
Sample-Optimal Parametric Q-Learning Using Linearly Additive Features

Lin F. Yang 1 Mengdi Wang 1

Abstract

Consider a Markov decision process (MDP) that

admits a set of state-action features, which can

linearly express the process’s probabilistic transi-

tion model. We propose a parametric Q-learning

algorithm that finds an approximate-optimal pol-

icy using a sample size proportional to the feature

dimension K and invariant with respect to the

size of the state space. To further improve its sam-

ple efficiency, we exploit the monotonicity prop-

erty and intrinsic noise structure of the Bellman

operator, provided the existence of anchor state-

actions that imply implicit non-negativity in the

feature space. We augment the algorithm using

techniques of variance reduction, monotonicity

preservation, and confidence bounds. It is proved

to find a policy which is ǫ-optimal from any initial

state with high probability using Õ(K/ǫ2(1−γ)3)
sample transitions for arbitrarily large-scale MDP

with a discount factor γ ∈ (0, 1). A matching

information-theoretical lower bound is proved,

confirming the sample optimality of the proposed

method with respect to all parameters (up to poly-

log factors).

1. Introduction

Markov decision problems (MDP) are known to suffer from

the curse of dimensionality. A basic theoretical question

is: Suppose that one can query sample transitions from

any state of the system using any action, how many sam-

ples are needed for learning a good policy? In the tabular

setting where the MDP has S states and A actions, the nec-

essary and sufficient sample size for finding an approximate-

optimal policy is Θ̃(SA
(1−γ)3)

1 where γ ∈ (0, 1) is a discount

factor (Azar et al., 2013; Sidford et al., 2018a). However,

*Equal contribution 1Department of Operations Research
and Financial Engineering, Princeton University. Correspon-
dence to: Lin Yang <lin.yang@princeton.edu>, Mengdi Wang
<mengdiw@princeton.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1f̃(·) ignores poly log f(·) factors.

this theoretical-sharp result does not generalize to practical

problems where S,A can be arbitrarily large or infinite.

Let us consider MDP with structural knowledges. Suppose

that each state-action pair (s, a) admits a feature vector

φ(s, a) ∈ R
K that can express the transition dynamics con-

ditioning on (s, a). In practice, the abstract state variable s
can be a sequence of historical records or a raw-pixel image,

containing much information that is not related to the deci-

sion process. More general settings of MDP with structural

knowledges have been considered in Azizzadenesheli et al.

(2016); Jiang et al. (2017) and references therein.

In this paper, we focus on an important and very basic

class of structured MDP, where the features can represent

transition distributions P (· | ·) through an unknown linear

additive model. The feature-based linear transition model

is related to the commonly used linear Q-function model.

We show that they are essentially equivalent when there

is zero Bellman error (a notion introduced in Munos &

Szepesvári (2008)). A similar argument has been made in

Parr et al. (2008). It also contains as a special case the soft

state aggregation model (Singh et al., 1995; Duan et al.,

2018). In this setting, we will study the theoretic sample

complexity for learning a good policy by querying state-

transition samples. We also aim to develop efficient policy

learning algorithms with provable sample efficiency. We

study the following two questions:

Q1: How many observations of state-action-state transitions

are necessary for finding an ǫ-optimal policy?

Q2: How many samples are sufficient for finding an ǫ-
optimal policy with high probability and how to find it?

To answer Q1, an information-theoretic lower bound is

provided (Theorem 1), suggesting that, regardless of the

learning algorithm, the necessary sample size for finding a

good policy with high probability is Ω̃
(

K
(1−γ)3·ǫ2

)
where K

is the dimension of feature space.

To answer Q2, we develop Q-learning-like algorithms that

take as input state-transition samples and output a parame-

terized policy. A basic parametric Q-learning algorithm per-

forms approximate value-iteration estimates on a few points

of the Q function, so that actual updates happen on the pa-

rameters. This idea originates from the phased Q-learning

(Kearns & Singh, 1999) and the fitted value iteration (Munos

Sample-Optimal Parametric Q-Learning with Linear Transition Models

& Szepesvári, 2008; Antos et al., 2008a;b). Our algorithm

is simpler and does not require function fitting. Conver-

gence and approximation error analysis is provided even

when the MDP cannot be fully expressed using the features.

Despite its simplicity, the basic algorithm has complexity

Õ
(

K
(1−γ)7·ǫ2

)
, which is not sample-optimal.

Furthermore, we develop an accelerated version of paramet-

ric Q-learning that involves taking mini-batches, computing

confidence bounds, and using monotonicity-preserving and

variance reduction techniques. It uses some ideas from fast

solvers of tabular MDP (Sidford et al., 2018b;a). To fully

exploit the monotonicity property of the Bellman operator

in the algorithm, we need an additional “anchor” assump-

tion, i.e., there exists a (small) set of state-actions that can

represent the remaining ones using convex combinations.

The “anchors” can be viewed as vertices of the state-action

space, and implies an intrinsic nonnegativity in the feature

space which is needed for monotonic policy improvement.

We show that the algorithm takes just enough samples per

update to keep the value/policy iterates within a sequence

of narrow confidence regions that monotonically improve

to the near-optimal solutions. It finds an ǫ-optimal policy

(regardless of the initial state) with probability at least 1− δ
using

Θ̃

(
K

(1− γ)3 · ǫ2 · log
1

δ

)

samples. It matches the information-theoretic lower bound

up to log(·) factors, thus the algorithm is nearly sample-

optimal. If γ = 0.99, this algorithm is (1 − γ)−4 = 108

times faster than the basic algorithm.

Our model, algorithms and analyses relate to previous liter-

atures on the sample complexity of tabular MDP, reinforce-

ment learning with function approximation, linear models

and etc. A detailed account for the related literatures is

given in Section 6. All technical proofs are given in the ap-

pendix. To our best knowledge, this work provides the first

sample-optimal algorithm and sharp complexity analysis

(up to polylog factors) for MDP with linear models.

2. Markov Decision Process, Features, Linear

Models

In this section we introduce the basics of Markov decision

process and the feature-based linear transition model.

2.1. Preliminaries

In a discounted Markov decision process (DMDP or MDP

for short), there is a finite set of states S, a finite set of

actions A. Let S = |S| and A = |A|. At any state s ∈ S,

an agent is allowed to play an action a ∈ A. She receives

an immediate reward r(s, a) ∈ [0, 1] after playing a at s,
and then the process will transition to the next state s′ ∈

S with probability P (s′|s, a), where P is the collection

of transition distributions. The full instance of MDP can

be described by the tuple M = (S,A, P, r, γ). The agent

would like to find a policy π : S → A that maximizes the

long-term expected reward starting from every state s, i.e.,

vπ(s) := E

[∞∑

t=0

γtr(st, π(st))|s0 = s

]

where γ ∈ (0, 1) is a discount factor. We call vπ ∈ R
S the

value function of policy π. A policy π∗ is said to be optimal

if it attains the maximal possible value at every state. In fact,

it is known (see e.g. Puterman (2014)) that there is a unique

optimal value function v∗ such that

∀s ∈ S : v∗(s) = max
π

vπ(s) = vπ
∗

(s).

A policy π is said to be ǫ-optimal if it achieves near-optimal

cumulative reward from any initial state, i.e.,

vπ(s) ≥ v∗(s)− ǫ, ∀ s ∈ S,
or equivalently ‖vπ − v∗‖∞ ≤ ǫ for short. We denote the

Bellman operator T : RS → R
S as

∀s ∈ S : [T v](s) = max
a∈A

[r(s, a) + γP (·|s, a)⊤v].

A vector v∗ is the optimal value of the DMDP if and only if

it satisfies the Bellman equation v = T v.

The Q-function of a policy π is defined as Qπ(s, a) =
r(s, a) + γ

∑
s′ P (s

′|s, a)vπ(s′), and the optimal Q-

function is denoted by Q∗ = Qπ∗

. We overload the no-

tation T to also denote the Bellman operator in the space of

Q-functions, i.e., T : RS×A → R
S×A such that

T Q(s, a) = r(s, a) + γP (·|s, a)⊤ max
a′

Q(·, a′).

A vector Q∗ ∈ R
S×A is the optimal Q-function if and only

if it satisfies the Bellman equation Q = T Q.
We useO,Ω, Θ to denote leading orders, and we use Õ,Ω̃, Θ̃
to omit polylog factors. We use . to denote “approximately

less than” by ignoring non-leading order terms, constant

and polylog factors.

2.2. Feature-based Linear Transition Model

We study Markov decision processes with structural knowl-

edges. Suppose that the learning agent is given a set of

K feature functions φ1, φ2, . . . , φK : S × A → R. The

feature φ maps the raw state and action (s, a) into the K-

dimensional vector

φ(s, a) = [φ1(s, a), φ2(s, a), . . . , φK(s, a)] ∈ R
K .

Suppose the feature vector φ(s, a) is sufficient to express the

future dynamics of the process conditioning on the current

raw state and action. In particular, we focus on a basic linear

model given below.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Definition 1 (Feature-based Linear Transition Model). Con-

sider a DMDP instance M = (S,A, P, r, γ) and a feature

map φ : S ×A → R
K . We say that M admits a linear

feature representation φ if for every s, a, s′,

P (s′|s, a) =
∑

k∈[K]

φk(s, a)ψk(s
′).

for some functions ψ1, . . . , ψK : S → R. We denote the

set of all such MDP instances asMtrans(S,A, γ, φ). We

denoteMtrans
K (S,A, γ) the set of all DMDP instances that

admits a K-dimensional feature representation.

Remark 1 (Independence of rewards). The feature rep-

resentations φ(s, a) in Definition 1 capture the transition

dynamics of the Markov process under different actions. It

is a form of structural knowledge about the environment. It

has nothing to do with the rewards r(s, a).

Remark 2 (Combining state features and action features).

In many settings one may be given a state-only feature map

φ1 and an action-only feature map φ2. In this case, one

can construct the joint state-action feature by φ(s, a) =
φ1(s)φ2(a). As long as the MDP admits a linear transition

model in both φ1, φ2, it also admits a linear representation

in the product feature φ = φ1 × φ2.

Remark 3 (Relation to soft state aggregation). The feature-

based linear transition model (Definition 1) contains a worth-

noting special case. When each φ(s, a) ∈ R
K and ψk ∈ R

S

is a probability density function, the linear transition model

reduces to a soft state aggregation model (Singh et al., 1995;

Duan et al., 2018). In the soft state aggregation model,

each state can be represented by a mixture of latent meta-

states, through aggregation and disaggregation distributions.

There would be K meta-states, which can be viewed as the

leading “modes” of the process. In contrast, our feature-

based transition model is much more general. Our feature

map φ can be anything as long as it is representative of the

transition distributions. It captures information about not

only the states but also the actions.

2.3. Relation to Linear Q-function Model

Linear models are commonly used for approximating value

functions or Q-functions using given features (sometimes

referred to as basis functions). The proposed linear transi-

tion model is closely related to the linear Q-function model,

where Qπ’s are assumed to admit a linear representation.

First it is easy to see that if the MDP admits a linear transi-

tion model using φ, the Q-functions admit a linear model.

Proposition 1. Let M ∈ Mtrans(S,A, γ, φ). Then Qπ ∈
Span(r, φ) for all π.

Next we show that the two models are essentially “equiva-

lent” in terms of expressibility. A similar conclusion was

made by Parr et al. (2008), which showed that a particular

solution obtained using the linear value model is equivalent

to a solution obtained using a linear transition model. Re-

call a notion of Bellman error that was firstly introduced in

(Munos & Szepesvári, 2008).

Definition 2 (Bellman Error). Let F ⊂ R
S×A be a class

of Q functions. Given the Bellman operator T , the Bellman

error of F is d(T F ,F) = supg∈F inff∈F ‖f − T g‖.

We show that the linear transition model is equivalent to the

linear Q-function model with zero Bellman error.

Proposition 2 (Equivalence to Zero Bellman Error). Let

M = (S,A, P, r, γ) be an MDP instance with the Bellman

operator T . Let φ : RS×A be a feature map, and let F =
Span(r, φ). If r ∈ F , then

d(T F ,F) = 0 if & only if M ∈Mtrans(S,A, γ, φ).

Suppose Qπ ∈ Span(r, φ) for all π’s. However, value-

iteration-based method would still fail if the Bellman opera-

tor T does not preserve the (r, φ) representation. In contrast,

if the Q-functions admit linear representations using φ but

the transition kernel P does not, the Bellman error can be

arbitrarily large. The Bellman error may be large even after

projection or function fitting - a common source of unstable

and oscillating behaviors in approximate dynamic program-

ming (Tsitsiklis & Van Roy, 1996; Munos & Szepesvári,

2008).

3. Information-Theoretic Sample Complexity

Let us study the feature-based MDP model (Definition 1). It

comes with the structural knowledge that each state-action

pair (s, a) can be represented by the feature vector φ(s, a) ∈
R

K . However, this model can not be parameterized by a

small number of parameters. The full transition model with

known feature map φ can not be specified unless all the

unknown parameters ψk(s
′), for s′ ∈ S, k ∈ [K] are given.

Its model size is S ×K, which can be arbitrarily large for

arbitrarily large S.

Given the state-action features, we aim to learn a near-

optimal parametrized policy using a small number of sam-

ples, which hopefully depends onK but not S. Suppose that

we are given a generative model (Kakade, 2003) where the

agent is able to query transition samples and reward from

any state-action pair (s, a) ∈ S × A. Such a generative

model is commonly available in simulation systems. To this

end, we ask how many samples are necessary to obtain an

approximate-optimal policy? Our first theorem provides a

firm answer.

Theorem 1 (Sample Complexity Lower Bound). Let M =
(S,A, P, r, γ) be an instance of DMDP, and let A be any

algorithm that queries sample transitions of M and outputs

a policy. Let πA,M,N be the output of A using N samples.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Then

inf
A

sup
M∈Mtrans

K (S,A,γ)

P

(
sup
s∈S

(v∗(s)− vπA,M,N

(s)) ≥ ǫ
)

≥ 1/3, if N = O

(
K

(1− γ)3 · ǫ2 · log ǫ−1

)
,

provided ǫ ≤ ǫ0 for some ǫ0 ≥ 0.

Theorem 1 suggests that, in order to solve the feature-based

MDP to precision level ǫ with probability at least 2/3, any

algorithm needs at least Ω̃

(
K

(1−γ)3·ǫ2

)
sample transitions

in the worst case.

In the tabular setting without any feature, the sample com-

plexity lower bound is known to be Ω(SA
(1−γ)3ǫ2) (Azar et al.,

2013). Our lower bound can be proved by constructing a

reduction from the feature-based model to a smaller-size

tabular MDP with K state-action pairs. In the reduction, the

features are constructed as indicator functions correspond-

ing to a K-partition of the state space. We postpone the

proof to the appendix.

4. A Basic Parametric Q-Learning Method

We develop a Q-learning algorithm for MDP admitting fea-

ture representations provided with a generative model.

4.1. Algorithm

Recall that phased Q-Learning (Kearns & Singh, 1999) takes

the form Q(s, a) ← r(s, a) + γ
m

∑m
i=1 maxa′ Q(s′i, a

′),
where s′i’s are sample states generated from P (· | s, a). In

the tabular setting, one needs to keep track of all the Q(s, a)
values.

Given the feature map φ : S × A → R
K , we parameterize

the Q-functions, value functions and policies using w ∈ R
K

by

Qw(s, a) := r(s, a) + γφ(s, a)⊤w, (1)

Vw(s) := max
a∈A

Qw(s, a), (2)

πw(s) := argmax
a∈A

Qw(s, a). (3)

A scalable learning algorithm should keep track of only

the parameters w, from which one can decode the high-

dimensional value and policy functions according to (1-3).

Algorithm 1 gives a parametric phased Q-learning method.

It queries state-action transitions and makes Q-learning-like

updates on the parameter w. Each iteration picks a small

set of state-action pairs K, and performs approximate value

iteration on K. The set K can be picked almost arbitrarily.

To obtain a convergence bound, we assume that the state-

action pairs in K cannot be too alike, i.e., the regularity

condition (4) holds for some value L > 0.

Assumption 1 (Representative States and Regularity of

Features). There exists a representative state-action set

K ⊂ S ×A with |K| = K and a scalar L > 0 such that

‖φ(s, a)TΦ−1
K ‖1 ≤ L, ∀ (s, a) (4)

where ΦK ∈ R
K×K is the collection of row feature vectors

φ(s, a) where (s, a) ∈ K and L ≥ 1.

Algorithm 1 Phased Parametric Q-Learning (PPQ-

Learning)

1: Input: A DMDPM = (S,A, P, r, γ) with a genera-

tive model

2: Input: Integer N > 0
3:

4: Initialize: R← Θ
[
logN
1−γ

]
, w ← 0 ∈ R

K ;

5: Repeat:

6: for t = 1, 2, . . . , R do

7: Pick a representative set K ⊂ S ×A satisfying (4).

8: Q← 0 ∈ R
K ;

9: for (s, a) ∈ K do

10: Obtain N
KR samples {s(j)} i.i.d. from P (·|s, a);

11: Q[(s, a)]← KR
N

∑N/KR
j=1 Π[0,(1−γ)−1][Vw(s

(j))];
12: ⊲ Π[a,b] projects a number onto [a, b]

13: end for

14: w ← Φ−1
K Q;

15: end for

16: Output: w ∈ R
K

4.2. Error Bound and Sample Complexity

We show that the basic parametric Q-learning method enjoys

the following error bound.

Theorem 2 (Convergence of Algorithm 1). Suppose As-

sumption 1 holds. Suppose that the DMDP instance M =
(S,A, P, r, γ) has an approximate transition model P̃ that

admits a linear feature representation φ (Defn. 1), such

that for some ξ ∈ [0, 1], ‖P (· | s, a)− P̃ (· | s, a)‖TV ≤ ξ,

∀ (s, a). Let Algorithm 1 takes N > 0 samples and outputs

a parameter w ∈ R
K . Then, with probability at least 1− δ,

‖vπw − v∗‖∞

≤ L ·
(√

K

N · (1− γ) + ξ

)
· poly log(NKδ

−1)

(1− γ)3 .

Remark 4 (Policy optimality guarantee). Our bound ap-

plies to vπw , i.e., the actual performance of the policy πw
in the real MDP. It is for the ℓ∞ norm, i.e., the policy is

ǫ-optimal from every initial state. This is the strongest form

of optimality guarantee for solving MDP.

Remark 5 (Approximation error due to model misspec-

ification). When the feature-based transition model is inex-

act up to ξ total variation, there is an approximation gap in

Sample-Optimal Parametric Q-Learning with Linear Transition Models

the policy’s performance O
[
L · ξ · poly log(NKδ−1)

(1−γ)3

]
. It sug-

gests that, even if the observed feature values φ(s, a) cannot

fully express the state and action, the Q-learning method can

still find approximate-optimal policies. The level of degra-

dation depends on the total-variation divergence between

the true transition distribution and its closest feature-based

transition model.

Remark 6 (Sample complexity of Algorithm 1). When

the MDP is fully realizable under the features, we have

ξ = 0. Then the number of samples needed for achieving ǫ
policy error is

Õ

[
KL2

(1− γ)7ǫ2
]
.

It is independent of size of the original state space, but de-

pends linearly on K. Its dependence on 1
1−γ matches the

tabular phased Q-learning (Kearns & Singh, 1999) which

has complexityO(SA
(1−γ)7ǫ2) (Sidford et al., 2018a). Despite

the fact that the MDP model has S ×K unknown parame-

ters, the basic parametric Q-learning method can produce

good policies even with small data. However, there remains

a gap between the current achievable sample complexity

(Theorem 2) and the lower bound (Theorem 1).

5. Sample-Optimal Parametric Q-Learning

In this section we will accelerate the basic parametric Q-

learning algorithm to maximize its sample efficiency. To do

so, we need to modify the algorithm in nontrivial ways in

order to take full advantage of the MDP’s structure.

5.1. Anchor States and Monotonicity

In order to use samples more efficiently, we need to leverage

monotonicity of the Bellman operator (i.e., T v1 ≤ T v2 if

v1 ≤ v2). However, when the Q function is parameterized

as a linear function in w, noisy updates on w may easily

break the pointwise monotonicity in theQ space. To remedy

this issue, we will impose an additional assumption to ensure

that monotonicity can be preserved implicitly.

Assumption 2 (Anchor State-Action Pairs). There exists a

set of anchor state-action pairs K such that for any (s, a) ∈
S × A, its feature vector can be represented as a convex

combination of the anchors {(sk, ak) | k ∈ K}:

∃{λk} : φ(s, a) =
∑

k∈K

λkφ(sk, ak),
∑

k∈K

λk = 1, λk ≥ 0.

The anchoring (sk, ak)’s can be viewed as “vertices” of the

state-action space. They imply that the transition kernel P
admits a nonnegative factorization, which can be seen by

transforming φ linearly such that each anchor corresponds

to a unit feature vector. This implicit non-negativity is a key

to pointwisely monotonic policy/value updates.

The notion of “anchor” is a natural analog of the anchor

word condition from topic modeling (Arora et al., 2012) and

nonnegative matrix factorization (Donoho & Stodden, 2004).

A similar notion of “anchor state” has been studied in the

context of soft state aggregation models to uniquely identify

latent meta-states (Duan et al., 2018). Under the anchor

assumption, without loss of generality, we will assume that

φ’s are nonnegative, each φ(s, a) is a vector of probabilities,

and there are K anchors with unit feature vectors.

5.2. Achieving The Optimal Sample Complexity

We develop a sample-optimal algorithm which is imple-

mented in Algorithm 2. Let us explain the features that

enable it to find more accurate policies. Some of the ideas

are due to (Sidford et al., 2018b;a), where they were used to

develop fast solvers for the tabular MDP.

Parametrization. For the purpose of preserving monotonic-

ity, Algorithm 2 employs a new parametric form. It uses a

collection of parameters θ = {w(i)}Zi=1 instead of a single

vector, with Z = Õ(1
1−γ). The parameterized policy and

value functions take the form

Vθ(s) := max
h∈[Z]

max
a∈A

(
r(s, a) + γφ(s, a)⊤ · w(h)

)
and

πθ(s) ∈ argmax
a∈A

max
h∈[Z]

(
r(s, a) + γφ(s, a)⊤ · w(h)

)
. (5)

Given θ, one can compute Vθ(s), πθ(s) by solving an one-

step optimization problem. If a takes continuous values, it

needs to solve a nonlinear optimization problem.

Computing confidence bounds. In Step 13 and Step 18,

the algorithm computes confidence bounds ǫ(i,j)’s for the

estimated values of PVθ. These bounds tightly measure

the distance from Vθ to the desired solution path, accord-

ing to probaiblistic concentration arguments. With these

bounds, we can precisely shift our estimator downwards so

that certain properties would hold (e.g. monotonicity to be

explained later) while not incurring additional error.

Monotonicity preservation. The algorithm guarantees that

the following condition holds throughout:

Vθ ≤ Tπθ
Vθ, pointwise.

We call this property the monotonicity property, which to-

gether with monotonicity of the Bellman operator guaran-

tees that (by an induction proof)

Vθ ≤ Tπθ
Vθ ≤ T 2

πθ
Vθ ≤ · · · ≤ T ∞

πθ
Vθ = vπθ ≤ v∗,

pointwise.

Algorithm 2 uses two algorithmic tricks to preserve the

monotonicity property throughout the iterations. First, the

parametric forms of Vθ and πθ (eq.(5)) take the maximum

across all previous parameters (indexed by h = (i, j)). It

Sample-Optimal Parametric Q-Learning with Linear Transition Models

guarantees that Vθ is monotonically improving through-

out the outer and inner iterations. Second, the algorithm

shifts all the estimated Vθ downwards by a term corre-

sponding to its confidence bound (last equation of Line

13 and Line 18 of Algorithm 2). As a result, the esti-

mated expectation is always smaller than the true expected

value. By virtue of the nonnegativity (due to Assumption

2), the estimate, φ(s, a)⊤w(i,j), of the exact inner product

P (·|s, a)⊤V (i,j−1) for arbitrary (s, a) is also shifted down-

wards. Then we have

φ(s, a)⊤w(i,j) ≤ P (·|s, a)⊤V (i,j−1) ≤ P (·|s, a)⊤V (i,j).

By maximizing the lefthandside over a, we see that the

monotonicity property is preserved inductively. See Lemma

8 for a more detailed proof.

Variance reduction. The algorithm uses an outer loop and

an inner loop for approximately iterating the Bellman op-

erator. Each outer iteration performs pre-estimation of a

reference vector PVθ(i,0) (Step 13), which is used through-

out the inner loop. For instance, let θ(i,j) be the parameters

at outer iteration i and inner iteration j. To obtain an en-

try Q(i,j)(s, a) of the new Q-function, we need to estimate

P (·|s, a)⊤Vθ(i,j−1) with sufficient accuracy, so we have

P (·|s, a)⊤Vθ(i,j−1) = P (·|s, a)⊤(Vθ(i,j−1) − Vθ(i,0))

+ P (·|s, a)⊤Vθ(i,0) .

Note that the reference P (·|s, a)⊤Vθ(i,0) is already approxi-

mated with high accuracy in Step 13. This allows the inner

loop to successively refine the value and policy, while each

inner iteration uses a smaller number of sample transitions

to estimate the offset P (·|s, a)⊤(Vθ(i,j−1) − Vθ(i,0)) (Step

18).

Putting together the preceding techniques, Algorithm 2 per-

forms carefully controlled Bellman updates so that the esti-

mated value-policy functions monotonically improve to the

optimal ones. The algorithm contains R′ = Θ(log[ǫ−1(1−
γ)−1]) many outer loops. Each outer loop (indexed by i)
starts with a policy ‖v∗ − Vθ(i,0)‖∞ . H/2i and ends with

a policy ‖v∗ − Vθ(i+1,0)‖∞ . H/2i+1.The algorithm takes

multiple rounds of mini-batches, where the sample size of

each mini-batch is picked just enough to guarantee the ac-

cumulation of total error is within ǫ. The algorithm fully

exploits the monotonicity property of the Bellman operator

as well as the error accumulation in the Markov process (to

be explained later in the proof outline).

5.3. Optimal Sample Complexity Guarantee

In this section, we analyze the sample complexity of the

algorithm provided in the last section.

Theorem 3 (Near-Optimal Sample Complexity). Suppose

M = (S,A, P, r, γ) is an MDP instance admitting the

feature representation φ : S × A → R
K . Suppose that

Assumption 2 holds. Let δ, ǫ ∈ (0, 1) be parameters. Then

Algorithm 2 takes

N = Θ

[
K

(1− γ)3 · ǫ2 · log
4/3 K

ǫδ(1− γ) · log
2 1

ǫ(1− γ)

]

samples and outputs θ such that πθ is ǫ-optimal from every

initial state with probability at least 1− δ.

Theorem 3 is proved through a series of lemmas, which we

defer to the appendix. Here we sketch the key ideas.

Proof Sketch. Let H = 1
1−γ for short. Each outer-loop

iteration decreases the policy error upper bound by at least

half. Suppose θ(i,0) is the parameter when the ith outer

iteration begins, we expect ‖Vθ(i,0) − v∗‖∞ ≤ H/2i, with

high probability. Therefore, after R′ = log(H/ǫ) iterations,

we expect ‖Vθ(R′,0) − v∗‖∞ ≤ H/2R
′

= O(ǫ).

Now we analyze how many samples are sufficient within one

outer-loop iteration. We show that the final error is mainly

due to ǫ(i,0), which comes from estimating the reference

function Vθ(i,0) (Line 13). This error is exemplified in the

inner loop since Vθ(i,0) is used repeatedly (line 18).

A key step of the proof is to show that the error contributed

by ǫ(i,0) throughout the inner-loop iterations is small. By

using the monotonicity property, we can show that

ǫ(i,0)(s, a) .
√
σv∗(s, a)/m, ∀ (s, a),

where . denotes “approximately less than” (ignoring non-

leading terms), and σv∗ : S×A → R is an intrinsic variance

function of the MDP:

σv∗(s, a) := Vars′∼P (·|s,a)

[
v∗(s′)

]
.

By using the monotonicity property, we prove by induction:

v∗ − vπθ(i,R) ≤ v∗ − Vθ(i,R) . γPπ∗

(v∗ − Vθ(i,R−1)) + ǫ
(i,0)
π∗

. . . . ≤ γR(v∗ − Vθ(i,0)) +

R∑

i=0

γi(Pπ∗

)iǫ
(i,0)
π∗

. (I − γPπ∗

)−1ǫ
(i,0)
π∗

. (I − γPπ∗

)−1
√
σπ∗

v∗ /
√
m, pointwise w.h.p.,

where σπ∗

v∗ (s) = σv∗(s, π∗(s)), ǫ
(i,0)
π∗ (s) = ǫ(i,0)(s, π∗(s)),

and m is the mini-batch size. Now we have found a connec-

tion between the error accumulation of the algorithm and

the intrinsic variance of the MDP. By a form of conditional

law of total variance of the Markov process (Lemma 7) and

using the convex combination property (Assumption 2), one

has

(I − γPπ∗

)−1
√
σπ∗

v∗ = Õ
(√
H3

)
· 1.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Algorithm 2 Optimal Phased Parametric Q-Learning (OPPQ-Learning)

1: Input: A DMDPM = (S,A, P, r, γ) with anchor state-action pairs K; feature map φ : S ×A → R;

2: Input: ǫ, δ ∈ (0, 1)
3: Output: θ ⊂ R

K with |θ| = Θ[(1− γ)−1 log2 ǫ−1]
4:

5: Initialize: R′ ← Θ(log[ǫ−1(1− γ)−1]), R← Θ[R′(1− γ)−1] ⊲ initialize the numbers of iterations

6: {w(i,j), ǫ(i,j), w(i,j)}i∈[0,R′],j∈[0,R] ⊂ R
K as 0 vectors ⊲ initialize parameters

7: m← C · 1
ǫ2 ·

log(R′RKδ−1)4/3

(1−γ)3 , ⊲ mini-batch size for outer loop

m1 ← C · log(R
′RKδ−1)

(1−γ)2 for some constant C; ⊲ mini-batch size for inner loop

8: θ(0,0) ← {0} ⊂ R
K ⊲ initialize the output to contain a single 0-vector

9: Iterates:

10: ⊲ Outer loop

11: for i = 0, 1, . . . , R′ do

12: for each k ∈ [K] do

13: Obtain state samples x
(1)
k , x

(2)
k , . . . , x

(m)
k ∈ S from P (·|sk, ak) for (sk, ak) ∈ K. Let

w(i,0)(k)←
1

m

m∑

ℓ=1

Vθ(i,0)(x
(ℓ)
k), z(i,0)(k)←

1

m

m∑

ℓ=1

V 2
θ(i,0)(x

(ℓ)
k)

⊲ empirical esitimate of PKVθ(i,0) and PKV
2
θ(i,0)

σ(i,0)(k)← z(i,0)(k)− (w(i,0)(k))2

⊲ empirical esitimate of variance PKV
2
θ(i,0) − (PKVθ(i,0))

2

ǫ(i,0)(k)← Θ
[√

log[R′RKδ−1] · σ(i,0)(k) ·m−1 + log[R′RKδ−1](1− γ)−1/m3/4
]

⊲ estimate of the confidence bound of the emprical estimator w(i,0)

w(i,0)(k)← max
{
0, min

{
w(i,0)(k)− ǫ(i,0)(k), (1− γ)−1}} ⊲ shift and clip the estimate

14: end for

15: ⊲ Inner loop

16: for j = 1, 2, . . . , R do

17: for each k ∈ [K] do

18: Obtain state samples x
(1)
k , x

(2)
k , . . . , x

(m1)
k ∈ S from P ′(·|sk, ak) for (sk, ak) ∈ K. Let

w(i,j)(k)←
1

m1

m∑

ℓ=1

(
Vθ(i,j−1)(x

(ℓ)
k)− Vθ(i,0)(x

(ℓ)
k)

)
+ w(i,0)(k) ⊲ empirical esitimate of PKVθ(i,j−1)

ǫ(i,j)(k)← ǫ(i,0)(k) + Θ(1− γ)−12−i
√

log(RR′Kδ−1)/m1

⊲ approximate the confidence bound of PKVθ(i,j−1)

w(i,j)(k)← max
{
0, min

{
w(i,j)(k)− ǫ(i,j)(k), (1− γ)−1}} ⊲ shift and clip the estimate

19: end for

20: θ(i,j) ← θ(i,j−1) ∪ {w(i,j)} ⊲ attach the newly estimated parameter to θ

21: end for

22: θ(i+1,0) ← θ(i,R) ⊲ prepare the next outer loop

23: end for

24: Return θ(R
′,R)

Therefore the inner loop accumulates error Õ(
√
H3/m),

so m = O(H3) = O((1 − γ)−3) number of samples is

enough.

Finally, we prove by induction that all the desired events

happen with sufficiently high probability, so that the iter-

ates improve monotonically to the optimal solution within a

sequence of carefully controlled error bars. The total num-

ber of outer iterations is nearly constant, therefore the total

sample size needed scales with O((1− γ)−3).

Remark 7 (Sample Optimality of Algorithm 2). Theo-

rem 3 matches the information-theoretic lower bound of

Theorem 1 up to polylog factors with respect to all parame-

ters S,A,K, ǫ, 1− γ (note that Theorem 1 still holds under

the anchor restriction). Therefore it is a sample-optimal

method for solving the feature-based MDP. No other method

can outperform it by more than polylog factors.

Remark 8 (About Anchor State-Actions). The proof of

Theorem 3 relies on the anchor assumption. The monotonic-

Sample-Optimal Parametric Q-Learning with Linear Transition Models

ity property can be preserved because the anchor state-action

pairs imply an implicit non-negative factorization of the tran-

sition kernel. The convex combination property of anchor

state-actions is used in analyzing the error accumulation,

needed by the conditional law of total variance. Anchor

condition is commonly believed to be a key to identifying

nonnegative models; see for example (Donoho & Stodden,

2004). We believe this is the first observation that it also

relates to sample-optimal reinforcement learning.

Note that it is possible that the number of anchors is greater

than the number of features K, then one can append new

(dependent) features to make them equal. In this sense As-

sumption 2 always holds and the actual sample complexity

depends on the number of anchors (instead of features). In

addition, the anchors can be pre-computed as long as the φ
feature map is known.

Remark 9 (Significance of (1−γ)−4 Improvement). Let

us compare the sample complexities of Algorithms 1, 2.

They differ by a multiplicative gap (1− γ)−4. Recall that

γ ∈ (0, 1) is the discount factor. One can view (1− γ)−1 =
1 + γ + γ2 + · · · as an approximate horizon. If γ = 0.99,

the MDP essentially has 100 time steps, and

(1− γ)−4 = 108,

i.e., Algorithm 2 is 108 times faster. It only needs a tiny

portion (1/108) of the samples as needed by the basic algo-

rithm. We see that clever algorithmic usage of monotonicity

and variance structures of the MDP saves big.

6. Related Literatures

There is a body of works studying the sample complexity of

tabular DMDP (i.e., the finite-state finite-action case without

structural knowledge). Sample-based algorithms for learn-

ing value and policy functions have been studied in Kearns

& Singh (1999); Kakade (2003); Singh & Yee (1994); Azar

et al. (2011b; 2013); Sidford et al. (2018b;a) and many oth-

ers. Among these papers, Azar et al. (2013) obtains the first

tight sample bound for finding an ǫ-optimal value function,

Sidford et al. (2018a) obtains the first tight sample bound

for finding an ǫ-optimal policy; both complexities are of the

form Õ[|S||A|(1− γ)−3]. Lower bounds have been shown

in Azar et al. (2011a); Even-Dar et al. (2006) and Azar et al.

(2013). Azar et al. (2013) gives the first tight lower bound

Ω[|S||A|(1− γ)−3].

Our result is relevant to the large body of works using lin-

ear models and basis functions to approximate value and Q

functions. For instance, Tsitsiklis & Van Roy (1997); Nedić

& Bertsekas (2003); Lagoudakis & Parr (2003); Melo et al.

(2008); Parr et al. (2008); Sutton et al. (2009); Lazaric et al.

(2012); Tagorti & Scherrer (2015) and Maei et al. (2010)

studies both policy evaluation and optimization by assum-

ing values are from a linear space. Tsitsiklis & Van Roy

(1997) studied the convergence of the temporal-difference

learning algorithm for approximating the value function for

a fixed policy. Nedić & Bertsekas (2003) studies the policy

evaluation problem using least square. Parr et al. (2008)

studies the relationships of using linear functions to repre-

sent values and to represent transition models. Melo et al.

(2008) studies the almost sure convergence of Q-learning-

like methods using linear function approximation. Sutton

et al. (2009) shows off-policy temporal-difference learning

is convergent with linear function approximation. These

earlier works primarily focused on convergence using lin-

ear function approximation, without analyzing the sample

complexity.

Fitted value iteration (VI) applies to more general function

approximators of the value function (Munos & Szepesvári,

2008; Antos et al., 2008a; Farahmand et al., 2010; An-

tos et al., 2008b), where v is approximated within a low-

dimensional function space F . They have shown that the

error of the fitted-VI is affected by the Bellman error of the

space F . Their result applies to a general set of functional

spaces, where the statistical error depends on a polynomial

of 1/ǫ, 1/(1 − γ) and the intrinsic dimension of the func-

tional space. It appears that their result works for the ℓp
norm of the policy error, which is proportional to ǫ−Θ(p)

with high probability. Their result does not apply to the ℓ∞
policy error which is the focus of the current paper.

More recently, Lazaric et al. (2012); Tagorti & Scherrer

(2015) analyzes the sample complexity of temporal differ-

ence least square for evaluating a fixed policy. Recently, a

work by Jiang et al. (2017) studies the case when a form of

Bellman error’ is decomposable and has a small rank. They

show that the number of trajectories needed depends on the

Bellman rank rather than the number of states. Chen et al.

(2018) proposes a primal-dual method for policy learning

that uses linear models and state-action features for both the

value and state-action distribution. To our best knowledge,

there is no existing result that solves the linear-model MDP

with provable-optimal sample complexity.

7. Remarks

The paper studies the information-theoretic sample com-

plexity for solving MDP with feature-based linear transition

model. It provides the first sharp sample complexity upper

and lower bounds for learning the policy using a genera-

tive model. It also provides a sample-optimal parametric Q-

learning method that involves computing confidence bounds,

variance reduction and monotonic improvement. We hope

that establishing sharp results for the basic linear model

would shed lights on more general structured models and

motivate faster solutions.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Acknowledgment

We thank Zhuoran Yang for pointing out a flaw in the initial

proof of Proposition 2. We thank the anonymous reviewers

for the helpful comments.

References

Antos, A., Szepesvári, C., and Munos, R. Fitted Q-iteration

in continuous action-space mdps. In Advances in neural

information processing systems, pp. 9–16, 2008a.

Antos, A., Szepesvári, C., and Munos, R. Learning

near-optimal policies with bellman-residual minimiza-

tion based fitted policy iteration and a single sample path.

Machine Learning, 71(1):89–129, 2008b.

Arora, S., Ge, R., and Moitra, A. Learning topic models–

going beyond svd. In Foundations of Computer Science

(FOCS), 2012 IEEE 53rd Annual Symposium on, pp. 1–

10. IEEE, 2012.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen,

H. Reinforcement learning with a near optimal rate of

convergence. 2011a.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen,

H. Speedy q-learning. In Advances in neural information

processing systems, 2011b.

Azar, M. G., Munos, R., and Kappen, H. J. Minimax pac

bounds on the sample complexity of reinforcement learn-

ing with a generative model. Machine learning, 91(3):

325–349, 2013.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-

inforcement learning in rich-observation mdps using spec-

tral methods. arXiv preprint arXiv:1611.03907, 2016.

Bertsekas, D. P. Dynamic programming and optimal control,

volume 1. Athena scientific Belmont, MA, 2005.

Chen, Y., Li, L., and Wang, M. Scalable bilinear pi learning

using state and action features. In Proceedings of the

35th International Conference on Machine Learning, pp.

834–843, Stockholmsmssan, Stockholm Sweden, 10–15

Jul 2018. PMLR.

Donoho, D. and Stodden, V. When does non-negative matrix

factorization give a correct decomposition into parts? In

Advances in neural information processing systems, pp.

1141–1148, 2004.

Duan, Y., Ke, Z. T., and Wang, M. State aggregation

learning from markov transition data. arXiv preprint

arXiv:1811.02619, 2018.

Even-Dar, E., Mannor, S., and Mansour, Y. Action elimina-

tion and stopping conditions for the multi-armed bandit

and reinforcement learning problems. Journal of machine

learning research, 7(Jun):1079–1105, 2006.

Farahmand, A.-m., Szepesvári, C., and Munos, R. Error

propagation for approximate policy and value iteration.

In Advances in Neural Information Processing Systems,

pp. 568–576, 2010.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,

and Schapire, R. E. Contextual decision processes with

low bellman rank are pac-learnable. In Proceedings of

the 34th International Conference on Machine Learning-

Volume 70, pp. 1704–1713. JMLR. org, 2017.

Kakade, S. M. On the sample complexity of reinforcement

learning. PhD thesis, University of London London,

England, 2003.

Kearns, M. J. and Singh, S. P. Finite-sample convergence

rates for q-learning and indirect algorithms. In Advances

in Neural Information Processing Systems, pp. 996–1002,

1999.

Lagoudakis, M. G. and Parr, R. Least-squares policy it-

eration. Journal of machine learning research, 4(Dec):

1107–1149, 2003.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Finite-

sample analysis of least-squares policy iteration. Jour-

nal of Machine Learning Research, 13(Oct):3041–3074,

2012.

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton,

R. S. Toward off-policy learning control with function

approximation. In ICML, pp. 719–726, 2010.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. An analysis

of reinforcement learning with function approximation.

In Proceedings of the 25th international conference on

Machine learning, pp. 664–671. ACM, 2008.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted

value iteration. Journal of Machine Learning Research, 9

(May):815–857, 2008.

Nedić, A. and Bertsekas, D. P. Least squares policy evalua-

tion algorithms with linear function approximation. Dis-

crete Event Dynamic Systems, 13(1-2):79–110, 2003.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and

Littman, M. L. An analysis of linear models, linear

value-function approximation, and feature selection for

reinforcement learning. In Proceedings of the 25th inter-

national conference on Machine learning, pp. 752–759.

ACM, 2008.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Puterman, M. L. Markov decision processes: discrete

stochastic dynamic programming. John Wiley & Sons,

2014.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-

optimal time and sample complexities for solving markov

decision processes with a generative model. In Bengio, S.,

Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,

N., and Garnett, R. (eds.), Advances in Neural Informa-

tion Processing Systems 31, pp. 5192–5202, 2018a.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced

value iteration and faster algorithms for solving markov

decision processes. In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 770–787. Society for Industrial and Applied Mathe-

matics, 2018b.

Singh, S. P. and Yee, R. C. An upper bound on the loss from

approximate optimal-value functions. Machine Learning,

16(3):227–233, 1994.

Singh, S. P., Jaakkola, T., and Jordan, M. I. Reinforce-

ment learning with soft state aggregation. In Advances

in neural information processing systems, pp. 361–368,

1995.

Sutton, R. S., Maei, H. R., and Szepesvári, C. A convergent

o(n) temporal-difference algorithm for off-policy learn-

ing with linear function approximation. In Advances in

neural information processing systems, pp. 1609–1616,

2009.

Tagorti, M. and Scherrer, B. On the rate of convergence and

error bounds for LSTD(λ). In International Conference

on Machine Learning, pp. 1521–1529, 2015.

Tsitsiklis, J. N. and Van Roy, B. Feature-based methods for

large scale dynamic programming. Machine Learning,

22(1-3):59–94, 1996.

Tsitsiklis, J. N. and Van Roy, B. Analysis of temporal-

diffference learning with function approximation. In

Advances in neural information processing systems, pp.

1075–1081, 1997.

