
Sample-Optimal Average-Case Sparse Fourier Transform in Two

Dimensions

Badih Ghazi Haitham Hassanieh Piotr Indyk Dina Katabi Eric Price Lixin Shi

Abstract— We present the first sample-optimal sublinear
time algorithms for the sparse Discrete Fourier Transform
over a two-dimensional

√
n×

√
n grid. Our algorithms are

analyzed for the average case signals. For signals whose
spectrum is exactly sparse, we present algorithms that use
O(k) samples and run in O(k log k) time, where k is the
expected sparsity of the signal. For signals whose spectrum
is approximately sparse, we have an algorithm that uses
O(k log n) samples and runs in O(k log2 n) time, for k =
Θ(

√
n). All presented algorithms match the lower bounds

on sample complexity for their respective signal models.

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is a powerful

tool whose applications encompass video and audio pro-

cessing [30], [12], [5], radar and GPS systems [13], [8],

medical imaging, spectroscopy [19], [24], the process-

ing of seismic data by the oil and gas industries [31],

and many other engineering tasks. Currently, the fastest

approach for computing the Discrete Fourier Transform

uses the FFT algorithm. Given a signal of size n, the

FFT computes its frequency representation in O(n log n)
time. However, the emergence of big data problems, in

which the processed datasets can exceed terabytes [27],

has rendered the FFT’s runtime too slow. Furthermore,

in many domains (e.g., medical imaging [22], NMR

spectroscopy [20]), data acquisition is costly or cumber-

some, and hence one may be unable to collect enough

measurements to compute the desired Fourier transform.

These scenarios motivate the need for algorithms that

compute the Fourier transform faster than the FFT, and

use only a subset of the input data required by the FFT.

Recent efforts in the area of Fourier sampling have

focused on addressing the above need. The resulting

advances show that for sparse data (i.e., data that exhibits

a limited number of dominating frequencies) one can

design algorithms that operate only on a small subset of

the input data, and run in sublinear time [23], [10], [2],

[11], [17], [1], [15], [14], [21], [6], [13]. Since sparsity is

common (in video, audio, medical imaging, NMR spec-

troscopy, GPS, seismic data, etc.), such results promise a

significant impact on multiple application domains. The

Haitham Hassanieh, Eric Price, Badih Ghazi, Lixin Shi, Piotr In-
dyk and Dina Katabi are with the Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA {haithamh, ecprice, badih,

lixshi, indyk, dk}@mit.edu

most efficient algorithms prior to this paper are given

in [14], and offer the following performance guarantees:1

• For signals that are exactly k-sparse (i.e., signals

that have exactly k nonzero Fourier coefficients), the

algorithm runs in O(k log n) time.

• For approximately sparse signals, the algorithm runs

in O(k log n log(n/k)) time, where k is the number

of large Fourier coefficients.

While those past algorithms have achieved efficient run-

ning times, they suffer from important limitations. Perhaps

the main limitation is that their sample complexity bounds

are too high. In particular, the sample complexity of the

exactly k-sparse algorithm is Θ(k log n). This bound is

suboptimal by a logarithmic factor, as it is known that one

can recover any signal with k nonzero Fourier coefficients

from O(k) samples [3], albeit in super-linear time. The

sample complexity of the approximately-sparse algorithm

is Θ(k log(n) log(n/k)). This bound is also a logarithmic

factor away from the lower bound of Ω(k log(n/k)) [26].

Reducing the sample complexity is highly desirable

as it typically implies a reduction in signal acquisition

time, measurement overhead and communication cost. For

example, in medical imaging the main goal is to reduce

the sample complexity in order to reduce the time the

patient spends in the MRI machine [22], or the radiation

dose she receives [29]. Similarly in spectrum sensing, a

lower average sampling rate enables the fabrication of

efficient analog to digital converters (ADCs) that can

acquire very wideband multi-GHz signals [32]. In fact,

the central goal of the area of compressed sensing is to

reduce the sample complexity.

A second limitation of the prior algorithms is that most

of them are designed for one-dimensional signals. This

is unfortunate, since multi-dimensional instances of DFT

are often particularly sparse. This situation is somewhat

alleviated by the fact that the two-dimensional DFT over

p × q grids can be reduced to the one-dimensional DFT

over a signal of length pq [11], [16]. However, the reduc-

tion applies only if p and q are relatively prime, which

excludes the most typical case of m×m grids where m
is a power of 2. The only prior algorithm that applies to

general m×m grids, due to [11], has O(k logc n) sample

and time complexity for a rather large value of c. If n is

1The Related Work section discusses additional algorithms that have
different assumptions and guarantees.

1258978-1-4799-3410-2/13/$31.00 ©2013 IEEE

Fifty-first Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 2 - 3, 2013

a power of 2, a two-dimensional adaptation of the [15]

algorithm (outlined in [9]) has roughly O(k log3 n) time

and sample complexity.

A. Our Results

In this paper, we present the first sample-optimal sub-

linear time algorithms for the Discrete Fourier Transform

over a two-dimensional
√
n × √n grid. Our algorithms

are analyzed in the average case. Our input distributions

are natural. For the exactly sparse case, we assume the

Bernoulli model: each spectrum coordinate is nonzero

with probability k/n, in which case the entry assumes an

arbitrary value predetermined for that position.2 For the

approximately-sparse case, we assume that the spectrum

x̂ of the signal is a sum of two vectors: the signal

vector, chosen from the Bernoulli distribution, and the

noise vector, chosen from the Gaussian distribution (see

Section §III Preliminaries for the complete definition).

These or similar3 distributions are often used as test cases

for empirical evaluations of sparse Fourier Transform

algorithms [18], [15], [21] or theoretical analysis of their

performance [21].

The algorithms succeed with a constant probability. The

notion of success depends on the scenario considered.

For the exactly sparse case, an algorithm is successful if

it recovers the spectrum exactly. For the approximately

sparse case, the algorithm is successful if it reports a

signal with spectrum ẑ such that:

‖ẑ − x̂‖22 = O(σ2n) + ‖x̂‖22/nc, (1)

where σ2 denotes the variance of the normal distributions

defining each coordinate of the noise vector, and where c
is any constant. Note that any k-sparse approximation to x̂
has error Ω(σ2n) with overwhelming probability, and that

the second term in the bound in Equation 1 is subsumed

by the first term as long as the signal-to-noise ratio is at

most polynomial, i.e., ‖x̂‖2 ≤ nO(1)σ. See Section §III
for further discussion.

The running time and the sample complexity bounds

of our algorithms are depicted in the following table

(assuming
√
n is a power of 2):

Alg. Input Samples Time Assumptions

1 Sparse k k log k k = O(
√
n)

2 Sparse k+ k log k Any k

k(log logn)O(1)

3 Approx. k logn k log2 n k = Θ(
√
n)

sparse

2Note that this model subsumes the scenario where the values of the
nonzero coordinates are chosen i.i.d. from some distribution.

3A popular alternative is to use the hypergeometric distribution over
the set of nonzero entries instead of the Bernoulli distribution. The
advantage of the former is that it yields vectors of sparsity exactly equal
to k. In this paper we opted for the Bernoulli model since it is simpler
to analyze. However, both models are quite similar. In particular, for
large enough k, the actual sparsity of vectors in the Bernoulli model is
sharply concentrated around k.

(a) Original Spectrum

→

→

(b) Step 1: Row recovery

↓ ↓ ↓ ↓ ↓

(c) Step 2: Column recovery

→

→
→
→

(d) Step 3: Row recovery

↓ ↓

(e) Step 4: Column recovery

→

→

(f) Step 5: Row Recovery

Fig. 1: An illustration of the “peeling” recovery process

on an 8× 8 signal with 15 nonzero frequencies. In each

step, the algorithm recovers all 1-sparse columns and rows

(the recovered entries are depicted in red). The process

converges after a few steps.

The key feature of our algorithms is that their sample

complexity bounds are optimal. For the exactly sparse

case, the lower bound of Ω(k) is immediate. For the ap-

proximately sparse case, we note that the Ω(k log(n/k))
lower bound of [26] holds even if the spectrum is the sum

of a k-sparse signal vector in {0, 1,−1}n and Gaussian

noise. The latter is essentially a special case of the

distributions handled by our algorithm as shown in [9].

From the running time perspective, our algorithms are

slightly faster than those in [14], with the improvement

occurring for low values of k.

An additional feature of the first algorithm (in the table)

is its simplicity and therefore its low “big-Oh” overhead.

As a result, this algorithm is easy to adapt for practical

applications. In [28], we have customized this algorithm

and applied it to 2D Magnetic Resonance Spectroscopy

(MRS). MRS is an advanced type of medical imaging

used to detect biomarkers of diseases [4]. In this particu-

lar application, our algorithm outperformed compressive

sensing and reduced the required measurements by almost

a factor of 3x, hence reducing the overall cost and the time

the patient has to spend in the MRI machine.

1259

B. Our Techniques

Our first algorithm for k-sparse signals is based on the

following observation: The spike-train filter (i.e., uniform

sub-sampling) is one of the most efficient ways for

mapping the Fourier coefficients into buckets. For one-

dimensional signals however, this filter is not amenable

to randomization. Hence, when multiple nonzero Fourier

coefficients collide into the same bucket, one cannot

efficiently resolve the collisions by randomizing the spike-

train filter. In contrast, for two-dimensional signals, we

naturally obtain two distinct spike-train filters, which

correspond to subsampling the columns and subsampling

the rows. Hence, we can resolve colliding nonzero Fourier

coefficients by alternating between these two filters.

More specifically, recall that one way to compute the

two-dimensional DFT of a signal x is to apply the one-

dimensional DFT to each column and then to each row.

Suppose that k = a
√
n for a < 1. In this case, the

expected number of nonzero entries in each row is less

than 1. If every row contained exactly one nonzero entry,

then the DFT could be computed via the following two

step process. In the first step, we select the first two

columns of x, denoted by u(0) and u(1), and compute

their DFTs û(0) and û(1). Let ji be the index of the unique

nonzero entry in the i-th row of x̂, and let a be its value.

Observe that û
(0)
i = a and û

(1)
i = aω−ji (where ω is

a primitive
√
n-th root of unity), as these are the first

two entries of the inverse Fourier transform of a 1-sparse

signal aeji . Thus, in the second step, we can retrieve

the value of the nonzero entry, equal to û
(0)
i , as well as

the index ji from the phase of the ratio û
(1)
i /û

(0)
i . (this

technique was introduced in [14], [21] and was referred

to as the “OFDM trick”). The total time is dominated

by the cost of the two DFTs of the columns, which is

O(
√
n log n). Since the algorithm queries only a constant

number of columns, its sample complexity is O(
√
n).

In general, the distribution of the nonzero entries over

the rows can be non-uniform –i.e., some rows may have

multiple nonzero Fourier coefficients. Thus, our actual al-

gorithm alternates the above recovery process between the

columns and rows (see Figure 1 for an illustration). Since

the OFDM trick works only on 1-sparse columns/rows,

we check the 1-sparsity of each column/row by sampling

a constant number of additional entries. We then show

that, as long as the sparsity constant a is small enough,

this process recovers all entries in a logarithmic number

steps with constant probability. The proof uses the fact

that the probability of the existence of an “obstructing

configuration” of nonzero entries which makes the process

deadlocked (e.g., see Figure 2) is upper bounded by a

small constant.

The algorithm is extended to the case of k = o(
√
n)

via a reduction. Specifically, we subsample the signal x by

the reduction ratio R = α
√
n/k for some small enough

constant α in each dimension. The subsampled signal

↓ ↓ ↓

→

→

→

(a)

↓ ↓

→

→

(b)

Fig. 2: Examples of obstructing sequences of nonzero

entries. None of the remaining rows or columns has a

sparsity of 1.

x′ has dimension
√
m × √m, where

√
m = k

α . Since

subsampling in time domain corresponds to “spectrum

folding”, i.e., adding together all frequencies with indices

that are equal modulo
√
m, the nonzero entries of x̂ are

mapped into the entries of x̂′. It can be seen that, with

constant probability, the mapping is one-to-one. If this is

the case, we can use the earlier algorithm for sparse DFT

to compute the nonzero frequencies in O(
√
m logm) =

O(
√
k log k) time, using O(k) samples. We then use the

OFDM trick to identify the positions of those frequencies.

Our second algorithm for the exactly sparse case works

for all values of k. The main idea behind it is to

decode rows/columns with higher sparsity than 1. First,

we give a deterministic, worst-case algorithm for 1-

dimensional sparse Fourier transforms that takes O(k2 +
k(log log n)O(1)) time. This algorithm uses the relation-

ship between sparse recovery and syndrome decoding of

Reed-Solomon codes (due to [3]). Although a simple

application of the decoder yields O(n2) decoding time, we

show that by using appropriate numerical subroutines one

can in fact recover a k-sparse vector from O(k) samples

in time O(k2 + k(log log n)O(1)).4 In particular, we use

Berlekamp-Massey’s algorithm for constructing the error-

locator polynomial and Pan’s algorithm for finding its

roots. For our fast average-case, 2-dimensional sparse

Fourier transform algorithm, we fold the spectrum into

B = k
C log k bins for some large constant C. Since the

positions of the k nonzero frequencies are random, it

follows that each bin receives t = Θ(log k) frequencies

with high probability. We then take Θ(t) samples of

the time domain signal corresponding to each bin, and

recover the frequencies corresponding to those bins in

O(t2 + t(log log n)O(1)) time per bin, for a total time

of O(k log k + k(log log n)O(1)).
This approach works as long as the number of nonzero

coefficients per column/row are highly concentrated.

However, this is not the case for k ≪ √
n log n. We

overcome this difficulty by replacing a row by a sequence

of rows. A technical difficulty is that the process might

lead to collisions of coefficients. We resolve this issue by

using a two level procedure, where the first level returns

4We note that, for k = o(logn), this is the fastest known worst-case

algorithm for the exactly sparse DFT.

1260

the syndromes of colliding coefficients as opposed to the

coefficients themselves; the syndromes are then decoded

at the second level.

The above description summarizes the second algo-

rithm. Due to space limitations, the full-description of the

second algorithm along with the proofs of the lemmas are

not included in this paper. They are available on arxiv [9].

Our third algorithm works for approximately sparse

data, at sparsity Θ(
√
n). Its general outline mimics that

of the first algorithm. Specifically, it alternates between

decoding columns and rows, assuming that they are 1-

sparse. The decoding subroutine itself is similar to that

of [14] and uses O(log n) samples. The subroutine first

checks whether the decoded entry is large; if not, the

spectrum is unlikely to contain any large entry, and the

subroutine terminates. The algorithm then subtracts the

decoded entry from the column and checks whether the

resulting signal contains no large entries in the spectrum

(which would be the case if the original spectrum was

approximately 1-sparse and the decoding was successful).

The check is done by sampling O(log n) coordinates and

checking whether their sum of squares is small. To prove

that this check works with high probability, we use the

fact that a collection of random rows of the Fourier matrix

is likely to satisfy the Restricted Isometry Property of [7].

A technical difficulty in the analysis of the algorithm is

that the noise accumulates in successive iterations. This

means that a 1/ logO(1) n fraction of the steps of the algo-

rithm will fail. However, we show that the dependencies

are “local”, which means that our analysis still applies to

a vast majority of the recovered entries. We continue the

iterative decoding for log log n steps, which ensures that

all but a 1/ logO(1) n fraction of the large frequencies are

correctly recovered. To recover the remaining frequencies,

we resort to algorithms with worst-case guarantees.

C. Extensions

Our algorithms have natural extensions to dimensions

higher than 2. We do not include them in this paper as

the description and analysis are rather cumbersome.

Moreover, due to the equivalence between the two-

dimensional case and the one-dimensional case where n
is a product of different prime powers [11], [16], our

algorithms also give optimal sample complexity bounds

for such values of n (e.g., n = 6t) in the average case.

II. RELATED WORK

As described in the introduction, the most efficient prior

algorithms for computing the sparse DFT are due to [14].

For signals that are exactly k-sparse, the first algorithm

runs in O(k log n) time. For approximately sparse signals,

the second algorithm runs in O(k log n log(n/k)) time.

Formally, the latter algorithm works for any signal x,

and computes an approximation vector x̂′ that satisfies

the ℓ2/ℓ2 approximation guarantee, i.e., ‖x̂ − x̂′‖2 ≤
Cmink-sparse y ‖x̂− y‖2, where C is some approximation

factor and the minimization is over k-sparse signals. Note

that this guarantee generalizes that of Equation (1).

After this work was completed (see the arxiv ver-

sion [9]), we became aware that another group has con-

currently developed an efficient algorithm for the one

dimensional exactly k-sparse case where the size of the

signal n is product of primes (i.e., can be formed as a 2D

discrete Fourier transform problem) [25]. Their algorithm

is analyzed for the average case and achieves O(k) sample

complexity and runs in O(k log k). In comparison, our

algorithms achieve similar guarantees for the exactly k-

sparse case, but they further address the general case

where the signal is contaminated by noise.

We also mention another efficient algorithm, due

to [21], designed for the exactly k-sparse model. The

average case analysis presented in that paper also shows

that the algorithm has O(k) expected sample complexity

and runs in O(k log k) time. However, the algorithm

assumes the input signal x is specified as a function over

an interval [0, 1] that can be sampled at arbitrary positions,

as opposed to a given discrete sequence of n samples as

in our case. Thus, though very efficient, that algorithm

does not solve the Discrete Fourier Transform problem.

III. PRELIMINARIES

This section introduces the notation, assumptions and

definitions used in the rest of this paper.

A. Notation: Throughout the paper we assume that
√
n is

a power of 2. We use [m] to denote the set {0, . . . ,m−1},
and [m] × [m] = [m]2 to denote the m × m grid

{(i, j) : i ∈ [m], j ∈ [m]}. We define ω = e−2πi/
√
n

to be a primitive
√
n-th root of unity and ω′ = e−2πi/n

to be a primitive n-th root of unity. For any complex

number a, we use φ(a) ∈ [0, 2π) to denote the phase

of a. For a 2D matrix x ∈ C
√
n×

√
n, its support is

denoted by supp(x) ⊆ [
√
n] × [

√
n]. We use ‖x‖0 to

denote |supp(x)|, the number of nonzero coordinates of

x. Its 2D Fourier spectrum is denoted by x̂. Similarly, if

y is in frequency-domain, its inverse is denoted by y̌.

B. Definitions: The paper uses the comb filter used in [17],

[15]. The filter generalizes to 2 dimensions as follows:

Given (τr, τc) ∈ [
√
n] × [

√
n], and Br, Bc that di-

vide
√
n, then for all (i, j) ∈ [Br] × [Bc] set yi,j =

xi(
√
n/Br)+τr,j(

√
n/Bc)+τc Then, compute the 2D DFT ŷ

of y. Observe that ŷ is a folded version of x̂:

ŷi,j =
∑

l∈[
√

n

Br
]

∑

m∈[
√

n

Bc
]

x̂lBr+i,mBc+jω
−τr(i+lBr)−τc(j+mBc)

C. Distributions: In the exactly sparse case, we assume

a Bernoulli model for the support of x̂. This means that

for all (i, j) ∈ [
√
n] × [

√
n], Pr{(i, j) ∈ supp (x̂)} =

k/n and thus E[|supp (x̂)|] = k. We assume an unknown

predefined matrix ai,j of values in C; if x̂i,j is selected

to be nonzero, its value is set to ai,j .

1261

In the approximately sparse case, we assume that the

signal x̂ is equal to x̂∗ + ŵ ∈ C
√
n×

√
n, where x̂∗

i,j

is the “signal” and ŵ is the “noise”. In particular, x̂∗ is

drawn from the Bernoulli model, where x̂∗
i,j is drawn

from {0, ai,j} at random independently for each (i, j) for

some values ai,j and with E[| supp(x̂∗)|] = k. We also

require that |ai,j | ≥ L for some parameter L. ŵ is a

complex Gaussian vector with variance σ2 in both the

real and imaginary axes independently on each coordinate;

we notate this as ŵ ∼ NC(0, σ
2In). We will need that

L = Cσ
√
n/k for a sufficiently large constant C, so that

E[‖x̂∗‖22] ≥ C E[‖ŵ‖22].

IV. BASIC ALG. FOR THE EXACTLY SPARSE CASE

The algorithm for the noiseless case depends on the

sparsity k where k = E[|supp (x̂)|] for a Bernoulli

distribution of the support.

A. Basic Exact Algorithm: k = Θ(
√
n)

In this section, we focus on the regime k = Θ(
√
n).

Specifically, we will assume that k = a
√
n for a (suffi-

ciently small) constant a > 0.

The algorithm BASICEXACT2DSFFT is described as

Algorithm IV.1. The key idea is to fold the spectrum into

bins using the comb filter defined in §III and estimate

frequencies which are isolated in a bin. The algorithm

takes the FFT of a row and as a result frequencies in

the same columns will get folded into the same row

bin. It also takes the FFT of a column and consequently

frequencies in the same rows wil get folded into the same

column bin. The algorithm then uses the OFDM trick

introduced in [14] to recover the columns and rows whose

sparsity is 1. It iterates between the column bins and row

bins, subtracting the recovered frequencies and estimating

the remaining columns and rows whose sparsity is 1. An

illustration of the algorithm running on an 8×8 signal with

15 nonzero frequencies is shown in Fig. 1 in Section §I.
The algorithm also takes a constant number of extra FFTs

of columns and rows to check for collisions within a bin

and avoid errors resulting from estimating bins where

the sparsity is greater than 1. The algorithm uses three

functions:

• FOLDTOBINS. This procedure folds the spectrum

into Br×Bc bins using the comb filter described §III.
• BASICESTFREQ. Given the FFT of rows or columns,

it estimates the frequency in the large bins. If there

is no collision, i.e., if there is a single nonzero

frequency in the bin, it adds this frequency to the

result ŵ and subtracts its contribution to the row and

column bins.

• BASICEXACT2DSFFT. This performs the FFT of

the rows and columns; then iterates BASICESTFREQ

between the rows and columns until is recovers x̂.

Analysis of BASICEXACT2DSFFT: The analysis relies

on the following two lemmas which we prove in [9].

procedure FOLDTOBINS(x, Br, Bc, τr, τc)

yi,j = xi(
√
n/Br)+τr,j(

√
n/Bc)+τc for (i, j) ∈ [Br] ×

[Bc],
return ŷ, the DFT of y

procedure BASICESTFREQ(û(T), v̂(T),T , IsCol)

ŵ ← 0.

Compute J = {j :
∑

τ∈T |û
(τ)
j | > 0}.

for j ∈ J do

b← û
(1)
j /û

(0)
j .

i← round(φ(b)
√
n

2π) mod
√
n. ⊲ φ(b) is the phase

of b.
s← û

(0)
j .

⊲ Test whether the row or column is 1-sparse

if
(∑

τ∈T |û
(τ)
j − sω−τi| == 0

)
then

if IsCol then ⊲ whether decoding column or row

ŵi,j ← s.

else

ŵj,i ← s.

for τ ∈ T do

û
(τ)
j ← 0

v̂
(τ)
i ← v̂

(τ)
i − sω−τi

return ŵ, û(T), v̂(T)

procedure BASICEXACT2DSFFT(x, k)

T ← [2c] ⊲ We set c ≥ 6
for τ ∈ T do

û(τ) ← FOLDTOBINS(x,
√
n, 1, 0, τ).

v̂(τ) ← FOLDTOBINS(x, 1,
√
n, τ, 0).

ẑ ← 0
for t ∈ [C log n] do ⊲ û(T) := {û(τ) : τ ∈ T}
{ŵ, û(T), v̂(T)} ← BASICESTFREQ(û(T), v̂(T), T,

true).

ẑ ← ẑ + ŵ.

{ŵ, v̂(T), û(T)} ← BASICESTFREQ(v̂(T), û(T), T,
false).

ẑ ← ẑ + ŵ.

return ẑ

Algorithm IV.1: Basic Exact 2D sparse FFT algorithm for

k = Θ(
√
n)

Lemma 4.1: For any constant α > 0, if a > 0 is a suf-

ficiently small constant, then assuming that all 1-sparsity

tests in the procedure BASICESTFREQ are correct, the

algorithm reports the correct output with probability at

least 1−O(α).

Lemma 4.2: The probability that any 1-sparsity test

invoked by the algorithm is incorrect is at most

O(1/n(c−5)/2).

Theorem 4.3: For any constant α, the algorithm BA-

SICEXACT2DSFFT uses O(
√
n) samples, runs in time

O(
√
n log n) and returns the correct vector x̂ with prob-

ablility at least 1−O(α) as long as a is a small enough

constant.

1262

Proof: From Lemma 4.1 and Lemma 4.2, the

algorithm returns the correct vector x̂ with probability at

least 1−O(α)−O(n−(c−5)/2) = 1−O(α) for c > 5.

The algorithm uses only O(T) = O(1) rows and

columns of x, which yields O(
√
n) samples. The running

time is bounded by the time needed to perform O(1) FFTs

of rows and columns (in FOLDTOBINS) procedure, and

O(log n) invocations of BASICESTFREQ. Both compo-

nents take time O(
√
n log n).

B. Reduction to Basic Exact Algorithm: k = o(
√
n)

Algorithm REDUCEEXACT2DSFFT, which is for the

case where k = o(
√
n), is described in Algorithm IV.2.

The key idea is to reduce the problem from the case

where k = o(
√
n) to the case where k = Θ(

√
n). To

do that, we subsample the input time domain signal x by

the reduction ratio R = a
√
n/k for some small enough

a. The subsampled signal x′ has dimension
√
m × √m,

where
√
m = k

a . This implies that the probability that

any coefficient in x̂′ is nonzero is at most R2 × k/n =
a2/k = (a2/k)× (k2/a2)/m = k/m, since m = k2/a2.

This means that we can use the algorithm BASICNOISE-

LESS2DSFFT in subsection §IV-A to recover x̂′. Each

of the entries of x̂′ is a frequency in x̂ which was folded

into x̂′. We employ the same phase technique used in [14]

and subsection §IV-A to recover their original frequency

position in x̂.

The algorithm uses two functions:

• REDUCETOBASICSFFT: This folds the spectrum

into O(k) × O(k) dimensions and performs the

reduction to BASICEXACT2DSFFT. Note that only

the O(k) elements of x′ which will be used in

BASICEXACT2DSFFT need to be computed.

• REDUCEEXACT2DSFFT: This invokes the reduc-

tion as well as the phase technique to recover x̂.

Analysis of REDUCEEXACT2DSFFT: We state the fol-

lowing lemma which we prove in [9].

Lemma 4.4: For any constant α, for sufficiently small

a there is a one-to-one mapping of frequency coefficients

from x̂ to x̂′ with probability at least 1− α.

Theorem 4.5: For any constant α > 0, there exists

a constant c > 0 such that if k < c
√
n then the

algorithm REDUCEEXACT2DSFFT uses O(k) samples,

runs in time O(k log k) and returns the correct vector x̂
with probablility at least 1− α.

Proof: By Theorem 4.3 and the fact that each coeffi-

cient in x̂′ is nonzero with probability O(1/k), each invo-

cation of the function REDUCETOBASICSFFT fails with

probability at most α. By Lemma 4.4, with probability at

least 1 − α, we could recover x̂ correctly if each of the

calls to REDTOBASICSFFT returns the correct result. By

the union bound, the algorithm REDUCEEXACT2DSFFT

fails with probability at most α+ 3× α = O(α).
The algorithm uses O(1) invocations of BASICEX-

ACT2DSFFT on a signal of size O(k)×O(k) in addition

procedure REDUCETOBASICSFFT(x, R, τr, τc)

Define x′
ij = xiR+τr,jR+τc ⊲ With lazy evaluation

return BASICEXACT2DSFFT(x′, k)

procedure REDUCEEXACT2DSFFT(x, k)

R← a
√
n

k , for some constant a < 1 such that R|√n.

û(0,0) ← REDUCETOBASICSFFT(x,R, 0, 0)
û(1,0) ← REDUCETOBASICSFFT(x,R, 1, 0)
û(0,1) ← REDUCETOBASICSFFT(x,R, 0, 1)
ẑ ← 0
L← supp(û(0,0)) ∩ supp(û(1,0)) ∩ supp(û(0,1))
for (ℓ,m) ∈ L do

br ← û
(1,0)
ℓ,m /û

(0,0)
ℓ,m

i← round(φ(br)
√
n

2π) mod
√
n

bc ← û
(0,1)
ℓ,m /û

(0,0)
ℓ,m

j ← round(φ(bc)
√
n

2π) mod
√
n

ẑij ← û
(0,0)
ℓ,m

return ẑ

Algorithm IV.2: Exact 2D sparse FFT algorithm for k =
o(
√
n)

to O(k) time to recover the support using the OFDM trick.

Noting that calculating the intersection L of supports takes

O(k) time, the stated number of samples and running time

then follow directly from Theorem 4.3.

V. ALGORITHM FOR ROBUST RECOVERY

The algorithm for noisy recovery ROBUST2DSFFT is

shown in Algorithm V.1. The algorithm is very similar

to the exactly sparse case. It first takes FFT of rows and

columns using FOLDTOBINS procedure. It then iterates

between the columns and rows, recovering frequencies in

bins which are 1-sparse using the ROBUSTESTIMATECOL

procedure. This procedure uses the function HIKPLO-

CATESIGNAL from [14] to make the estimation of the

frequency positions robust to noise.

A. Analysis of Each Stage of Recovery

Here, we show that each step of the recovery is correct

with high probability using the following two lemmas.

The first lemma shows that with very low probability

the ROBUSTESTIMATECOL procedure generates a false

negative (misses a frequency), false positive (adds a

fake frequency) or a bad update (wrong estimate of a

frequency). The second lemma is analogus to lemma 4.2

and shows that the probability that the 1-sparse test fails

when there is noise is low. The proof of these lemmas is

long and can be found in [9].

Lemma 5.1: Consider the recovery of a column/row j
in ROBUSTESTIMATECOL, where û and v̂ are the results

of FOLDTOBINS on x̂. Let y ∈ C
√
n denote the jth

column/row of x̂. Suppose y is drawn from a permutation

invariant distribution y = yhead+yresidue+ygauss, where

mini∈supp(yhead) |yi| ≥ L, ‖yresidue‖1 < ǫL, and ygauss

1263

procedure ROBUSTESTIMATECOL(û, v̂, T , T ′, IsCol,

J , Ranks)

ŵ ← 0.

S ← {} ⊲ Set of changes, to be tested next round.

for j ∈ J do

continue if Ranks[(IsCol, j)] ≥ log log n.

i← HIKPLOCATESIGNAL(û(T ′), T ′)
⊲ Procedure from [14]: O(log2 n) time

a← medianτ∈T ûτ
jω

τi.

continue if |a| < L/2
⊲ Nothing significant recovered

continue if
∑

τ∈T |ûτ
j − aω−τi|2 ≥ L2 |T | /10

⊲ Bad recovery: probably not 1-sparse

b← meanτ∈T ûτ
jω

τi.

if IsCol then ⊲ whether decoding column or row

ŵi,j ← b.
else

ŵj,i ← b.

S ← S ∪ {i}.
Ranks[(1− IsCol, i)] += Ranks[(IsCol, j)].
for τ ∈ T ∪ T ′ do

û
(τ)
j ← û

(τ)
j − bω−τi

v̂
(τ)
i ← v̂

(τ)
i − bω−τi

return ŵ, û, v̂, S

procedure ROBUST2DSFFT(x, k)

T, T ′ ⊂ [
√
n], |T | = |T ′| = O(log n)

for τ ∈ T ∪ T ′ do

û(τ) ← FOLDTOBINS(x,
√
n, 1, 0, τ).

v̂(τ) ← FOLDTOBINS(x, 1,
√
n, τ, 0).

ẑ ← 0
R← 1[2]×[

√
n] ⊲ Rank of vertex (iscolumn, index)

Scol ← [
√
n] ⊲ Which columns to test

for t ∈ [C log n] do

{ŵ, û, v̂, Srow} ←
ROBUSTESTIMATECOL(û, v̂, T, T ′, true, Scol, R).

ẑ ← ẑ + ŵ.

Srow ← [
√
n] if t = 0 ⊲ Try each row the first time

{ŵ, v̂, û, Scol} ←
ROBUSTESTIMATECOL(v̂, û, T, T ′, false, Srow, R).

ẑ ← ẑ + ŵ.

return ẑ

Algorithm V.1: Robust 2D sparse FFT algorithm for k =
Θ(
√
n)

is drawn from the
√
n-dimensional normal distribution

NC(0, σ
2I√n) with standard deviation σ = ǫL/n1/4 in

each coordinate on both real and imaginary axes. We don’t

require yhead, yresidue, and ygauss to be independent

except for the permutation invariance of their sum.

Consider the following bad events:

• False negative: supp(yhead) = {i} and ROBUSTES-

TIMATECOL does not update coordinate i.
• False positive: ROBUSTESTIMATECOL updates

some coordinate i but supp(yhead) 6= {i}.
• Bad update: supp(yhead) = {i} and coordinate i

is estimated by b with
∣∣b− yheadi

∣∣ > ‖yresidue‖1 +√
log logn
logn ǫL.

For any constant c and ǫ below a small enough constant,

there exists a distribution over sets T, T ′ of size O(log n),
such that as a distribution over y and T, T ′ we have

• The probability of a false negative is 1/ logc n.

• The probability of a false positive is 1/nc.

• The probability of a bad update is 1/ logc n.

Lemma 5.2: Let y ∈ C
m be drawn from a permutation

invariant distribution with r ≥ 2 nonzero values. Suppose

that all the nonzero entries of y have absolute value at

least L. Choose T ⊂ [m] uniformly at random with t :=
|T | = O(c3 logm). Then, the probability that there exists

a y′ with ‖y′‖0 ≤ 1 and

‖(y̌ − y̌′)T ‖22 < ǫL2t/n

is at most c3(c
m−r)

c−2 whenever ǫ < 1/8.

B. Analysis of Overall Recovery

Recall that we are considering the recovery of a signal

x̂ = x̂∗ + ŵ ∈ C
√
n×

√
n, where x̂∗ is drawn from the

Bernoulli model with expected k = a
√
n nonzero entries

for a sufficiently small constant a, and ŵ ∼ NC(0, σ
2In)

with σ = ǫL
√

k/n = Θ(ǫL/n1/4) for small enough ǫ.
It will be useful to consider a bipartite graph represen-

tation G of x̂∗. We construct a bipartite graph with
√
n

nodes on each side, where the left side corresponds to

rows and the right side corresponds to columns. For each

(i, j) ∈ supp(x̂∗), we place an edge between left node i
and right node j of weight x̂∗

(i,j).

Our algorithm is a “peeling” procedure on this graph.

It iterates over the vertices, and can with a “good prob-

ability” recover an edge if it is the only incident edge

on a vertex. Once the algorithm recovers an edge, it can

remove it from the graph. The algorithm will look at the

column vertices, then the row vertices, then repeat; these

are referred to as stages. Supposing that the algorithm

succeeds at recovery on each vertex, this gives a canonical

order to the removal of edges. Call this the ideal ordering.

In the ideal ordering, an edge e is removed based on

one of its incident vertices v. This happens after all other

edges reachable from v without passing through e are

removed. Define the rank of v to be the number of such

reachable edges, and rank(e) = rank(v)+1 (with rank(v)
undefined if v is not used for recovery of any edge).

Lemma 5.3: Let c, α be arbitrary constants, and a a

sufficiently small constant depending on c, α. Then with

1− α probability every component in G is a tree and at

most k/ logc n edges have rank at least log log n.

Lemma 5.4: Let ROBUST2DSFFT’ be a modified RO-

BUST2DSFFT that avoids false negatives or bad updates:

whenever a false negative or bad update would occur,

an oracle corrects the algorithm. With large constant

1264

probability, ROBUST2DSFFT’ recovers ẑ such that there

exists a (k/ logc n)-sparse ẑ′ satisfying

‖ẑ − x̂− ẑ′‖22 ≤ 6σ2n.

Furthermore, only O(k/ logc n) false negtives or bad

updates are caught by the oracle.

Lemma 5.5: For any constant α > 0, the algorithm

ROBUST2DSFFT can with probability 1 − α recover ẑ
such that there exists a (k/ logc−1 n)-sparse ẑ′ satisfying

‖ẑ − x̂− ẑ′‖22 ≤ 6σ2n

using O(k log n) samples and O(k log2 n) time.

The algorithm in [14] can be generalized to the 2 dimen-

sional case. The generalization can be found in [9]. Here,

we restate the theorem which we will use to prove the

correctness of our ROBUST2DSFFT algorithm.

Theorem 5.6: There is a variant of [14] algorithm that

will, given x, ẑ ∈ C
√
n×

√
n, return x̂′ with

‖x̂− ẑ − x̂′‖2 ≤ 2 · min
k-sparse x̂∗

‖x̂− ẑ − x̂∗‖22 + ‖x̂‖22/nc

with probability 1− α for any constants c, α > 0 in time

O(k log(n/k) log2 n+ |supp(ẑ)| log(n/k) log n),
using O(k log(n/k) log2 n) samples of x.

Theorem 5.7: Our overall algorithm can recover x̂′

satisfying

‖x̂− x̂′‖22 ≤ 12σ2n+ ‖x̂‖22/nc

with probability 1 − α for any constants c, α > 0 in

O(k log n) samples and O(k log2 n) time, where k =
a
√
n for some constant a > 0.

Proof: By Lemma 5.5, we can recover an O(k)-
sparse ẑ such that there exists an (k/ logc−1 n)-sparse ẑ′

with

‖x̂− ẑ − ẑ′‖22 ≤ 6σ2n.

with arbitrarily large constant probability for any constant

c using O(k log2 n) time and O(k log n) samples. Then

by Theorem 5.6, we can recover a ẑ′ in O(k log2 n) time

and O(k log4−c n) samples satisfying

‖x̂− ẑ − ẑ′‖22 ≤ 12σ2n+ ‖x̂‖22/nc

and hence x̂′ := ẑ+ ẑ′ is a good reconstruction for x̂.

REFERENCES

[1] A. Akavia. Deterministic sparse Fourier approximation via fooling
arithmetic progressions. COLT, pages 381–393, 2010.

[2] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core
predicates using list decoding. FOCS, 44:146–159, 2003.

[3] M. Akcakaya and V. Tarokh. A frame construction and a universal
distortion bound for sparse representations. Signal Processing,

IEEE Transactions on, 56(6):2443 –2450, june 2008.
[4] O. C. Andronesi, G. S. Kim, E. Gerstner, T. Batchelor, A. A.

Tzika, V. R. Fantin, M. G. V. Heiden, and A. G. Sorensen.
Detection of 2-hydroxyglutarate in idh-mutated glioma patients
by in vivo spectral-editing and 2d correlation magnetic resonance
spectroscopy. 4:116ra4, 2012.

[5] V. Bahskarna and K. Konstantinides. Image and video compression

standards : algorithms and architectures. Kluwer Academic
Publishers, 1995.

[6] P. Boufounos, V. Cevher, A. C. Gilbert, Y. Li, and M. J. Strauss.
What’s the frequency, kenneth?: Sublinear fourier sampling off the
grid. RANDOM/APPROX, 2012.

[7] E. Candes and T. Tao. Near optimal signal recovery from
random projections: Universal encoding strategies. IEEE Trans.

on Info.Theory, 2006.
[8] Y. Chan and V. Koo. An Introduction to Synthetic Aperture Radar

(SAR). Progress In Electromagnetics Research B, 2008.
[9] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi.

Sample-Optimal Average-Case Sparse Fourier Transform in Two
Dimensions. arXiv:1303.1209, 2013.

[10] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and M. Strauss.
Near-optimal sparse Fourier representations via sampling. STOC,
2002.

[11] A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved time
bounds for near-optimal space Fourier representations. SPIE

Conference, Wavelets, 2005.
[12] B. G. Haskell, A. Puri, and A. N. Netravali. Digital video : an

introduction to MPEG-2. Chapman and Hall, 1997.
[13] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Faster gps via the

sparse fourier transform. MOBICOM, 2012.
[14] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Near-optimal

algorithm for sparse Fourier transform. STOC, 2012.
[15] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and

practical algorithm for sparse Fourier transform. SODA, 2012.
[16] M. Iwen. Improved approximation guarantees for sublinear-

time Fourier algorithms. Applied And Computational Harmonic

Analysis, 2012.
[17] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms.

Foundations of Computational Mathematics, 10:303–338, 2010.
[18] M. A. Iwen, A. Gilbert, and M. Strauss. Empirical evaluation

of a sub-linear time sparse dft algorithm. Communications in

Mathematical Sciences, 5, 2007.
[19] A. Kak and M. Slaney. Principles of Computerized Tomographic

Imaging. Society for Industrial and Applied Mathematics, 2001.
[20] K. Kazimierczuk and V. YU. Accelerated nmr spectroscopy by

using compressed sensing. Angewandte Chemie International

Edition, 2011.
[21] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time

fourier algorithms. arXiv:1207.6368, 2012.
[22] M. Lustig, D. Donoho, J. Santos, and J. Pauly. Compressed sensing

mri. Signal Processing Magazine, IEEE, 25(2):72–82, 2008.
[23] Y. Mansour. Randomized interpolation and approximation of

sparse polynomials. ICALP, 1992.
[24] D. Nishimura. Principles of Magnetic Resonance Imaging. Society

for Industrial and, 2010.
[25] S. Pawar and K. Ramchandran. Computing a k-sparse n-length

Discrete Fourier Transform using at most 4k samples and O(k log
k) complexity . In ISIT, 2013.

[26] E. Price and D. P. Woodruff. (1+ ǫ)-approximate sparse recovery.
FOCS, 2011.

[27] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.
Nolan. Computational solutions to large-scale data management
and analysis. 2011.

[28] L. Shi, O. Andronesi, H. Hassanieh, B. Ghazi, D. Katabi, and
E. Adalsteinsson. MRS Sparse-FFT: Reducing Acquisition Time
and Artifacts for In Vivo 2D Correlation Spectroscopy. In
ISMRM’13, Int. Society for Magnetic Resonance in Medicine

Annual Meeting and Exhibition, 2013.
[29] E. Sidky. What does compressive sensing mean for X-ray CT

and comparisons with its MRI application. In Conference on

Mathematics of Medical Imaging, 2011.
[30] G. Wallace. The JPEG still picture compression standard. Com-

munications of the ACM, 1991.
[31] O. Yilmaz. Seismic Data Analysis: Processing, Inversion, and In-

terpretation of Seismic Data. Society of Exploration Geophysicists,
2008.

[32] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candès, and A. E-
Neyestanak. A 100MHz–2GHz 12.5x subNyquist rate receiver in
90nm CMOS. In IEEE RFIC, 2012.

1265

