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Abstract: The near-Earth asteroid 162173 Ryugu is thought to be a primitive carbonaceous 
object and to contain hydrated minerals and organic molecules. We report sample collection 
from Ryugu’s surface by the Hayabusa2 spacecraft on 21 February 2019. Touchdown images 
and global observations of surface colors are used to investigate the stratigraphy of the surface 
around the sample location and across Ryugu. Latitudinal color variations suggest reddening of 25 

exposed surface material by solar heating and/or space weathering. Immediately after touchdown, 
Hayabusa2’s thrusters disturbed dark fine grains that originate from the redder materials. The 
stratigraphic relationship between identified craters and the redder material suggests that surface 
reddening occurred over a short period of time. We suggest that Ryugu has previously 
experienced an orbital excursion near the Sun. 30 

 

 

Main Text:  

Hayabusa2 is a sample-return mission to 162173 Ryugu, a carbonaceous near-Earth 
asteroid (NEA) (1). The spacecraft launched on 3 December 2014 and arrived at Ryugu on 27 35 
June 2018. Initial global observations showed the asteroid has a spinning top-shape and rubble-
pile structure (2, 3). The surface has generally uniform spectra (4, 5). Small variations in surface 
color are quantified using the spectral slope from b-band (0.48 µm) to x-band (0.86 µm) 
(hereafter, b-x slope) (2, 5, 6) observed with the telescopic optical navigation camera (ONC-T) 
(Fig. 1A) (5). Two compositional types of material are present on the surface with different 40 

colors: bluer material distributed at the equatorial ridge and in the polar regions, and redder 
material in the mid-latitude regions (5). However, the cause of these spectral variations is not 
understood.  

On 21 February 2019, Hayabusa2 conducted its first sample collection from Ryugu, 
performing a touchdown on the surface. During the touchdown operation, Hayabusa2 took 45 
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images of Ryugu’s surface with resolutions as high as ~1 mm pixel-1. Those images allow us to 
observe the surface response to the physical disturbances generated by the touchdown, including 
the sampling projectile collision and firing of the thruster gas jets.  

The touchdown site was selected based on established engineering safety criteria and 
scientific merits (2, 6, 7). Regional variations in the mixing ratio between redder and bluer 5 
materials are measured using the spectral slope (Fig. 1A). Spectral variations between candidate 
touchdown sites are much smaller than those within each site (2), implying that the surface 
materials are locally well-mixed. A sampling operation at any of the candidate sites should 
therefore collect both redder and bluer components. Safe landing locations were limited by the 
high boulder abundances (5, 8). We initially intended the site designated L08-B, one of the 10 

lowest boulder density areas on Ryugu, as the primary landing site (2, 6, 7) and deployed a target 
marker (TM) on October 23, 2018 to facilitate navigation. Based on the location where the TM 
settled and the detailed search for areas without boulders taller than 65 cm, which could reach 
Hayabusa2’s reaction control system (RCS) during a touchdown, we finally chose L08-E1 (Fig. 
2A and S5). 15 

Hayabusa2 performed multiple low-altitude (~40 m) descent maneuvers near the L08 
region, during which we conducted high-resolution (>0.01 m pixel-1) spectral and morphological 
observations. The touchdown site is generally slightly bluer than the global average, but reddish 
areas are found within L08-E1 (Fig. 1E and 2C). These reddish areas are on average slightly 
darker than bluer areas (Fig. S6), a trend that is observed globally (2, 5). The reddish areas are 20 

limited to parts of individual boulders, with most boulder surfaces in this location being blue (Fig. 
2C). These observations are compatible with the interpretation that Ryugu’s boulders are 
originally bluer, with redder materials produced by surface metamorphic processes such as space 
weathering (9), thermal metamorphism by solar heating (10), and/or pulverization by small 
impacts (11). Redder materials may have been shed from boulder surfaces by impact disruption 25 
and/or thermal fatigue. The bluer surfaces of boulders remain un-reddened, implying that the 
timescale for surface reddening is longer than boulder resurfacing by impact disruption and/or 
thermal fatigue. 

There are two morphological types of sub-meter-sized boulders around the touchdown 
site: dark ragged boulders and bright boulders with smooth surfaces (Fig. 2D and S7A). These 30 

types of boulders are observed in the ten-meter size range in remote images (5), and on smaller 
scales in images taken on the surface by the Mobile Asteroid Surface Scout (MASCOT) lander 
(12). Images taken during the descent operation show that there is also a submeter-scale 
heterogeneity in surface reflectance of the bright boulders: the edges of many boulders are 
brighter than the planar surfaces of the same boulders (yellow arrows in Fig. 2E and S7B). This 35 
may be due to a higher abrasion rate at the boulder edges. One boulder in Fig. 2E appears to have 
broken in two, with the possible broken surface ~1.5 times brighter than surfaces of the 
surrounding boulders. Because the interior/less-processed part of the boulder is exposed on the 
boulder edges and broken surface, these observations suggest that boulder surfaces are generally 
darkened by exposure to space.  40 

The Hayabusa2 spacecraft has a sampling mechanism (13) similar to that of the original 
Hayabusa spacecraft (14). Ejecta are generated by the impact of a 1-cm-diameter tantalum 
projectile fired at a speed of ~300 m s-1 during the first contact with the surface, which are caught 
with a sampler horn extended from the bottom of the spacecraft (13, 14, 15).  

The combination of the impact of the projectile fired from the sampler system and the 45 
operation of the RCS thrusters during the touchdown produced a large amount of debris from 
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Ryugu’s surface (Fig. 2G and Movie S1) (6). The video obtained by the nadir-viewing wide-
angle optical navigation camera (ONC-W1) indicates that large boulders (up to 1 m in the 
longest dimension) were moved horizontally by >5 m during the touchdown (Fig. S9). However, 
most of the debris disturbed during the touchdown was small pebbles and fine grains whose 
diameters are less than the pixel size (which varied from 1 to a few mm) of the W1 images (Fig. 5 
S8) (6). This high mobility of fragmental debris deposits (i.e., regolith) during the touchdown 
indicates that the cohesive forces between boulders/pebbles may be very weak, or that they 
depend on the particle sizes. This interpretation is consistent with the observed deficit of small 
craters (5, 16), mass movement along slopes (i.e., mass wasting) on crater walls (5), and the 
crater formation by Hayabusa2’s artificial impact experiment (17).  10 

Immediately after the RCS thrust upon touchdown, the entire field-of-view of ONC-W1 
was darkened uniformly. A dark ragged boulder, which we nickname “Turtle Rock” 
simultaneously became as bright as the surrounding brighter boulders (Fig. 2F, and 2H) (6). 
Turtle Rock was also moved by the RCS exhaust. These observations suggest that dark fine 
grains were originally present on the surfaces (or inside pores) of darker and redder boulders, 15 
before being lifted by the RCS thrusting. Such fine grains were not visible in the surface images 
taken by MASCOT (12). The sampling process produced a cloud of dark fine grains that 
expanded from the touchdown site and extended to a zone ~10-m in diameter, centered at the 
touchdown site (Fig. 2G and 2H). We estimate the total mass of the fine-grained cloud to be ~12 
kg (6). The pre-touchdown color of this region was slightly bluer than the surrounding region, 20 

but it became redder after the deposition of the lofted dark fine grains (Fig. 2G and S11) (6). 
Observations with the Near Infrared Spectrometer (NIRS3) of the region before and after the 
touchdown showed little change in the OH band depth, although the NIRS3 spectra after the 
touchdown is slightly bluer and brighter (Fig. S12). This is consistent with the global lack of 
correlation between the spatial distribution of the OH band depth and the red-blue color 25 
variations observed by ONC (4, 5). We conclude that dark fine red grains originally concentrated 
on the boulder surfaces or in voids on the boulders, are not compositionally distinct from the 
subsurface, and the disruption by the touchdown event resulted in more even distribution of the 
grains across the affected area. 

 30 

Globally, the b-x slope varies with latitude (Fig. 1A). We found that the b-x slope also 
correlates with the crater distribution. Fresh and stratigraphically younger craters >20 m in 
diameter have interiors that are spectrally bluer than their surroundings (Fig. 1C). This implies 
that the redder materials were covering the bluer materials, with the latter exposed by the crater 
formation. This is consistent with the stratigraphic relationship between the redder and bluer 35 
materials inferred from the global b-x slope distribution (5). On the other hand, stratigraphically 
older craters tend to have redder interiors, and the color of the crater interiors is similar to that of 
surrounding materials (Fig. 1C). We investigated the contrasts in spectral slopes between crater 
interior surfaces and surrounding areas, which we define as the area within a distance of one 
crater radius outward from the crater rim (6). The histogram of the contrast in b-x spectral slope 40 

shows a bimodal distribution (Fig. 3), indicating that craters on Ryugu can be divided into two 
groups: red craters whose interior has b-x slope similar to that of their surroundings, and blue 
craters whose interior is bluer than their surroundings. 

A potential explanation of the latitudinal variation in b-x slope is that the exposure of 
Ryugu’s materials to space has led to their reddening, and mass wasting from the equator and 45 
polar regions (topographic highs) to the mid-latitude regions (topographic lows) has exposed 
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fresh bluer subsurface materials (2, 5). The polar regions exhibit bluer spectra than the equatorial 
ridge (Fig. S3), suggesting that the reddening process seems to depend on illumination by the 
Sun (Ryugu’s obliquity is 171.6˚ (2)). The color variation of crater interiors can be explained by 
their stratigraphic relations; the craters with redder interiors were formed before surface 
reddening occurred, while the bluer craters were formed after the surface reddening and the 5 
underlying bluer materials were exposed by the impacts. The bimodal distribution of the contrast 
in b-x spectral slope (Fig. 3) suggests that the surface reddening has not been active throughout 
the whole Ryugu’s history and occurred mainly within a period after the formation of redder 
craters and before the formation of bluer craters. The surface reddening might not be currently 
active, or is active but slow compared with the resurfacing processes of boulder surfaces as 10 

discussed above (Fig. 2C). 
We interpret the crater size–frequency distributions (SFDs) using collision frequency 

models derived for the asteroid main belt (6, 18, 19). From the SFD of red craters larger than 100 
m in diameter (Fig. 3D), we estimate the time between the formation of Ryugu to the surface 
reddening event to be 8.5 Ma. This is much younger than the breakup time of candidate parent 15 
asteroids, Eulalia and Polana (several hundred Ma to ~1 Ga) (5, 20), suggesting that Ryugu is the 
product of more than one generation of parent body disruption and/or global resurfacing 
processes such as the spinning top-shape formation had occurred until 8.5 Ma ago. The observed 
number density of blue craters is ~30 times lower than that of red craters (Fig. 3D). We estimate 
a model age for the reddening event of about 0.3 Ma, from the observed SFD of blue craters 20 

larger than 30 m diameter based on the main-belt collision frequency model (Fig. S14A). Using 
an alternative NEA collision frequency model, the age of the reddening event is estimated to be 
about 8 Ma, because there is a much lower collision frequency for bodies in NEA orbits (6, 18, 
19). We interpret these ages as upper and lower limits of age estimates of the surface reddening. 
The NEA model age is younger than the typical dynamical lifetime of NEAs (~10 Ma) (21) and 25 
the median orbital lifetime of Ryugu (~40 Ma) (22). We therefore suggest that the reddening of 
Ryugu’s surface occurred after its orbit shifted from the main belt to its current near-Earth orbit 
(5). 

The deficit of craters smaller than 100 m in diameter on Ryugu’s surface suggests that 
crater erasure processes have occurred (5). Existing small craters must therefore have formed 30 

geologically recently. However, smaller craters (<10 m in diameter) do not always exhibit bluer 
interiors, which would be expected if they were all young. Some small craters exhibit a redder, 
not bluer, interior than the surroundings materials (Fig. 1E). Streaked patterns of redder materials 
such as ejecta deposits are visible across the whole surface (Fig. S4B). In addition, a streaked 
pattern of redder materials elongated from a boulder suggests that a mass of redder material 35 
collided with the boulder and dispersed (Fig. S4F). Redder materials may have been disrupted 
and redistributed by impacts, thermal fatigue, and mass wasting, which may have resulted in the 
formation of a mixed layer of redder and bluer materials after the surface reddening event (Fig. 
4). This interpretation is supported by the distribution of redder materials on boulder surfaces 
and the existence of dark reddish fine grains observed in the touchdown operation. The thickness 40 

of the mixed layer of redder and bluer materials is estimated to be a few meters, derived from the 
minimum crater size (~10 m in diameter) that penetrates to the underlying blue materials. The 
presence of ejecta rays with a length of a few tens of meters that consist primarily of redder 
materials (Fig. S4F) implies that the redder material layer originally had a minimum thickness of 
a few tens of centimeters (6). Solar heating is more likely than space weathering to be the source 45 
of the reddening of Ryugu’s surface, because space weathering typically affects only a thin layer 
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of about 100 nm, while the diurnal and annual thermal skin depths (depth at which temperature 
decays to 1/e the surface temperature) are ≲10 cm and ~1.5 m, respectively (23, 24).  

 
We suggest that a surface reddening event within a short period of time could be 

explained if Ryugu underwent a temporary orbital excursion near the Sun, causing higher surface 5 

heating. Such solar heating is consistent with the apparent deficiency in C-type asteroids bearing 
aqueous alteration features at 0.7-µm band in the NEA population (25). However, solar heating 
on Ryugu during an orbital excursion cannot account for the low abundance of hydrous minerals 
revealed by global observations (4, 5), because the bluish/brighter areas on Ryugu, which did not 
experience the intense solar heating, also have low abundance of hydrous minerals (4).  10 

The large local variations in the spectral slope and albedo within the sampling site 
suggest that both bluer and redder components were likely collected during the touchdown. We 
predict that the returned sample will contain a mix of altered and unaltered materials, with the 
former recording a solar heating event. 

 15 
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Figure 1. Spectral slope of Ryugu’s surface. (A) Global map of b-x slope (µm-1), indicated by 
the color bar, superimposed on a v-band image map. The white arrow indicates the location of 
the first touchdown (TD) point (4.30˚N, 206.47˚E). Craters larger than 20 m in diameter are 
shown by black circles. Dashed lines indicate areas shown in other panels. (B) v-band image 5 
(hyb2_onc_20180801_183933_tvf) obtained from 5.1 km altitude. Yellow arrows indicate 
craters with bluer interior than the surrounding materials. (C) b-x slope of the same region as 
panel B. Craters larger than 20 m in diameter are shown by white dashed circles. Blue craters B1 
and B2 are higher in the stratigraphy than red craters R1, R2 and R3. There is no blue crater 
stratigraphically superposed by red craters, suggesting that the blue craters are younger than the 10 

red craters. (D) v-band image and (E) b-x slope image showing a 9-meter-sized crater with redder 
interior than the surrounding materials, close to the touchdown point marked with a white cross. 
Panels C and E are on the same color scale as A. 
 
Figure 2. Touchdown site before, during, and after the touchdown operation. (A) Boulder 15 
and crater map around the touchdown site L08-E1. The light blue arrows indicate the location of 
the target marker (TM) (4.04˚N, 206.01˚E) and the touchdown point of the sampler horn (TD) 
(4.30˚N, 206.47˚E) (7). The light blue circle indicates the L08-E1 area. The white dashed circles 
indicate craters. Boulder heights (H) were estimated from their shadow lengths; those with 
H > 1.8m are outlined in red, and H > 0.65 in pink. The boulder nicknamed “Turtle Rock” is 20 

indicated by the yellow arrow. The white box indicates the region shown in later panels. (B) and 
(C) p-b ratio images (6) calculated from b- and p-band (0.95 µm) images obtained during the 
touchdown rehearsal operation, from two different altitudes (hyb2_onc_20181015_134707_tbf 
and hyb2_onc_20181015_134655_tpf). The dashed boxes in B indicate regions shown in the 
other panels. (D) ONC-W1 image during the spacecraft descent before the touchdown 25 
(hyb2_onc_20190221_222859_w1f). The dark ragged Turtle Rock and an example of bright 
boulders with smooth surfaces (BB) are outlined in yellow and cyan dashed lines, respectively. 
The white dashed box indicates the area shown in panel E. (E) Close-up of the same image, with 
yellow arrows indicating fresh bright spots at corners and a possible broken plane of boulders. 
(F) and (G) ONC-W1 images obtained about 7 and 47 seconds after the touchdown, showing 30 

debris lifted from the surface (hyb2_onc_20190221_222917_w1f and 
hyb2_onc_20190221_222957_w1f). (H) ONC-T ul-band (0.39 µm) image obtained at 76 m 
altitude after the touchdown (hyb2_onc_20190221_223156_tuf). Turtle Rock was lifted clear of 
the surface by the exhaust from Hayabusa2’s RCS thrusters, indicated by the yellow arrows in 
panels F-H.  35 
 
 
Figure 3. Crater statistics on Ryugu. Histograms of the differences in b-x slopes between the 
interior and the surroundings of craters larger than 10 m in diameter, in the latitude ranges (A) 
±50˚, (B) ±10˚, and (C) -50˚ to -10˚ and 10˚ to 50˚. Bar colors are illustrative only. (D) Crater 40 

size-frequency distribution (CSFD) in the latitude range of ±50˚. Black, red and blue squares 
indicate crater frequencies of all craters, red craters (defined as having a difference of b-x slope 
of <0.025) and blue craters (difference of b-x slope of >0.025), respectively. Gray curves 
indicate cratering chronology models fitted to the data for red and blue craters. The dashed line 
indicates the empirical saturation level. Error bars are calculated by ±N1/2/A, where N is the 45 
cumulative number of craters and A is the area of the latitude range of ±50˚. The resulting model 
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ages for the main belt asteroid (MBA) and near-Earth asteroid (NEA) impact rates are indicated 
in red and blue text. 
  
 
Figure 4. A schematic illustration of our suggested evolution of Ryugu. Surface reddening 5 
occurred within a short period after the emplacement of red craters and before the formation of 
blue craters. We interpret the cause of the surface reddening as solar heating while Ryugu came 
temporally closer to the Sun than at present. Between the formation of Ryugu’s spinning top-
shape and the surface reddening we estimate a time of 9 Ma, based on the CSFDs of red craters. 
From the CSFDs of blue craters, the age of the surface reddening is estimated to be 0.3 Ma using 10 

the main-belt collision frequency model and 8 Ma using the NEA collision frequency model. We 
interpret these as upper and lower limits of age estimates of the surface reddening. After the 
surface reddening, the redder materials were disrupted and redistributed by impacts, thermal 
fatigue and mass wasting from the equator to mid latitude regions. A layer of mixed red and blue 
material subsequently formed on Ryugu’s surface. 15 
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– Catastrophic disruption
   of parent body

– Reaccumulation
– Formation of Ryugu

– Spinning top-shaped formation
– Formation of Urashima crater 
   and other redder craters

– Orbital migration to near-Earth orbit
– Orbital excursion near the Sun
– Surface reddening by solar heating
 (or space weathering)

– Mass wasting from 
   equator to mid-latitude
– Formation of bluer craters

– Formation of bluer craters
– Space weathering

~9 Ma (MBA model)

~0.3 Ma (MBA model)
~8 Ma (NEA model)
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