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ABSTRACT
Motivation: Early cancer detection has always been a major
research focus in solid tumor oncology. Early tumor detection
can theoretically result in lower stage tumors, more treatable
diseases and ultimately higher cure rates with less treatment-
related morbidities. Protein mass spectrometry is a potentially
powerful tool for early cancer detection.

We propose a novel method for sample classification from
protein mass spectrometry data. When applied to spectra from
both diseased and healthy patients, the ‘peak probability con-
trast’ technique provides a list of all common peaks among the
spectra, their statistical significance and their relative import-
ance in discriminating between the two groups. We illustrate
the method on matrix-assisted laser desorption and ionization
mass spectrometry data from a study of ovarian cancers.
Results: Compared to other statistical approaches for class
prediction, the peak probability contrast method performs as
well or better than several methods that require the full spectra,
rather than just labelled peaks. It is also much more inter-
pretable biologically. The peak probability contrast method is
a potentially useful tool for sample classification from protein
mass spectrometry data.
Contact: tibs@stanford.edu
Supplementary Information: http://www.stat.stanford.edu/
∼tibs/ppc

1 INTRODUCTION
Early cancer detection has always been a major research focus
in solid tumor oncology. Early tumor detection can theoret-
ically result in lower stage tumors, more treatable diseases
and ultimately higher cure rates with less treatment-related
morbidities. Many screening approaches have therefore been
studied in solid cancers. Established screening tools for the
early detection of cancer include mammography for breast
cancer, colonoscopy for colorectal cancer, prostate-specific

∗To whom correspondence should be addressed.

antigen (PSA) test for prostate cancer and pap smear for cer-
vix cancer (Smith et al., 2003). Imaging techniques such as
chest X-ray and spiral computed tomography are also used,
but are limited to a tumor size detection limit of 0.5–1.0 cm
(representing close to 109 cells) (Swenson et al., 2002).

Several serum markers have been identified through the
years but, with a few exceptions such as PSA for prostate
cancers and alpha fetal protein (AFP) for hepatocellular car-
cinomas, most have failed general integration into general
clinical practice (Hansen and Pedersen, 1986). Therefore, it is
important to identify and to interpret new methods that provide
sensitive and reliable diagnostic markers for solid cancers.

Recent advancements in proteomics have yielded novel
and promising techniques to aid in biomarker identification
(Hanash, 2003; Petricoin et al., 2002a). One such advance-
ment is the development of protein mass spectrometry and
the ability to analyze complex samples using this technique.
Surface enhanced laser desorption/ionization–time-of-flight
(SELDI–TOF) and matrix-assisted laser desorption and ion-
ization (MALDI) mass spectrometry (MS) are the two most
popular approaches presently employed for detecting quant-
itative or qualitative changes in circulating serum or plasma
proteins in relation to a pathological state such as the presence
of a solid tumor. Both represent high throughput and highly
sensitive proteomic approaches that allows protein expres-
sion profiling of large sample sets (Hutchens and Yip, 1993;
Merchant and Weinberger, 2000). Briefly, in SELDI, proteins
of interest from biologically complex samples bind selectively
to chemically modified affinity surfaces, with non-specifically
bound impurities washed away. The retained sample is com-
plexed with an energy-absorbing molecule, and analyzed
by laser desorption/ionization time-of-flight (MS), producing
spectra of mass/charge ratio (m/z).

MALDI is similar to SELDI except that it does not have
the preselection or enrichment steps for certain proteins in the
sample mixture by allowing fractionation based on prebind-
ing to different surfaces or chemical coatings. In MALDI, the
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samples are mixed with a crystal forming matrix, placed on
an inert metal target, and subjected to a pulsed laser beam to
produce gas phase ions that traverse a field-free flight tube and
then are separated by m/z ratio. There are theoretical advant-
ages and disadvantages for each of these two approaches;
however, both have been applied to cancer detection in solid
tumors with reported high sensitivity and specificity using a
variety of statistical analyses (Petricoin et al., 2002b; Li et al.,
2002; Qu et al., 2002; Rai et al., 2002; Adam et al., 2003; Yasui
et al., 2003; Wu et al., 2003).

In this paper, we propose a novel algorithm for pattern clas-
sification from protein spectra, and compare it with several
other existing techniques. We primarily focus on the compar-
ison of two diagnostic classes (e.g. healthy versus cancer),
although our method can be generalized to more than two
classes (details are given in the Appendix).

Since there are many possible approaches to this problem, it
is important to discuss the desiderata for such a procedure:

(1) It should focus on clearly detectable peaks in the spec-
tra, at least for the initial analysis. While there may
well be discriminative information in other parts of the
spectra, peaks are more likely to represent isolatable
proteins, protein fragments or peptides.

(2) The method should account for the variation in the m/z

location and heights of the same biological peak in
different spectra. The source of this variation may be
biological or technical (i.e. due to properties of the mass
spectrometer).

(3) It should give some measure of discriminatory power
for all peaks.

(4) If possible, the sample classification rule should use the
peak information in a relatively simple way and provide
a method for filtering out the less significant peaks.

Point (3) can be important in the following scenario: suppose
that other researchers, studying the same disease, find a poten-
tially important peak at a certain m/z value. The user would
like to assess the importance of that peak (or a nearby peak)
in their data, and hence need an evaluation of all peaks found
in their data. Figures 1 and 2 show the main results of the PPC
method. They are explained below.

2 METHODS
2.1 Sample description
The ovarian cancer dataset was analyzed by Wu et al. (2003),
and was provided by the authors. It consists of MALDI–MS
spectra generated using a Micromass MALDI-R instrument
on pre-treatment serum samples of 89 subjects, consisting of
42 non-cancer controls and 47 ovarian cancer patients. The
MS spectra are measured at 91 360 sites, spaced 0.019 Da
apart and extending from 800 to 3500 Da. Following Wu
et al. (2003), we log-transformed the intensities and then did

a baseline subtraction using a ‘loess’ smoother with span of
1000/91 360. Finally, we normalized each spectrum by a lin-
ear transformation that mapped the 10th and 90th percentiles
to 0 and 1, respectively.

A flowchart of the peak probability contrast (PPC) proced-
ure is shown in Figure 3. We now describe the individual steps
in detail.

2.2 (a) Peak extraction
We begin with the raw MALDI spectra. In some systems,
the spectrometry software provides a list of labeled peaks.
These were not available for our data, hence, we developed
a simple peak-finding procedure based on the ideas of Yasui
et al. (2003). It looks for sites (m/z values) whose intensity
is higher than that at the ±s sites surrounding it, and higher
than the estimated average background at that site; here we
used the value s = 100.

First we smoothed the raw spectra, as illustrated in Figure 6.
For this we used a ‘supersmoother’ with a span of 0.002.
This step would normally only be carried out for the MALDI
data, and not for the SELDI data. It has the effect of smooth-
ing over the isotopic envelop that is present in the MALDI
data, which is helpful for the purposes of finding peak loca-
tions. However after determining the peak locations that are
important for sample classification, one should examine the
raw spectra to determine the actual width and location of
the primary peak in each envelop. Alternatively, one could
apply a de-isotoping method to extract the primary peak from
each envelop and eliminate the secondary ones. The output
of a de-isotoping peak finder can be fed directly into our
procedure.

We estimated that in the smoothed spectra, that peak widths
were ∼0.5% of the corresponding m/z value. Hence we log-
transformed the m/z values so that the peak widths were
approximately constant over the entire range. This produced
a roughly constant peak width of 0.005. This same approach
and peak width has been used by other authors, e.g. Yasui et al.
(2003). Visual examination of the individual spectra showed
that this peak width was fairly reasonable for these data. By
log-transforming the data, the peak widths are approximately
constant across the m/z range and this facilitates application
of a clustering procedure, described next. In general, the peak
width is an important adjustable parameter in our procedure.
The data analyst should try to vary it, and examine the results
both visually and in terms of the cross-validated misclassi-
fication (described below). In the ovarian cancer example in
this paper, smaller widths such as 0.25% resulted in slightly
higher error rates.

In some cases, two peaks within 0.5% are found in the same
spectra, and these are combined. Note that any peak finding
method can be used to provide peaks for the PPC procedure.
The one we have used is crude, and a more refined peak-finder
could yield improved classification results.

3035

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/17/3034/186323 by guest on 16 August 2022



R.Tibshirani et al.

xxx

2995.13

0.55

0.29

0.83

x xxx

1053.85

0.8

0.55

0.15

xxx

2437.28

0.62

0.74

0.34

x

1391.79

0.62

0.31

0.7

xx

1031.92

0.98

0.83

0.45

x

945.53

1.22

0.69

0.32

x x

2012.51

3.08

0.64

0.28

x

1853.43

0.72

0.67

0.32

x xxx

1143.15

0.55

0.64

0.3

x

2096.82

1.43

0.71

0.38

x

2213.81

0.91

0.1

0.43

xx

3238.57

0.91

0.1

0.43

x xx

1301.62

0

0.4

0.72

x xx

1568.96

0.61

0.79

0.47

x

2112.78

0.84

0.79

0.47

x

3113.47

0.51

0.26

0.57

x

3346.01

0.5

0.48

0.79

xx

2255.32

0.67

0.69

0.38

x

3196.74

0.54

0.33

0.64

x x

2031.01

0

0.74

0.45

x

1402.45

0.68

0.71

0.43

x

2127.58

0.68

0.69

0.4

x

1172.89

0.55

0.67

0.38

x

1868.61

1.48

0.55

0.83

xx

3016.31

0.49

0.55

0.83

x

1628.58

0.95

0.4

0.13

x

1323.24

0.67

0.67

0.4

x

2728.57

1.23

0.67

0.4

x

1075.61

0

0.55

0.81

x xx

2790.57

0.49

0.19

0.45

Fig. 1. The results of PPC method on the ovarian cancer example. Each panel shows a histogram of peak heights in the training set at one
site (m/z value in black type in top right corner), for healthy patients (green) and cancer patients (blue). Figure 2 gives details of the format.
The peaks are ordered from strongest to weakest, as measured by the difference in proportions (red type), starting in the top left corner and
moving down the left column. Only the top 30 peaks are shown, out of a total of 192 peak sites.

2.3 (b) Peak alignment via clustering
To align peaks from the set of spectra, we applied com-
plete linkage hierarchical clustering to the collection of
all 14 067 peaks from the individual spectra. The cluster-
ing here is somewhat novel: it is one-dimensional, using

the distance along the log m/z-axis. This is depicted in
Figure 4.

The idea is that tight clusters should represent the same
biological peak that has been horizontally shifted in different
spectra. We then extract the centroid (mean position) of each
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Fig. 2. Exploded view of the top left panel of Figure 1, with a legend detailing the format. The vertical line shows the estimated optimal height
split point. The proportions of samples in each class having peaks higher than the split point are indicated. The ‘x’s indicate the horizontal
positions of split points that achieve a difference in proportion within 10% of the best at that site.

cluster, to represent the ‘consensus’ position for that peak
across all spectra.

Since this clustering can be performed very quickly, a spe-
cial routine was written for this purpose. Cutting off the
dendrogram at height 0.005 produced 192 clusters with cor-
responding cluster centers taken as the midpoints between the
ranges of the cluster. Since complete linkage was used, we
are guaranteed that every peak in the cluster is at most 0.005
from any other peak in that same cluster.

2.4 (c) Search for common peaks in individual
spectra

Given the list of common peaks from clustering in Step (b),
we go back to the individual spectra and record whether each
spectrum exhibits each of these common peaks. A peak in the
individual spectra is deemed to one of the common peaks if its
center lies within log(0.005) of estimated center position of
the common peak. If it is present, the height of the individual
peak in the spectrum is also recorded.

2.5 (d) Split point estimation for each peak
From the previous steps, we have spectrum peak heights yij ,
for observations j = 1, 2, . . . , n and sites i = 1, 2, . . . , m.
These are the centroids from a hierarchical clustering of all
individual spectra peaks. If there is no peak at site i, we take
yij = 0. In this step we cut the peak height at some quantile, in
such a way as to maximally discriminate between the healthy
and normal samples in the training set. Basing the splits on the
quantiles of all heights at a peak position, rather than absolute
peak heights, is important: it accounts for the fact that peaks
heights can vary greatly across the m/z range. Here are the
details:

• Let q(α, i) be the α quantile of the peaks yij at site i.

• Given two groups G1, G2 of size n1, n2, let pik(α) be
the proportion of spectra in group k with a peak at site i

larger than q(α, i):

pik(α) =
∑
j∈Gk

I [yij > q(α, i)]/nk , k = 1, 2,

3037

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/17/3034/186323 by guest on 16 August 2022



R.Tibshirani et al.

Extract peaks from
individual spectra

    set of peaks via

     in individual spectra

quantile height  (split point)
at each common peak site

Split point estimation: find most discriminatory

(a)

(b)

(c)

(d)

(e)

    Estimate the common

    hierarchical clustering

    Search for common peaks

Classification: apply the nearest
shrunken centroid classifier to the set
of extracted features

(f)

is present in each individual spectrum

for each common peak,  determine
 if a peak higher than the split point

Feature extraction for a new spectrum:

Fig. 3. Flow chart of PPC analysis.

where I [·] is the indicator function, equals one if the event
is true and zero otherwise.

• Choose α̂(i) to maximize |pi2(α)−pi1(α)| and set p̂ik =
pik[α̂(i)].

This process produced the cutpoints (red vertical lines) and
class probabilities p̂ik shown in Figure 1. The panels in the
figure are arranged in decreasing strength, i.e. decreasing
value of |p̂i2 − p̂i1|. These histograms are informative in
themselves. For some sites (e.g. at 1301.62 in the third left-
most column), the cutpoint divides height = 0 from the rest.
That is, it indicates that the presence or absence of the peak
is what important. At other sites (e.g. 2995.1 in the top left
corner), the proportion of peaks above a certain height (0.55)
is important for classification ability.

2.6 (e) Feature extraction for a new spectrum
From the previous steps we have a set of common peaks, and
an optimal discriminating split point for the height of each
peak. To do class prediction for a new spectrum, we first

construct a vector of binary features for that spectrum, one
for each of the common peaks. Each feature equals one if a
peak with height greater than the split point is found in the
new spectrum, and zero otherwise. As before, a peak is con-
sidered to correspond to a common peak if its center lies within
log 0.005 of the position of the common peak. In Figure 1, the
first feature will equal 1 if the new spectrum contains a peak
at 2995.12 higher than 0.55, the second feature will equal 1
if the new spectrum contains a peak at 1053.85 higher than
0.80, and so on.

2.7 (f ) Class prediction via nearest shrunken
centroids

Here we show how to use the peak proportions p̂ik to classify
a new spectrum into class 1 (healthy) or class 2 (diseased).
Given a spectrum from a new patient with peak heights
y∗

1 , y∗
2 , . . . , y∗

p, let z∗
i = I [y∗

i > q(α̂(i), i)]. This is the binary
feature vector from Step (e), with a component equal to one if
the spectrum has a peak above the cutpoint height at that site,
and zero otherwise. We can then compare this binary profile
to each of the probability centroid vectors (p̂11, p̂21, . . . , p̂m1)

and (p̂12, p̂22, . . . , p̂m2) and predict the class that is closest in
overall squared distance (or some other metric)1. This is a
kind of ‘nearest centroid’ classification. However to select
sites and potentially improve the prediction performance, we
also consider shrinkage of each pair of probabilities p̂i1, p̂i2

towards their average.
Figure 5 shows a hypothetical example of nearest shrunken

centroid classification in action.
Before giving details, the method is illustrated by the

example shown in Table 1 (details in table caption).
Here are the details. Let s(t , �) = sign(t)(|t | − �)+, the

‘soft-threshold’ function. Here ‘+’ means positive part. The
soft-threshold function translates the value t towards zero by
the amount �, setting it to zero if |t | ≤ �. For example
if � = 0.5, then s(1.2, �) = 0.7, s(−1.2, �) = −0.7,
s(0.3, �) = 0.0. Then we set p̃ik = p̄i + s(p̂ik − p̄i , �),
with p̄i = (p̂i1 + p̂i2)/2.

The parameter � is chosen by 10-fold cross-validation. That
is, we divide the samples into 10 approximately equal sized
parts. For each fixed value of � we train the PPC algorithm
on nine parts of the data and then compute the error rate in
predicting the class labels of the samples in the tenth part.
This is done for each of the 10 parts in turn, and the error rates
added to give, the cross-validation error estimate for the value
�. This process is carried out for a grid of values of �, to
produce an error curve cv(�). Finally, we examine this curve
and choose � to be its minimizer �̂.

Note that if the probabilities are shrunken so that they coin-
cide, the site i no longer contributes to the nearest centroid
rule. Sample classification is then done as follows. For a

1 Our software also allows the use of absolute distance or binomial log-
likelihood distance.
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Fig. 4. Illustration of hierarchical clustering for peak alignment and clustering. The points marked ‘x’ represent the positions of extracted
peaks from the individual spectra. Complete linkage hierarchical clustering is applied to the peak positions along the log(m/z) axis, and the
resulting dendrogram (clustering tree) is cut at height log(0.005). In this simple illustrative example, this process produced four clusters with
associated centroids indicated by a ‘c’.

test set with peak heights y∗
1 , y∗

2 , . . . , y∗
p, let z∗

i = I [y∗
i >

q(α̂(i), i)] and compute the distances dk = ∑
i (z

∗
i − p̃ik)

2

(or absolute value). We predict to class 2 if d2 < d1 and
class 1 otherwise. Estimated class probabilities are also avail-
able, derived as in Tibshirani et al. (2003). Note that all of the
training steps, including split-point estimation, are repeated
within each cross-validation fold.

2.8 False discovery rates
The simple difference in proportions for peak i

Ti = p̂i2 − p̂i1 (1)

can be used to assess the significance of the peak. False dis-
covery rates (FDRs) (Benjamini and Hochberg, 1985; Tusher
et al., 2001; Efron and Tibshirani, 2002; Storey and Tibshirani,
2003) are a useful measure for this. For a given threshold t

we compute the number of Ti that exceed t in absolute value.
Then we randomly permute the class labels and apply the PPC
procedure to the spectra with permuted labels, giving scores
T ∗b

1 , T ∗b
1 , . . . , T ∗b

m . This process is repeated B times, produc-
ing scores for b = 1, 2, . . . , B. Finally, the false discovery
rate is estimated by

F̂DR(t) =
∑B

i=1 I (|T ∗b
i | > t)/B∑B

i=1 I (|Ti | > t)
. (2)

The numerator is an estimate of the number of false posit-
ive peaks, and hence the ratio estimates the proportion of

false positives among the peaks called significant. We estim-
ate FDR(t) in this way, for a range of values of the threshold t .
From this, we find the threshold t giving a reasonable low
FDR (say 5%) and call all significant peaks i that fall beyond
this threshold. Note that the estimation of FDR is only for
descriptive purposes, and is not used formally in the sample
classification process.

2.9 Use of other classifiers
The features derived from the PPC method can also serve
as useful inputs into other classifiers. We have chosen the
nearest shrunken centroid method as our primary classifier,
because of its simplicity and interpretability. But other meth-
ods have potential advantages in this context. For example, the
lasso (Tibshirani, 1996; Efron et al., 2002) is a multivariate
fitting method that produces a sparse set of feature weights,
and could potentially improve the prediction performance of
nearest shrunken centroids in this setting. A binary decision
tree (Breiman et al., 1984) can find subgroups of cancer or
healthy patients, defined in terms of their individual peak
behavior.

3 RESULTS
3.1 Ovarian cancer MALDI dataset
The peak extraction step found a total of 14 067 peaks, or an
average of 158 peaks per spectrum. These were then clustered
into 192 groups of peaks.
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Fig. 5. Hypothetical example of nearest shrunken centroid classification in action. There are four peaks shown in the left panel: peaks 1 and 2
appear more often in the cancer group than the healthy group, while the reverse is true for peaks 3 and 4. In the middle panel the probabilities
in the two classes have been shrunken towards each other. As a result, the probabilities for peaks 1 and 3 are now equal, and those peaks will
not participate in the class prediction of a new spectrum. The right panel shows the feature vector (consisting of zeroes and ones) for a test
spectrum: it has peaks 1 and 2, but not 3 or 4. To predict the class for this spectrum, we compare its feature vector to the healthy and cancer
profiles in the middle panel, and find the closest one in squared distance. Here the closest is the cancer profile, and so the prediction is to
class ‘cancer’.

Figure 1 summarizes the peak information in the first 30
of these 192 peak clusters 1. Each box shows a histogram of
peaks at the given m/z site, in the non-cancer (green) and
cancer (blue) classes. The different sites are arranged from
strongest to weakest, starting at the top left, and moving down
the left column.

Figure 2 show an exploded, annotated view of the top left
box. The optimal split point for each site is indicated by a
vertical red line, and the resulting proportions to the right of
that split point are shown in the red numbers in the box. For
example, the strongest site is at m/z = 2995.1, with a much
larger proportion of cancer patients having peaks above that
split point, compared to control patients (0.70 versus 0.17).
(The split at this site actually corresponds to a peak height of
0.58). Figure 6 shows an example of three spectra in each
group, at the strongest site m/z = 2995.1. Figure 7 dis-
plays the FDR, as the number of significant sites is varied.

The FDR starts to rise >0.05 after the first 7 or 10 peaks.
Hence the strongest 10 peaks are very likely to be signi-
ficant, but we are less certain about the peaks farther down
the list.

Figure 8 shows a heatmap display of the top 7 peaks in the
89 samples.

The 10-fold cross-validated misclassification rate for the
PPC method is shown in line (1) of Table 2. The minimum
CV error is achieved with seven peaks. The cross-validated
sensitivity and specificity were 35/47 and 30/42, respectively.
In line (2), we halved the peak width to 0.0025: this seems to
hurt the prediction accuracy. In line (3), we have restricted the
splits so that the contrast represents presence versus absence
of a peak. The error rate has increased. In line (4), we have
applied the lasso to the binary features from the PPC method.
This does not seem to improve prediction accuracy of the PPC
method in this problem.
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Table 1. Illustrative example of nearest centroid classifier used in PPC
method

Peak No. Unshrunken centroids Shrunken centroids Feature vector
Normal Cancer Normal Cancer

1 0.29 0.83 0.48 0.64 1
2 0.55 0.15 0.36 0.34 0
3 0.74 0.34 0.55 0.53 0
4 0.31 0.70 0.50 0.51 1
5 0.83 0.45 0.64 0.64 0
6 0.69 0.32 0.50 0.50 0
7 0.64 0.28 0.46 0.46 0
8 0.67 0.32 0.50 0.50 0
9 0.64 0.30 0.47 0.47 1

The raw (unshrunken) class centroids, are shown in the 2nd and 3rd columns. These
are the proportion of samples in each class with peaks higher than the optimal split
point, at each site (in red type in Fig. 1). For illustration our example has only nine peak
sites. In reality there will usually be many more (192 in our ovarian cancer example).
A typical feature vector from a new spectrum is shown in the rightmost column. This
spectrum has a peak higher than the cutpoints at sites 1, 4 and 9. A nearest centroid
classifier compares the feature vector to the two centroids, and predicts to the class
to which it is closest in squared distance. In this case we predict to class ‘Cancer’.
We can often improve upon this classifier by shrinking the centroids towards each
other by an amount �. Here we chose � = 0.19, producing the shrunken centroids
in columns 4 and 5. Our prediction is again based on nearest centroids, but now using
the shrunken centroids. The probabilities at peaks 5–9 have been shrunken together,
and so the prediction is based only on the first 4 peaks. In this case, the prediction is
still to class ‘Cancer’, but we have simplified the model.

Lines (5) and (6) of the table represent two of the best
performing methods among those studied by Wu et al. (2003).
Both methods start with the 15 sites having the largest
t-statistics in absolute value. The first linear discriminant ana-
lysis (LDA) is based on these 15 features, while the second
(SVM) is a support vector classifier. For SVM we optim-
ized over the choice of its cost parameter. Both LDA and
SVM perform worse than the PPC method here. In line (7) we
applied SVM to all sites. Its prediction performance might be
a little better than that of PPC. In line (8) we applied a dis-
crete wavelet transform with Daubuchies compact wavelets to
each spectrum, using the Wavethresh3 package in R (Nason,
1998). We then applied the nearest shrunken classifier to the
resulting wavelet coefficients. The classifier used only six
wavelet coefficients, but when transformed back to the ori-
ginal domain, it resulted in non-zero weights for all 91 360
features. This procedure is analogous to the PPC method in
line (1), but uses a different feature extraction (encoding). We
see that the error rate is no better than that of PPC, and it uses
many more features.

Figure 9 shows the cross-validation error curves for the PPC
methods, as a function of the threshold parameter �. The
number of sites is indicated along the top of the figure. We have
include the PPC/lasso method on the plot, using the number
of non-zero sites as the plotting abscissa.

We note that the CV error for LDA and SVM/t-15 reported
in Wu et al. (2003) averaged ∼12–15%, or 12–14 errors out

Fig. 6. Left column: three spectra from cancer patients having a
peak higher than 0.55 at the site m/z = 2995.1. Both the raw (black)
and smoothed (red) spectra are shown. In the right column, we show
three spectra from healthy patients without the peak, or whose peak
is too low. The vertical dotted lines indicate the centroid 2995.1 and
the outer limits for the peak position.

Fig. 7. Estimated FDR, as a function of the number of peaks called
significant.

of 89. This is far better than the results in Table 2. But in their
study, these authors used all 89 samples to choose the 15 sites,
and then applied cross-validation keeping the 15 sites fixed
(personal communication). This produces an unrealistically
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Fig. 8. Binary heatmap of top seven training set features. Each row
corresponds to one of the seven peak centroids, and each column
corresponds to a training spectra. A pixel is dark if the peak at that
site exceeds the threshold determined by PPC. The rows ( peaks) are
ordered by decreasing strength from top to bottom.

Table 2. The results for ovarian cancer example

Method Cross-validation errors/89 (SE) Number of sites

(1) PPC 23 (1.1) 7
(2) PPC/width 0.0025 27 (1.7) 3
(3) PPC/pres-abs 30 (1.8) 133
(4) PPC/lasso 25 (1.5) 192
(5) LDA/t-15 31 (1.4) 15
(6) SVM/t-15 27 (1.6) 15
(7) SVM 21 (1.4) 91 360
(8) Wavelets 26 (1.3) 91 360

Methods are (1) peak probability contrast with default peak with of 0.005; (2) PPC with
peak width 0.0025; (3) PPC with splits restricted (i.e. peak present or absent); (4) lasso
applied to binary features from PPC method; (5) linear discriminant analysis using the
top 15 sites as ranked by the t-statistic; (6) support vector machine (SVM) using these
same 15 sites; (7) support vector machine applied to all sites; and (8) nearest shrunken
centroid classifier applied to wavelet coefficients.

low error rate that does not accurately estimate the true test
error rate.

The strongest peak used by PPC was at m/z = 2995.1.
The corresponding peak heights are shown in Table 3 and
show a strong trend towards larger peaks in the cancer spec-
tra. The t-statistic at m/z = 2995.1 was 3.19 Among the
91 360 t-statistics, the value 3.19 ranks as only the 4196th
largest. Hence, it is not clear that screening on the value of the
t-statistics is a good way to choose features in this example.

3.2 An artificial spiking experiment
To assess the performance of the PPC algorithm, we created
artificially ‘spiked’ spectra from our original data. First we
created artificial control and cancer datasets, each consist-
ing of approximately half of the original control and cancer

Fig. 9. The 10-fold cross-validation error for PPC, as a function of
the threshold parameter �. The corresponding number of peaks used
is shown along the top of the figure. We have included the PPC/lasso
method on the plot, using the number of non-zero sites as the plotting
abscissa.

Table 3. Training set results for peak at m/z = 2995.1

Number in quartile Total
0 1 2 3 4

Healthy 6 16 12 4 4 42
Cancer 3 4 8 16 16 47

Number of samples in quartiles of peak heights; quartile ‘0’ means no peak.

patients, respectively. By construction, these artificial data-
sets were heterogeneous but were similar to each other. We
then chose two sets of five sites:

Control samples: 820.0, 1106.7, 1680.0, 2540.0, 3113.3.

Cancer samples: 1393.3, 1966.7, 2253.3, 2826.7, 3400.0.

An artificial peak was spiked into each control spectra
at the first five sites, and spiked into the cancer spectra at
the second five sites. In each case this peak was a narrow
spike of width 1. To simulate actual conditions, the pos-
ition of the spike was also ‘jittered’ by 0.0025 from the
target site.

In detail, if h(x) is the intensity of the spectrum at x =
log(m/z), then the height of the spectrum at x′ after spiking
was defined to be

h(x′) + h̄(x′) · f , (3)

where h̄(x′) is the average intensity at x′ for all spectra, and
f is a fraction equal to 2, 1 or 0.5. Here x′ is the jittered version
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Table 4. The results for artificial spiking experiment

f 10 site model Full model
No. of sites found Test errors/45 No. of sites found Test errors/45

2 7 0 10 20
1 4 3 8 24

0.5 3 8 10 21

of x, i.e. x′ = x + U , where U is uniformly distributed on
[−0.0025, 0.0025]

After creating the dataset, we randomly split it into a training
set (2/3) and a test set (1/3). We applied the PPC procedure
giving the results in Table 4. In the 2nd and 3rd columns,
the PPC model was shrunken down to its top 10 sites, and we
report how many of the actual 10 spiking sites appeared in
these 10 and the resulting test set error rate. By ‘appeared’,
we mean that the actual spiking site was within 0.005 units
of one of the centroids. Similarly, the last two columns report
the results for the full (unshrunken) PPC model. This model
typically had on the order of 600 centroid sites.

As expected, as we spike with smaller peaks, both the ability
to detect these peaks and the ability to use them for prediction,
tends to decrease. However with peaks twice as high as the
average intensity (f = 1), the test error of the shrunken model
is low (3/45) and the procedure finds 4 of the 10 spiking sites.
The full model is better at finding the spiking sites (among
others), but by retaining noisy sites it pays a price in test error.

4 DISCUSSION
Sample classification from proteomic data is often difficult
because the signal intensity for each m/z point can be affected
by both biological processes and experimental condition vari-
abilities. The preprocessing steps of MS output are critical for
the overall analysis of the proteomic data. Peak normalization,
identification and alignment can all affect the performance of
class prediction using conventional classification approaches.
The proposed peak probability contrast method first extracts
clusters of peaks in the spectra. In other experiments in our
laboratory, we found that this extraction step appears to be
robust and reproducible when tested on spectra obtained from
different runs using the same plasma sample. It can help to
minimize experimental variability.

After extraction of peak clusters, PPC uses resulting features
in a nearest centroid classifier. These features can also serve
as useful inputs into other classifiers such as a binary decision
tree, or lasso model. Comparison with other classifiers that
operate on the raw spectra, PPCs performance is just as com-
petitive while providing an advantage of generating a simple,
more interpretable set of features for further investigation. The
efficiency of this method in finding a relative small number of

peak clusters for class prediction will facilitate future identific-
ation of biologically significant and relevant proteins for tumor
development and progression. Discovery of these proteins will
result in novel targets for cancer prevention and antitumor
therapies.

The concept of low molecular weight (LMW) serum pro-
teome was recently introduced through the increasing popular
mass spectral-based proteomic analysis. Its importance was
demonstrated by a number of studies (Petricoin et al., 2002b;
Kozak et al., 2003). However, because these LMW mark-
ers were mainly identified through bioinformatic/statistical
analysis, their identities remain elusive. Two other ovarian
cancer studies yield two panels of markers each with five
m/z values [534, 989, 2111, 2251 and 2465 (Petricoin et al.,
2002b)]; 4.4k, 15.9k, 18.9k 23.0k and 30.1k (Kozak et al.,
2003). None of them show identical m/z value as the panel
of markers we have shown here. This can be easily explained
by different samples, handling process, instruments and stat-
istical tools used by these studies. Although not necessarily
straight forward, there are ways to purify those serum markers
for identification through tryptic peptide mapping (Rai et al.,
2002) or amino acid sequencing (Klade et al., 2001).

Software for performing the PPC analysis will be available
at http://www-stat.stanford.edu/∼tibs/PPC.
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APPENDIX: THE MULTI-CLASS CASE
The PPC procedure can be easily generalized to problems with
more than two classes. In the notation of Section 2.5, let Gk

be the indices of observations in group k each of size nk , for
k = 1, 2, . . . , K . Let

pik(α) =
∑
j∈Gk

I [yij > q(α, i)]/nk , k = 1, 2, . . . , K ,

and p̄i(α) = ∑
k nkpik(α)/

∑
k nk .

We choose α(i) to maximize
∑

k |pik(α) − p̄i(α)| for each
site i, and then set p̂ik = pik[α̂(i)]. Centroid shrinkage and
classification then proceeds exactly as in Section 2.7.
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