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SAMPLE QUANTILES OF ADDITIVE RENEWAL REWARD PROCESSES 

ANGELOS DASSIOS,* London School of Economics 

Abstract 

The distribution of the sample quantiles of random processes is important for the 
pricing of some of the so-called financial 'look-back' options. In this paper a representa- 
tion of the distribution of the z-quantile of an additive renewal reward process is obtained 
as the sum of the supremum and the infimum of two rescaled independent copies of the 
process. This representation has already been proved for processes with stationary and 
independent increments. As an example, the distribution of the r-quantile of a randomly 
observed Brownian motion is obtained. 
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1. Introduction 

Look-back options are becoming increasingly important in mathematical finance. 
They are also called path-dependent options. An important example is cr-quantile (also 
called a-percentile) options. In order to define them, let ( Y(t), t 2 0) denote the price of 
the underlying asset. For 0 < cr <1, define the cr-quantile of Y(t), M,(a, t) as 

My(a, t) =inf ix : C 1(Y(s) 5 x)ds > crt 

The cr-quantile is the level at which the process spends a proportion of size at least cr of 
its time below that level and a proportion of size at least 1-a above. Pricing such options 
involves calculating E*(h(My(a, t,)) I &,),where the expectation is calculated under a 
changed measure, h is a known function, 0 5 t ,< t, are fixed times and & is the filtration 
generated by Y(t). The problem is usually studied for a general measurable function h. 
Two examples that are interesting in practice are h(x) =(x -b)+ (associated with the so- 
called call option) and h ( ~ )  =(b -x)+ (associated with the so-called put option). This in 
general involves finding the distribution of my(^, t). 

This option was first introduced by Miura [12]. One of the advantages of quantile 
options over other path-dependent options is that the problem of finding the distribution 
of the a-quantile of a stochastic process is equivalent to finding the distribution of the 
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quantile of any monotone function of the process. Usually, such a function is the 
natural logarithm. The problem of pricing an a-quantile option, when X ( t )=l n (Y( t ) )is 
a Brownian motion with a drift, has been solved by Akahori [ l ]and Dassios [3].Also, 
for the driftless case, see [15].In [3]the following representation for the distribution of 
the quantiles of a Brownian motion with a drift was obtained. 

Proposition 1. Let X ( t )  = a B ( t )  +p t ,  where ,uE R, a E R+ and ( B ( t ) ,  t >= 0 )  is a stan- 
dard Brownian motion with B(O)=O. Furthermore, let X"'(t) and X")(t)  be independent 
copies of X( t ) .  Then, 

(1.1) ~ ~ ( c r ,  + inf X ' ~ ) ( S ) .t )  "Z' sup ~ " ' ( s )Osssar 0 4 s < ( l  -a) !  

This decomposition provides us with a closed form expression for the distribution of 
M(cr, t ) ,  since the distributions of the maximum and the minimum of a Brownian motion 
with drift are easy to obtain using well established results on hitting times. Proposition 
1 was proved with the help of the Feynman-Kac formula. Embrechts et al. [8] gave two 
further proofs of the result. 

An interesting problem is finding the distribution of an a-quantile of other stochastic 
processes. Embrechts and Samorodnitsky [9]studied the tail behaviour of the quantiles 
of a class of heavy tailed stochastic processes. In [4],the following generalisation of 
Proposition 1 can be found. 

Proposition 2. Let X ( t )  be a process with stationary and independent increments and 
paths in D([O, so)) (the paths of X ( t )  are right continuous with left limits; see p. 307 of 
[2]). Furthermore, let X"'(t) and XC'(t)  be independent copies of X( t ) .  Then, 

Mx(a,  t )  ( 'Z) sup X")(s)+ inf X(2'(s). 
O<\Ja t  Osss(1-a) t  

In fact, Embrechts et al. [8] and Dassios [3]have obtained generalised versions of 
Propositions 1 and 2 respectively that include a similar representation for the joint 
distribution of M X ( g ,  t )  and X(t) .  Furthermore, Wendel [14]derived a discrete analogue 
of this representation in discrete time for sums of exchangeable random variables. We 
will obtain the version for sums of i.i.d. variables as a corollary of our results. 

We will now define the process whose quantiles we will examine in this paper. Let 
( ( T , , Y,), i = 1, 2,...) be a sequence of independent and identically distributed pairs of 
random variables on a probability space (Q, 9,Pr) taking values in R+ x [W and having 
joint distribution function G ( u ,  y) .  Let 

and define the renewal process ( N ( t ) ,  t >= 0 )  by 

N ( t )  = sup { n :S, 5 t }  
n =O.I.2,-

We define ( X ( t ) ,  t 2 0 )  by 
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It should be noted that X ( t )  is semi-Markov, but not a Markov process. However, the 
pair ( X ( t ) ,  U( t ) ) ,  where U ( t )= t -S,,,,,, is the time elapsed since the last jump in X( t ) ,  
is a Markov process. It can also be formulated as a piecewise deterministic Markov 
process as defined by Davis [6],  [7].  For details on how to formulate ( X ( t ) ,  U( t ) )  as a 
piecewise deterministic Markov process see [5],p. 199. We call our process a renewal 
reward process, as in [13],p. 77-83. 

X ( t )  can be used as an alternative model for the price of securities in mathematical 
finance. In some respects it is more realistic than a Brownian motion as the price only 
changes at specific points in time where a transaction occurs or some information 
becomes available instead of changing continuously. It is also closely connected to the 
insurance model described by Dassios and Embrechts [5],p. 198. 

We will organise this paper as follows. In Section 2 we will state and prove an important 
analytical result on the solution of an integral equation. As a corollary, we will derive 
a decomposition for the a-quantile of the sums of i.i.d. random variables. In Section 3 
we will prove our main result, which is that Proposition 2 is true for X ( t )  as defined 
above. Finally, in Section 4 we will apply our results to an example. We will obtain the 
distribution of the a-quantile of randomly observed Brownian motion. 

2. An integral equation 

We start by obtaining equations for appropriate functionals of the maximum and the 
minimum of sums of independent and identically distributed random variables. It is easy 
to check that the following result is true. 

Lemma 1 .  Let Y , ,  Y,;.. be a sequence of independent and identically distributed 
random variables with distribution function F. Let Xo =0 and Xn =Cy=, Y, for n =1,2; ... 
Furthermore let 0 5 @ < 1 and define 

and 

(2.2) 

Then H,(x;  $) satisfies the equation 

and H2(x; $) satisfies the equation 
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Remarks. 
1. Equations (2.3) and (2.4) are Wiener-Hopf-type equations like the ones described 

in [lo], Section XII.3, with a defective probability measure. 
2. From their definition we can see that H,(x; $) and H2(x; $) are distribution func- 

tions. Hl(x; $) is the distribution function of max,,,,, (X,)and is the distribution func- 
tion of min,,,,, (X,), where N is a random variable independent of Y,, Y2,... with a 
geometric distribution; i.e. Pr(N= n) =(1 -$)$", n =0, 1, 2;.. . 

We will now prove the main result of this section. 

Lemma 2. Let D(R) be the space of bounded real valuedfunctions of R that are right 
continuous with left limits existing for all points and let GI(x), G2(x) be distribution 
functions. Then, for all 0 <= $< 1 and 0 5 0<1, the equation 

has a unique solution H(x; $, 0 )  in D(R). Furthermore 

where HI(x; $) is the unique solution of 

in D(R) and H2(x; 0 )  is the unique solution of 

Proof. Define the metric d(H, K) in D(R), by 

Also, define T :D (R) +D (R), by 
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Observe that for 0 5 $ <1 and 0 S4 < 1, T is a contraction mapping on D(R), using the 
metric defined by (2.9). Then by the fixed point theorem for contraction mappings, (2.5) 
has a unique solution. Moreover, (2.7) and (2.8) have unique solutions, since they are 
special cases of (2.5) for q =0 and $=0 respectively. By Lemma 1 and the second remark 
following its proof, these solutions, HI(x; $) and H2(x; 4), are distribution functions and 
let U and V be random variables on a suitable probability space with distribution 
functions Hl(x; $) and H,(x; 4) respectively. Let H(x; $, 4) be the convolution of 
HI(x; $) and H,(x; 4), as defined by (2.6). We will prove that H(x; $, 4)  satisfies (2.5) 
and therefore is its unique solution in D(R). 

Remark 1. Observe that H(x; $, 4) =Pr(U+ V 5 x). Now, suppose x 2 0, and condi- 
tion on V=v, then Pr(U+ V 5 x I V= v) =Hl(x -v; $). Note that Pr(V 5 0) = 1 and so 
we only need to consider c 5 0, in which case x - u  2 0 and from (2.7) we then get that 

Averaging over all non-positive v, we get that for x 2 0, 

Similarly for x<O, condition on U= u; then Pr(U+ V s  x I U= u) =H,(x-u; $). Note 
that Pr(U 2 0) = 1 and so we only need to consider u 2 0, in which case x -u < 0 and 
from (2.8) we then get that 

Averaging over all non-negative u ,  we get that for x < 0, 

Combining (2.1 1) and (2.13) we see that H(x; $, 4)  satisfies (2.5) and therefore is its 
unique solution in D(R). 

A corollary of this lemma is the following result on the quantiles of sums of i.i.d. 
random variables. 
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Corollary 3. Let Y , ,  Y,,... be a sequence of independent and identically distributed 
random variables with distribution function F. Let Xo=O and Xn=C1=, Y, for n= 1 ,  2;.. . 
Furthermore let 

(So  M0,, denotes the smallest of Xo, XI;..,  Xn, M I , ,  the second smallest and so on, with 
Mn,, denoting the largest). Let also Xj", X;",... and XJ2', X:'),... be two independent copies 
of the sequence Xo, XI ; .  .. Then 

(2.15) M,,, ('2max (X,(")+ min (X,(2)) .  
O < r j ]  Osisn-j 

Proof. Consider the occupation time Ln(x )=X1=, 1(X,<= x )  and let 

where 0 54 < 1 and 0 5 y <114. Using the fact that Y , ,  Y,;.. are independent and there- 
fore exchangeable, condition on Y l=y and observe that 

Averaging over all values of y we therefore get 

Now, note that 
n 

E(yLIJy))= 1 - ( I  -y) zy Pr(Ln(x)>j ) ,  ,=o 

and therefore 
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Setting $ = >j}and { M j , J + kq4 and observing that the events { L J + k ( ~ )  2 X }  are identical, 
we can rewrite (2.17) as 

(2.18) 

where 

From (2.18) and (2.16), we get 

From Lemma 2 we have that 

where Hl (x )is the unique solution in D(R)  of 

and H2(x)is the unique solution in D(R)  of 

From Lemma 1 we see that 
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x 

H,(x) = ( 1  -$I) $Ik Pr i min (X,)5 x r . k = O  Ojljk 

From (2.19), (2.21), (2.22), (2.23) and the uniqueness of the relevant expansion we 
conclude that 

( law)
Mj . j+k= max (X,"') + min (X,'2'), 

O < ~ j j  O j i < k  

for all j 2 0 and k 2 0. This concludes the proof of the corollary. 

Remarks. 
1. This result has already been proved somewhat differently by Wendel [14]. 
2. A similar decomposition to (2.15) can be obtained for the joint distribution of M,,, 

and X, (see [4]). 
3. Note that for the proof of the corollary GI= G,= F. The more general situation of 

Lemma 2 will be applicable to the result of the next section. 

3. Sample quantiles of the semi-Markov process 

In this section we will prove the main result of the paper. X ( t )  is defined as in the 
introduction, X ( t )= c::;' Y, for N ( t ) > 0 and X ( t )= 0 for N ( t )= 0. Recall that the pairs 
(T,, YJ, i = 1, 2;.. are i.i.d. random variables on a probability space (a,F,Pr) and have 
joint distribution function G ( u ,  y) ,  where T I ,T,;.. are the renewal intervals of the 
renewal process N ( t ) .  

Theorem 1. Let X ( t )  be deJined by (1.2). Furthermore, deJine 

Let X")(t) ,  X'2'(t) be independent copies of X( t ) ;  then 

(3.2) M,(E, t )  ''2sup ~ ( " ( s )+ inf ~ ' ~ ' ( s ) .
O j s d r r  O < s $ ( 1 - a ) !  

Proof. Define the occupation time 

and 

where f l  > 0 and y > -f l .  Conditioning on T I= u and Y l= y ,  we get 
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Averaging over all u and y we get 

where, for p > 0, 

and 

1 
( ) = e-YdG(u, z ) .  

R + x ( - x . 1 )  

Clearly C(y;  p) is a distribution function in y for fixed p. Now, note that 

and therefore 

Observe that there is a set R, C R, with Pr(R,)= 1 such that for all oE R,, L(x, t )  is 
piecewise constant with right continuous paths, so the infimum in (3.1) is attained, the 
events {L(x, t) > u) n 0, and {M(vlt, t ) S x)  n0,are identical and therefore 

Setting 0= +y we get 



Sample quantiles of additive renewal reward processes 

where 

From (3 .7)and (3.4)we see that H ( x )  satisfies 

We can now find an equation for a similar functional of sup,,,,, X(s) .  Let 

Hl(x )=O e-@' Pr [ sup X(s)  6 x )  dt .  
oq,, 

Conditioning on T I=u and Yl =y, we get 

Averaging over all values of u and y, we have that 

Similarly, define 

(3.11) H2(x)-6  bi e-l' Pr ( inf X(s )  5 Xidt.  
O q s q r  

Conditioning on TI=u and Yl =y, we get 
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inf X ( s ) ~ x l T l = u , Y l = y  
O j s j t  


Averaging over all values of u and y,  we have 

From (3.8), (3.10) and (3.12), we see that applying Lemma 2 with G , ( y )=e(y;8 )  and 
G2(y)=e ( y ;P )  yields 

From (3.7), (3.9), (3.1 1), (3.13) and the uniqueness of Laplace transforms we conclude that 

"2' sup X(l) (r)+ inf X(2)(r) 
O j r s v  04r4s 


for all v > 0 and s > 0.  Setting v =cct and s =( 1  -a)t completes the proof of the theorem. 

Remarks. 
1 .  The results in [4] might have suggested that the property described by (3.2)charac-

terises processes with stationary and independent increments. The theorem just proved 
shows that this is not true. 

2. An interesting process to consider, with a view towards insurance applications, is 
X*(t)=ct +X( t ) .One could try to investigate whether (3.2)holds for X*(t).Unfortunately, 
Lemma 2 is not directly applicable and arguments such as (3.6) are not valid either. 
However, for the special case where N ( t ) is a Poisson process and the sequence Y,, Y2,...  
is independent of N ( t ) ,  X*(t) has stationary and independent increments and from the 
results in [4] we can see that (3.2) is true. 

4. An example 

Let ( W ( t ) ,  t 2 0 ) be a standard Brownian motion. Let T l ,  T2;. .  be a sequence of i.i.d. 
random variables that are exponentially distributed with parameter i.Define 

for 0 5 t < T l ,  
X ( t )  = i = 1, 2,...  . 

W ( T i ) ,  for T i s t < T + l ,  

We can reformulate X ( t )  be defining N ( t )  as the Poisson process with renewal times 

T I ,  T,, . . .,where ( ( T i ,Y,), i = 1, 2,. ..) is a sequence of independent and identically distrib- 
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uted pairs of random variables such that for all i ,  Tiis exponentially distributed with 
parameter i and conditionally on Ti= u ,  Y, is normally distributed with mean 0 and 
variance u .  Then, we set 

By the symmetry of the distribution of Y, we see that sup,,,., X1I)(s)and -inf,,,,, X12)(s) 
have the same distribution. Theorem 1 suggests that in order to find the distribution of 
MX(cz,t )  for any a it suffices to find the distribution of sup,,,,, XU)(s) .  

Consider a random variable p which is exponentially distributed with parameter 
i + 0 and is independent of W ( t ) .Then, by (3.5)we have that G ( y ;  19) = Pr( ~ ( p )< y) .  
Furthermore, by symmetry if T,,denotes the first hitting time of y by W ( t ) ,for y < 0 
this is 

and for y 2 0 ,  

Defining 

H,(x)= J, ecer ~r jsup X ( S )< x1dt, 
O j s < t  

we see that H I ( x )satisfies (3.10);then from the above, this can be written as 

(4.4) H , ( x ) =  	 U; 

H I ( x+ y)exp(- y J m ) d y ,  for x 2 0 

for x < 0 .  

To solve (4.4),set for x 2 0, H,(x )= [ O / ( i  + e)]+ A(x)+ B(x) , where A(x)  and B ( x )  are 
the second and third terms respectively of the first leg of (4.4).Then, 

and so 
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and therefore 

Thus, the solution of (4.4) is given by 

, for x >= 0. 
H,(x) = 

1 0 9  for x < 0, 

Inverting the Laplace transform given by (4.3) and (4.5) we get that, for x 2 0, 
Pr(supoSS,,X(s) 5 x )=K(x ,  t) ,  where 

exp( -x2/2u)exp[- i.(t -u)]
du . 

and 

From (4.6)we also have 

where 

is the modified Bessel function of the first kind. We can also write 

Pr sup X(s) 5 x = K(0, t )  + k (y ,  t)dy 
( o s ) .r 

where K(0, t )  is given by (4.7)and k(x ,  t )  by 

Using Theorem 1 and the fact that sup,,,,, X"'(s) and -info,,,, X'2)(s)have the same 
distribution, we can obtain the distribution function of M,(a, t )  for 0< a< 1 .  This is 
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K (x ,  at)K(O, ( 1  -a)t) 

K ( x + y, at)k(y, ( 1  -a)t)dy, for x 2 0 

(4.9) Pr(Mx(a, t )  5 x )  = 
1 - K ( - X ,  ( 1  -a)t)K(O, at) 

Observe that 

The moments of MX(a,  t )  can be found by first finding the moments of supo5,,, X(s). 
Note that from (4.5)we can get 

Inverting the Laplace transform in (4.1 l ) ,  we have 

and therefore 
- P 7 


Furthermore, from (4.5) we see that 

Inverting the Laplace transform in (4.13),we have 

and therefore 

Var(Mx(a, t ) )  = t- - -(I, 6')+I, tit)) 
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Remarks. 
1. If we let I. +m, we then see that (4.9)converges to c(y)dy,where c(x)is given by 

for x L O ,  

for x 5 0 ,  

which is the distribution function of the a-quantile of the standard Brownian motion 
W(t),as first obtained by Yor [15]. 

2. The results of this section can be generalised for W(t)being a Brownian motion 
with drift p, in which case, conditionally on T,=u ,  Y, is normally distributed with mean 
pu and variance u .  The analogue of (4.4) admits a solution of the same form as (4.5). 

3. Note that the unconditional distribution of Y, will then be double exponential. 
The use of the double exponential distribution for asset returns is not new; see, for 
example, [l 11. 
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