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Corpus-based statistical parsing relies on using large quantities of annotated text

as training examples. Building this kind of resource is expensive and labor-intensive.

This work proposes to use sample selection to find helpful training examples and reduce

human effort spent on annotating less informative ones. We consider several criteria for

predicting whether unlabeled data might be a helpful training example. Experiments are

performed across two syntactic learning tasks and within the single task of parsing across

two learning models to compare the effect of different predictive criteria. We find that

sample selection can significantly reduce the size of annotated training corpora and that

uncertainty is a robust predictive criterion that can be easily applied to different learning

models.

1 Introduction

Many learning tasks for natural language processing require supervised training; that is,

the system successfully learns a concept only if it was given annotated training data.

For example, while it is difficult to induce a grammar with raw text alone, the task is

tractable when the syntactic analysis for each sentence is provided as a part of the train-

ing data (Pereira and Schabes, 1992). Current state-of-the-art statistical parsers (Collins,

1999; Charniak, 2000) are all trained on large annotated corpora such as the Penn Tree-
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bank (Marcus, Santorini, and Marcinkiewicz, 1993). However, supervised training data

is difficult to obtain; existing corpora might not contain the relevant type of annota-

tion, and the data might not be in the domain of interest. For example, one might need

lexical-semantic analyses in addition to the syntactic analyses in the treebank, or one

might be interested in processing languages, domains, or genres for which there are no

annotated corpora. Because supervised training demands significant human involvement

(e.g., annotating the syntactic structure of each sentence by hand), creating a new corpus

is a labor-intensive and time-consuming endeavor. The goal of this work is to minimize

a system’s reliance on annotated training data.

One promising approach to mitigate the annotation bottleneck problem is to use

sample selection, a variant of active learning. It is an interactive learning method in

which the machine takes the initiative in selecting unlabeled data for the human to

annotate. Under this framework, the system has access to a large pool of unlabeled

data, and it has to predict how much it can learn from each candidate in the pool if

that candidate is labeled. More quantitatively, we associate each candidate in the pool

with a Training Utility Value (TUV). If the system could accurately identify the subset

of examples with the highest TUV, it would have located the most beneficial training

examples, thus freeing the annotators from having to label less informative examples.

In this paper, we apply sample selection to two syntactic learning tasks: training

a prepositional phrase attachment (PP-attachment) model, and training a statistical

parsing model. We are interested in addressing two main questions. First, what are

good predictors of a candidate’s training utility? We propose several predictive criteria

and define evaluation functions based on them to rank the candidates’ utility. We have

performed experiments comparing the effect of the evaluation functions on the size of

the training corpus. We find that, with a judiciously chosen evaluation function, sample

selection can significantly reduce the size of the training corpus. The second main question
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is: are the predictors consistently effective for different types of learners? We compare the

predictive criteria both across tasks (between PP-attachment and parsing) and within

a single task (applying the criteria to two parsing models: an EM-trained parser and a

count-based parser). We find that the learner’s uncertainty is a robust predictive criterion

that can be easily applied to different learning models.

2 Learning with Sample Selection

Unlike traditional learning systems that receive training examples indiscriminately, a

sample selection learning system actively influences its progress by choosing new exam-

ples to incorporate into its training set. There are two types of selection algorithms:

committee-based or single learner. A committee-based selection algorithm works with

multiple learners, each maintaining a different hypothesis (perhaps pertaining to differ-

ent aspects of the problem). The candidate examples that lead to the most disagreements

among the different learners are considered to have the highest TUV (Cohn, Atlas, and

Ladner, 1994; Freund et al., 1997). For computationally intensive problems, such as pars-

ing, keeping multiple learners may be impractical.

In this work, we focus on sample selection using a single learner that keeps one

working hypothesis. Without access to multiple hypotheses, the selection algorithm can

nonetheless estimate the TUV of a candidate. We identify the following three classes of

predictive criteria:

Problem-space: Knowledge about the problem-space may provide information about

the type of candidates that are particularly plentiful or difficult to learn. This

criterion focuses on the general attributes of the learning problem, such as the

distribution of the input data and properties of the learning algorithm, but it

ignores the current state of the hypothesis.
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Performance of the hypothesis: Testing the candidates on the current working hy-

pothesis shows the type of input data on which the hypothesis may perform

weakly. That is, if the current hypothesis is unable to label a candidate or is un-

certain about it, then it might be a good training example (Lewis and Catlett,

1994). The underlying assumption is that an uncertain output is likely to be

wrong.

Parameters of the hypothesis: Estimating the potential impact that the candidates

will have on the parameters of the current working hypothesis. This locates those

examples that will change the current hypothesis the most.

Figure 1 outlines the single-learner sample selection training loop in pseudo-code.

Initially, the training set, L, consists of a small number of labeled examples, based on

which the learner proposes its first hypothesis of the target concept, C. Also available to

the learner is a large pool of unlabeled training candidates, U . In each training iteration,

the selection algorithm, Select(n, U, C, f), ranks the candidates of U according to their

expected TUVs and returns the n candidates with the highest values. The algorithm

predicts the TUV of each candidate, u ∈ U , with an evaluation function, f(u, C). This

function may rely on the hypothesis concept C to estimate the utility of a candidate

u. The set of the n chosen candidates are then labeled by human experts and added

to the existing training set. Running the learning algorithm, Train(L), on the updated

training set, the system proposes a new hypothesis that is the most compatible with the

examples seen thus far. The loop continues until one of three stopping conditions is met:

the hypothesis is considered to perform well enough, all candidates are labeled, or an

absolute cut-off point is reached (e.g., no more resources).
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U is a set of unlabeled candidates.
L is a set of labeled training examples.
C is the current hypothesis.
Initialize:

C ← Train(L).
Repeat

N ← Select(n, U, C, f).
U ← U −N .
L← L ∪ Label(N).
C ← Train(L).

Until (C is good enough)or (U = ∅) or (cut-off).

Figure 1

The pseudo-code for the sample selection learning algorithm

3 Sample Selection for Prepositional Phrase Attachment

One common source of structural ambiguities arises from syntactic constructs in which

a prepositional phrase might be equally likely to modify the verb or the noun preceding

it. Researchers have proposed many computational models for resolving PP-attachment

ambiguities. Some well-known approaches include rule-based models (Brill and Resnik,

1994), backed-off models (Collins and Brooks, 1995), and a maximum-entropy model

(Ratnaparkhi, 1998). Following the tradition of using learning PP-attachment as a way

to gain insight into the parsing problem, we first apply sample selection to reduce the

amount of annotation used in training a PP-attachment model. We use the Collins-Brooks

model as the basic learning algorithm, and experiment with several evaluation functions

based on the types of predictive criteria described earlier. Our experiments show that

the best evaluation function can reduce the number of labeled examples by nearly half

without loss of accuracy.

3.1 A Summary of the Collins-Brooks Model

The Collins-Brooks model takes prepositional phrases and their attachment classifications

as training examples, each is represented as a quintuple of the form (v, n, p, n2, a), where
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subroutine Train(L)
foreach ex ∈ L do

extract (v, n, p, n2, a) from ex
foreach tuple ∈ {(v, n, p, n2), (v, p, n2), (n, p, n2), (v, n, p), (v, p), (n, p), (p, n2), (p)} do

Count(tuple)← Count(tuple) + 1
if a = noun then

CountNP (tuple)← CountNP (tuple) + 1

subroutine Test(U)
foreach u ∈ U do

extract (v, n, p, n2) from u
if Count(v, n, p, n2) > 0 then

prob← CountNP (v,n,p,n2)
Count(v,n,p,n2)

elsif Count(v, p, n2) + Count(n, p, n2) + Count(v, n, p) > 0 then
prob← CountNP (v,p,n2)+CountNP (n,p,n2)+CountNP (v,n,p)

Count(v,p,n2)+Count(n,p,n2)+Count(v,n,p)

elsif Count(v, p) + Count(n, p) + Count(p, n2) > 0 then
prob← CountNP (v,p)+CountNP (n,p)+CountNP (p,n2)

Count(v,p)+Count(n,p)+Count(p,n2)

elsif Count(p) > 0 then
prob← CountNP (p)

Count(p)

else prob← 1
if prob ≥ .5 then

output noun
else output verb

Figure 2

The Collins-Brooks PP-Attachment Classification Algorithm.

v, n, p, and n2 are the head words of the verb phrase, the object noun phrase, the preposi-

tion, and the prepositional noun phrase, respectively; and a specifies the attachment clas-

sification. For example, (“wrote a book in three days”, attach-verb) would be annotated

as (wrote, book, in, days, verb). The head words can be automatically extracted using a

heuristic table-lookup in the manner described by Magerman (1994). For this learning

problem, the supervision is the one-bit information of whether p should attach to v or to

n. In order to learn the attachment preferences of prepositional phrases, the system builds

attachment statistics for each the characteristic tuple of all training examples. A charac-

teristic tuple is some subset of the four head words in the example, with the condition that

one of the elements must be the preposition. Each training example forms eight charac-
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teristic tuples: (v, n, p, n2), (v, n, p), (v, p, n2), (n, p, n2), (v, p), (n, p), (p, n2), (p). The at-

tachment statistics are a collection of the occurrence frequencies for all the characteristic

tuples in the training set and the occurrence frequencies for the characteristic tuples of

those examples determined to attach to nouns. For some characteristic tuple t, Count(t)

denotes the former and CountNP (t) denotes the latter. In terms of the sample selec-

tion algorithm, the collection of counts represents the learner’s current hypothesis (C in

Figure 1). Figure 2 provides the pseudo-code for the Train routine.

Once trained, the system can be used to classify the test cases based on the statistics

of the most similar training examples and back off as necessary. For instance, to determine

the PP-attachment for a test case, the classifier would first consider the ratio of the two

frequency counts for the 4-word characteristic tuple of the test case. If the tuple never

occurred in the training example, the classifier would then back off to look at its three

3-word characteristic tuples. It would continue to back off further, if necessary. In the

case that the model has no information on any of the characteristic tuples of the test

case, it would, by default, classify the test case as an instance of noun-attachment. Figure

3 shows using the back-off scheme on a test case. We describe in the Test pseudo-code

routine in Figure 2 the model’s classification procedure for each back-off level.

3.2 Evaluation Functions

Based on the three classes of predictive criteria discussed in Section 2, we propose several

evaluation functions for the Collins-Brooks model.

3.2.1 The Problem Space One source of knowledge to exploit is our understanding

of the PP-attachment model and properties of English prepositional phrases. For in-

stance, we know that the most problematic test cases for the PP-Attachment model are

those for which it has no statistics at all. Therefore, those data that the system has

not yet encountered might be good candidates. The first evaluation function we define,
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Figure 3

In this example, the classification of the test case preposition is backed-off to the two-word

tuple level. In the diagram, each circle represents a characteristic tuple. A filled circle denotes

that the tuple has occurred in the training set. The grey rectangular box indicates the back-off

level on which the classification is made.

fnovel(u, C), equates the TUV of a candidate u with its degree of novelty, the number of

its characteristic tuples that currently have zero counts.1

fnovel(u, C) =
∑

t∈Tuples(u)

{
1 : Count(t) = 0
0 : otherwise

This evaluation function has some blatant defects. It may distort the data distribution

so much that the system would not be able to build up a reliable collection of statistics.

The function does not take into account the intuition that those data that rarely occur,

no matter how novel, probably have overall low training utility. Moreover, the scoring

scheme does not make any distinction between the characteristic tuples of a candidate.

We know, however, that the PP-attachment classifier is a back-off model that makes

its decision based on statistics of the characteristic tuple with the most words first. A

more sophisticated sampling of the data domain should consider not only the novelty of

1 Note that the current hypothesis C is ignored in evaluation functions of this class because they

depend only on the knowledge about the problem space.
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Figure 4

If candidate u1 were selected, a total of 22 tuples can be ignored. The dashed rectangles show

the classification level before training and the solid rectangles show the classification level after

the statistics of u1 have been taken. The obviated tuples are represented by the filled black

circles.

the data, but also the frequency of its occurrence as well as the quality of its characteristic

tuples. We define a back-off model-based evaluation function, fbackoff (u, C), that scores

a candidate u by counting the number of characteristic tuples obviated in all candidates

if u were included in the training set. For example, suppose we have a small pool of 5

candidates, and we are about to pick the first training example:

u1 = (put, book, on, shelf),

u2 = (put, book, on, shelf),

u3 = (put, idea, on, shelf),

u4 = (wrote, book, on, shelf),

u5 = (had, idea, on, topic)

According to fbackoff , either u1 or u2 would be the best choice. By selecting ei-

ther as the first training example, we could ignore all but the four-word characteristic

tuple for both u1 and u2 (a saving of 7 tuples each); since u3 and u4 each has three

words in common with the first two candidates, they would no longer depend on their
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lower 4 tuples; and although we would also improve the statistics for one of u5’s tuple:

(on), nothing could be pruned from u5’s characteristic tuples. Thus, fbackoff (u1, C) =

fbackoff (u2, C) = 7 + 7 + 4 + 4 = 22 (See Figure 4).

Under fbackoff , if u1 were chosen as the first example, u2 loses all its utility because

we cannot prune any extra characteristic tuples by using u2. That is, in the next round of

selection, fbackoff (u2, C) = 0. Candidate u5 would be the best second example because

it now has the most tuples to prune (7 tuples).

The evaluation function fbackoff improves upon fnovel in two ways. First, novel

candidates that occur frequently are favored over those that rarely come up. As we have

seen in the above example, a candidate that is similar to other candidates can eliminate

more characteristic tuples all at once. Second, the evaluation strategy follows the working

principle of the back-off model and discounts lower-level characteristic tuples that do not

affect the classification process, even if they were “novel.” For instance, after selecting

u1 as the first training example, we would no longer care about the two-word tuples of

u4 such as (wrote, on) even though we have no statistics for it.

A potential problem for fbackoff is that after all the obvious candidates have been

selected, the function would not be very good at differentiating between the remaining

candidates that have about the same level of novelty and occur infrequently.

3.2.2 The Performance of the Hypothesis The evaluation functions discussed in

the previous section score candidates based on prior knowledge alone, independent of

the current state of the learner’s hypothesis and the annotation of the selected training

examples. To attune the selection of training examples to the learner’s progress, an

evaluation function might factor in its current hypothesis in predicting a candidate’s

TUV.

One way to incorporate the current hypothesis into the evaluation function is to
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score each candidate using the current model, assuming its hypothesis is right. An error-

driven evaluation function, ferr, equates the TUV of a candidate with the hypothesis’

estimate of its likelihood to mis-classify that candidate (i.e., one minus the probability

of the most-likely class). If the hypothesis predicts that the likelihood of a prepositional

phrase to attach to the noun is 80%, and if the hypothesis is accurate, then there is a

20% chance that it has mis-classified.

A related evaluation function is one that measures the hypothesis’ uncertainty across

all classes, rather than focusing on only the most likely class. Intuitively, if the hypothesis

classifies a candidate as equally likely to attach to the verb as the noun, it is the most

uncertain. If the hypothesis assigns a candidate to a class with a probability of 1, then

it is the most certain of its answer. For the binary class case, the uncertainty-based

evaluation function, func, can be expressed in the same way as the error-driven function,

as a function that is symmetric about 0.5 and monotonically decreases if the hypothesis

prefers one class over another2:

func(u, C) = ferr(u, C)

=
{

1− P (noun | u, C) : P (noun | u, C) ≥ 0.5
P (noun | u, C) : otherwise

= 0.5− abs(0.5− P (noun | u, C)). (1)

In the general case of choosing between multiple classes, ferr and func are different.

We shall return to this point in Section 4.1.2 when we consider training parsers.

The potential drawback of the performance-based evaluation functions is that they

assume that the hypothesis is correct. Selecting training examples based on a poor hy-

2 As long as it adheres to these criteria, the specific form of the function is irrelevant, since the

selection is not determined by the absolute scores of the candidates, but by their scores relative to

each other.
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pothesis is prone to pitfalls. On the one hand, the hypothesis may be overly confident

about the certainty of its decisions. For example, the hypothesis may assign noun to a

candidate with a probability of 1 based on a single previous observation in which a similar

example was labeled as noun. Despite the unreliable statistics, this candidate would not

be selected since the hypothesis considers this a known case. Conversely, the hypothesis

may also direct the selection algorithm to chase after undecidable cases. For example,

consider PP’s with in as the head. These PP’s occur frequently and about half of those

PP’s should attach to the object noun. Even though training on more labeled in examples

does not improve the model’s performance on future in-PP’s, the selection algorithm will

keep on requesting more in training examples because the hypothesis remains uncertain

about this preposition.3 With an unlucky starting hypothesis, these evaluation functions

may select uninformative candidates initially.

3.2.3 The Parameters of the Hypothesis The potential problems with the performance-

based evaluation function stem from the evaluation functions’ trust in the model’s di-

agnosis of its own progress. Another way to incorporate the current hypothesis is to

determine how good it is and what type of examples will improve it the most. In this

section we propose an evaluation function that scores candidates based on their utilities

in increasing the confidence about the parameters of the hypothesis (i.e., the collection

of statistics over the characteristic tuples of the training examples).

Training the parameters of the PP-attachment model is similar to empirically de-

termining the bias of a coin. We measure the coin’s bias by repeatedly tossing it and

keeping track of the percentage of times it landed on heads. The more trials we perform,

3 This phenomenon is particularly acute in the early stages of refining the hypothesis because most

decisions are based on statistics of the head preposition alone; in the later stages, the hypothesis

can usually rely on higher-ordered characteristic tuple that tend to be better classifiers.
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the more confident we become about our estimation of the bias. Similarly, in estimating

p, the likelihood of a PP to attach to its object noun, we are more confident about the

classification decision based on statistics with higher counts. A quantitative measurement

of our confidence in a statistic is the confidence interval. It is a region around the mea-

sured statistic, bounding the area where the true statistic might lie. More specifically,

the confidence interval for p, a binomial parameter, is defined as:

conf int(p̄, n) =
1

1 + t2

n

(
p̄ +

t2

2n
± t

√
p̄(1− p̄)

n
+

t2

4n2

)
,

where p̄ is the expected value of p based on n trials, and t is a threshold value that

depends on the number of trials and the level of confidence we desire. For instance, if we

want to be 90% confident that the true statistic p lies within the interval, and p̄ is based

on n = 30 trials, then we set t to be 1.697.4 Applying the confidence interval concept to

evaluating candidates for the back-off PP-attachment model, we define a function fconf

that scores a candidate by taking the average of the lengths of the confidence interval of

each back-off level. That is,

fconf (u, C) =

4∑
l=1

|conf int(p̄l(u, C), nl(u, C))|

4
,

where p̄l(u, C) is the probability that model C would attach u to noun at back-off level l,

and nl(u, C) is the number of training examples upon which this classification is based.

The confidence-based evaluation function has several potential problems. One of

its flaws is similar to that of fnovel. In the early stage, fconf picks the same examples

as fnovel because we have no confidence in the statistics of novel examples. Therefore,

4 For n ≤ 120, the values of t can be found in standard statistic textbooks; for n ≥ 120, t = 1.6576.

Because the derivation for the confidence interval equation makes a normality assumption, the

equation does not hold for small values of n (cf pp. 277-278, (Larsen and Marx, 1986)). When n is

large, the contributions from the terms in t2

n
are negligible. Dropping these terms, we would have

the t statistic, p̄± t
√

p̄(1− p̄)/n.
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fconf is also prone to chase after examples that rarely occur to build up confidence of

some unimportant parameters. A second problem is that fconf ignores the output of the

model. Thus, if candidate A has a confidence interval around [0.6, 1] and candidate B has

a confidence interval around [0.4, 0.7], then fconf would prefer candidate A even though

training on A will not change the hypothesis’s performance since the entire confidence

interval is already in the noun zone.

3.2.4 Hybrid Function The three categories of predictive criteria discussed above are

complementary, each focusing on a different aspect of the learner’s weakness. Therefore, it

may be beneficial to combine these criteria into one evaluation function. For instance, the

deficiency of the confidence-based evaluation function described in the previous section

can be avoided if the confidence interval covering the region around the uncertainty

boundary (Candidate B in the example) is weighed more heavily than one around the

end points (Candidate A).

In this section, we introduce a new function that tries to factor in both the uncertainty

of the model performance and the confidence of the model parameters. First, we define a

quantity, called area(p̄, n), that computes the area under a Gaussian function N(x, µ, σ)

with a mean of 0.5 and a standard deviation of 0.1 5 that is bounded by the confidence

interval as computed by conf int(p̄, n) (see Figure 5). That is, suppose p̄ has a confidence

interval of [a, b], then

area(p̄, n) =
∫ b

a

N(x, 0.5, 0.1)dx.

Computing area for each back-off level, we define an evaluation function, farea(u, C), as

their average. This function can be viewed as a product of fconf and func. 6

5 The standard deviation value for the Gaussian is chosen so that more than 98% of the mass of the

distribution is between 0.25 and 0.75.
6 Note that we can replace the function in Equation (1) with the N(x, 0.5, σ) without affecting func
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0.4

Likelihood of Attach_NP

1.00

Figure 5

An example: suppose that the candidate has a likelihood of 0.4 for noun attachment and a

confidence interval of width 0.1. Then area computes the area bounded by the confidence

interval and the Gaussian curve.

3.3 Experimental Comparison

To determine the relative merits of the proposed evaluation functions, we compare the

learning curve of training with sample selection according to each function against a

baseline of random selection in an empirical study. The corpus is a collection of phrases

extracted from the WSJ Treebank. We used Section 00 as the development set, Sections

2-23 as the training and test sets. We performed 10-fold cross validation to ensure the

statistical significance of the results. For each fold, the training candidate pool contains

about 21,000 phrases, and the test set contains about 2,000 phrases.

As shown in Figure 1, the learner generates an initial hypothesis based on a small

set of training examples, L. These examples are randomly selected from the pool of unla-

beled candidates and annotated by a human. Random sampling ensures that the initial

trained set reflects the distribution of the candidate pool, and thus the initial hypothe-

because it is also symmetric about 0.5 and monotonically decreasing as the input value moves

further.
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sis is unbiased. Starting with an unbiased hypothesis is important for those evaluation

functions whose scoring metrics are affected by the accuracy of the hypothesis. In these

experiments, L initially contains 500 randomly selected examples.

In each selection iteration, all the candidates are scored by the evaluation function,

and n examples with the highest TUV’s are picked out from U to be labeled and added

to L. Ideally, we would like to have n = 1 for each iteration. In practice, however, it is

often more convenient for the human annotator to label data in larger batches rather

than one at a time. In these experiments, we use a batch size of n = 500 examples.

We make note of one caveat to this kind of n-best batch selection. Under a hypothesis-

dependent evaluation function, identical examples would receive identical scores. Because

identical (or very similar) examples tend to address the same deficiency in the hypothesis,

adding n very similar examples to the training set is unlikely to lead to big improvement

in the hypothesis. To diversify the examples in each batch, we simulate single-example

selection (whenever possible) by re-estimating the scores of the candidates after each

selection. Suppose we have just chosen to add candidate x to the batch. Then, before

selecting the next candidate, we estimate the potential decrease in scores of candidates

similar to x once it belongs to the annotated training set. The estimation is based entirely

on the knowledge that x is chosen, but not on the classification of x. Thus, only certain

types of evaluation functions are amenable to the re-estimation process. For example, if

scores were assigned by fconf , then we know that the confidence intervals of the candi-

dates similar to x must decrease slightly after learning x. On the other hand, if scores

were assigned by func, then we could not perceive any changes to the scores of similar

candidates without knowing the true classification of x.

3.3.1 Results and Discussions This section presents the empirical measurements of

the model’s performances using training examples selected by different evaluation func-
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Figure 6

A comparison of the performance of different evaluation functions (a) compares the learning

curves of the functions that uses knowledge about the problem space: fnovel and fbackoff with

that of the baseline; (b) compares the learning curves of performance-based functions: func

and fconf with the baseline; (c) compares the learning curve of farea, which combines

uncertainty and confidence with func, fconf , and the baseline; (d) compares all the functions

for the number of training examples selected at the final performance level (83.8%) compares

fbackoff to the baseline.

tions. We compare each proposed function with the baseline of random selection (frand).

The results are graphically depicted from two perspectives. One (e.g., Figure 6(a)-(c))

plots the learning curves of the functions, showing the relationship between the number

of training examples (x-axis) and the performance of the model on test data (y-axis). We

deem one evaluation function to be better than another if its learning curve envelopes

the other’s. An alternative way to interpret the results is to focus on the reduction in
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training size offered by one evaluation function over another for some particular perfor-

mance level. Figure 6(d) is a bar graph comparing all the evaluation functions at the

highest performance level. The graph shows that in order to train a model that attaches

PP’s with an accuracy rate of 83.8%, sample selection with fnovel requires 2500 fewer

examples than the baseline.

Compared to fnovel, fbackoff selects more helpful training examples in the early

stage. As shown in Figure 6(a), the improvement rate of the model under fbackoff is

always at least as fast as fnovel. However, the differences between these two functions

become smaller for higher performance level. This outcome validates our predictions.

Scoring candidates by a combination of their novelty, occurrence frequencies, and the

qualities of their characteristic tuples, fbackoff selects helpful early (the first 4,000 or

so) training examples. Then, just as in fnovel, the learning rate remained stagnant for

the next 2,000 poorly selected examples. Finally, when the remaining candidates all have

similar novelty values and contain mostly characteristic tuples that occur infrequently,

the selection became random.

Figure 6(b) compares the two evaluation functions that score candidates based on the

current state of the hypothesis. Although both functions suffer a slow start, they are more

effective than fbackoff at reducing the training set when learning high quality models.

Initially, because all the unknown statistics are initialized to 0.5, selection based func is

essentially random sampling. Only after the hypothesis became sufficiently accurate (after

training on about 5,000 annotated examples) did it begin to make informed selections.

Following a similar but more exaggerated pattern, the confidence-based function, fconf ,

also improved slowly at the beginning before finally overtaking the baseline. As we have

noted earlier, because the hypothesis is not confident about novel candidates, fconf and

fnovel tend to select the same early examples. Therefore, the early learning rate of fconf

is as bad as that of fnovel. In the later stage, while fnovel continues to flounder, fconf
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can select better candidates based on a more reliable hypothesis.

Finally, the best performing evaluation function is the hybrid approach. Figure 6(c)

shows that the learning curve of farea combines the earlier success of func and the later

success of fconf to always outperform the other functions. As shown in Figure 6(d), it

requires the least number of examples to achieve the highest performance level of 83.8%.

Compared to the baseline, farea requires 47% fewer examples. From these comparison

studies, we conclude that involving the hypothesis in the selection process is a key factor

in reducing the size of training set.

4 Sample Selecting for Statistical Parsing

In applying sample selection to training a PP-attachment model, we have observed that

all effective evaluation functions made use of the model’s current hypothesis in estimat-

ing the training utility of the candidates. Although knowledge about the problem space

seemed to help sharpening the learning curve initially, overall, it was not a good pre-

dictor. In this section, we investigate whether these observations hold true for training

statistical parsing models as well. Moreover, in order to determine whether the perfor-

mances of the predictive criteria are consistent across different learning models within

the same domain, we have performed the study on two parsing models: one based on a

context-free variant of Tree Adjoining Grammars (Joshi, Levy, and Takahashi, 1975), the

Probabilistic Lexicalized Tree Insertion Grammar (PLTIG) formalism (Schabes and Wa-

ters, 1993; Hwa, 1998), and Collins’s Model 2 Parser (1997). Although both models are

lexicalized, statistical parsers, their learning algorithms are different. The Collins Parser

is a fully-supervised, history-based learner that models the parameters of the parser by

taking statistics directly from the training data. In contrast, PLTIG’s EM-based induc-

tion algorithm is partially-supervised; the model’s parameters are estimated indirectly

from the training data.
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As a superset of the PP-attachment task, parsing is a more challenging learning

problem. Whereas a trained PP-attachment model is a binary classifier, a parser must

identify the correct syntactic analysis out of all possible parses for a sentence. This clas-

sification task is more difficult since the number of possible parses for a sentence grows

exponentially with respect to its length. Consequently, the annotator’s task is more com-

plex. Whereas the person labeling the training data for PP-attachment reveals one unit

of information (always choosing between noun or verb), the annotation needed for parser

training is usually greater than one unit7 and the type of labels varies from sentence

to sentence. Because the annotation complexity differs from sentence to sentence, the

evaluation functions must strike a balance between maximizing the potential informa-

tional gain and minimizing the expected amount of annotation exerted. We propose a

set of evaluation functions similar in spirit to those for the PP-attachment learner, but

extended to accommodate the parsing domain.

4.1 Evaluation Functions

4.1.1 Problem Space Similar to scoring a PP candidate based on the novelty and

frequencies of its characteristic tuples, we define an evaluation function, flex(w, G) that

scores a sentence candidate, w, based on the novelty and frequencies of word pair co-

occurrences:

flex(w, G) =

∑
wi,wj∈w new(wi, wj)× coocc(wi, wj)

length(w)
,

7 We consider each pair of brackets in the training sentence to be one unit of supervised information,

assuming that the number of brackets correlates linearly with the amount of effort spent by the

human annotator. This correlation is an approximation, however; in real life, adding one pair of

brackets to a longer sentence may require more effort than adding to a shorter one. To capture

bracketing interdependencies at this level, we would need to develop a model of the annotation

decision process and incorporate it as an additional factor in the evaluation functions.
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where w is the unlabeled sentence candidate; G is the current parsing model (which

is ignored by problem-space-based evaluation functions); new(wi, wj) is an indicator

function that returns 1 if we have not yet selected any sentence in which wi and wj

co-occurred; and coocc(wi, wj) is a function that returns the number of times that wi

co-occurs8 with wj in the candidate pool. We expect these evaluation functions to be less

relevant for the parsing domain than the PP-attachment domain for two reasons. First,

because we do not have the actual parses, the extraction of lexical relationships are based

on co-occurrence statistics, not syntactic relationships. Second, because the distribution

of words that form lexical relationships is wider and more uniform than words that form

PP characteristic tuples, most word pairs will be novel and appear only once.

Another simple evaluation function based on the problem space is one that estimates

the TUV of a candidate by its sentence length:

flen(w, G) = length(w)

The intuition behind this function is based on the general observation that longer sen-

tences tend to have complex structures and introduce more opportunities for ambiguous

parses. Although these evaluation functions may seem simplistic, they have one major

advantage: they are easy to compute and require little processing time. Because inducing

parsing models demands significantly more time than inducing PP-attachment models,

it becomes more important that the evaluation functions be as efficient as possible.

4.1.2 The Performance of the Hypothesis We previously defined two performance-

based evaluation functions: ferr, the model’s estimate of how likely it made a classification

error, and func, the model’s estimate of its uncertainty in making the classification. We

have shown the two functions to have similar performance for the PP-attachment task.

8 We consider two words as co-occuring if their log-likelihood ratio is greater than some threshold

value determined with heldout data.
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This is not the case for statistical parsing because the number of possible classes (parse

trees) differ from sentence to sentence. For example, suppose we wish to compare one

candidate for which the current parsing model generated four equally likely parses with

another candidate for which the model generated one parse with probability of 0.2 and

ninety-nine other parses with a probability of 0.01 (such that they sum up to 0.98).

The error-driven function, ferr, would score the latter candidate higher because its most

likely parse has a lower probability; the uncertainty-based function, func, would score

the former candidate higher because the model does not have a strong preference for one

parse over any other. In this section, we provide a formal definition for both functions.

Suppose that a parsing model G generates a candidate sentence w with probability

P (w | G), and that the set V contains all possible parses that G generated for w. Then,

we denote the probability of G generating a single parse, v ∈ V as P (v | G) such that∑
v∈V

P (v | G) = P (w | G). The parse chosen for w is the most likely parse in V, denoted

as vmax, where

vmax = ArgMaxv∈VP (v | G).

Note that P (v | G) reflects the probability of one particular parse tree, v, out of all possi-

ble parse trees for all possible sentences that G can generate. To compute the likelihood

of a parse being the correct parse out of the possible parses of w according to G, denoted

as P (v | w, G), we need to normalize the tree probability by the sentence probability. So

according to G, the likelihood that vmax is the correct parse for w is9:

P (vmax | w, G) =
P (vmax | G)
P (w | G)

=
P (vmax | G)∑
v∈V P (v | G)

. (2)

9 Note that P (w|v, G) = 1 for any v ∈ V, where V is the set of all possible parses for w, because v

only exists when w is observed.
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Therefore, the error-driven evaluation function is defined as:

ferr(w, G) = 1− P (vmax | w, G).

Unlike the error-driven function, which focuses on the most likely parse, the uncertainty-

based function takes the probability distribution of all parses into account. To quanti-

tatively characterize its distribution, we compute the entropy of the distribution. That

is,

H(V ) = −
∑
v∈V

p(v) lg(p(v)), (3)

where V is a random variable that can take any possible outcome in set V, and

p(v) = Pr(V = v) is the density function. Further details about the properties of entropy

can be found in textbooks on information theory (Cover and Thomas, 1991).

Determining the parse tree for a sentence from a set of possible parses can be viewed

as assigning a value to a random variable. Thus, a direct application of the entropy def-

inition to the probability distribution of the parses for sentence w in G computes its

tree entropy, TE(w, G), the expected number of bits needed to encode the distribution

of possible parses for w. However, we may not wish to compare sentences with different

numbers of parses by their entropy directly. If the parse probability distributions for both

sentences are uniform, the sentence with more parses would have a higher entropy. Be-

cause longer sentences typically have more parses, using entropy directly would place bias

towards selecting long sentences. To normalize for the number of parses, the uncertainty-

based evaluation function, func, is defined as a measurement of similarity between the

actual probability distribution of the parses and a hypothetical uniform distribution for

that set of parses. In particular, we divide the tree entropy by the log of the number of
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parses:10

func(w, G) =
TE(w, G)
lg(‖V‖)

.

We now derive the expression for TE(w, G). Recall from Equation (2) that if G

produces a set of parses, V, for sentence w, the set of probabilities P (v | w, G) (for all

v ∈ V) defines the distribution of parsing likelihoods for sentence w:

∑
v∈V

P (v | w, G) = 1.

Note that P (v | w, G) can be viewed as a density function p(v) (i.e., the probability of

assigning v to a random variable V ). Mapping it back into the entropy definition from

Equation (3), we derive the tree entropy of w as follows:

TE(w, G) = H(V )

= −
∑
v∈V

p(v) lg(p(v))

= −
∑
v∈V

P (v | G)
P (w | G)

lg(
P (v | G)
P (w | G)

)

= −
∑
v∈V

P (v | G)
P (w | G)

lg(P (v | G)) +
∑
v∈V

P (v | G)
P (w | G)

lg(P (w | G))

= − 1
P (w | G)

∑
v∈V

P (v | G) lg(P (v | G)) +
lg(P (w | G))

P (w | G)

∑
v∈V

P (v | G)

= − 1
P (w | G)

∑
v∈V

P (v | G) lg(P (v | G)) + lg(P (w | G))

Using the bottom-up, dynamic programming technique (see Appendix A for details)

of computing Inside Probabilities (Lari and Young, 1990), we can efficiently compute

the probability of the sentence, P (w | G). Similarly, the algorithm can be modified to

10 When func(w, G) = 1, the parser is considered to be the most uncertain about that sentence.

Instead of dividing tree entropies, one could have computed the Kullback Leibler distance between

the two distributions (in which case a score of zero would indicate the highest level of uncertainty).

Because the selection is based on relative scores, as long as the function is monotonic, the exact

form of the function should not have much impact on the outcome.
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compute the quantity
∑

v∈V
P (v | G) lg(P (v | G)).

4.1.3 The Parameters of the Hypothesis Although the confidence-based function

gave good TUV estimates to candidates for training PP-attachment model, it is not clear

how a similar technique can be applied to training parsers. Whereas binary classification

tasks can be described by binomial distributions, for which the confidence interval is

well defined; a parsing model is made up of many multinomial classification decisions.

We therefore need a way to characterize confidence for each decision as well as a way to

combine them into an overall confidence. Another difficulty is that the complexity of the

induction algorithm deters us from re-estimating the TUVs of the remaining candidates

after selecting each new candidate. As we have discussed in section 3.3, re-estimation is

important for batched annotation. Without some means of updating the TUVs after each

selection, the learner would not realize that it had already selected a candidate to train

some parameter with low confidence until the re-training phase that only occurs at the

end of the batch selection; therefore, it may continue to select very similar candidates

to train the same parameter. Even if we assume that the statistics can be updated,

re-estimating the TUVs is a computationally expensive operation. Essentially, all the

remaining candidates that share some parameters with the selected candidate would need

to be re-parsed. For these practical reasons, we do not include an evaluation function

measuring confidence for the parsing experiment.

4.2 Experiments and Results

We compare the effectiveness of sample selection using the proposed evaluation func-

tions against a baseline of random selection (frand(w, G) = rand()). Similar to previous

experimental designs, the learner is given a small set of annotated seed data from the

WSJ Treebank and a large set of unlabeled data (also from the WSJ Treebank but with

the labels removed) to select new training examples from. All training data are from
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Figure 7

(a) A comparison of the evaluation functions’ learning curves. (b) A comparison of the

evaluation functions for a test performance score of 80%

Sections 2-21. We monitor the learning progress of the parser by testing it on unseen

test sentences. We used Section 00 for development and Section 23 for test. This study

is repeated for two different models, the PLTIG parser and Collins’s Model 2 parser.
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4.2.1 An EM-based learner In the first experiment, we use an induction algorithm

(Hwa, 2001a) based on the Expectation-Maximization (EM) principle that induces parsers

for Probabilistic Lexicalized Tree Insertion Grammars (PLTIG). The algorithm performs

heuristic search through an iterative re-estimation procedure to find the set of values

for the grammar parameters that maximizes the grammar’s likelihood of generating the

training data. In principle, the algorithm supports unsupervised learning; however, be-

cause the search space has too many local optima, the algorithm tends to converge on

a model that is unsuitable for parsing. Here, we consider a partially supervised variant

in which we assume that the learner is given the phrasal boundaries of the training sen-

tences but not the label of the constituent units. For example, the sentence “Several fund

managers expect a rough market this morning before prices stabilize.” would be labeled

as “((Several fund managers) (expect ((a rough market) (this morning)) (before (prices

stabilize))).)” Our algorithm is similar to the approach taken by Pereira and Schabes

(1992) for inducing PCFG parsers.

Because the EM algorithm itself is an iterative procedure, performing sample se-

lection on top of an EM-based learner is an extremely computational intensive process.

Here, we restrict the experiments for the PLTIG parsers to a smaller-scale study in the

following two aspects. First, the lexical anchors of the grammar rules are backed off to

part-of-speech tags; this restricts the size of the grammar vocabulary to be 48. Second,

the unlabeled candidate pool is set to contain 3600 sentences, which is sufficiently large

for inducing a grammar of this size. The initial model is trained on 500 labeled seed

sentences. For each selection iteration, an additional 100 sentences are moved from the

unlabeled pool to be labeled and added to the training set. After training, the updated

parser is then tested on unseen sentences (backed off to their part-of-speech tags) and

compared to the gold standard. Because the induced PLTIG produces binary branching

parse trees, which have more layers than the gold standard, we measure parsing accuracy
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in terms of the crossing bracket metric. The study is repeated for ten trials, each using a

different portions of the full training set, to ensure statistical significance (using pair-wise

t-test at 95% confidence).

The results of the experiment are graphically shown in Figure 7. As with the PP-

attachment studies, the graph on the left compares the learning curves between the

proposed evaluation functions and the baseline. Note that even though these functions

select examples in terms of entire sentences, the amount of annotation is measured in

terms of the number of brackets rather than sentences in the graphs (x-axis). Unlike the

PP-attachment case, the amount of effort from the annotators varies significantly from

example to example. A short and simple sentence takes much less time to annotate than

a long and complex sentence. We address this effect by approximating the amount of

effort with the number of brackets the annotator needs to label. Thus, we deem one

evaluation function more effective than another if, for the desired level of performance,

the smallest set of sentences selected by the function contains fewer brackets than that

of the other function. The graph on the right compares the evaluation functions at the

final test performance level of 80%.

Qualitatively comparing the learning curves in the graphs, we see that with the

appropriate evaluation function sample selection does reduce the amount of annotation.

Similar to our findings in the PP-attachment study, the simple problem-space-based

evaluation function, flen offers only little savings; it is nearly indistinguishable from the

baseline for the most part.11 The evaluation functions based on hypothesis performances,

on the other hand, do reduce the amount of annotation in the training data. Of the two

that we proposed for this category, the tree entropy evaluation function, func, has a slight

edge over the error-driven evaluation function, ferr.

11 In this experiment, we have omitted the evaluation function for selecting novel lexical relationships,

flex, because the grammar does not use actual lexical anchors.
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For a quantitative comparison, let us consider the set of grammars that achieve an

average parsing accuracy of 80% on the test sentences. We consider a grammar to be

comparable to that of the baseline if its mean test score is at least as high as that of the

baseline and if the difference of the means is not statistically significant. The baseline case

requires an average of about 38 thousand brackets in the training data. In contrast, to

induce a grammar that reaches the same 80% parsing accuracy with the examples selected

by func, the learner requires, on average, 19 thousand training brackets. Although the

learning rate of ferr is slower than that of func overall, it seems to have caught up in the

end; it needs 21 thousand training brackets, slightly more than func. While the simplistic

sentence length evaluation function, flen, is less helpful, its learning rate still improves

slightly faster than the baseline. A grammar of comparable quality can be induced from a

set of training examples selected by flen containing an average of 28 thousand brackets.12

4.2.2 A history-based learner In the second experiment, the basic learning model

is Collins’s Model 2 parser (1997), which uses a history-based learning algorithm that

takes statistics directly over the treebank. As a fully-supervised algorithm, it does not

have to iteratively re-estimate its parameters, and is computationally efficient enough for

us to carry out a large-scale experiment. For this set of studies, the unlabeled candidate

pool consists of around 39,000 sentences. The initial model is trained on 500 labeled seed

sentences, and at each selection iteration, an additional 100 sentences are moved from

the unlabeled pool into the training set. The parsing performance on the test sentences

is measured in terms of the parser’s f-score, the harmonic average of the labeled precision

and labeled recall rates over the constituents (Van Rijsbergen, 1979).13

We plot the comparisons between different evaluation functions and the baseline for

12 In terms of the number of sentences, the baseline frand selected 2600 sentences; flen selected 1300

sentences; and ferr and func each selected 900 sentences.

13 F = 2×LR×LP
LR+LP

, where LR is the labeled recall score and LP is the labeled precision score.
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Figure 8

(a) A comparison of the learning curves of the evaluation functions. (b) A comparison of all

the evaluation functions at the test performance level of 88%

the history-based parser in Figure 8. The examples selected by the problem-space-based

functions do not seem to be helpful. Their learning curves are, for the most part, slightly

worse than the baseline. In contrast, the parsers trained on data selected by the error-

driven and uncertainty-based functions learned faster than the baseline; and as before,

func is slightly better than ferr.
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For the final parsing performance of 88%, the parser requires a baseline training set

of 30,500 sentences annotated with about 695,000 constituents. The same performance

can be achieved with a training set of 20,500 sentences selected by ferr, which contains

about 577,000 annotated constituents; or with a training set of 17,500 sentences selected

by func, which contains about 505,000 annotated constituents, reducing the number of

annotated constituents by 27%. Comparing the outcome of this experiment with that of

the EM-based learner, we see that the training data reduction rates are less dramatic

than before. This may be because both func and ferr ignore lexical items and chase after

sentences containing words that rarely occur. Recent work by Tang, Luo, and Roukos

(2002) suggests that a hybrid approach that combine features of the problem-space and

the uncertainty of the parser may result in better performance for lexicalized parsers.

5 Related Work

Sample selection benefits problems in which the cost of acquiring raw data is cheap but

the cost of annotating them is high. This is certainly the case for many supervised learn-

ing tasks in natural language processing. In addition to PP-attachment, as discussed in

this paper, sample selection has been successfully applied to other classification applica-

tions. Some examples include text categorization (Lewis and Catlett, 1994), base noun

phrase chunking (Ngai and Yarowsky, 2000), part-of-speech tagging (Engelson and Da-

gan, 1996), spelling confusion set disambiguation (Banko and Brill, 2001), and word-sense

disambiguation (Fujii et al., 1998).

More challenging are learning problems whose objective is not classification, but gen-

eration of complex structures. One example in this direction is applying sample selection

to semantic parsing (Thompson, Califf, and Mooney, 1999), in which sentences are paired

with their semantic representation using a deterministic shift-reduce parser. A recent ef-

fort that focuses on statistical syntactic parsing is the work by Tang, Luo, and Roukos
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(2002). Their results suggest that further reduction in training examples can be achieved

by using a hybrid evaluation function that combines a hypothesis-performance-based

metric such as tree-entropy (“word entropy” in their terminology) with a problem-space-

based metric such as sentence clusters.

Aside from active learning, researchers have applied other learning techniques to

combat the annotation bottleneck problem in parsing. For example, Henderson and Brill

(2000) considered the case in which acquiring additional human annotated training data

is not possible. They have shown that parser performance can be improved by using

boosting and bagging techniques with multiple parsers. This approach assumes that

there are enough existing labeled data to train the individual parsers. Another technique

for making better use of unlabeled data is co-training (Blum and Mitchell, 1998), in

which two sufficiently different learners helps each other learn by labeling training data

for each other. The work of Sarkar (2001) and Steedman et al. (2003b) suggests that co-

training can be helpful for statistical parsing. Pierce and Cardie (2001) have shown, in

the context of base noun identification, that combining sample selection and co-training

can be an effective learning framework for large-scale training. Similar approaches are

being explored for parsing (Steedman et al., 2003a; Hwa et al., 2003).

6 Conclusion

In this paper, we have argued that sample selection is a powerful learning technique for

reducing the amount of human labeled training data. Our empirical studies suggest that

sample selection is helpful not only for binary classification tasks such as PP-attachment

but also for applications that generate complex outputs such as syntactic parsing.

We have proposed several criteria for predicting the training utility of the unlabeled

candidates and developed evaluation functions to rank them. We have conducted exper-

iments to compare the functions’ ability in selecting the most helpful training examples.
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We have found that the uncertainty criterion is a good predictor that consistently finds

helpful examples. In our experiments, evaluation functions that factor in the uncertainty

criterion consistently outperform the baseline of random selection across different tasks

and learning algorithms. For learning a PP-attachment model, the most helpful evalu-

ation function is a hybrid that factors in the prediction performance of the hypothesis

and the confidence on the values of the parameters of the hypothesis. For training a

parser, we found that uncertainty-based evaluation functions that use tree entropy were

the most helpful for both the EM-based learner and the history-based learner.

The current work points us in several future directions. First, we shall continue to

develop alternative formulations of evaluation functions to improve the learning rates

of parsers. Under the current framework, we did not experiment with any hypothesis-

parameter-based evaluation functions for the parser induction task; however, hypothesis-

parameter-based functions may be feasible under a multi-learner setting, using parallel

machines. Second, while in this work we focused on selecting entire sentences as training

examples, we believe that further reduction in the amount of annotated training data

might be possible if the system could ask the annotators more specific questions. For

example, if the learner were only unsure of a local decision within a sentence (such as a

PP-attachment ambiguity), the annotator should not have to label the entire sentence.

In order to allow for finer-grained interactions between the system and the annotators,

we have to address some new challenges. To begin with, we must weigh in other factors in

addition to the amount of annotations. For instance, the learner may ask about multiple

substrings in one sentence. Even if the total number of labels were fewer, the same

sentence would still need to be mentally processed by the annotators multiple times. This

situation is particularly problematic when there are very few annotators as it becomes

much more likely that a person would encounter the same sentence many times. Moreover,

we must ensure that the questions asked by the learner are well-formed. If the learner
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were simply to present the annotator with some substring that it could not process, the

substring might not form a proper linguistic constituent for the annotator to label. Third,

we are interested in exploring the interaction between sample selection and other semi-

supervised approaches such as boosting, re-ranking and co-training. Finally, based on our

experience with parsing, we believe that active learning techniques may be applicable to

other tasks that produces complex outputs such as machine translation.
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A Efficient Computation of Tree Entropy

As discussed in Section 4.1.2, for learning tasks such as parsing, the number of possible

classification would be so large that it may not be computationally efficient to calculate

the degree of uncertainty using the tree entropy definition. In the equation, the compu-

tation requires summing over all possible parses, but the number of possible parses for

a sentence grows exponentially with respect to the sentence length. In this section, we

show that tree entropy can be efficiently computed using dynamic programming.

For illustrative purposes, we describe the computation process using a PCFG ex-

pressed in Chomsky Normal Form.14 The basic idea is to compose the tree entropy of the

entire sentence from the tree entropy of the subtrees. The process is similar to computing

the probability of the entire sentence from the probabilities of substrings (called Inside

Probability). We follow the notation convention of Lari and Young (1990).

The Inside Probability of a nonterminal X generating the substring wi . . . wj is de-

noted as e(X, i, j); it is the sum of the probabilities of all possible subtrees that have

X as the root and wi . . . wj as the leaf nodes. We define a new function h(X, i, j) to

represent the corresponding entropy for the substring.

h(X, i, j) = −
∑

x∈X
∗⇒wi...wj

P (x | G) lg(P (x | G)),

where G is the current model. Under this notation, the tree entropy of a sentence,∑
v∈V

P (v | G) lg P (v | G) is denoted as h(S, 1, n).

Analogous to the computation of Inside Probabilities, we compute h(X, i, j) recur-

sively. The base case is when the nonterminal X generates a single token substring wi.

14 That is, every production rule must be in one of two forms: a nonterminal expands into two more

nonterminals, or a nonterminal expands into a terminal.
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The only possible tree is for X to be at the root, immediately dominating the leaf node

wi. Therefore, the tree entropy is:

h(X, i, i) = e(X, i, i) lg(e(X, i, i))

For the general case, h(X, i, j), we must find all rules of the form X → Y Z, where Y

and Z are nonterminals, that have contributed towards X
∗⇒ wi . . . wj . To do so, we

consider all possible ways dividing up wi . . . wj into two pieces such that Y
∗⇒ wi . . . wk

and Z
∗⇒ wk+1 . . . wj :

h(X, i, j) =
j−1∑
k=i

∑
(X→Y Z)

hY,Z,k(X, i, j).

The function hY,Z,k(X, i, j) is a portion of h(X, i, j) that accounts for those parses in

which the rule X → Y Z is used and the division point is at word wk. The nonterminals

Y and Z may, in turn, generate their substrings with multiple parses. Let Y represent

the set of parses for Y
∗⇒ wi . . . wk; let Z represent the set of parses for Z

∗⇒ wk+1 . . . wj ;

and let x represent the parse step of X → Y Z. Then, there are a total of ‖Y‖ × ‖Z‖

parses, and the probability of each parse is P (x)P (y)P (z), where y ∈ Y and z ∈ Z. To

compute hY,Z,k, we need to sum over all possible parses:

hY,Z,k(X, i, j) = −
∑

y∈Y,z∈Z
P (x)P (y)P (z) lg(P (x)P (y)P (z))

= −
∑

y∈Y,z∈Z
P (x)P (y)P (z)(lg P (x) + lg P (y) + lg P (z))

= −P (x) lg(P (x))e(Y, i, k)e(Z, k + 1, j)
+P (x)h(Y, i, k)e(Z, k + 1, j)
+P (x)e(Y, i, k)h(Z, k + 1, j).

Thus, the tree entropy of the entire sentence can be recursively computed from the

entropy values of the substrings.
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