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Abstract

We consider methods that try to find a good policy for a Markov decision process
by choosing one from a given class. The policy is chosen based on its empirical
performance in simulations. We are interested in conditions on the complexity
of the policy class that ensure the success of such simulation based policy search
methods. We show that under bounds on the amount of computation involved
in computing policies, transition dynamics and rewards, uniform convergence of
empirical estimates to true value functions occurs. Previously, such results were
derived by assuming boundedness of pseudodimension and Lipschitz continuity.
These assumptions and ours are both stronger than the usual combinatorial com-
plexity measures. We show, via minimax inequalities, that this is essential: bound-
edness of pseudodimension or fat-shattering dimension alone is not sufficient.

1 Introduction

A Markov Decision Process (MDP) models a situation in which an agent interacts (by performing
actions and receiving rewards) with an environment whose dynamics is Markovian, i.e. the future is
independent of the past given the current state of the environment. Except for toy problems with a
few states, computing an optimal policy for an MDP is usually out of the question. Some relaxations
need to be done if our aim is to develop tractable methods for achieving near optimal performance.
One possibility is to avoid considering all possible policies by restricting oneself to a smaller class
IT of policies. Given a simulator for the environment, we try to pick the best policy fionThe

hope is that if the policy class is appropriately chosen, the best polidyiould not be too much
worse than the true optimal policy.

Use of simulators introduces an additional issue: how is one to be sure that performance of policies
in the clasd1 on a few simulations is indicative of their true performance? This is reminiscent of
the situation in statistical learning. There the aim is to learn a concept and one restricts attention
to a hypotheses class which may or may not contain the “true” concept. The sample complexity
guestion then is: how many labeled examples are needed in order to be confident that error rates on
the training set are close to the true error rates of the hypothesesin our class? The answer turns out to
depend on “complexity” of the hypothesis class as measured by combinatorial quantities associated
with the class such as the VC dimension, the pseudodimension and the fat-shattering dimension.

Some progress [6,7] has already been made to obtain uniform bounds on the difference between
value functions and their empirical estimates, where the value function of a policy is the expected
long term reward starting from a certain state and following the policy thereafter. We continue this
line of work by further investigating what properties of the policy class determine the rate of uniform
convergence of value function estimates. The key difference between the usual statistical learning
setting and ours is that we not only have to consider the complexity of thelélass also of the



classes derived frofii by composing the functions il with themselves and with the state evolution
process implied by the simulator.

Ng and Jordan [7] used a finite pseudodimension condition along with Lipschitz continuity to derive
uniform bounds. The Lipschitz condition was used to control the covering numbers of the iterated
function classes. We provide a uniform convergence result (Theorem 1) under the assumption that
policies are parameterized by a finite number of parameters and that the computations involved
in computing the policy, the single-step simulation function and the reward function all require a
bounded number of arithmetic operations on real numbers. The number of samples required grows
linearly with the dimension of the parameter space but is independent of the dimension of the state
space. Ng and Jordan’s and our assumptions are both stronger than just assuming finiteness of some
combinatorial dimension. We show that this is unavoidable by constructing two examples where the
fat-shattering dimension and the pseudodimension respectively are bounded, yet no simulation based
method succeeds in estimating the true values of policies well. This happens because iteratively
composing a function class with itself can quickly destroy finiteness of combinatorial dimensions.
Additional assumptions are therefore needed to ensure that these iterates continue to have bounded
combinatorial dimensions.

Although we restrict ourselves to MDPs for ease of exposition, the analysis in this paper carries over
easily to the case of partially obervable MDPs (POMDPS), provided the simulator also simulates the
conditional distribution of observations given state using a bounded amount of computation. The
plan of the rest of the paper is as follows. We set up notation and terminology in Section 2. In
the same section, we describe the model of computation over reals that we use. Section 3 proves
Theorem 1, which gives a sample complexity bound for achieving a desired level of performance
within the policy class. In Section 4, we give two examples of policy classes whose combinatorial
dimensions are bounded. Nevertheless, we can prove strong minimax lower bounds implying that
no method of choosing a policy based on empirical estimates can do well for these examples.

2 Preliminaries

We define an MDPM as a tuplg(S, D, A, P(:|s,a),r,v) whereS is the state spacd) the initial

state distribution A the action spaceP(s’|s, a) gives the probability of moving to staté upon
taking actiona in states, r is a function mapping states to distributions over rewards (which are as-
sumed to lie in a bounded interval R]), andy € (0, 1) is a factor that discounts future rewards. In
this paper, we assume that the state sgghand the action spac are finite dimensional Euclidean
spaces of dimensionalitys andd 4 respectively.

A (randomized) policyr is a mapping fromS to distributions overd. Each policyr induces a
natural Markov chain on the state space of the MDP, namely the one obtained by starting in a start
statesy sampled fromD ands;1 sampled according t&(:|s;, a;) with a; drawn fromxr(s;) for

t > 0. Letr,(m) be the expected reward at time stejm this Markov chain, i.e.r;(w) = E[p;]
wherep, is drawn from the distribution(s;). Note that the expectation is over the randomness in
the choice of the initial state, the state transitions, and the randomized policy and reward outcomes.
Define the valud’,(x) of the policy by

Vm(n) = thrt(ﬂ') .
t=0

We omit the subscripM in the value function if the MDP in question is unambiguously identified.
For a clasdlI of policies, define

opt(M,II) = sup V(7).
mell

Theregretof a policyn’ relative to an MDPM and a policy clas#l is defined as
RegMﬂ(w') = opt(M, 1) — V(7).

We use a degree bounded version of the Blum-Shub-Smale [3] model of computation over reals. At
each time step, we can perform one of the four arithmetic operations x, / or can branch based

on a comparison (say). While Blum et al. allow an arbitrary fixed rational map to be computed in
one time step, we further require that the degree of any of the polynomials appearing at computation
nodes be at most 1.



Definition 1. Letk, 1, m, T be positive integersf a function fromR” to probability distributions
overR! and = a probability distribution oveiR™. The functionf is (£, 7)-computable if there
exists a degree bounded finite dimensional machnever R with input spaceR*+t™ and output
spaceR! such that the following hold.

1. Foreveryr € R¥ and¢ € R™, the machine halts with halting tin®(x, £) < 7.

2. For everyr € R, if ¢ € R™ is distributed according t& the input-output magy(z, £)
is distributed asf (z).

Informally, the definition states that given access to an oracle which generates samplgs ¥wem
can generate samples froffi) by doing a bounded amount of computation. For precise definitions
of the input-output map and halting time, we refer the reader to [3, Chap. 2].

In Section 3, we assume that the policy cléks parameterized by a finite dimensional parameter
6 € RZ In this settingr(s;6), P(-|s,a) andr(s) are distributions oveR?4, R and [0, R]
respectively. The following assumption states that all these maps are computablemwiitimie
steps in our model of computation.

Assumption A. There exists a probability distributioR over R™ and a positive integer such
that w(s;0), P(-|s,a) andr(s) are (E,7)-computable. LeM,, Mp and M, respectively be the
machines that compute them.

This assumption will be satisfied if we have three “programs” that make a call to a random number
generator for distributio®&, do a fixed number of floating-point operations and simulate the policies

in our class, the state-transition dynamics and the rewards respectively. The following two examples
illustrate this for the state-transition dynamics.

¢ Linear Dynamical System with Additive Nofse

Suppose? andQ areds x dg anddg x d 4 matrices and the system dynamics is given by
St41 = Psi + Qay + & (1)

where; are i.i.d. from some distributioB. Since computing (1) taked? +dsda +ds)
operationspP(:|s, a) is (£, 7)-computable forr = O(ds(ds + da)).

e Discrete States and Actions
SupposeS = {1,2,...,ns} andA = {1,2,...,n4}. For some fixecs,a, P(:|s,a) is
described byn numbersps , = (p1,...:0ng)s 2 ;0i = 1. Let P, = Elepi. For
&€ (0,1], setf(¢) = min{k : P, > £}. Thus, if¢ has uniform distribution o0, 1], then
f(&) = k with probabilityp,. Since theP;’s are non-decreasing(¢) can be computed
in log ns steps using binary search. But this was for a fixed pair. Finding whichp; ,
to use, further takekbg(nsna) steps using binary search. So=fdenotes the uniform
distribution on(0, 1] thenP(:|s, a) is (Z, 7)-computable forr = O(logng + logna).

For a smalle, let H be thee horizon time, i.e. ignoring rewards beyond tinie does not affect
the value of any policy by more than To obtain sample rewards, given initial stateand policy

w9 = 7(-;6), we first compute the trajectony, . .., sy sampled from the Markov chain induced
by 7. This requiredd “calls” each toM, andMp. A further H + 1 calls toM,. are then required
to generate the rewargg throughpy. These calls require a total 8H + 1 samples fronE. The
empirical estimates are computed as follows. Supposd, fori < n, (s(()), ;) are i.i.d. samples
generated from the joint distributiaR x Z37+!, Define the empirical estimate of the value of the

policy 7 by
Vi () ZZVPt s9,0,6) .

i=1 t=0
We omit the subscript1 in V when it is clear from the context. Define ampproximate maximizer
of V to be a policyr’ such that

VH (") > sup Vi (n) — €.
mell

!In this case, the realizable dynamics (mapping from state to next state for a given policy class) is not
uniformly Lipschitz if policies allow unbounded actions. So previously known bounds [7] are not applicable
even in this simple setting.



Finally, we mention the definitions of three standard comtioirial dimensions. Left’ be some
space and consider clasgesnd.F of {—1,+1} and real valued functions ofi, respectively. Fix

a finite setX = {z1,...,z,} C X. We say thaty shattersX if for all bit vectorsb € {0,1}"
there existg € G such that for alk, b; = 0 = g(z;) = —1,b; = 1 = g(x;) = +1. We say that
F shattersX if there exists® € R™ such that, for all bit vectors € {0,1}", there existsf € F
such that for al, b; = 0 = f(x;) < 7, b, = 1 = f(a;) > ;. We say thatF e-shattersX if
these existg’ € R™ such that, for all bit vectors € {0, 1}, there existsf € F such that for al,
bi=0= f(z;) <1i—¢€b =1= f(x;) > r; + ¢. We then have the following definitions,

VCdim(G) = max{|X| : G shattersX } ,

Pdim(F) = max{|X| : F shattersX } ,
fat £ (€) = max{|X| : F e-shattersX } .

3 Regret Bound for Parametric Policy Classes Computable in Bounded
Time

Theorem 1. Fix an MDP M, a policy clasdl = {s — 7(s;0) : § € R%}, and ane > 0. Suppose

Assumption A holds. Then
-0 R?Hdr o R
n
(T—2 B e(i—)

ensures thak [RegMﬂ(wn)] < 3¢ + €, wherer,, is ane’-approximate maximizer df and H =
logy /., (2R/(e(1 —v))) is thee/2 horizon time.

Proof. The proof consists of three steps: (1) Assumption A is used to get bounds on pseudodimen-
sion; (2) The pseudodimension bound is used to prove uniform convergence of empirical estimates
to true value functions; (3) Uniform convergence and the definitiod-approximate maximizer

gives the bound on expected regret.

STEP1. Giveninitial statesy, parametef and random numbets throughés 1, we first compute
the trajectory as follows. Recall thét, refers to the input-output map of a machivie

st = Pup(se-1, P, (0,5,826-1),82t), 1 <t < H . (2
The rewards are then computed by
pr = P, (51, Eamrter1), 0 <t < H. (3)
The H-step discounted reward sum is computed as
H
> Ao =po+v(p1 + 2+ (pr—1 +7pm) ) - 4)
t=0

Define the function clask = {(s0,£) — 1’ v pi(s0,6,€) : 6 € R?}, where we have explicitly

shown the dependence@fon sg, # and¢. Let us count the number of arithmetic operations needed

to compute a function in this class. Using Assumption A, we see that steps (2) and (3) require
no more thar27H andr(H + 1) operations respectively. Step (4) requifésnultiplications and

H additions. This gives a total &frH + 7(H + 1) + 2H < 67H operations. Goldberg and
Jerrum [4] showed that the VC dimension of a function class can be bounded in terms of an upper
bound on the number of arithmetic operations it takes to compute the functions in the class. Since
the pseudodimension & can be written as

Pdim(R) = VCdim{(so, £, ¢) — sign(f(s0,&) —¢): f € R,c € R},
we get the following bound by [2, Thm. 8.4],
Pdim(R) < 4d(67H + 3) . (5)

STEP2. LetVEH (1) = Zf’:o v'r¢(m). For the choice off stated in the theorem, we have forall
|[VH(7) — V(n)| < ¢/2. Therefore,

P'@rell: |[VE(@) —V(n)| >e) < P"@nell: [VHE(m) —VE@)| >¢/2). ()



Functions inR are positive and bounded above By = R/(1 — «). There are well-known bounds

for deviations of empirical estimates from true expectations for bounded function classes in terms
of the pseudodimension of the class (see, for example, Theorems 3 and 5 in [5]; also see Pollard’s
book [8]). Using a weak form of these results, we get

326R’) 2Pdim(R) oA
€

Pr(3rell: [VH(x) = VH(x) > € §8(

In order to ensure tha®"(3r e 11 : [V () — VI ()| > €/2) < 4, we need

64 R\ 2Pdim(R)
(%)

.2 2
e ¢ n/256R < 5,

€

Using the bound (5) oRdim(R), we get that

pr (sug \VH(W) - V(w)‘ > e) <5, @)
TE
provided
256 R? 8 64eR

SteP 3. We now show that (7) implieB Reg 11 (7,) < R0/(1 — ) + (2¢ + ¢'). The theorem
them immediately follows by setting= (1 — v)e/R.

Suppose that for at e TI, |V (1) — V()| < e. This implies that for alic € I1, V() < V" (7)+
e. Sincer,, is ane’-approximate maximizer df, we have for alir € I, VH (1) < V() + €.
Thus, for allr € II, V(x) < V¥ (n,) + € + €. Taking the supremum over € I and using the
fact thatV ¥ (m,,) < V(m,) + €, we getsup, . V(7) < V(m,) + 2¢ + ¢, which is equivalent to
Regp n(mn) < 2¢ + €. Thus, if (7) holds then we have

P" (Regpqi(mn) > 2e+€) < 6.
Denoting the even{Reg  1(mn) > 2¢ + €'} by E, we have

ERegM,H(wn) =F RegMﬂ(wn)lE +EReg g n(mn)1(-p)
<R§/(1—7)+ (2e+€).
where we used the fact that regret is bounded above iy — ). O

4 Two Policy Classes Having Bounded Combinatorial Dimensian

We will describe two policy classes for which we can prove that there are strong limitations on the
performance of any method (of choosing a policy out of a policy class) that has access only to em-
pirically observed rewards. Somewhat surprisingly, one can show this for policy classes which are
“simple” in the sense that standard combinatorial dimensions of these classes are bounded. This
shows that sufficient conditions for the success of simulation based policy search (such as the as-
sumptionsin [7] and in our Theorem 1) have to be necessarily stronger than boundedness of standard
combinatorial dimensions.

The first example is a policy clagg for whichfat £, (¢) < oo for all ¢ > 0. The second example is

a class?; for which Pdim(F;) = 1. Since finiteness of pseudodimension is a stronger condition,
the second example makes our point more forcefully than the first one. However, the first example
is considerably less contrived than the second one.

Example 1

Let Mp = (S,D, A, P(:|s,a),r,v) be an MDP where& = [—1,+1], D = some distribution on
[-1,4+1], A =[-2,+2],

P(s'|s,a) = 1if s’ = max(—1, min(s + a, 1))), 0 otherwise,
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Figure 1: Plot of the functiorf with T = {0.2,0.3,0.6,0.8}. Note that, forz > 0, fr(z) is 0 iff
x € T. Also, fr(x) satisfies the Lipschitz condition (with constant 1) everywhere except at

r = deterministic reward that mapdo s, andy = some fixed discount factor if®, 1).

For a functionf : [-1,+1] — [-1,+1], let 7; denote the (deterministic) policy which takes
action f(s) — s in states. Given a classF of functions, we define an associated policy class
Ir ={np: feF}

We now describe a specific function clags. Fix e; > 0. LetT be an arbitrary finite subset of
(0,1). Letd(z) = (1 — |z|)+ be the “triangular spike” function. Let

-1 —1<xz<0
fr() =" r=0
€ T—Y €
max (00 (37 ) = ) 0<a <1

There is a spike at each pointTand the tips of the spikes just touch theaxis (see Figure 1).
Since—1 and0 are fixed points o (z), it is straightforward to verify that

-1 -1<z<0
fa@) =0 v=0 . (®)
1(meT)_1 0<z<1

Also, fi = f2 foralln > 2. DefineF; = {fr : T C (e1,1),|T| < oo}. By construction,
functions inF; have bounded total variation and &, (¢) is O(1/¢) (see, for example, [2, Chap.
11]). Moreover fr(z) satisfies the Lipschitz condition everywhere (with consfart 1) except at

0. This is striking in the sense that the loss of the Lipschitz property at a single point allows us to
prove the following lower bound.

Theorem 2. Letg, range over functions fror§™ to ;. Let D range over probability distributions
onS. Then,

. B
1grif Sllljp E(st,... sn)y~Dn RegMDﬂf1 (Tgn(st,nsm)) | = T — 2¢€1 .

This says that for any method that maps random initial states ., s™ to a policy inIl,, there

is an initial state distribution such that the expected regret of the selected policy is at’lg@st-

v) — 2¢;. This is in sharp contrast to Theorem 1 where we could reduce, by using sufficiently
many samples, the expected regret down to any positive number given the ability to maximize the

empirical estimate¥’.

Let us see how maximization of empirical estimates behaves in this case. fSipc&) < oo

for all ¢ > 0, the law of large numbers holds uniformly [1, Thm. 2.5] over the class The
transitions, policies and rewards here are all deterministic. The reward function is just the identity.
This means that the 1-step reward function family is jist So the estimates of 1-step rewards are



still uniformly concentrated around their expected valugmce the contribution of rewards from
time step 2 onwards can be no more thdr-~3+... = v2/(1—+), we can claim that the expected
regret of thel/ maximizerr,, behaves like

2

Y
[t o] < 1
wheree,, — 0. Thus the bound in Theorem 2 above is essentially tight.

+en

Before we prove Theorem 2, we need the following lemma whose proof is given in the appendix
accompanying the paper.

Lemma 1. Fix an interval(a,b) and let7 be the set of all its finite subsets. Lgt range over
functions from(a, b)) to 7. Let D range over probability distributions ofx, b). Then,

inf sup (;ZI;EX~D1<X6T> - ]E<X1,...,Xn>~D"E<X~D>1<xegn<x1,...,xn>>> >1.

Proof of Theorem 2We will prove the inequality whe® ranges over distributions df, 1) which,
obviously, implies the theorem.

Since, for allf € 7, andn > 2, f* = f2, we have
Opt(MDa H]:1) - E(sl,...,s")wD"VMD (Wgn(sl,..,,s"))

2
= sup Esup [s +vf(s) + 17—f2(5)}
feF -7

sy 8™ )~ DT IESND[S + '7971(517 ) Sn)(s) +

= sup Esop [7]“(8) + 17_—7f2(3)]
_ 2
=B anyen B 56 4 (552

For all f1, fo, [Ef1 — Efa] §_1E|f1 — f2| < e1. Therefore, we can get rid of the first terms in both
sub-expressions above without changing the value by more2than
2

2
Y 2 2 1 n\2
> sup Eswp | ——f“(s)| —E(st... snyopn |Es~ n(s,...,8 s
_fejgl D[l—yf()] (s1,..,8")~D [ D[l—yg( )()]]

— 2v€;

2
:17 <Sup Esnp [f2(5) + 1] = E(1,.sm)upn Esnnlgn(s’s ..., 8™)%(s) + 1])
- feF
- 2’761
From (8), we know thatf7(z) + 1 restricted tox € (0,1) is the same as$(,cr). Therefore,
restrictingD to probability measures off), 1) and applying Lemma 1, we get
2

1—7

i;lfSl[l)p (opt(./\/lD,H]:l) - ]E(Slj.”’sn),\,DnVMD(7Tgn(51,.”75n))) > — 2ve1 .
To finish the proof, we note that < 1 and, by definition,

RegMD7H}'1 (Wgn(sl,,,,,s”)) = Opt(MD’ Hf1) —Vmp (Wgn(sl,....,s")) .

Example 2

We use the MDP of the previous section with a different policy class which we now describe. For
areal numbet, y € (0, 1) with binary expansions (choose the terminating representation for ratio-
nals)0.b1b2bs . .. and0.cicacs . . ., define

mix(z,y) = 0.byc1bacy . . . stretch(x) = 0.b1002003 . ..
even(a:) = O.b2b4b6 cee odd(x) = O.b1b3b5 cee



Some obvious identities an@ix(x,y) = stretch(z) + stretch(y)/2, odd(mix(x,y)) = = and
even(mix(z,y)) = y. Now fix e > 0. Since, finite subsets ¢, 1) and irrationals in0, €2) have
the same cardinality, there exists a bijectiowhich maps every finite subs&tof (0,1) to some
irrational h(T") € (0, e2). For a finite subsef’ of (0, 1), define

0 r=_1

1(0dd(—1)€h*1(even(—m)) —-1l<xz<0
fr(z)=140 rz=0

— mix(z, h(T)) 0<z<l1

1 =1

It is easy to check that with this definitiorf? (z) = 1(,er) for z € (0,1). Finally, let 7, =
{fr : T C (0,1),|T| < oo}. To calculate the pseudodimension of this class, note that using the
identity nnx(x y) = stretch(x) + stretch(y)/2, every functionfr in the class can be written as

fr = fo + fr wheref, is a fixed function (does not depend ®hand f; is given by

0 -1<2<0
fr(z) = ¢ —stretch(h(T))/2 0<x<1
0 z=1

LetH = {fr : T C (0,1),|T| < oc}. SincePdim(H + fo) = Pdim(H) for any classH and a
fixed function fo, we havePdim(F;) = Pdim(H). As each functioryr(z) is constant or{0, 1)
and zero elsewhere, we cannot shatter even two points @sifdus,Pdim(H) = 1.
Theorem 3. Letg, range over functions fror§™ to F». Let D range over probability distributions
onS. Then,

2

~y
1;1f5up E(s1,....sny~Dn RegMD_’HFI(71'%(517...,Sn)) > =

— €2 .

Sketch. Let us only check that the properties 1 that allowed us to proceed with the proof of
Theorem 2 are also satisfied #. First, for all f € 5 andn > 2, f* = f2. Second, for all
fi,f2 € Foandx € [—1,+1], | fi(z) — fo(x)| < e2/2. This is becaus¢, and fr, can differ
only forx € (0,1). For such anz, |fr,(z) — fr,(z)] = |mix(z, h(Tl) — mix(z, h(12))| =

| stretch(h(T1)) — stretch(h(T5))|/2 < €z/2. Third, the restriction of 7 to (0, 1) is L,er).
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