γ2 when γ1 ≥ γ2. Suppose that D(Sǫ, Sǫ−γ) 9 0 as γ ↓ 0. Then, there exists δ > 0 such that

D(Sǫ, Sǫ−γ) ≥ δ > 0 for all γ > 0. Let Kγ := {z ∈ Sǫ : d(z, Sǫ−γ) ≥ δ}. It is easy to see that the

Kγ are nonempty compact sets for all γ > 0. Moreover, Kγ1 ⊇ Kγ2 when γ1 ≥ γ2. Then, ∩γ>0Kγ is

nonempty. Let z̃ ∈ ∩γ>0Kγ . Clearly, d(z̃, Sǫ−γ) ≥ δ > 0 for all γ > 0. Consider the neighborhood

N (z̃) := {y ∈ Sǫ : ‖z̃ − y‖ < δ}. Then N (z̃) ∩ Sǫ−γ = ∅ for all γ > 0. It follows that q(y) ≡ ǫ for

all y ∈ N (z̃).

Meanwhile, the Slater condition implies that there exists a γ′ > 0 such that Sǫ−γ′

is a nonempty

set. Let ẑ ∈ Sǫ−γ′

, so that q(ẑ) ≤ ǫ − γ′. Let ȳ ∈ N (z̃) be such that ȳ = λz̃ + (1 − λ)ẑ for some

λ ∈ (0, 1). Convexity of q(·) implies that ǫ = q(ȳ) ≤ λq(z̃)+(1−λ)q(ẑ) < ǫ, which is a contradiction.

Thus, D(Sǫ, Sǫ−γ) → 0. �
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Theorem 3.1 shows that the feasible set of (ǫ-SASD) approaches that of (ǫ-RSD) as the sample

size goes to infinity. Next, for ǫ > 0, let us consider

P (S−ǫ ⊆ S0
N ⊆ Sǫ). (3.3)

Theorem 3.2 below shows that the probability (3.3) converges to 1 exponentially fast as the sample

size N increases. Before stating the theorem, we state some auxiliary lemmas that will be used in

the proof.

Lemma 3.1 Let W and V be two random variables, and let b ∈ R. Then,

P (W > b− V ) ≤ P (W > b− a) + P (V > a) for all a ∈ R.

Proof:

P (W > b− V ) = P (W > b− V, V > a) + P (W > b− V, V ≤ a)

≤ P (W > b− V, V > a) + P (W > b− a) (since a+W ≥ V +W > b

when W > b− V and V ≤ a)

≤ P (V > a) + P (W > b− a).

�

Lemma 3.2 Let W be a random variable such that the MGF of W (denoted MW (·)) is finite in a

neighborhood of zero. Let W1,W2, . . . be i.i.d. samples of W , and define WN := (1/N)
∑N

i=1Wi.

Then, for any N ≥ 1,

P (WN − E[W ] > δ) ≤ e−NIW (E[W ]+δ)

and

P (E[W ] −WN > δ) ≤ e−NIW (E[W ]−δ),

where IW (·) is the rate function of W , defined as IW (z) = supλ∈R{λz − logMW (λ)}.

Moreover, when δ is sufficiently small we have

IW (E[W ] ± δ) ≥
δ2

3Var[X]
.

Proof: The first assertion is a well-known result, called Chernoff bound; for a proof see, e.g., Dembo

and Zeitouni (1998). The second assertion follows from the Taylor expansion of the function IW (·),

see Kleywegt et al. (2001). �

Theorem 3.2 Suppose (A1)-(A4) hold. Define

σ2 := max

{
Var[Π(X)], max

z∈Z
Var[Φ(z,X, Y )], max

t∈Z×A×❡C Var[G(t,X, Y )]

}
.
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Then, given ǫ > 0, there exists τ ∈ (0, 2ǫ) such that the following holds for all N ≥ 1:

P (S−ǫ ⊆ S0
N ⊆ Sǫ) ≥ 1 −

(
3 +

(τ + 4π)nD(Z)n

τn
+

2D(Z ×A× C̃)m+n+1

γm+n+1

)
e

✏
− Nτ2

12σ2

✑
,

where γ := 2ǫ−τ
4Γ+4π+5τ . In particular, given β ∈ [0, 1], if

N ≥
12σ2

τ2
log

[
1

β

(
3 +

(τ + 4π)nD(Z)n

τn
+

2D(Z ×A× C̃)m+n+1

γm+n+1

)]
,

then P (S−ǫ ⊆ S0
N ⊆ Sǫ) ≥ 1 − β.

Proof: Let ǫ > 0 be given. For arbitrary τ ∈ (0, ǫ), define the following three quantities:

P τ
1 :=P

(
S−ǫ * S0

N , sup
z∈Z

φN (z) ≤ Γ − 2 + τ

)
,

P τ
2 :=P

(
S0

N * Sǫ, sup
z∈Z

φN (z) ≤ Γ − 2 + τ

)
,

P τ
3 :=P (∃z ∈ Z, φN (z) > Γ − 2 + τ) ,

where φN (·) and Γ are defined in (2.8) and (2.15) respectively. Note that

P (S−ǫ ⊆ S0
N ⊆ Sǫ)

= 1 − P
(
S−ǫ * S0

N or S0
N * Sǫ

)

≥ 1 − P

(
S−ǫ * S0

N or S0
N * Sǫ, sup

z∈Z
φN (z) ≤ Γ − 2 + τ

)
− P

(
sup
z∈Z

φN (z) > Γ − 2 + τ

)

≥ 1 − P τ
1 − P τ

2 − P τ
3 . (3.4)

We first work with the probability P τ
1 . Compactness of Z×A×C̃ implies that, given any γ > 0,

there exists a finite set K ⊆ Z ×A× C̃ with |K| ≤ D(Z ×A× C̃)m+n+1/γm+n+1 such that, for all

t = (z, η, v) ∈ Z ×A× C̃, we have t′ ∈ K satisfying ‖t − t′‖ ≤ γ. Let t and t′ be two such points.

From Proposition 2.2 (2), we conclude that

|g(t) − g(t′)| ≤ (Γ + π + τ)γ

and

|gN (t) − gN (t′)| ≤ (2 + sup
z∈Z

φN (z) + πN )γ.
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Moreover, on the event {gN (t) − g(t) > ǫ, supz∈Z φN (z) ≤ Γ − 2 + τ} we have

gN (t′) − g(t′) = gN (t′) − gN (t) + gN (t) − g(t) + g(t) − g(t′)

> ǫ− (Γ + π + τ)γ − (2 + sup
z∈Z

φN (z) + πN )γ

≥ ǫ− (Γ + π + τ)γ − (Γ + τ + πN )γ

= ǫ− (2Γ + 2τ + π + πN )γ. (3.5)

It follows that

P τ
1 = P (∃t ∈ Z ×A× C̃ s.t. g(t) ≤ −ǫ and gN (t) > 0, sup

z∈Z
φN (z) ≤ Γ − 2 + τ)

≤ P (∃t ∈ Z ×A× C̃ s.t. gN (t) − g(t) > ǫ, sup
z∈Z

φN (z) ≤ Γ − 2 + τ)

≤ P (∃t′ ∈ K s.t. gN (t′) − g(t′) > ǫ− (2Γ + 2τ + π + πN )γ) (from (3.5)).

By applying Lemma 3.1 to the above expression (with V = (2Γ + 2τ + π+ πN )γ and a = ǫ− τ/2),

this is

≤ P ((2Γ + 2τ + 2π + πN − π)γ > ǫ− τ/2) + P (∃t′ ∈ K s.t. gN (t′) − g(t′) > τ/2)

= P (πN − π >
2ǫ− τ

2γ
− 2Γ − 2τ − 2π) + P (∃t′ ∈ K s.t. gN (t′) − g(t′) > τ/2)

≤ P (πN − π > τ/2) + P (∃t′ ∈ K s.t. gN (t′) − g(t′) > τ/2),

where the latter inequality holds since γ = 2ǫ−τ
4Γ+4π+5τ , which implies that 2ǫ−τ

2γ −2Γ−2τ−2π = τ/2.

Now, using Lemma 3.2, this is

≤ e−NIΠ(π+τ/2) +
∑

t∈K

e−NIt(g(t)+τ/2), (3.6)

where IΠ(·) is the rate function of Π(X) and It(·) is that of G(t,X, Y ) at a given t ∈ K. Lemma 3.2

also implies, via Assumption (A3), that

It(g(t) + τ/2) ≥
τ2

12Var[G(t,X, Y )]
≥

τ2

12σ2

for all t ∈ K if τ is sufficiently small. Also, by Assumption (A4) and the same lemma, we have

IΠ(π + τ/2) ≥ τ2/(12σ2). As the result, we obtain

P τ
1 ≤

(
1 +

D(Z ×A× C̃)m+n+1

γm+n+1

)
e

✏
− Nτ2

12σ2

✑
. (3.7)

A similar calculation yields

P τ
2 ≤

(
1 +

D(Z ×A× C̃)m+n+1

γm+n+1

)
e

✏
− Nτ2

12σ2

✑
. (3.8)
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We now use a similar method to build an upper bound for P τ
3 . Construct a finite set U ⊆ Z with

|U | ≤ [(τ+4π)D(Z)]n/τn such that, for all z ∈ Z, there exists z′ ∈ U satisfying ‖z−z′‖ ≤ τ/(τ+4π).

Let z and z′ be two such points. Then we have, by Assumption (A2),

∣∣φ(z) − φ(z′)
∣∣ ≤ E[‖H(z,X) −H(z′, X)‖] ≤

τπ

τ + 4π

and

∣∣φN (z) − φN (z′)
∣∣ ≤

τπN

τ + 4π
,

which in turn imply that

P τ
3 ≤ P (∃z ∈ Z s.t. φN (z) − φ(z) ≥ τ)

≤ P

(
∃z′ ∈ U s.t. φN (z′) − φ(z′) ≥ τ −

τ(π + πN )

τ + 4π

)

≤ P

(
τ(π + πN )

τ + 4π
≥ τ/2

)
+ P

(
∃z′ ∈ U s.t. φN (z′) − φ(z′) ≥ τ/2

)
(from Lemma 3.1)

≤ P (πN − π ≥ τ/2) +
∑

z′∈U

P
(
φN (z′) − φ(z′) ≥ τ/2

)

≤

(
1 +

(τ + 4π)nD(Z)n

τn

)
e

✏
− Nτ2

12σ2

✑
, (3.9)

where the last inequality follows from applying Lemma 3.2. Combining (3.4), (3.7), (3.8), and

(3.9), we complete the proof for the first part. Also, the second part follows by imposing that(
3 + (τ+4π)nD(Z)n

τn + 2D(Z×A×❡C)m+n+1

γm+n+1

)
e

✏
− Nτ2

12σ2

✑
≤ β. �

Theorem 3.2 shows the exponential convergence (in probability) of feasible regions of (SASD)

to that of the true problem. This provides a theoretical foundation to control the probability

of constraint violation by properly choosing N . Alternatively, N can be determined by fixing a

probability β.

4 Reformulation of Sample Average Approximation

Problem (SASD) has infinitely many constraints (2.3), defined on the uncountable set A × C̃.

Similarly to the proof of Theorem 3.2, we can shrink A×C̃ to a finite subsetK with D(A×C̃,K) ≤ γ.

For a given ǫ > 0, we could in principle use the set {z ∈ Z : gN (z, η, v) ≤ ǫ (η, v) ∈ K} to

approximately represent Sǫ
N . However, this is impractical since the subset K is hard to build.

Hence it is necessary to work out an efficient way to find a particular finite support of A × C̃ to

reformulate the constraints. In what follows we describe such an approach. Throughout this section

and the next, the samples (Xj , Y j), j = 1, . . . , N are fixed, so the results refer to the corresponding

sample path.

Proposition 4.1 For all ǫ ∈ R,

Sǫ
N = {z ∈ Z : gN (z, vTY i, v) ≤ ǫ, i = 1, . . . , N, v ∈ C̃}. (4.1)
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Proof: In fact, given any v ∈ C̃, we can regard the samples, {vTY j : j = 1, . . . , N}, as the equally

likely outcomes of a discrete random variable. Then the proof immediately follows Proposition 3.2

in Dentcheva and Ruszczyński (2003). �

Let us first consider a special case, (SASD) with the P-dominance constraints, i.e., C̃ is a

polytope. Homem-de-Mello and Mehrotra (2009) provide an equivalent representation of (4.1)

with a finite number of v’s. They prove that all the needed v’s are components of the vertices of

certain polyhedra. For reference, we state that result below, adapted to our context.

Theorem 4.1 Suppose C̃ is a polytope. Let

Pi := {(v, y) ∈ Rm+N : yj ≥ vT (Y i − Y j), yj ≥ 0, v ∈ C̃, j = 1, . . . , N}, i = 1, . . . , N. (4.2)

Then the set Sǫ
N in (4.1) satisfies

Sǫ
N = {z ∈ Z : gN (z, vikT

Y i, vik) ≤ ǫ, i = 1, . . . , N, k = 1, . . . , νi}, (4.3)

where vik are the v-components of the vertex solutions of Pi.

Theorem 4.1 writes Sǫ
N as a set consisting of a finite number of constraints. Recall that S0

N is

the feasible region of (SASD). Then, by replacing (2.3) with (4.3) we obtain the problem

min f(z) (FSASD)

s.t. gN (z, vikT
Y i, vik) ≤ 0, i = 1, . . . , N, k = 1, . . . , νi (4.4)

z ∈ Z.

(FSASD) can be reformulated by introducing the intermediate variable rijk as in Homem-de-Mello

and Mehrotra (2009).

min f(z) (FullNLp)

s.t.

N∑

j=1

rijk ≤
N∑

j=1

(vikT
Y i − vikT

Y j)+, i = 1, . . . , N, k = 1, . . . , νi

rijk ≥ (vikT
Y i − vikT

H(z,Xj)), i, j = 1, . . . , N, k = 1, . . . , νi (4.5)

rijk ≥ 0, i, j = 1, . . . , N, k = 1, . . . , νi.

When H(·, X) is a linear function a.e. with respect to X, (FullNLp) is a linearly constrained

program.

(FullNLp) is still impractical when the underlying random vectors are high dimensional since

the number of vertices in Pi grows exponentially fast with that dimension. Furthermore, it is

not clear, in principle, whether (2.3) can be reduced to finitely many constraints when C̃ is not

polyhedral. Homem-de-Mello and Mehrotra (2009) suggest a cut-generation approach which solves

a sequence of relaxations of (FSASD), over a subset of constraints (4.4). Here, we extend that

algorithm to the broader class of C-dominance constrained problems. This is described in the next

section.
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5 A Cut-Generation Algorithm with Sample Average Approxima-

tion

Recall from Proposition 4.1 that the feasible region of (SASD), S0
N written in (4.1), contains

infinitely many constraints because of C̃. In the cut-generation approach, we consider (HSASDk),

a sequence of relaxed (SASD) over some finite subsets of C̃. (HSASDk) are solved by using the

formulations given in (FullNLp). At a solution of ẑ of a relaxed problem we study subproblems

min
v∈❡C −gN (ẑ, vTY i, v) (SDCPi)

for i = 1, . . . , N . Given ǫ > 0, we choose a δ such that 0 < δ < ǫ. Then, let σ = ǫ − δ. If the

σ-optimal values3 of all the (SDCPi), are bigger than or equal to −δ, we stop and declare ẑ ∈ Sǫ
N ,

i.e., ẑ is a feasible solution of (ǫ-SASD) at which the objective value is in [θǫ
N , θ

0
N ]. Otherwise, there

exists a σ-optimal solution vσ of (SDCPi) with an objective value less than −δ. Using this solution,

we generate a valid cut gN (z, vσTY i, vσ) ≤ 0 for ẑ. Algorithm 1 summarizes the procedure.

Algorithm 1 A Cut-Generation Algorithm for (SASD)

0. Given ǫ > 0, choose δ ∈ (0, ǫ). Let σ = ǫ− δ.
Let k = 0 and choose an arbitrary finite set V0 ⊂ A× C̃.

1. Find an optimal solution ẑ of

min f(z) (HSASDk)

s.t. gN (z, η, v) ≤ 0, (η, v) ∈ Vk,

z ∈ Z,

which can be done by solving (FullNLp).

2. Let Vk+1 = Vk.
For i = 1, . . . , N ,

solve the problems (SDCPi), let vσ
i and ψσ

i be a σ-optimal solution and objective value;
if ψσ

i < −δ, Vk+1 = Vk+1 ∪ {(vσ
i

TY i, vσ
i )}.

3. If Vk+1 6= Vk, let k = k + 1, go to Step 1; otherwise, exit.

Note that step 2 of Algorithm 1 involves solving (SDCPi), which is a DC programming problem

— i.e., it minimizes difference of two convex polyhedral functions over a closed convex set. As we

shall see soon, a σ-optimal solution of (SDCPi) can be found in a finite number of steps.

We discuss the convergence of Algorithm 1 in Theorem 5.1 below. Let (HSASD) be the last

(HSASDk) after Algorithm 1 terminates.

Theorem 5.1 If Assumption (A1) holds, Algorithm 1 converges after generating a finite number of

cuts. Let θ̃N be the optimal value of the main problem (HSASD), upon termination of Algorithm 1.

Then θǫ
N ≤ θ̃N ≤ θ0

N .

3A σ-optimal solution is a feasible solution whose objective function value — called a σ-optimal value — is within
σ of the true optimal value.

15



Proof: By Proposition 2.2 (2), we know that gN (z, vTY i, v) is uniformly Lipschitz continuous with

respect to v for all z ∈ Z and i = 1, . . . , N a.e., so that for any v, v′ ∈ Rm we have

|gN (z, vTY i, v) − gN (z, (v′)TY i, v′)|

≤ 2|vTY i − (v′)TY i| + ‖v − v′‖ΦN (z,X, Y ) (from (2.11) and (2.12))

≤


 max

i∈{1,...,N}
2‖Y i‖ + max

z∈Z

1

N

N∑

j=1

‖H(z,Xj)‖ + ‖Y j‖


 ‖v − v′‖

≤ c‖v − v′‖, (5.1)

where

c := max
i∈{1,... ,N}

3‖Y i‖ + max
z∈Z

1

N

N∑

j=1

‖H(z,Xj)‖. (5.2)

In the worst case, each iteration of Algorithm 1 generates N cuts by (SDCPi) for all i =

1, . . . , N . It suffices to prove that each (SDCPi) generates a finite number of cuts. Without loss

of generality, we assume that a new (η, v), where η = vTY i, is added into Vk by (SDCPi) in

each iteration. Let Vk−1 = {(η0, v0), . . . , (ηk−1, vk−1)}. For each vj , we denote its neighborhood

as N (vj) :=
{
v ∈ C̃ : ‖v − vj‖ ≤ δ/c

}
. If Algorithm 1 fails to stop at iteration k, we get a σ-

optimal solution vk of (SDCPi) at which the objective function value is less than −δ. We claim

that vk /∈
⋃

j=0,... ,k−1 N (vj). Suppose by contradiction that vk ∈
⋃

j=0,... ,k−1 N (vj). Then, there

exists some vj , j ∈ {0, . . . , k − 1}, such that ‖vk − vj‖ ≤ δ/c. It follows that |gN (ẑ, vkT
Y i, vk) −

gN (ẑ, vjT
Y i, vj)| ≤ δ. Since gN (ẑ, vjT

Y i, vj) ≤ 0, it follows that gN (ẑ, vkT
Y i, vk) ≤ δ, which

contradicts the fact that the objective function value of (SDCPi) at vk is less than −δ. Considering

each i = 1, . . . , N , Algorithm 1 will generate at most N
⌈

cD(❡C)

δ

⌉m

cuts.

Obviously, θ̃N ≤ θ0
N since the feasible set of (HSASD) contains that of (SASD). Now, we show

that θǫ
N ≤ θ̃N . Let ψσ

i be the σ-optimal value of (SDCPi). When Algorithm 1 terminates, we have

that ψ0
i ≥ ψσ

i − σ ≥ −δ − σ = −ǫ for all i = 1, . . . , N . By Proposition 4.1, the optimal solution ẑ

of (HSASD) belongs to Sǫ
N . �

Homem-de-Mello and Mehrotra (2009) propose a branch-and-cut algorithm for minimizing

(SDCPi). Although the method is designed for a polyhedral feasible region, we can adapt it

to a general convex set. Horst et al. (1995) present an outer approximation method for a compact

convex set. Using their idea, we construct a polytope P̃ containing C̃ and consider the minimiza-

tion of (SDCPi) over P̃ to obtain a optimal solution v̂. Consider a neighborhood of C̃ defined as

N❡C := {v ∈ Rm : d(v, C̃) ≤ σ/c}. If v̂ /∈ N❡C , we cut that point away from P̃ and repeat the

procedure. As C̃ is compact, there exists a unique û ∈ C̃ such that

û = arg min
u∈❡C ‖v̂ − u‖. (5.3)

Thus

(v̂ − û)T (v − û) ≤ 0 (5.4)
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is a valid cut for v̂. In case v̂ ∈ N❡C , (5.1) assures that there exists a feasible solution of (SDCPi)

whose objective value is within σ of the value of (SDCPi) at v̂.

In what follows we use an outer approximation method to extend the branch-and-cut algorithm

in Homem-de-Mello and Mehrotra (2009) in order to minimize polyhedral concave functions over

general convex sets. We first construct an initial outer simplex containing C̃,

P̃ =



v ∈ Rm :

n∑

j=1

vj ≤ max
v∈❡C

m∑

j=1

vj , vj ≥ min
v∈❡C vj , j = 1, . . . ,m



 . (5.5)

In particular, when C̃ ⊂ Rm
+ we can set P̃ = {v ∈ Rm

+ : ‖v‖1 ≤ 1}.

The branch-and-cut algorithm yields a global optimal solution of (SDCPi) over P̃. If it is not

a feasible solution of (SDCPi) over N❡C , the cut (5.4) is generated. The procedure is repeated until

a feasible global optimal solution v̂σ
i of (SDCPi) over N❡C is found. If this solution is infeasible for

C̃, i.e., v̂σ
i ∈ N❡C \ C̃, we project v̂σ

i onto C̃, obtaining

vσ
i := arg min

u∈❡C ‖v̂σ
i − u‖. (5.6)

Let ψ̂σ
i be the σ-optimal value of (SDCPi) at v̂σ

i and ψσ
i be the objective value at vσ

i . By construc-

tion, we have ‖vσ
i − v̂σ

i ‖ ≤ σ/c. It follows from (5.1) that

0 ≤ ψσ
i − ψ̂σ

i = gN (ẑ, vσ
i

TY i, vσ
i ) − gN (ẑ, v̂σ

i

T
Y i, v̂σ

i ) ≤ c‖vσ
i − v̂σ

i ‖ ≤ σ.

Then, ψσ
i is also a σ-optimal value. Note that ψ̂σ

i ∈ [ψ0
i − σ, ψ0

i ] since it is obtained over a feasible

region that contains C̃, whereas ψσ
i ∈ [ψ0

i , ψ
0
i + σ] since it corresponds to a feasible point in C̃. The

algorithm, called Algorithm 2, is summarized below.

Algorithm 2 A Branch-and-Cut Algorithm for (SDCPi)

0. Construct an initial simplex P̃ ⊇ C̃.

1. Run the branch-and-cut algorithm in Homem-de-Mello and Mehrotra (2009) and obtain a
global optimal solution v̂ of

min
v∈ ❡P −gN (ẑ, vTY i, v).

2. Compute û in (5.3). If ‖v̂ − û‖ > σ/c, let

P̃ = P̃ ∩ {v ∈ Rm : (v̂ − û)T (v − û) ≤ 0},

and go to Step 1; otherwise, exit with a σ-optimal solution vσ
i = û.

Recall the proof of Theorem 5.1 depends on the finite convergence of Algorithm 2. We show

now that the algorithm stops after finitely many iterations.

Theorem 5.2 Algorithm 2 terminates after a finite number of iterations.
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Proof: Homem-de-Mello and Mehrotra (2009) show that the branch-and-cut algorithm solving

(SDCPi) over P̃ stops after a finite number of iterations. Furthermore, step 2 makes no effect on

the convergence of the branch-and-cut algorithm. Hence, in order to show that the extension keeps

a finite convergence, we only need to discuss step 2.

Now suppose that Algorithm 2 fails to exit from step 2 in finitely many iterations. It follows that

we repeat the iteration from step 1 to 2 and obtain an infinite sequence {vk : k = 1, 2, . . . } ⊂ P̃, such

that vk /∈ N❡C . Note that P̃ is compact in the initial construction. From the above discussion on the

cuts we see that for any vi, vj in the sequence with j > i we have vj ∈ P̃ ∩{v ∈ Rm : (vi −ui)T (v−

ui) ≤ 0}, where ui is the closest point in C̃ to vi. It follows that ‖vi − vj‖ ≥ ‖vi − ui‖ ≥ σ/c. As

a result, it is impossible to find a Cauchy subsequence in {vk}, which contradicts the compactness

of P̃. Therefore, Algorithm 2 must exit from step 2 after a finite number of iterations. �

6 Lower and Upper Bounds

The analysis in the previous sections shows that the optimal value and solution of (SASD) are good

approximations of their true counterparts of (RSD) with sufficiently large N . In this section, we

discuss how to build statistical lower and upper bounds for the true optimal value. First, we use the

optimal values of the relaxed and stringent sample problems (±ǫ-SASD) for the upper and lower

bounds. However, this approach requires calculations of difficult quantities. Next, we consider a

practical lower bound by constructing a Lagrangian function for the problem. To do so, we solve

a technical difficulty that the Lagrangian multiplier of (RSD) is a function on the uncountable set

A × C̃ as (RSD) is a semi-infinite problem. Finally, we propose a practical upper bound. Given

a feasible solution of (−ǫ-SASD), we statistically test its feasibility to (RSD). If the solution is

satisfied, the corresponding objective value is a reasonable upper bound. Also, to get a tighter

bound, we develop a bisection algorithm.

6.1 Theoretical Lower and Upper Bounds

We generate M independent sample groups, (X1
j , Y

1
j ), . . . , (XN

j , Y
N
j ), j = 1, . . . ,M , each of which

consists of N i.i.d. sample pairs. Let Sǫ
N (j) be set (2.5) composed by the jth group of sample pairs.

Correspondingly, θǫ
N (j) is the optimal value of the jth (ǫ-SASD), obtained from sample pairs of

size N . Recall that θ0 is the optimal value of the true problem (RSD). Given ǫ > 0, we have that

pl := P (θǫ
N (j) ≤ θ0) ≥ P (S0 ⊆ Sǫ

N (j)). Under Assumptions (A1)-(A4), Theorem 3.2 yields

P (S0 ⊆ Sǫ
N (j)) ≥ pN := 1 −

(
3 +

(τ + 4π)nD(Z)n

τn
+
D(Z ×A× C̃)m+n+1

γm+n+1

)
e

✏
− Nτ2

12σ2

✑
. (6.1)

Next, we rearrange θǫ
N (j) in nondecreasing order, so θǫ

N (1) ≤ . . . ≤ θǫ
N (M). For a positive integer

L ≤ M , we use the quantity θǫ
N (L) as a statistical lower bound of θ0, as done by Nemirovski and
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Shapiro (2006) for chance constrained problems. We have

P (θǫ
N (L) > θ0) =

L−1∑

j=0

(
M

j

)
(pl)j(1 − pl)M−j

=: b(L− 1; pl,M)

≤ b(L− 1; pN ,M).

(6.2)

The last inequality follows from the fact that P (θǫ
N (L) > θ0) is decreasing in pl. Similarly, we have

that ph := P (θ−ǫ
N (j) ≥ θ0) ≥ P (S−ǫ

N (j) ⊆ S0). For H ≤M , it follows that

P (θ−ǫ
N (H) < θ0) = b(M −H; ph,M) ≤ b(M −H; pN ,M). (6.3)

Hence, we use θ−ǫ
N (H) as a statistical upper bound. The results are summarized in the following

theorem.

Theorem 6.1 Suppose (A1)-(A4) hold. Given ǫ > 0, β ∈ (0, 1) and N ≥ 1, we can choose positive

integers M,H, and L in such a way that

b(max{L− 1,M −H}; pN ,M) ≤ β, (6.4)

where pN = 1 −
(
3 + (τ+4π)nD(Z)n

τn + D(Z×A×❡C)m+n+1

γm+n+1

)
e

✏
− Nτ2

12σ2

✑
by Theorem 3.2. Then with proba-

bility at least 1 − β, the random quantities θǫ
N (L) and θ−ǫ

N (H) respectively give a lower and upper

bound for the optimal value θ0.

Proof: We fix L = 1 and H = M . It is easy to see that b(L − 1; pN ,M) = b(M − H; pN ,M) =

(1 − pN )M → 0 as M → ∞. Thus, we can always find M,H, and L such that (6.4) holds. �

Note that the complexity of the sample average approximation problem may grow fast with N .

For this reason, we fix N first and then allow the values L, H, and M to change. To get tighter

bounds, a larger L and smaller H should be chosen for a small M . Obviously, the answer is the

largest L and smallest H satisfying (6.4). On the other hand, if none of L and H satisfying (6.4)

exists, we increase M , which makes the left hand side of (6.4) go to 0 by growing to infinity.

6.2 Practical Lower Bound

The quantity pN defined in (6.1) is very difficult to compute. Thus, in general Theorem 6.1 only

gives theoretical bounds. In actual use, we need more efficient bounds, easily obtained but well

approximating the true optimal value. Shapiro and Ruszczyński (2008) propose a method to use the

Lagrangian of the expected value constrained problem to obtain the lower bound. Here, we extend

the idea to (RSD). As shown in Dentcheva and Ruszczyński (2009), the Lagrangian of (RSD) is

L(z, µ) := f(z) +

∫

A×❡C
g(z, η, v)dµ, (6.5)
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where µ belongs to the space rca(A× C̃) of a regular countably additive measures on A× C̃ having

finite variation. Given any µ̃ ∈ rca(A× C̃), we have that

θ0 ≥ inf
z∈Z

L(z, µ̃). (6.6)

It follows that the sample average of (6.6) can be used to construct a statistical lower bound. The

key in such an approach is to determine µ̃ for a tighter lower bound. In principle, we could use the

SAA method with an independent sample group to solve

µ̃ = arg max
µ∈rca(A×❡C)

min
z∈Z

LN (z, µ), (6.7)

where LN (z, µ) := f(z) +
∫
A×❡C gN (z, η, v)dµ is the sample average of L(z, µ). Clearly, (6.7) is a

difficult problem to solve. Here, we will discuss a particular but practical way to choose µ̃ and then

show the quality of this approach.

By running Algorithm 1 with an initial i.i.d sample group, (X1
0 , Y

1
0 ), . . . , (XNl

0 , Y Nl

0 ), we obtain

a finite set, VNl
:= {(ηk, vk)} ∈ A × C̃, to generate the constraints of the main problem (HSASD).

Using the Lagrangian multipliers λ(ηk, vk) of that problem, we construct

ϕ0
Nl

(λ) := inf
z∈Z



f(z) +

∑

(η,v)∈VNl

λ(η, v)g0
Nl

(z, η, v)



 , (6.8)

where g0
Nl

(·) is the sample average function in (2.2) with the initial group of Nl samples. Note

that we can view λ(·) as a measure on A × C̃ with mass function on VNl
since λ(η, v) ≡ 0 for

all (η, v) ∈ (A × C̃) \ VNl
. For a K ⊆ A × C̃, we denote µλ(K) :=

∑
s∈K∩VNl

λ(s). Clearly,

µλ ∈ rca(A× C̃). Let

ϕj
N (λ) := inf

z∈Z



f(z) +

∑

(η,v)∈VNl

λ(η, v)gj
N (z, η, v)



 , j = 1, . . . ,M, (6.9)

be formulated by using the same set VNl
with the independently generated M groups of samples

of size N each.

Theorem 6.2 For λ ≥ 0, E[ϕj
N (λ)|VNl

] ≤ θ0 for j = 1, . . . ,M .
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Proof: The definition of ϕj
N (λ) gives that

E[ϕj
N (λ)|VNl

] ≤ inf
z∈Z



f(z) +

∑

(η,v)∈VNl

λ(η, v)

N

N∑

i=1

E[G(z, η, v,Xi
j , Y

i
j )|VNl

]





≤ inf
z∈Z



f(z) +

∑

(η,v)∈VNl

λ(η, v)

N

N∑

i=1

sup
(η̂,v̂)∈A×❡C

E[G(z, η̂, v̂, Xi
j , Y

i
j )]





= inf
z∈Z



f(z) +

∑

(η,v)∈VNl

λ(η, v)

N

N∑

i=1

sup
(η̂,v̂)∈A×❡C

E[G(z, η̂, v̂, X, Y )]





= inf
z∈Z

{
f(z) + λ̂ sup

(η̂,v̂)∈A×❡C
g(z, η̂, v̂)

}
, (6.10)

where λ̂ :=
∑

(η,v)∈VNl
λ(η, v) ≥ 0.

Finally, we arrive at the result, expressing (RSD) by

θ0 = inf
z∈Z

sup
λ̃≥0

{
f(z) + λ̃ sup

(η̂,v̂)∈A×❡C
g(z, η̂, v̂)

}
(6.11)

and comparing (6.10) with (6.11). �

We now build a statistical lower bound. Denote by λ̃Nl
an optimal solution of the dual problem

of (HSASD). A lower bound is constructed by substituting the sample average of ϕj
N (λ̃Nl

) for its

conditional expectation. Using a similar method to that described in Mak et al. (1999), we compute

θNl,N,M :=
1

M

M∑

j=1

ϕj
N (λ̃Nl

) (6.12)

to estimate the lower bound of θ0. The variance of θNl,N,M is estimated by

σ2
Nl,N,M :=

1

M


 1

M − 1

M∑

j=1

(ϕj
N (λ̃Nl

) − θNl,N,M )2


 (6.13)

By the Central Limit Theorem, the estimator θNl,N,M has approximately a normal distribution as

M increases. The fact well supports that

LNl,N,M = θNl,N,M − tα,M−1σNl,N,M (6.14)

be used as an approximate 100(1 − α)% confidence lower bound for the conditional expectation of

ϕj
N (λ̃Nl

).

We now show the convergence of LNl,N,M as Nl, N → ∞. Note that the constant c in (5.2),

used to show finite termination of Algorithm 1, may approach infinity as Nl → ∞. Thus, in what

follows we assume that ‖H(z, x)‖ ≤ a for all (z, x) ∈ Z×ΞX , and assume also that ΞY is a compact

set with D(ΞY ) ≤ b for some constants a and b, so c is finite regardless of sample paths. Another
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problem is that the cardinality of VNl
may go to infinity even if c is independent of sample paths.

In each iteration, step 2 of Algorithm 1 processes Nl separated (SDCPi) in parallel. In the worst

case, with a same v ∈ C̃, Nl new constraints are added in the main problem (HSASDk). As a result,

the number of nonzero λ’s in (6.8) may go to infinity, which complicates the analysis. We make

a modification to prevent this case from happening. As illustrated in Figure 1, the set ΞY × C̃ is

Figure 1: Set ΞY × C̃ Covered by γ-cubes

divided into cubes of diameter γ ≤ δ
a+3b+2 . Now in step 2 of Algorithm 1, only one point from each

γ-cube is allowed to construct a new constraint. Given two arbitrary points, (Y 1, v1) and (Y 2, v2),

in a γ-cube, it follows that

|gN (z, v1T
Y 1, v1) − gN (z, v2T

Y 2, v2)| ≤ (a+ 3b)‖v1 − v2‖ + 2‖Y 1 − Y 2‖

≤ (a+ 3b+ 2)‖(Y 1, v1) − (Y 2, v2)‖

≤ δ.

Then the condition gN (z, v1T
Y 1, v1) ≤ 0, implies gN (z, v2T

Y 2, v2) ≤ δ, so v2 is not cut by step 2

of Algorithm 1. By the new policy, |VNl
| ≤

⌈
D(ΞY ×❡C)

γ

⌉2m

for all Nl > 0. Furthermore, it is easy to

verify that θǫ
Nl

≤ θ̃Nl
≤ θ0

Nl
in Theorem 5.1 still holds.

We discuss next the efficiency of the statistical lower bound LNl,N,M as the sample sizes Nl and

N both increase. The following theorem states the limit behavior.

Theorem 6.3 Suppose that (i) (A1) and (A2) hold, (ii) f(·) is finite and convex in a neighborhood

of Z, (iii) G(·, η, v,X, Y ) is convex a.e. (with respect to X,Y ) for all (η, v) ∈ A × C̃, and (iv) the

Slater condition holds in (RSD). Then

θǫ ≤ lim inf
Nl→∞

lim
N→∞

LNl,N,M ≤ lim sup
Nl→∞

lim
N→∞

LNl,N,M ≤ θ0 a.e..

Proof: For all positive λ, as N → ∞, we have

ϕj
N (λ) → inf

z∈Z
f(z) +

∑

(η,v)∈VNl

λ(η, v)g(z, η, v) a.e.

for j = 0, . . . ,M by Proposition 2.2 (3). Note that the assumption that f(·) is convex and
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G(·, η, v,X, Y ) is convex for all (η, v,X, Y ) ∈ A×C̃×Ξ implies that problems (RSD) and (HSASD)

are convex. Moreover, if the Slater condition holds for (RSD) then it must hold for (HSASD) for

sufficiently large Nl a.e.. By the strong duality of (HSASD), the optimal value of the dual problem

is that of (HSASD), θ̃Nl
, when Algorithm 1 terminates. By Proposition 3.1, Theorem 3.1, and 5.1,

it follows that θǫ ≤ lim infNl→∞ θ̃Nl
≤ lim supNl→∞ θ̃Nl

≤ θ0 a.e..

Let (z̃Nl
, λ̃Nl

) be a saddle point of the Lagrangian of (HSASD). We now show that λ̃Nl
is

uniformly bounded for a large enough Nl a.e.. For a given (η, v), let g′(z; d, η, v) be the direc-

tional derivative of g(·) along vector d at point z. By Proposition VII.2.2.4 in Hiriart-Urruty

and Lemaréchal (1993), the Slater condition implies that, for all z ∈ Z, there exists d ∈ Rn

such that g′(z; d, η, v) ≤ −α1 for some α1 > 0 and all (η, v) ∈ A × C̃. Furthermore, convexity of

G(·, η, v,X, Y ) a.e. implies that limNl→∞ g′Nl
(z; d, η, v) = g′(z; d, η, v) a.e. for all (z, η, v) ∈ Z×A×C̃.

It follows that there exists Ñl (possibly dependent on the sample path) such that, for all Nl ≥ Ñl,

g′Nl
(z; d, η, v) ≤ −α2 for some α2 ∈ (0, α1] a.e. Since (z̃Nl

, λ̃Nl
) is a saddle point, we have

f ′(z̃Nl
; d) +

∑

(η,v)∈VNl

λ̃Nl
(η, v)g′Nl

(z̃Nl
; d, η, v) ≥ 0.

As each λ̃Nl
(η, v) is nonnegative, we obtain

∑

(η,v)∈VNl

|λ̃Nl
(η, v)| =

∑

(η,v)∈VNl

λ̃Nl
(η, v) ≤

f ′(z̃Nl
; d)

α2
.

Without loss of generality, assume that ‖d‖ = 1. By assumption (ii), it follows from Theorem

IV.3.1.2 in Hiriart-Urruty and Lemaréchal (1993) that there exists M ≥ 0 such that |f(z + td) −

f(z)| ≤Mt for all z ∈ Z when t is sufficiently small. We now let K = M/α2 so that λ̃Nl
(η, v) ≤ K

for all (η, v) ∈ VNl
. Thus, we have

lim
Nl→∞

lim
N→∞

∣∣∣ϕ0
Nl

(λ̃Nl
) − ϕj

N (λ̃Nl
)
∣∣∣

= lim
Nl→∞

∣∣∣∣∣∣
inf
z∈Z



f(z) +

∑

(η,v)∈VNl

λ̃Nl
(η, v)gNl

(z, η, v)



− inf

z∈Z



f(z) +

∑

(η,v)∈VNl

λ̃Nl
(η, v)g(z, η, v)





∣∣∣∣∣∣

≤ lim
Nl→∞

sup
z∈Z

∣∣∣∣∣∣

∑

(η,v)∈VNl

λ̃Nl
(η, v)[gNl

(z, η, v) − g(z, η, v)]

∣∣∣∣∣∣

≤ lim
Nl→∞

K

⌈
D(ΞY × C̃)

γ

⌉2m

sup
(z,η,v)∈Z×A×❡C

|gNl
(z, η, v) − g(z, η, v)|

= 0.

It follows that

θǫ ≤ lim inf
Nl→∞

lim
N→∞

θNl,N,M ≤ lim sup
Nl→∞

lim
N→∞

θNl,N,M ≤ θ0 a.e.

and σNl,N,M → 0 as N → ∞ a.e.. �
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6.3 Practical Upper Bound

Consider again the perturbed SAA approximation (ǫ-SASD) defined in Section 2. For a given

τ ≤ 0, we can statistically test the feasibility of a solution of (τ -SASD) to (RSD). If the solution

is satisfied, the corresponding objective value of (τ -SASD) is an upper bound to the true optimal

value. We now choose a statistical test method. Consider the problems (SDCPi) defined in Section

5 and combine them together as

ψN (ẑ) := min
v∈❡C, i=1,... ,N

−gN (ẑ, vTY i, v) = min
(η,v)∈(A×❡C)

−gN (ẑ, η, v), (SDCP)

where ẑ is a solution to (τ -SASD). Note that the last equality holds because of Proposition 4.1.

Problem (SDCP) is a sampling approximation to

ψ(ẑ) := min
(η,v)∈(A×❡C)

−g(ẑ, η, v), (DCP)

By using M independent sample groups, the method in Mak et al. (1999) gives an approximate

100(1 − α)% confidence lower bound for ψ(ẑ):

UN,M (ẑ) := ψN,M (ẑ) − tα,M−1σ̃N,M (ẑ), (6.15)

where

ψN,M (ẑ) :=
1

M

M∑

j=1

ψj
N (ẑ)

and

σ̃2
N,M (ẑ) :=

1

M


 1

M − 1

M∑

j=1

(ψ(ẑ) − θ̃N,M (z))2


 .

If UN,M (ẑ) ≥ 0, we claim that f(ẑ) is a 100(1− α)% confidence upper bound for (RSD). However,

if UN,M (ẑ) < 0 we cannot make any claims. Therefore, we would like to have a feasible solution

of (SASD) which is also most likely feasible to (RSD). To do so, we compute a solution of (τ -

SASD), called ẑN , when |τ | is the largest number that keeps (τ -SASD) feasible. Obviously, ẑN is

a maximizer of the function ψN (·) in (SDCP) over Z, defined with the same sample for (τ -SASD).

We first show that ẑN increasingly approaches a maximizer of ψ(·) in (DCP) as the sample size

increases. Clearly, the maximizers of ψ(·) are the “most likely” feasible solutions of (RSD). We say

“most” since (RSD) is an infeasible problem if the maximizers of ψ(·) are not feasible to (RSD).

Theorem 6.4 states the result.

Theorem 6.4 Suppose Assumptions (A1) and (A2) hold. Let ζ̃ and Z̃ be, respectively, the optimal

value and the set of the optimal solutions of

max
z∈Z

ψ(z). (maxDCP)
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Correspondingly, denote ζ̃N and Z̃N be the optimal value and the set of the optimal solutions of

max
z∈Z

ψN (z). (maxSDCP)

If Z̃ is nonempty and Z̃N is nonempty for N large enough a.e., then ζ̃N → ζ̃ and D(Z̃N , Z̃) → 0

a.e. as N → ∞.

Proof: If Assumption (A2) holds, for any z, z′ ∈ Z, we have

|ψ(z) − ψ(z′)| ≤ sup
(η,v)∈A×❡C

|g(z, η, v) − g(z′, η, v)|

≤ E‖H(z,X) −H(z′, X)‖

≤ π‖z − z′‖,

so ψ(·) is Lipschitz continuous on Z. If Assumptions (A1) and (A2) hold, it follows from Proposi-

tion 2.2 (3) that ψN (·) uniformly converges to ψ(·) on Z a.e. Then we can complete the proof by

Theorem 4.3 in Shapiro and Ruszczyński (2008). �

It is clear that problem (maxSDCP) has a very a similar structure to problem (SASD). Thus,

we can adapt Algorithm 1 to this case. Algorithm 3 below describes the procedure.

Algorithm 3 A Cut-Generation Algorithm for (maxSDCP)

0. Given ǫ > 0, choose δ ∈ (0, ǫ). Let σ = ǫ− δ.
Let k = 0 and choose an arbitrary finite set V0 ⊂ C̃ × {i, . . . , N}.

1. Find an optimal solution z̃k and optimal value tk of

max t

s.t. t+ gN (z, vTY i, v) ≤ 0, (v, i) ∈ Vk,

z ∈ Z,

which can be done by solving (FullNLp).

2. Let Vk+1 = Vk.
For i = 1, . . . , N ,

solve the problems (SDCPi), let vσ
ik and ψσ

ik be respectively a σ-optimal solution and
σ-optimal value;
if ψσ

ik < tk − δ, Vk+1 = Vk+1 ∪ {(vσ
ik, i)}.

3. If Vk+1 6= Vk, let k = k + 1, go to Step 1; otherwise, exit.

Note that if S0 has an interior point, we have ζ̃ > 0. Thus, when N is sufficiently large, at

least a feasible solution of (RSD) can be found with high probability from Theorem 6.4. This idea

suggests an algorithm to build a tighter upper bound at 100(1 − α)% confidence level. Starting

from a small sample size Nu, we solve (maxSDCP), using Algorithm 3. The optimal solution z̃Nu is

tested in (6.15). If UN,M (z̃Nu) ≥ 0, f(z̃Nu) is the desired upper bound. Otherwise, we increase Nu

by a constant ∆ and repeat the procedure until z̃Nu is verified to be a feasible solution of (RSD)
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in probability or Nu reaches a set bound. Afterwards, we may want a tighter bound if z̃Nu is

statistically feasible to (RSD). An observation is that z̃Nu is an optimal solution of (−ζ̃Nu-SASD)

too. We can relax (−ζ̃Nu-SASD) by solving (τ -SASD) with the same sample for −ζ̃Nu < τ ≤ 0.

Let z̃τ be an optimal solution of (τ -SASD). Then we test the feasibility of z̃τ to (RSD). This idea

suggests a bisection search method for τ ∈ [−ζNu , 0]; for each τ , we solve (τ -SASD); if the statistical

test UN,M (z̃τ ) ≥ 0, then we increase τ ; otherwise, we decrease τ .

Algorithm 4 summarizes the procedure. Note that if Z is convex and G(·, η, v,X, Y ) is convex

a.e. for all (η, v) ∈ A × C̃, the feasible region of (RSD) is also convex. Consequently, the bisection

search method can be simplified without solving (τk-SASD) in step 4. Recall that (z̃Nl
, λ̃Nl

) is a

saddle point of Lagrangian of (HSASD) which is used to construct the lower bound of true optimal

value. We can improve Algorithm 4 by searching along the line connecting z̃Nu and z̃Nl
. This

change is summarized in Algorithm 5, which updates step 3 and 4 of Algorithm 4 while keeping

the same for the other steps.

Algorithm 4 A Line Search Algorithm for Upper Bound

0. Set starting point Nu, bound B > Nu, and step size ∆.

1. Solve (maxSDCP) to obtain the optimal solution z̃Nu and optimal value ζ̃Nu .
Evaluate UN,M (z̃Nu).
Stop or go to step 3 for a tighter upper bound if UN,M (z̃Nu) ≥ 0.

2. Nu := Nu + ∆.
Stop if Nu > B; otherwise go to step 1.

3. Let k := 1, a1 := −ζ̃Nu , b1 := 0.
Choose ǫ > 0 and let n be the smallest positive integer such that (1/2)n ≤ ǫ/ζ̃Nu .

4. Let τk := (ak + bk)/2 and compute an optimal solution ẑk of (τk-SASD), defined with the
same sample used in (maxSDCP).
Evaluate UN,M (ẑk).
Go to step 6 if UN,M (ẑk) < 0; otherwise, f(ẑk) is a wanted upper bound.
Stop or go to step 5 for a tighter upper bound.

5. Let ak+1 := τk and bk+1 := bk; go to step 7.

6. Let ak+1 := ak and bk+1 := τk; go to step 7.

7. If k = n, stop; otherwise, replace k by k + 1 and go back to step 3.

7 Conclusions

We have studied optimization problems with multi-variate stochastic dominance constraints. The

multi-variate aspect of the problem is dealt with by using weighted combinations of the random

vectors, where the weights range over a convex set. The difficulty with the resulting problem is

that not only does it have uncountably many expected-value constraints but also calculating the
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Algorithm 5 A Line Search Algorithm for Upper Bound as (RSD) has a Convex Feasible Region

3. Let k = 1, a1 = z̃Nu , b1 = z̃Nl
.

Choose ǫ > 0 and let n be the smallest positive integer such that (1/2)n ≤ ǫ/‖z̃Nu − z̃Nl
‖.

4. Let τk = (ak + bk)/2 and evaluate UN,M (τk).
Go to step 6 if UN,M (τk) < 0; otherwise, f(τk) is a wanted upper bound.
Stop or go to step 5 for a tighter upper bound.

expectations exactly is typically impossible in case of very large or infinite number of scenarios. We

have addressed these issues by using the Sample Average Approximation (SAA) method. In the

analyses of the approximation, we have discussed four crucial issues: 1) convergence of the approach

as the sample size goes to infinity; 2) quality of solutions of the sample problems obtained with

finite many samples; 3) derivation of an algorithm to solve the problem; and 4) construction of

lower and upper bounds for the true optimal values. Our results provide a practical way to solve

the problem that has solid mathematical foundation.

Future work in this area will include an efficient implementation and numerical testing of the

proposed algorithm. Applications of this methodology to problems in homeland security and trans-

portation are currently being developed and will be reported elsewhere.
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