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Abstract

We consider methods that try to find a good policy for a Markov decision process
by choosing one from a given class. The policy is chosen based on its empirical
performance in simulations. We are interested in conditions on the complexity
of the policy class that ensure the success of such simulation based policy search
methods. We show that under bounds on the amount of computation involved
in computing policies, transition dynamics and rewards, uniform convergence of
empirical estimates to true value functions occurs. Previously, such results were
derived by assuming boundedness of pseudodimension and Lipschitz continuity.
These assumptions and ours are both stronger than the usual combinatorial com-
plexity measures. We show, via minimax inequalities, that this is essential: bound-
edness of pseudodimension or fat-shattering dimension alone is not sufficient.

1 Introduction

A Markov Decision Process (MDP) models a situation in which an agent interacts (by performing
actions and receiving rewards) with an environment whose dynamics is Markovian, i.e. the future is
independent of the past given the current state of the environment. Except for toy problems with a
few states, computing an optimal policy for an MDP is usually out of the question. Some relaxations
need to be done if our aim is to develop tractable methods for achieving near optimal performance.
One possibility is to avoid considering all possible policies by restricting oneself to a smaller class
Π of policies. Given a simulator for the environment, we try to pick the best policy fromΠ. The
hope is that if the policy class is appropriately chosen, the best policy inΠ would not be too much
worse than the true optimal policy.

Use of simulators introduces an additional issue: how is one to be sure that performance of policies
in the classΠ on a few simulations is indicative of their true performance? This is reminiscent of
the situation in statistical learning. There the aim is to learn a concept and one restricts attention
to a hypotheses class which may or may not contain the “true” concept. The sample complexity
question then is: how many labeled examples are needed in order to be confident that error rates on
the training set are close to the true error rates of the hypotheses in our class? The answer turns out to
depend on “complexity” of the hypothesis class as measured by combinatorial quantities associated
with the class such as the VC dimension, the pseudodimension and the fat-shattering dimension.

Some progress [6,7] has already been made to obtain uniform bounds on the difference between
value functions and their empirical estimates, where the value function of a policy is the expected
long term reward starting from a certain state and following the policy thereafter. We continue this
line of work by further investigating what properties of the policy class determine the rate of uniform
convergence of value function estimates. The key difference between the usual statistical learning
setting and ours is that we not only have to consider the complexity of the classΠ but also of the



classes derived fromΠ by composing the functions inΠ with themselves and with the state evolution
process implied by the simulator.

Ng and Jordan [7] used a finite pseudodimension condition along with Lipschitz continuity to derive
uniform bounds. The Lipschitz condition was used to control the covering numbers of the iterated
function classes. We provide a uniform convergence result (Theorem 1) under the assumption that
policies are parameterized by a finite number of parameters and that the computations involved
in computing the policy, the single-step simulation function and the reward function all require a
bounded number of arithmetic operations on real numbers. The number of samples required grows
linearly with the dimension of the parameter space but is independent of the dimension of the state
space. Ng and Jordan’s and our assumptions are both stronger than just assuming finiteness of some
combinatorial dimension. We show that this is unavoidable by constructing two examples where the
fat-shattering dimension and the pseudodimension respectively are bounded, yet no simulation based
method succeeds in estimating the true values of policies well. This happens because iteratively
composing a function class with itself can quickly destroy finiteness of combinatorial dimensions.
Additional assumptions are therefore needed to ensure that these iterates continue to have bounded
combinatorial dimensions.

Although we restrict ourselves to MDPs for ease of exposition, the analysis in this paper carries over
easily to the case of partially obervable MDPs (POMDPs), provided the simulator also simulates the
conditional distribution of observations given state using a bounded amount of computation. The
plan of the rest of the paper is as follows. We set up notation and terminology in Section 2. In
the same section, we describe the model of computation over reals that we use. Section 3 proves
Theorem 1, which gives a sample complexity bound for achieving a desired level of performance
within the policy class. In Section 4, we give two examples of policy classes whose combinatorial
dimensions are bounded. Nevertheless, we can prove strong minimax lower bounds implying that
no method of choosing a policy based on empirical estimates can do well for these examples.

2 Preliminaries

We define an MDPM as a tuple(S, D, A, P (·|s, a), r, γ) whereS is the state space,D the initial
state distribution,A the action space,P (s′|s, a) gives the probability of moving to states′ upon
taking actiona in states, r is a function mapping states to distributions over rewards (which are as-
sumed to lie in a bounded interval[0, R]), andγ ∈ (0, 1) is a factor that discounts future rewards. In
this paper, we assume that the state spaceS and the action spaceA are finite dimensional Euclidean
spaces of dimensionalitydS anddA respectively.

A (randomized) policyπ is a mapping fromS to distributions overA. Each policyπ induces a
natural Markov chain on the state space of the MDP, namely the one obtained by starting in a start
states0 sampled fromD andst+1 sampled according toP (·|st, at) with at drawn fromπ(st) for
t ≥ 0. Let rt(π) be the expected reward at time stept in this Markov chain, i.e.rt(π) = E[ρt]
whereρt is drawn from the distributionr(st). Note that the expectation is over the randomness in
the choice of the initial state, the state transitions, and the randomized policy and reward outcomes.
Define the valueVM(π) of the policy by

VM(π) =

∞
∑

t=0

γtrt(π) .

We omit the subscriptM in the value function if the MDP in question is unambiguously identified.
For a classΠ of policies, define

opt(M, Π) = sup
π∈Π

VM(π) .

Theregretof a policyπ′ relative to an MDPM and a policy classΠ is defined as

RegM,Π(π′) = opt(M, Π) − VM(π′) .

We use a degree bounded version of the Blum-Shub-Smale [3] model of computation over reals. At
each time step, we can perform one of the four arithmetic operations+,−,×, / or can branch based
on a comparison (say<). While Blum et al. allow an arbitrary fixed rational map to be computed in
one time step, we further require that the degree of any of the polynomials appearing at computation
nodes be at most 1.



Definition 1. Let k, l, m, τ be positive integers,f a function fromR
k to probability distributions

overR
l andΞ a probability distribution overRm. The functionf is (Ξ, τ)-computable if there

exists a degree bounded finite dimensional machineM overR with input spaceRk+m and output
spaceRl such that the following hold.

1. For everyx ∈ R
k andξ ∈ R

m, the machine halts with halting timeTM(x, ξ) ≤ τ .

2. For everyx ∈ R
k, if ξ ∈ R

m is distributed according toΞ the input-output mapΦM(x, ξ)
is distributed asf(x).

Informally, the definition states that given access to an oracle which generates samples fromΞ, we
can generate samples fromf(x) by doing a bounded amount of computation. For precise definitions
of the input-output map and halting time, we refer the reader to [3, Chap. 2].

In Section 3, we assume that the policy classΠ is parameterized by a finite dimensional parameter
θ ∈ R

d. In this settingπ(s; θ), P (·|s, a) and r(s) are distributions overRdA , R
dS and [0, R]

respectively. The following assumption states that all these maps are computable withinτ time
steps in our model of computation.
Assumption A. There exists a probability distributionΞ over R

m and a positive integerτ such
that π(s; θ), P (·|s, a) and r(s) are (Ξ, τ)-computable. LetMπ, MP and Mr respectively be the
machines that compute them.

This assumption will be satisfied if we have three “programs” that make a call to a random number
generator for distributionΞ, do a fixed number of floating-point operations and simulate the policies
in our class, the state-transition dynamics and the rewards respectively. The following two examples
illustrate this for the state-transition dynamics.

• Linear Dynamical System with Additive Noise1

SupposeP andQ aredS × dS anddS × dA matrices and the system dynamics is given by
st+1 = Pst + Qat + ξt , (1)

whereξt are i.i.d. from some distributionΞ. Since computing (1) takes2(d2
S +dSdA +dS)

operations,P (·|s, a) is (Ξ, τ)-computable forτ = O(dS(dS + dA)).

• Discrete States and Actions
SupposeS = {1, 2, . . . , nS} andA = {1, 2, . . . , nA}. For some fixeds, a, P (·|s, a) is
described byn numbers~ps,a = (p1, . . . , pnS

),
∑

i pi = 1. Let Pk =
∑k

i=1 pi. For
ξ ∈ (0, 1], setf(ξ) = min{k : Pk ≥ ξ}. Thus, ifξ has uniform distribution on(0, 1], then
f(ξ) = k with probabilitypk. Since thePk ’s are non-decreasing,f(ξ) can be computed
in log nS steps using binary search. But this was for a fixeds, a pair. Finding which~ps,a

to use, further takeslog(nSnA) steps using binary search. So ifΞ denotes the uniform
distribution on(0, 1] thenP (·|s, a) is (Ξ, τ)-computable forτ = O(log nS + log nA).

For a smallε, let H be theε horizon time, i.e. ignoring rewards beyond timeH does not affect
the value of any policy by more thanε. To obtain sample rewards, given initial states0 and policy
πθ = π(·; θ), we first compute the trajectorys0, . . . , sH sampled from the Markov chain induced
by πθ. This requiresH “calls” each toMπ andMP . A furtherH + 1 calls toMr are then required
to generate the rewardsρ0 throughρH . These calls require a total of3H + 1 samples fromΞ. The
empirical estimates are computed as follows. Suppose, for1 ≤ i ≤ n, (s

(i)
0 , ~ξi) are i.i.d. samples

generated from the joint distributionD × Ξ3H+1. Define the empirical estimate of the value of the
policy π by

V̂ H
M(πθ) =

1

n

n
∑

i=1

H
∑

t=0

γtρt(s
(i)
0 , θ, ~ξi) .

We omit the subscriptM in V̂ when it is clear from the context. Define anε-approximate maximizer
of V̂ to be a policyπ′ such that

V̂ H
M(π′) ≥ sup

π∈Π
V̂ H
M(π) − ε .

1In this case, the realizable dynamics (mapping from state to next state for a given policy class) is not
uniformly Lipschitz if policies allow unbounded actions. So previously known bounds [7] are not applicable
even in this simple setting.



Finally, we mention the definitions of three standard combinatorial dimensions. LetX be some
space and consider classesG andF of {−1, +1} and real valued functions onX , respectively. Fix
a finite setX = {x1, . . . , xn} ⊆ X . We say thatG shattersX if for all bit vectors~b ∈ {0, 1}n

there existsg ∈ G such that for alli, bi = 0 ⇒ g(xi) = −1, bi = 1 ⇒ g(xi) = +1. We say that
F shattersX if there exists~r ∈ R

n such that, for all bit vectors~b ∈ {0, 1}n, there existsf ∈ F
such that for alli, bi = 0 ⇒ f(xi) < ri, bi = 1 ⇒ f(xi) ≥ ri. We say thatF ε-shattersX if
these exists~r ∈ R

n such that, for all bit vectors~b ∈ {0, 1}n, there existsf ∈ F such that for alli,
bi = 0 ⇒ f(xi) ≤ ri − ε, bi = 1 ⇒ f(xi) ≥ ri + ε. We then have the following definitions,

VCdim(G) = max{|X | : G shattersX} ,

Pdim(F) = max{|X | : F shattersX} ,

fatF (ε) = max{|X | : F ε-shattersX} .

3 Regret Bound for Parametric Policy Classes Computable in Bounded
Time

Theorem 1. Fix an MDPM, a policy classΠ = {s 7→ π(s; θ) : θ ∈ R
d}, and anε > 0. Suppose

Assumption A holds. Then

n > O

(

R2Hdτ

(1 − γ)2ε2
log

R

ε(1 − γ)

)

ensures thatE
[

RegM,Π(πn)
]

≤ 3ε + ε′, whereπn is anε′-approximate maximizer of̂V andH =
log1/γ(2R/(ε(1 − γ))) is theε/2 horizon time.

Proof. The proof consists of three steps: (1) Assumption A is used to get bounds on pseudodimen-
sion; (2) The pseudodimension bound is used to prove uniform convergence of empirical estimates
to true value functions; (3) Uniform convergence and the definition ofε′-approximate maximizer
gives the bound on expected regret.

STEP1. Given initial states0, parameterθ and random numbersξ1 throughξ3H+1, we first compute
the trajectory as follows. Recall thatΦM refers to the input-output map of a machineM.

st = ΦMP
(st−1, ΦMπ

(θ, s, ξ2t−1), ξ2t), 1 ≤ t ≤ H . (2)

The rewards are then computed by

ρt = ΦMr
(st, ξ2H+t+1), 0 ≤ t ≤ H . (3)

TheH-step discounted reward sum is computed as

H
∑

t=0

γtρt = ρ0 + γ(ρ1 + γ(ρ2 + . . . (pH−1 + γρH) . . .)) . (4)

Define the function classR = {(s0, ~ξ) 7→
∑H

t=0 γtρt(s0, θ, ~ξ) : θ ∈ R
d}, where we have explicitly

shown the dependence ofρt ons0, θ and~ξ. Let us count the number of arithmetic operations needed
to compute a function in this class. Using Assumption A, we see that steps (2) and (3) require
no more than2τH andτ(H + 1) operations respectively. Step (4) requiresH multiplications and
H additions. This gives a total of2τH + τ(H + 1) + 2H ≤ 6τH operations. Goldberg and
Jerrum [4] showed that the VC dimension of a function class can be bounded in terms of an upper
bound on the number of arithmetic operations it takes to compute the functions in the class. Since
the pseudodimension ofR can be written as

Pdim(R) = VCdim{(s0, ~ξ, c) 7→ sign(f(s0, ~ξ) − c) : f ∈ R, c ∈ R} ,

we get the following bound by [2, Thm. 8.4],

Pdim(R) ≤ 4d(6τH + 3) . (5)

STEP 2. LetV H(π) =
∑H

t=0 γtrt(π). For the choice ofH stated in the theorem, we have for allπ,
|V H(π) − V (π)| ≤ ε/2. Therefore,

Pn(∃π ∈ Π : |V̂ H(π) − V (π)| > ε) ≤ Pn(∃π ∈ Π : |V̂ H(π) − V H(π)| > ε/2) . (6)



Functions inR are positive and bounded above byR′ = R/(1 − γ). There are well-known bounds
for deviations of empirical estimates from true expectations for bounded function classes in terms
of the pseudodimension of the class (see, for example, Theorems 3 and 5 in [5]; also see Pollard’s
book [8]). Using a weak form of these results, we get

Pn(∃π ∈ Π : |V̂ H(π) − V H(π)| > ε) ≤ 8

(

32eR′

ε

)2Pdim(R)

e−ε2n/64R′2

.

In order to ensure thatPn(∃π ∈ Π : |V̂ H(π) − V H(π)| > ε/2) < δ, we need

8

(

64eR′

ε

)2Pdim(R)

e−ε2n/256R′2

< δ ,

Using the bound (5) onPdim(R), we get that

Pn

(

sup
π∈Π

∣

∣

∣
V̂ H(π) − V (π)

∣

∣

∣
> ε

)

< δ , (7)

provided

n >
256R2

(1 − γ)2ε2

(

log

(

8

δ

)

+ 8d(6τH + 3) log

(

64eR

(1 − γ)ε

))

.

STEP 3. We now show that (7) impliesE RegM,Π(πn) ≤ Rδ/(1 − γ) + (2ε + ε′). The theorem
them immediately follows by settingδ = (1 − γ)ε/R.

Suppose that for allπ ∈ Π, |V̂ H(π)−V (π)| ≤ ε. This implies that for allπ ∈ Π, V (π) ≤ V̂ H(π)+

ε. Sinceπn is anε′-approximate maximizer of̂V , we have for allπ ∈ Π, V̂ H(π) ≤ V̂ H(πn) + ε′.
Thus, for allπ ∈ Π, V (π) ≤ V̂ H(πn) + ε + ε′. Taking the supremum overπ ∈ Π and using the
fact thatV̂ H(πn) ≤ V (πn) + ε, we getsupπ∈Π V (π) ≤ V (πn) + 2ε + ε′, which is equivalent to
RegM,Π(πn) ≤ 2ε + ε′. Thus, if (7) holds then we have

Pn
(

RegM,Π(πn) > 2ε + ε′
)

< δ .

Denoting the event{RegM,Π(πn) > 2ε + ε′} by E, we have

E RegM,Π(πn) = E RegM,Π(πn)1E + E RegM,Π(πn)1(¬E)

≤ Rδ/(1 − γ) + (2ε + ε′) .

where we used the fact that regret is bounded above byR/(1 − γ).

4 Two Policy Classes Having Bounded Combinatorial Dimensions

We will describe two policy classes for which we can prove that there are strong limitations on the
performance of any method (of choosing a policy out of a policy class) that has access only to em-
pirically observed rewards. Somewhat surprisingly, one can show this for policy classes which are
“simple” in the sense that standard combinatorial dimensions of these classes are bounded. This
shows that sufficient conditions for the success of simulation based policy search (such as the as-
sumptions in [7] and in our Theorem 1) have to be necessarily stronger than boundedness of standard
combinatorial dimensions.

The first example is a policy classF1 for which fatF1
(ε) < ∞ for all ε > 0. The second example is

a classF2 for which Pdim(F2) = 1. Since finiteness of pseudodimension is a stronger condition,
the second example makes our point more forcefully than the first one. However, the first example
is considerably less contrived than the second one.

Example 1

Let MD = (S, D, A, P (·|s, a), r, γ) be an MDP whereS = [−1, +1], D = some distribution on
[−1, +1], A = [−2, +2],

P (s′|s, a) = 1 if s′ = max(−1, min(s + a, 1))), 0 otherwise,



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

f T
(x

)
x

Figure 1: Plot of the functionfT with T = {0.2, 0.3, 0.6, 0.8}. Note that, forx > 0, fT (x) is 0 iff
x ∈ T . Also,fT (x) satisfies the Lipschitz condition (with constant 1) everywhere except at0.

r = deterministic reward that mapss to s, andγ = some fixed discount factor in(0, 1).

For a functionf : [−1, +1] 7→ [−1, +1], let πf denote the (deterministic) policy which takes
action f(s) − s in states. Given a classF of functions, we define an associated policy class
ΠF = {πf : f ∈ F}.

We now describe a specific function classF1. Fix ε1 > 0. Let T be an arbitrary finite subset of
(0, 1). Let δ(x) = (1 − |x|)+ be the “triangular spike” function. Let

fT (x) =















−1 −1 ≤ x < 0

0 x = 0

max
y∈T

(

ε1
|T |δ

(

x−y
ε1/|T |

)

− ε1
|T |

)

0 < x ≤ 1
.

There is a spike at each point inT and the tips of the spikes just touch theX-axis (see Figure 1).
Since−1 and0 are fixed points ofFT (x), it is straightforward to verify that

f2
T (x) =







−1 −1 ≤ x < 0

0 x = 0

1(x∈T ) − 1 0 < x ≤ 1

. (8)

Also, fn
T = f2

T for all n > 2. DefineF1 = {fT : T ⊂ (ε1, 1), |T | < ∞}. By construction,
functions inF1 have bounded total variation and so,fatF1

(ε) is O(1/ε) (see, for example, [2, Chap.
11]). Moreover,fT (x) satisfies the Lipschitz condition everywhere (with constantL = 1) except at
0. This is striking in the sense that the loss of the Lipschitz property at a single point allows us to
prove the following lower bound.

Theorem 2. Letgn range over functions fromSn toF1. LetD range over probability distributions
onS. Then,

inf
gn

sup
D

E(s1,...,sn)∼Dn

[

RegMD ,ΠF1

(πgn(s1,...,sn))
]

≥
γ2

1 − γ
− 2ε1 .

This says that for any method that maps random initial statess1, . . . , sn to a policy inΠF1
, there

is an initial state distribution such that the expected regret of the selected policy is at leastγ2/(1 −
γ) − 2ε1. This is in sharp contrast to Theorem 1 where we could reduce, by using sufficiently
many samples, the expected regret down to any positive number given the ability to maximize the
empirical estimateŝV .

Let us see how maximization of empirical estimates behaves in this case. SincefatF1
(ε) < ∞

for all ε > 0, the law of large numbers holds uniformly [1, Thm. 2.5] over the classF1. The
transitions, policies and rewards here are all deterministic. The reward function is just the identity.
This means that the 1-step reward function family is justF1. So the estimates of 1-step rewards are



still uniformly concentrated around their expected values.Since the contribution of rewards from
time step 2 onwards can be no more thanγ2+γ3+ . . . = γ2/(1−γ), we can claim that the expected
regret of theV̂ maximizerπn behaves like

E

[

RegM,ΠF1

(πn)
]

≤
γ2

1 − γ
+ en

whereen → 0. Thus the bound in Theorem 2 above is essentially tight.

Before we prove Theorem 2, we need the following lemma whose proof is given in the appendix
accompanying the paper.
Lemma 1. Fix an interval(a, b) and letT be the set of all its finite subsets. Letgn range over
functions from(a, b)n to T . LetD range over probability distributions on(a, b). Then,

inf
gn

sup
D

(

sup
T∈T

EX∼D1(X∈T ) − E(X1,...,Xn)∼DnE(X∼D)1(X∈gn(X1,...,Xn))

)

≥ 1 .

Proof of Theorem 2.We will prove the inequality whenD ranges over distributions on(0, 1) which,
obviously, implies the theorem.

Since, for allf ∈ F1 andn > 2, fn = f2, we have
opt(MD, ΠF1

) − E(s1,...,sn)∼DnVMD
(πgn(s1,...,sn))

= sup
f∈F1

Es∼D

[

s + γf(s) +
γ2

1 − γ
f2(s)

]

− E(s1,...,sn)∼Dn

[

Es∼D[s + γgn(s1, . . . , sn)(s) +
γ2

1 − γ
gn(s1, . . . , sn)2(s)]

]

= sup
f∈F1

Es∼D

[

γf(s) +
γ2

1 − γ
f2(s)

]

− E(s1,...,sn)∼Dn

[

Es∼D[γgn(s1, . . . , sn)(s) +
γ2

1 − γ
gn(s1, . . . , sn)2(s)]

]

For all f1, f2, |Ef1 − Ef2| ≤ E|f1 − f2| ≤ ε1. Therefore, we can get rid of the first terms in both
sub-expressions above without changing the value by more than2γε1.

≥ sup
f∈F1

Es∼D

[

γ2

1 − γ
f2(s)

]

− E(s1,...,sn)∼Dn

[

Es∼D[
γ2

1 − γ
gn(s1, . . . , sn)2(s)]

]

− 2γε1

=
γ2

1 − γ

(

sup
f∈F1

Es∼D

[

f2(s) + 1
]

− E(s1,...,sn)∼DnEs∼D[gn(s1, . . . , sn)2(s) + 1]

)

− 2γε1

From (8), we know thatf2
T (x) + 1 restricted tox ∈ (0, 1) is the same as1(x∈T ). Therefore,

restrictingD to probability measures on(0, 1) and applying Lemma 1, we get

inf
gn

sup
D

(

opt(MD, ΠF1
) − E(s1,...,sn)∼DnVMD

(πgn(s1,...,sn))
)

≥
γ2

1 − γ
− 2γε1 .

To finish the proof, we note thatγ < 1 and, by definition,
RegMD ,ΠF1

(πgn(s1,...,sn)) = opt(MD, ΠF1
) − VMD

(πgn(s1,...,sn)) .

Example 2

We use the MDP of the previous section with a different policy class which we now describe. For
a real numberx, y ∈ (0, 1) with binary expansions (choose the terminating representation for ratio-
nals)0.b1b2b3 . . . and0.c1c2c3 . . ., define

mix(x, y) = 0.b1c1b2c2 . . . stretch(x) = 0.b10b20b3 . . .

even(x) = 0.b2b4b6 . . . odd(x) = 0.b1b3b5 . . .



Some obvious identities aremix(x, y) = stretch(x) + stretch(y)/2, odd(mix(x, y)) = x and
even(mix(x, y)) = y. Now fix ε2 > 0. Since, finite subsets of(0, 1) and irrationals in(0, ε2) have
the same cardinality, there exists a bijectionh which maps every finite subsetT of (0, 1) to some
irrationalh(T ) ∈ (0, ε2). For a finite subsetT of (0, 1), define

fT (x) =



























0 x = −1

1(odd(−x)∈h−1(even(−x)) −1 < x < 0

0 x = 0

−mix(x, h(T )) 0 < x < 1

1 x = 1

.

It is easy to check that with this definition,f2
T (x) = 1(x∈T ) for x ∈ (0, 1). Finally, let F2 =

{fT : T ⊂ (0, 1), |T | < ∞}. To calculate the pseudodimension of this class, note that using the
identity mix(x, y) = stretch(x) + stretch(y)/2, every functionfT in the class can be written as
fT = f0 + f̃T wheref0 is a fixed function (does not depend onT ) andf̃T is given by

f̃T (x) =







0 −1 ≤ x ≤ 0

− stretch(h(T ))/2 0 < x < 1

0 x = 1

.

Let H = {f̃T : T ⊂ (0, 1), |T | < ∞}. SincePdim(H + f0) = Pdim(H) for any classH and a
fixed functionf0, we havePdim(F2) = Pdim(H). As each functioñfT (x) is constant on(0, 1)
and zero elsewhere, we cannot shatter even two points usingH. Thus,Pdim(H) = 1.
Theorem 3. Letgn range over functions fromSn toF2. LetD range over probability distributions
onS. Then,

inf
gn

sup
D

E(s1,...,sn)∼Dn

[

RegMD ,ΠF1

(πgn(s1,...,sn))
]

≥
γ2

1 − γ
− ε2 .

Sketch. Let us only check that the properties ofF1 that allowed us to proceed with the proof of
Theorem 2 are also satisfied byF2. First, for all f ∈ F2 andn > 2, fn = f2. Second, for all
f1, f2 ∈ F2 andx ∈ [−1, +1], |f1(x) − f2(x)| ≤ ε2/2. This is becausefT1

andfT2
can differ

only for x ∈ (0, 1). For such anx, |fT1
(x) − fT2

(x)| = |mix(x, h(T1) − mix(x, h(T2))| =
| stretch(h(T1)) − stretch(h(T2))|/2 ≤ ε2/2. Third, the restriction off2

T to (0, 1) is 1(x∈T ).
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