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Abstract

This paper presents an integrated background subtraction and shadow detection algorithm to identify background,

shadow, and foreground regions in a video sequence, a fundamental task in video analytics. The background is

modeled at pixel level with a collection of previously observed background pixel values. An input pixel is classified as

background if it finds the required number of matches with the samples in the model. The number of matches

required with the samples in the model to classify an incoming pixel as background is continuously adapted at pixel

level according to the stability of pixel observations over time, thereby making better use of samples in dynamic as

well as stable regions of the background. Pixels which are not classified as background in the background subtraction

step are compared with a pixel-level shadow model. The shadow model is similar to the background model in that it

consists of actually observed shadowed pixel values. Sample-based shadow modeling is a novel approach that solves

the highly difficult problem of accurately modeling all types of shadows. Shadow detection by matching with the

samples in the model exploits the recurrence of similar shadow values at pixel level. Evaluation tests on various public

datasets demonstrate near state-of-the-art background subtraction and state-of-the-art shadow detection

performance. Even though the proposed method contains shadow detection processing, the implementation cost is

small compared with existing methods.
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1 Introduction
The use of change detection algorithms to automati-

cally segment a video sequence from a stationary camera

into background and foreground regions is a crucial first

step in several computer vision applications. Results from

this low-level task are often used for higher level tasks

such as tracking, counting, recognition, and classification.

The foreground regions correspond to the objects of our

interest, for example, vehicles or people. In a real-world

scenario, there are several problems which make change

detection a more challenging problem than a simple

moving/static classification. One is dynamic background

which are regions in the background exhibiting nuisance

motion like tree branches or flags swaying in the wind,

ripples on water, and fountains. A good change detec-

tion algorithm should classify such regions of irrelevant

motion as background to exclude them from further

analysis.
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Another concern for change detection algorithms is

intermittent object motion. A foreground object which

temporarily becomes static is to be retained in the fore-

ground (e.g., a car stopped at traffic light or a person

standing still). A related challenge is that of moved back-

ground objects.

An additional major challenge for change detection

algorithms is presented by cast shadows which accom-

pany foreground objects. Unless explicit handling is done,

background subtraction algorithms tend to classify cast

shadows as part of the foreground, detrimental to the

subsequent stages of analysis. For example, in an intelli-

gent traffic surveillance system, shadows can distort the

shape of detected vehicles or cause multiple vehicles to

be merged into one, which often leads to failure in subse-

quent content analysis steps.

The most common method for foreground segmenta-

tion is background subtraction. Modern background sub-

traction algorithms operate by first building a model for

the background. An incoming frame is compared with the

background model, and every pixel in the frame is clas-

sified as either background or foreground based on the
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similarity with the model. Pixels in the current frame that

have significant disparities with the model are labeled as

foreground. An incoming frame is also used to update

the background model. Updating the background model

is necessary since the model should adapt to various

changes in the background like gradual or sudden illumi-

nation changes (changing time of the day, toggling of light

switch, etc.), weather changes (rain, fog, etc.), or struc-

tural changes in the background. Most algorithms employ

independent pixel-wise models for the background to aid

fast hardware implementations. Post-processing opera-

tions like morphological or median filtering are often used

to ensure some spatial consistency to the segmentation

results.

2 Relatedmethods

2.1 Background subtraction

There exist a huge number of methods and algorithms

for background subtraction and can be found in the

surveys [1–7].

Many popular background subtraction algorithms oper-

ate by modeling the background with a probability den-

sity function (pdf) at each pixel. Wren et al. [8] used

a Gaussian to model every pixel. The mean and vari-

ance of each pdf were estimated from incoming frames.

An incident pixel value was classified as background or

foreground depending on how well the pixel value fits

with the estimated pdf. However, a single Gaussian model

cannot handle multimodal backgrounds, such as waving

trees. Stauffer and Grimson [9] addressed this issue by

modeling each pixel with a mixture of K Gaussians. The

mixture of Gaussians (MoG) model can be described by

the mean, variance, and weight parameters for each of the

K Gaussians. Each incoming pixel was matched to one

of the K Gaussians if it was within 2.5 standard devia-

tions from its mean. The parameters for that Gaussian

were then updated with the new observation. Repeated

similar observations drive the weight of the matched com-

ponent up while simultaneously reducing its variance. If

no match was found, a new Gaussian with mean equal to

the current pixel value and some wide variance was intro-

duced into the mixture. Background modeling usingMoG

has been widely used and improved upon by many others

[10–12]. Zivkovic [13] presented a method to choose the

right number of components for each pixel in an online

fashion. Haines [14] presented a method based on Dirich-

let process Gaussian mixture models.

An alternative to parametric methods like MoG is

the non-parametric approach proposed by [15] and [16].

Instead of modeling the background with a mixture of

Gaussians, the pdf is estimated from the history of obser-

vations at individual locations without any prior assump-

tions about the form of the pdf. The non-parametric

approach is attractive as it can handle unimodal and

multimodal regions of the background. One drawback

with non-parametric methods is that they incur a high

memory cost to adequately model infrequent background

modes. The conflicting requirements of modeling infre-

quent background events and low memory requirements

was well addressed by the random sample replacement

technique introduced in ViBe [17]. The background was

modeled at pixel level in a non-parametric manner with

a collection of N previously observed pixel values, called

samples. The samples do not represent the immediate his-

tory but is a random sampling from old and recent frames,

in an attempt to capture sporadic as well as frequent back-

ground modes. The sample-based modeling used in ViBe

was inspired by SACON [18], but they employed a FIFO

filling where the N most recent samples were used to

model each pixel. The Pixel-Based Adaptive Segmenter

(PBAS) [19] and SuBSENSE [20] are other methods which

used samples to model the background, but they also

included gradient information and Local Binary Similarity

Pattern (LBSP) features, respectively, in the model.

Sample-based methods have been compared favorably

with traditional methods like Gaussian mixture modeling

(GMM), and hence, we adopt such an approach. As in pre-

vious sample-based methods, we model the background

at each pixel location with a set of sample pixel values,

previously observed at the same location and judged to

be belonging to the background. An incoming pixel value

is compared with the samples in the model and is clas-

sified as background if its pixel value is closer than a

distance threshold R to at least #min of the N samples in

the model.

2.2 Shadow detection

Shadows cast by moving foreground objects are generally

labeled as foreground by the background subtraction algo-

rithm as such pixels typically differ significantly from the

background model. Including shadows as part of the fore-

ground hinder further analysis tasks. To detect shadows,

it is often assumed that cast shadows reduce luminance

without significant variation in chromaticity. There are

many shadow detection methods based on this assump-

tion of chroma constancy of a shadowed input pixel with

a non-shadowed background pixel. These methods often

use a color space where chroma comparison is easy, such

as HSV [21], YUV [22], c1c2c3 [23], and normalized RGB,

where there is an inherent separation between chroma

and brightness. To compare the chroma between a back-

ground pixel and an input pixel in RGB space, Horprasert

[24] introduced a color distortion measure. It can be

regarded as the orthogonal distance between the pix-

els after the brightness of the non-shadowed background

pixel has been scaled down to that of the shadowed input

pixel. It is assumed that the color distortion between non-

shadowed and shadowed pixel values is small. However,
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this assumption of chroma constancy generally holds only

in indoor scenes, where the perceived shadow is soft.

This type of shadow is often called an achromatic shadow

[25]. The assumption that RGB values under shadow are

proportional to RGB values under direct light does not

hold for a chromatic shadow, which occurs, for exam-

ple, in an outdoor scene when direct sunlight is blocked

and other sources like diffused light scattered from sky

or color bleeding among objects are present [26]. Thus,

the performance of algorithms which operate on the

premise of chroma constancy degrades when encountered

with chromatic shadows. Besides the problems in deal-

ing with chromatic shadows, algorithms based on chroma

constancy often label foreground pixels which have a

similar chromaticity with the background as shadow pix-

els. Imposing a tighter chroma constancy will lead to

more missed shadow detections. To address this problem,

Salvador et al. [27] exploited geometric properties of shad-

ows in addition to brightness and chroma constraints.

Nadimi and Bhanu [28] addressed the nonlinear attenua-

tion by using a dichromatic reflectionmodel that accounts

for both sun and sky illuminations. But this required the

spectral power distribution of each illumination source

to be constant. Region-level methods operate on a set

of pixels and commonly rely on textural information

for shadow detection [29, 30]. Texture-based methods

are, however, computationally demanding. Huerta et al.

[31] exploited tracking information for improving shadow

detection performance. Brisson [32] introduced a pixel-

level statistical GMM learning to build shadow states by

assuming that shadow states are more stable (i.e., more

frequent) than foreground states. Our shadow detection

method is guided by this observation that shadow val-

ues that recur are similar at pixel level. However, instead

of modeling shadow using a mixture of Gaussians at

each pixel location, we model shadow at each pixel loca-

tion using a representative set of previously observed

shadowed pixel values, similar to the background model.

Other main differences of our method with [32] which

can be considered as the closest related work are

as follows:

• In [32], the Gaussian mixture shadow model is tied

together with the Gaussian mixture background

model. Since the update speed for shadow model is

faster than that for the background model, the

shadow model can become the background model

when a pixel shows frequent shadow activity. At the

other end, when there is no shadow appearance for

long periods, the Gaussian model for shadow can be

removed from the mixture. Our method avoids both

these problems as the background and shadow

models are kept separate. Both models are always

present, and they evolve independently.

• In [32], the Gaussian mixture shadow model

parameters can take a long time to converge,

affecting detection performance during this training

period. Our method avoids this problem as we use a

non-parametric model. The shadow model is

initialized directly from the background model by

linearly attenuating the background values, and thus,

there can be a complete absence of training period in

the case of achromatic shadows. Chromatic shadows

require just a couple of appearances before they are

detected.

To accelerate pixel-level shadow GMM convergence of

[32], Huang and Chen [26] used an additional global

GMM shadow model which guides the weighting of sam-

ples in the local shadow model learning. Comparative

studies on shadow detection algorithms can be found in

[33, 34].

3 Main contributions
Previous sample-based methods used a global constant

value for #min (the number of matches required with the

samples in the model to classify an input pixel as back-

ground). This value had to be kept low to correctly classify

background pixels in regions with multiple modalities

(like waving trees or water). Since all pixels are mod-

eled with the same number of samples, this resulted in

an under-utilization of samples in stable regions of the

background. The more stable the observations are, the

higher #min should be as this will lead to enhanced detec-

tion. Therefore, in our method, the required number of

matches #min is adapted for each pixel independently

according to an estimate of background dynamics. This

is our first main contribution. The pixel-level shadow

model using shadow samples is our second main contri-

bution. Note that other sample-based background mod-

eling methods did not address the problem of shadow

detection.

4 Proposedmethod: background subtraction

4.1 Backgroundmodel initialization and labeling process

The background at each pixel location x is modeled withN

samples (which are previously observed background pixel

values at the same location).

B(x) = {B1(x),B2(x), ....BN (x)} (1)

Here, each sample represents an RGB triplet. The back-

groundmodel is initialized blindly from the firstN frames.

A ghost suppression mechanism (discussed later) ensures

that the model bootstraps in the event of foreground

objects being present during the initialization period.

The decision process to classify an incoming pixel as

background or foreground is a consensus: a pixel at
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location x in the input frame is classified as background

if it matches with at least #min(x) of the N samples in its

background model. An input pixel is declared to match

a sample if its pixel value v(x) is closer than a distance

threshold R in each of the three channels, that is if |v(x) −

Bi(x)| < R in each of the three channels . In contrast, ViBe

[17] used Euclidean distance measure in the RGB space

to determine whether a pixel value matched with sam-

ples. PBAS [19] considered each channel independently

and combined the outputs using a logical OR operation.

While the PBAS approach is faster than Euclidean dis-

tance computation, a downside with this approach is that a

foreground pixel can be wrongly classified as background

if it finds enough matches in any one of the channels. Our

approach counts a match only if there is a match in all

channels.

4.2 Adaptation of #min

ViBe [17], PBAS [19], and SuBSENSE [20] used the same

global #min = 2. The use of the same #min is question-

able given that the three methods used different number

of samples in the background model (N = 20 in ViBe,

N = 35 in PBAS, and N = 35 or 50 in SuBSENSE).

If a global value is used for #min, it should be propor-

tional to the number of samples. Second, as the authors

of PBAS note, increasing the number of samples bene-

fits only dynamic regions while performance saturates for

stable background regions. This is because of the global

#min. Stated differently, a low global value for #min pre-

vents full utilization of samples in stable regions. This

situation can be improved by using a variable #min for

each pixel according to the behavior of the pixel, thereby

making better use of the available N samples for all pix-

els: stable or dynamic. These observations led to our

scheme of using a per-pixel required number of matches

#min(x), where x denotes the pixel location. #min(x) is

continuously adapted for each pixel separately based on an

estimate of background dynamics (#min(x) is reduced in

dynamic regions of the background and increased in static

regions).

In order to adapt #min(x) according to background

dynamics, a measure of background dynamics is needed.

When an incoming pixel value belongs to the background,

the number of matches observed with the samples in the

model will depend on the dynamics of the region. The

number of matches will be high for static regions whereas

it will be low for dynamic regions. Thus, the number of

matches observed provides an obvious and straightfor-

ward estimate of background dynamics. Since the pixel

behavior can change over time, we perform a recursive

adaptation of #min(x) based on the history of the num-

ber of matches observed at location x. Let nMatchesk(x)

denotes the number of matches in the kth frame, i.e., the

number of samples in the background model that are at a

distance less than R in all channels from the current pixel

value vk(x). Then, the adaptation is done according to

#mink+1(x) = #mink(x)

(

1 +
nMatchesk(x) − α

β

)

(2)

where the parameters α and β are optimized empirically,

as discussed below. This form of the adaptation equation

was hand-crafted as it allows for a single equation to han-

dle the rise or decay of #min. No adaptation of #min(x) is

done if x is a classified as foreground, because in this case,

the number of matches is not a measure of background

dynamics. Since dynamic behavior is usually exhibited

over a region rather than by isolated pixels, a spatial

smoothing of #min is then applied every frame using a 3×

3 Gaussian filter. The spatial smoothing adapts #min for

foreground pixels also, based on neighboring dynamics.

4.3 Backgroundmodel update

Essentially, we follow a conservative update as this leads

to enhanced foreground detection. This means that only

a pixel value that has been classified as background is

inserted in themodel. Background pixels are updated with

a probability of 1/16, as in [17]. However, strict conserva-

tive update is relaxed by also updating small foreground

blobs (below a size of 20 pixels) which are usually false

detections due to dynamic background. We follow the

random update introduced in [17] and adopted in [19] and

[20], where a randomly chosen sample is replaced by the

new value, as this extends the time window spanned by

the model.

4.4 Ghost suppression mechanism

To differentiate between static foreground objects and

wrongly detected “ghost” foreground blobs (due to incor-

rect initialization which includes foreground objects,

segmentation errors, or moved background objects),

boundary pixels of foreground blobs are identified and

compared with neighboring background pixel values.

Because ghost areas typically share similar color char-

acteristics with neighboring regions whereas real fore-

ground objects do not, the boundary pixel models are

updated with the pixel value at the same location when

there is a match with all neighboring background pixels

and otherwise not updated. This results in the fast erosion

of ghost areas while retaining real foreground objects in

the foreground and prevents corruption of pixel models

with irrelevant values, as caused by the regional diffu-

sion of background information during update, employed

in [17, 35]).

4.5 Post processing

A 3 × 3 median filtering is applied as the sole post-

processing step. The resulting foreground mask is the

input to the shadow detection step.
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4.6 Background subtraction parameter settings

We used N = 20 samples (Eq. (1)) to model the back-

ground at each pixel location. The distance threshold

parameter R for determining match with the background

model was set to 20. The parameter α in Eq. 2 was empiri-

cally set to 19. This implies that #min decreases whenever

the number of matches is less than 19. The parameter β in

Eq. 2 controls the rate at which #min rises and decays and

was empirically set to 2000. With these values, the maxi-

mum that #min(x) can increase in a frame is by a factor

of 1 + 1/2000 = 1.0005 (when nMatches(x) = 20), while

it can decrease by a factor of up to 1 − 18/2000 = 0.991

(when nMatches(x) = 1 and current #min(x) = 1 ). A

fast decay and slow rise ensures that the algorithm read-

ies itself quickly for dynamic conditions while it gauges

the static nature only on long-term evidence. The initial

value of 3 and an upper bound of 12 was set for #min.

The value of #min will never become 0 by the recursive

formula, so effectively the lower bound is 1. Although

the adaptation results in fractional values for #min, the

segmentation decision can change only when it crosses

integer values. In other words, the effective value of #min

is the current value rounded up to the next higher inte-

ger. Figure 1 shows a frame from the baseline/highway

video sequence of the CDnet dataset [7] and variation

of #min for 4 sample pixels identified with colored cir-

cles. For the pixel in dynamic background (yellow), #min

falls below 1 by frame 900. The pixel on the crash bar-

rier (green) experiences multiple modes due to camera

jitter and #min stays around 3. For the pixel in the static

area (magenta), #min increases smoothly and crosses 5 by

the end of the sequence. For the pixel on the road (cyan),

#min rises with fluctuations because the adaptation is fre-

quently interrupted by the presence of vehicles. Note that

these variations are also influenced by the spatial Gaussian

smoothing which is applied every frame. Figure 2 shows

the spatial distribution of #min for an example frame. It

can be seen that for dynamic regions, #min has been low-

ered (darker regions). The effect of spatial smoothing of

#min can also be noticed.

The parameters α and β were experimentally deter-

mined to be 19 and 2000 considering various videos.

For some categories of Cdnet dataset such as dynam-

icBackground and cameraJitter, a slight improvement in

F-measure was obtained with a smaller β of 1000 as #min

adapted more quickly. However, the overall F-measure

considering all categories was slightly lower. Values other

than 19 for α resulted in lower F-measure for almost all

videos.

5 Proposedmethod: shadow detection
Our shadow detection method follows a two-stage

approach and can detect achromatic as well as chro-

matic shadows. Only pixels classified as foreground in the

background subtraction step are considered as candidate

shadow pixels because shadows labeled as background is

not an issue in most applications. In the first stage, a weak

shadow detector filters out impossible shadow values from

the set of foreground pixels by imposing mild constraints

on brightness, color distortion, and RGB values. Specifi-

cally, for brightness, the input pixel is constrained to have

a brightness less than the background pixel. For chroma,

we adopted the color distortionmeasure in [24, 36] as they

avoided the instability of normalized RGB. The threshold

for allowed color distortion is intentionally permissive to

include chromatic shadows as well. These tests on bright-

ness and chroma lend nicely to our sample-based model.

The input pixel should have brightness less than at least

#min samples in the backgroundmodel and the same sam-

ples should be at a color distance less than a threshold with

the input pixel. These two conditions alone tend to include

dark objects as shadows since the color distortion between

pixels is small near the origin of the RGB space. As noted

in [27] and from our own analysis, R, G, and B values of a

Fig. 1 A frame from the baseline/highway video sequence of the CDnet dataset and the temporal variation of #min for 4 sample pixels identified

with colored circles
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Fig. 2 A frame from the dynamic background/ fountain01 video from CDnet and the spatial distribution of #min for the same frame

shadowed pixel are almost always above 20 (on a 0 to 255

scale), for all types of shadows. Therefore, this third con-

dition is also incorporated in our initial shadow test (i.e.,

an input pixel should have R, G, and B values above 20 to

be considered as a shadow pixel). Foreground pixels sat-

isfying these constraints on brightness, chroma, and RGB

values result in a mask M1 on the current frame. Because

of the liberal constraints, this initial maskM1 may contain

some pixels from foreground objects, but this is taken care

of in the second step. At this stage, it is important only

that all shadow pixels are included inM1.

The second stage exploits the recurrence of similar

shadow values at pixel level. A pixel-level shadow model

is populated with actual shadowed pixel values. Collecting

shadowed samples in a separate model for each pixel is an

effective way to represent the change in pixel value when

it comes under shadow. This shadow-induced variation

in pixel value is otherwise highly difficult to character-

ize because it depends on a huge number of factors such

as nature and number of other light sources and reflec-

tive properties of the surface as well as that of other scene

objects and texture properties of the surface. However,

since these factors which determine the shadow pixel val-

ues are more or less stable, the values that a given pixel

takes, when shadowed by different foreground objects,

show a certain agreement even in complex illumination

conditions [32]. Based on this rationale that shadow pixel

values repeat at pixel level, each pixel in the initial shadow

mask M1 is compared with the pixel-level shadow model

and those pixels which find at least #min matches with the

samples in the shadow model are labeled as shadow in the

final shadow maskM2.

5.1 Shadowmodel initialization andmaintenance

A problem in modeling shadows when compared to mod-

eling background is that shadow appearance is not as

frequent as background appearance. For our method to

work properly, it has to be ensured that the shadowmodel

contains enough shadow samples for matching and detec-

tion. This is not an issue in busy highways and hallways

where shadows appear frequently but has to be taken care

of in cases where foreground activity is rare. We address

this issue in multiple ways. First, the shadow model is

initialized directly from the background model by lin-

early attenuating the RGB values of background samples.

This readies the shadowmodel to detect achromatic shad-

ows right from the first appearance. However, the scaling

being linear, chromatic shadow pixels in mask M1 may

not initially findmatches with the shadowmodel, prevent-

ing final shadow labeling and update of shadow model.

To avoid this deadlock situation, the shadow model is

updated with the initial mask M1, without considering

whether the pixel values are matched to the samples in the

shadow model or not. This enables the shadow model to

be filled with sufficient shadow samples for furthermatch-

ing. Of course, since the update mask M1 is based on test

of brightness, color distortion, and RGB values only, it may

cause some foreground values (which pass the weak detec-

tor test based on these properties) also to be inserted in

the model. But this is not troublesome as foreground val-

ues are less likely to be repeated andmatched than shadow

values. The shadow model is updated with a higher prob-

ability of 1/4, again due to the less frequent appearance of

shadows compared to background.

5.2 Shadow detection parameters

For the shadow model, we used number of samples N =

20, required number of matches #min = 2, and distance

threshold R = 20. The optimum scaling factor for ini-

tializing shadow model from background model will vary

from sequence to sequence and also from pixel to pixel. A

value of 0.6 was found to be appropriate in most cases. A

hand-chosen value helps to reduce the training period in

some cases. For instance, a larger attenuation factor can be

used for red and green values than blue values to account

for the observation in [28] that shadows falling on neutral

structures like asphalt roads and concrete buildings tend

to be more bluish. The overall performance is not very

sensitive to the scaling factor since the model self corrects

as it receives update. The color distance threshold was set

to a large value of 30 to include all types of shadows in the

update mask.
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Table 1 SABS results: F-measures for various scenarios

Scenario Proposed Stauffer and Li et al. Zivkovic and van der Maddalena and Barnich and Haines and Xiang

Grimson [42] [43] Heijden [13] Petrosino [35] Van Droogenbroeck [17] [14]

Basic 0.866 0.800 0.766 0.768 0.766 0.761 0.853

Dynamic 0.871 0.704 0.641 0.704 0.715 0.711 0.853

Bootstrap 0.765 0.642 0.678 0.632 0.495 0.685 0.796

Darkening 0.858 0.404 0.704 0.620 0.663 0.678 0.861

Light switch 0.459 0.217 0.316 0.300 0.213 0.268 0.603

Noisy night 0.733 0.194 0.047 0.321 0.263 0.271 0.788

Camouflage 0.813 0.802 0.768 0.820 0.793 0.741 0.864

No camouflage 0.879 0.826 0.803 0.829 0.811 0.799 0.867

H.264 (40 kbps) 0.893 0.761 0.773 0.748 0.772 0.774 0.827

Best values are italicized

6 Results and discussions

6.1 Background subtraction

The proposedmethod was implemented inMATLAB tak-

ing advantage of its vectorization capabilities and tested

on two popular public datasets: SABS [1] and CDnet [7].

For quantitative evaluation, we use F-measure as it is

commonly considered to be the single best measure of

performance. It is defined as the harmonic mean of recall

and precision, where

recall = tp/(tp + fn), precision = tp/(tp + fp) (3)

Here, tp is the number of true positives (foreground), fp

is the number of false positives, and fn is the number of

false negatives.

The SABS dataset (available online [37]) consists of

synthetic videos of a road junction simulating different

real-world problems. They provide ground truth as well

as evaluation code to generate performance metrics. Basic

scenario combines many challenges for general perfor-

mance evaluation. Dynamic background scenario consid-

ers the same sequence as basic but crops the test area to

moving tree branches and a changing traffic light. Boot-

strap scenario does not provide training frames without

foreground objects. Darkening scenario simulates gradual

illumination decrease during sunset. Light switch sce-

nario simulates sudden illumination change by switch-

ing off a light and later turning it on again. In noisy

night scenario, the sensor noise is high. In camouflage

scenario, cars and people have colors similar to back-

ground that they are hard to distinguish. H.264 scenario

video exhibits heavy compression artifacts. In Table 1,

F-measure of our method is compared to that of other

methods for various scenarios. Our method was tested

on all scenarios with the same parameters (N = 20,

R = 20, α = 19, β = 2000). Yet, the F-measure of

the presented approach is close to the best performing

method [14]. The light switch scenario is one of our weak

points as #min rises steadily till the switch is suddenly

turned off. The sudden unexpected change in pixel val-

ues results in massive false positive regions since only

color values are used in our model. Figure 3 demon-

strates this problem. Setting a lower upper bound for

#min and increasing the distance threshold improves the

results for this scenario, but this degrades recall in other

scenarios.

The change detection dataset (available online [38])

is, by far, the largest dataset available. The 2012 CDnet

dataset [7] contained nearly 90,000 frames in 31 video

sequences grouped into 6 video categories. It was later

expanded to 2014 CDnet dataset [39] by adding 22 more

videos in 5 new categories. They provide hand-labeled

ground truth maps for all frames and evaluation tools

for generating the performance metrics. To allow for a

Fig. 3 Result from SABS light switch scenario. a Frame 100 from SABS

light switch scenario. b Frame 101 when the light is suddenly turned

off. c Ground truth for frame 101. d Our result for frame 101 shows

spurious detections due to the sudden change
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Fig. 4 CDnet 2012 results typical detection results for 2012 CDnet dataset. On the first row is the input frame, on the second row is ground truth,

and on the third row is background subtraction result of the presented method. a Baseline/office. b Camera jitter/badminton. c Dynamic

background/fall. d Intermittent object motion/sofa

model initialization period, the evaluation does not con-

sider the results of the first few hundred frames. Our

method was tested on the entire dataset and representa-

tive segmentation results are shown in Figs. 4 and 5. To

show how our method fares in comparison with alter-

native methods, category-wise F-measures are presented

in Table 2. As shown in Table 2, a high F-measure is

obtained for all categories in 2012 CDnet. The high F-

measure for dynamic background category demonstrates

the effectiveness of adapting #min in combating dynamic

background. The high F-measure for intermittent object

motion category shows the effectiveness of our ghost

suppression mechanism. The overall F-measure of our

method is higher than classic methods as well as simi-

lar sample-based methods such as ViBe and PBAS which

used more number of samples. F-measures for the new

categories introduced in 2014 CDnet are lower since

these categories are more difficult. The lowest F-measure

score of 0.24 is obtained for PTZ category. This is not

surprising as the basic assumption of static camera is

violated in this category. Somewhat usable results for

this category can be obtained by resorting to a blind

update (updating both foreground and background pix-

els). Varying the update rate based on camera movement

Fig. 5 CDnet 2014 results typical detection results for additional categories in 2014 CDnet dataset. Layout is identical to that in Fig. 4. a Bad

weather/snowfall. b Night videos/busy boulevard. c ptz/continuous pan. d Turbulence/turbulence0
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Table 2 F-measures for 2012 CDnet

Method

Category Proposed KDE SC-SOBS ViBE PBAS CPDS DPGMM

(SBBS) [44] [45] [17] [19] [46] [14]

Baseline 0.919 0.909 0.933 0.870 0.924 0.921 0.929

dyn. background 0.813 0.596 0.669 0.565 0.683 0.750 0.814

Camera jitter 0.735 0.572 0.705 0.600 0.722 0.487 0.748

int. obj. motion 0.680 0.409 0.592 0.507 0.575 0.741 0.542

Shadow 0.711 0.803 0.779 0.803 0.860 0.809 0.813

Thermal 0.750 0.742 0.692 0.665 0.756 0.662 0.813

Overall 0.768 0.672 0.728 0.668 0.753 0.728 0.776

Best values are italicized

detection could be beneficial. The next lowest F-measure

of 0.51 is for nightVideos category. This difficult cate-

gory includes vehicular traffic videos captured at night.

Color values are sharply varied by the effect of vehicle

headlights. The road surface highlighted by the head-

lights causes large non-vehicle foreground regions (see the

second column of Fig. 5) and substantially deteriorates

foreground extraction performance. To an extent, such

spurious highlight detections can be eliminated by follow-

ing an approach similar to shadow detection; that is, by

utilizing the fact that highlights cast on the road surface

by different moving vehicles are similar and so pixel values

repeat.

Other common performance metrics like recall,

precision, specificity, false positive rate, false nega-

tive rate, and percentage of wrong classification as

well as complete segmentation results for various

methods, including ours, are publicly available under

Results tab on the changedetection.net website. All

metrics were obtained by uploading the segmenta-

tion results to the website and calculated using their

software.

Fig. 6 CDnet shadow detection results shadow detection results for four frames from the CDnet shadow category. On the first row is the input

frame, on the second row is the ground truth, and on the third row is the result of the presented background subtraction method. Pixels outside the

region of interest are assigned a gray value of 85 in ground truth. On the fourth row, pixels in the initial maskM1 are assigned a gray value of 127. On

the last row, pixels in the final shadow maskM2 are assigned a gray value of 50, as in the ground truth. It can be seen that many pixels which pass

the initial property test are not labeled as shadow in the final maskM2 due to insufficient matches with the samples in the shadow model. This

illustrates the usefulness of shadow modeling with samples. a Cubicle. b Bungalows. c People in shade. d Bus station
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Fig. 7 Shadow detection results for six benchmark sequences. On the first row is the input frame, on the second row is the ground truth, and the

third row is the result of the presented shadow detection method. Shadow pixels are assigned a gray value of 127 in ground truth and in our result.

a Highway I. b Highway II. c Campus. d Laboratory. e Intelligent room. f Hallway

6.2 Shadow detection

The CDnet dataset contains a shadow category with

two indoor and four outdoor videos. Hard shadows are

labeled in the ground truth. For shadow detection per-

formance evaluation, they define the False Positive Rate-

Shadow (FPR-S) which is the ratio of the number of

pixels labeled as shadow in ground truth but detected

as foreground to the total number of pixels labeled

as shadow in ground truth. However, popular shadow

detection methods have not been tested on this dataset.

The average FPR-S of 0.1228 of our method is the best

of all methods tested on 2012 CDnet. Sample shadow

detection results for sequences from CDnet are shown

in Fig. 6.

Commonly used sequences for benchmarking shadow

detection algorithms are HighwayI, HighwayII, Campus,

Laboratory, and Intelligent room introduced in [33] and

Hallway introduced in [32]. HighwayI and HighwayII

show traffic environments. In HighwayII, the shadows

are chromatic. The Campus sequence is a noisy outdoor

sequence. The lighting conditions and perspectives are

different in the indoor sequences Lab and Room. In the

Hallway sequence, multiple light sources are present

and the floor is reflective. Qualitative results for these

Table 3 Quantitative shadow detection results

Method

Sequence Proposed Martel-Brisson and Zaccarin Martel-Brisson and Zaccarin Huang and Chen Amato et al. Huerta et al.

[32] [47] [26] [25] [31]

HighwayI η 0.895 0.633 0.705 0.708 0.81 –

ζ 0.701 0.713 0.844 0.824 0.85 –

HighwayII η 0.836 0.585 0.684 0.765 0.72 0.478

ζ 0.715 0.444 0.712 0.745 0.75 0.864

Campus η 0.822 – – – – –

ζ 0.751 – – – – –

Lab η 0.829 – – – – –

ζ 0.885 – – – – –

Room η 0.795 – – – – –

ζ 0.887 – – – – –

Hallway η 0.913 0.605 0.724 0.821 0.84 0.836

ζ 0.914 0.870 0.867 0.905 0.91 0.913

Best values are italicized



Varghese and G IPSJ Transactions on Computer Vision and Applications  (2017) 9:25 Page 11 of 12

sequences are presented in Fig. 7. The most commonly

employed performance metrics are shadow detection

rate (η) and shadow discrimination rate (ζ ) introduced

by Prati in [33]. These measures do not penalize shad-

ows labeled as background or background labeled as

shadow. Quantitative results comparing our method

with other methods are presented in Table 3. Sequences

and ground truth were taken from [40] and [41], and

metrics were computed with all the available ground

truth frames. Our detection rate is among the best for

all sequences. This shows the suitability of our shadow

detection method in detecting all types of shadows. The

discrimination rate is somewhat low for HighwayI and

HighwayII because of the repeated appearance of severely

shadow-camouflaged vehicle parts, windscreens in par-

ticular (see columns 1 and 2 in Fig. 7). Better results or

trade-off between detection rate and discrimination rate

could be obtained by hand tuning the parameters (scaling

factor for initializing shadow model from background

model, color distance threshold, RGB values threshold,

distance threshold and required number of matches for

comparison with shadow model, update rate) for each

sequence.

6.3 Computational cost

The speed advantage of sample-based methods compared

to parametric methods like GMM has been reported in

[17]. Compared to ViBe [17], the proposed method offers

a speed advantage which stems from the fact that L1

distances are used whereas [17] used L2 distances. Com-

pared to (PBAS) [19], the proposed method uses fewer

samples (35 vs 20) and hence lesser computational cost

while still obtaining a better performance. Compared to

SuBSENSE [20], which uses 50 samples per pixel, our

method uses only 40 samples for combined background

subtraction and shadow detection, resulting in a lower

overall computational complexity. In addition, the pro-

posed method has fewer parameters compared to PBAS

and SuBSENSE which also helps in reducing the compu-

tational complexity.

7 Conclusion
Sample-based modeling has proven to outperform con-

ventional methods of background modeling. The pre-

sented method addressed the issue of under-utilization

of samples in stable regions of the background with

continuous per-pixel adaptation of the number of matches

required to classify a pixel as background. Experimen-

tal results have proven the robustness of our method

in various scenarios. Shadow detection which was often

done independently of background subtraction is inte-

grated in our approach. Our novel approach of populating

the shadow model with actually observed shadow pixel

values solves the difficult problem of modeling different

types of shadows. As shown by experimental results, our

two-stage shadow detector can accurately model and reli-

ably detect shadows, no matter what the illumination

condition, geometry or texture of the background, and

orientation or type of shadow are. Since both background

and shadow models are at pixel level and employ only

pixel values with few parameters, our combined back-

ground subtraction and shadow detection algorithm are

well suited for fast hardware implementations.
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