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Abstract 

Sample size calculation for spatial transcriptomics is a novel and understudied research topic. Prior 

publications focused on powering spatial transcriptomics studies to detect specific cell populations or 

spatially variable expression patterns on tissue slides. However, power calculations for translational or 

clinical studies often relate to the difference between patient groups, and this is poorly described in 

the literature. Here, we present a stepwise process for sample size calculation to identify predictors of 

fibrosis progression in non-alcoholic fatty liver disease as a case study. We illustrate how to infer 

study hypothesis from prior bulk RNA-sequencing data, gather input requirements and perform a 

simulation study to estimate required sample size to evaluate gene expression differences between 

patients with stable fibrosis and fibrosis progressors with NanoString GeoMx Whole Transcriptome 

Atlas assay.  

Key points 

Spatial transcriptomics is predominantly used in unpowered exploratory research. 

We demonstrate that spatial transcriptomics studies with NanoString GeoMx Whole Transcriptome 

Atlas can be powered to address differences between patient groups and illustrate the sample size 

calculation using fibrosis progression in non-alcoholic fatty liver disease as an example.  

We note that established software implementing negative binomial mixed effect models lme4 and 

GLMMadaptive yield more similar fold change estimates to simulated data than the recently 

published software GeoDiff. 

Keywords 

Spatial transcriptomics, NanoString GeoMx Whole Transcriptome Atlas, sample size calculation, 

non-alcoholic fatty liver disease 
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Introduction 

Spatial transcriptomics offers significant advantages over bulk or single cell transcriptomics. Bulk 

transcriptomics is unable to reveal tissue-wide patterning and disease-promoting cell niches.  Single 

cell omics typically requires fresh tissue, whose dissociation can lead to significant cell type biases.  

Both these factors can be overcome with spatial transcriptomics, which additionally offers the ability 

to use widely available formalin-fixed paraffin-embedded (FFPE) tissue. 

Two spatial RNA sequencing technologies are commercially available: Visium spatial gene 

expression from 10X Genomics[1] and GeoMx Digital Spatial Profiler from NanoString [2, 3].  

The Visium platform uses functionalized slides with printed barcoded oligo capture probes onto 

which RNA from permeabilised tissue can bind. This can subsequently be sequenced using a polyA 

approach. Visium is limited by pre-determined sequenceable spot sizes of 55µm with 100µm spacing 

between spot centres. 

The GeoMX platform extends more flexibility in enabling the operator to select regions of 

interest/illumination (ROI) from single cell analysis to whole regions based on histology or protein 

probes. This platform links complementary sequence probes to a unique barcode through a UV-

cleavable linker. Hybridised sequence probes on the tissue of interest can then be released from tissue 

sections through the application of UV only to selected ROIs. The GeoMX platform allows addition 

of custom targets of interest such as transcript variants. GeoMx Human Whole Transcriptome Atlas 

enables targeted sequencing of 18,000 genes [3]. While both Visium and NanoString GeoMx are 

compatible with FFPE tissue, sequencing efficiency with Visium is reduced in FFPE compared to 

fresh frozen tissue while no such limitation is reported for NanoString GeoMx [4]. 

Sample size calculation is a crucial step in planning spatial transcriptomics studies. Yet, limited 

methodological research is available on this topic, especially in clinical specimens. Previous studies 

reporting sample size calculation for spatial transcriptomics focused on detection or co-localization of 

specific cell populations on the slide or identification of spatially variable features [5-7]. Specifically, 
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despite the widespread use of the technology in unpowered exploratory research 

(https://nanostring.com/resources/publications/), only a handful of studies with NanoString GeoMx 

report dedicated sample size calculation based on pilot experiments but do not outline the 

requirements and statistical considerations in detail [8, 9].  

Here, we illustrate how to gather required inputs (formulate study hypothesis and estimate effect size 

based on historic data) and perform sample size estimation for comparison between patient groups 

with NanoSting GeoMx Whole Transcriptome Atlas using fibrosis progression in non-alcoholic fatty 

liver disease as a case study.  

Non-alcoholic fatty liver disease (NAFLD) affects up to a third of the population [10] and covers a 

spectrum of pathology from simple steatosis (NAFL) to steatohepatitis (NASH) and advanced fibrosis 

[11]. Progressed NAFLD places patients at risk of liver cancer and is strongly associated with the 

metabolic syndrome (MetS, comprising obesity, insulin resistance, type 2 diabetes mellitus, 

hypertension) and coronary heart disease [12].  

NAFLD has been shown to progress to fibrosis both in patients with NAFL and NASH [13, 14], with 

fibrosing disease being the leading predictor of poor outcomes/survival [15, 16]. To date, no studies 

have been able to show clinical, biochemical or histological predictors of fibrosis progression in 

cohorts of with serial liver sampling of the same individual [13, 14, 16-19]. A combination of follow-

up biopsy analysis and cross-sectional studies indicate that weight gain [13], metabolic co-morbidities 

such as diabetes [13, 14, 17, 19]and at-risk genotypes, for example in PNPLA3, TM6SF2, MBOAT7 

[20, 21] place patients at higher risk of NAFLD fibrosis progression. Non-genetic molecular 

mechanisms placing the patient at risk of fibrosis progression are particularly poorly elucidated and 

limited to hepatic gene expression-based or serum protein-based risk signatures also found in HCV 

fibrosis progression [22]. Thus, further research is required to understand predictors fibrosis 

progression in NAFLD and, ultimately, adjust clinical management of higher risk patients.  
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Methods 

Initial hypothesis generation 

First, we performed analysis to identify which spatial expression patterns could serve as the primary 

and secondary endpoints. 

We explored bulk liver RNA-sequencing cohort from Fujiwara et al. (GSE193066 [23]). Fibrosis 

progressors and fibrosis regressors had at least +1 and -1 fibrosis stage in their circa 2 year follow-up 

biopsies. The cohort included 28 individuals with stable fibrosis stage, 15 fibrosis regressors and 15 

fibrosis progressors. We sought to identify an association between a higher-level gene expression 

pattern and some element of liver microanatomy or histology. Therefore, we did not make any attempt 

to control false discovery rate at the level of individual genes or pathways in this analysis. We also 

used the published DESeq2 rlog-transformed data set as-is without re-processing. However, we did 

check that results obtained with linear regression on rlog transformed data and on raw counts with 

DESeq2 [24] were overall consistent, especially with respect to log2 fold change estimates, with this 

sample size in another cohort GSE135251 [25] where both types of data were readily available 

(Figure S1). Candidate genes were identified with linear regression on rlog data adjusted for baseline 

fibrosis stage in GSE193066. The genes were required to have opposite direction of log2 fold change 

in fibrosis progressors and fibrosis regressors compared to stable fibrosis individuals and raw p < 0.05 

in both comparisons. The candidate genes were semi-manually grouped into broad marker sets using 

AmiGO 2 [26] and PANTHER [27] based on GO [28, 29] and Reactome [30] pathway definitions and 

hierarchical relationships between the ontology terms. We calculated a summary score for each of 

these broad candidate marker sets with Kuppe’s method [31]. We verified that the expression of each 

candidate marker set as a whole, differed between fibrosis progressors, stable fibrosis and fibrosis 

regressors using linear regression adjusted for both baseline fibrosis stage and baseline NAS score. 

The candidate marker sets were derived from bulk liver. As the next step, we traced potential sources 

of these expression signals within the liver. We calculated summary scores for liver cell types based 

on markers from GSE136103 [32], hepatocyte zones in NASH liver [33] and for extracellular matrix 

(ECM, “core matrisome” markers from [31] in the Fujiwara et al. cohort (GSE193066 [23]) and in 
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published Visium liver spatial transcriptomics samples [34-36]. Visium data was SCT-transformed 

prior to analysis. We assumed “guilt-by-association”: if summary scores correlated both in bulk and in 

spatial transcriptomics samples (Spearman method), then the expression signals co-localized.  

Simulation study 

Non-tumour liver samples adjacent to hepatocellular carcinoma [34] had well-defined fibrosis areas 

and hepatocyte fraction and satisfied the 100 reads/μm2 recommendation by NanoString. We used 

these five samples for the simulation study. 

We defined fibrotic niche as Visium spots that were in the 85 percentile or above for ECM score and 

at or below the 15 percentile of the hepatocyte score. Similarly, hepatocyte spots were at or above the 

20 percentile for hepatocyte score and at or below the 80 percentile of the ECM score. The remaining 

spots were enriched in other cell types (e.g., cholangiocytes) or had low cell density. This resulted in 

2.6-7.1% fibrotic niche, which was within the NAFLD fibrosis range [37], and 63-68% hepatocyte 

area, which corresponded to the lower range of literature estimates for the hepatocyte fraction by liver 

volume [38-40]. In total, we obtained 819 fibrotic niche spots and 12,074 hepatocyte spots across the 

5 samples. To verify that our approach to tissue segmentation was reasonable, we conducted 

differential expression analysis between “bulk” tissue constructed by summing up counts from 

fibrotic niche and hepatocyte spots per patient. As expected, fibrotic niche was enriched in markers of 

diverse non-parenchymal cell types (mesenchymal, immune etc) and hepatocyte fraction was enriched 

in hepatocyte markers (Data S1). 

We translated the expression changes in summary scores from bulk tissue into expression changes 

within fibrotic niche and hepatocyte fraction. We found two representative markers PON1 and FLNA 

that had the most similar spatial expression pattern to the two summary scores identified in initial 

analysis. All subsequent calculations were based on these two genes. 

We spiked-in increasingly large fractions of read counts to PON1 in hepatocytes and FLNA in the 

fibrotic niche. For example, spiked-in fraction r0.1 for FLNA corresponded to FLNA read counts in 

each fibrotic niche spot in sample i + 0.1*median(FLNA read counts across fibrotic niche spots in 
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sample i), where i =1…5. We summed up read counts across all spots per sample to obtain “bulk” 

tissue. We calculated log2 fold change between spiked-in “bulk” and unmodified “bulk” tissue with 

DESeq2 using the patient as a fixed effect covariate and constructed calibration curves. We found the 

point on each calibration curve where fold change in “bulk” tissue matched log2 fold change observed 

in the initial hypothesis-generating analysis in the Fujiwara et al. cohort [23]. This determined the 

magnitude of spike-in that we used in the simulation study. 

We took the unmodified 12,074 hepatocyte spots and 819 fibrotic niche spots across the five Visium 

samples as our spot “population” in “stable fibrosis” individuals. The same spots but spiked-in with 

fractional read counts r0.43 for PON1 and r2.9 for FLNA, respectively, were our spot “population” in 

“fibrosis regressors” and “fibrosis progressors”, respectively.  

Initial Visium spot diameter of 55μm contains 8 to 20 cells [34] and is not recommended by 

NanoString because it does not support reliable differential expression (“The GeoMx® Human Whole 

Transcriptome Atlas for the Digital Spatial Profiler: Design, Performance, and Experimental 

Guidelines” document from www.nanostring.com/GeoMxDSP). Fibrotic niche was the smaller tissue 

fraction in our experimental plan and it determined the range of diameters that we evaluated. The 

width of fibrotic niche in the refence data rarely exceeded 2-3 Visium spots (55μm*2 + 45 μm 

distance between spots = 155μm, 55μm*3 + 2*45μm = 255μm).  Reference estimates of fibrotic niche 

size reported in NAFLD were in the <200μm range [37, 41, 42]. Based on this prior data, we 

considered 165μm as maximum spot diameter. The amount of input material (cells) is determined by 

tissue area that is subjected to sequencing. The relationship between spot diameter and area is 

quadratic, so we aggregated 2 Visium spots to mimic 80μm diameter, 4 Visium spots to mimic 

110μm, and 9 Visium spots to mimic 165μm.  

In NanoString terminology, a spot is called “region of illumination”, or ROI, and corresponds to the 

small piece of tissue from which barcodes are harvested for sequencing. We use the term “ROI” to 

describe the synthetic larger-diameter NanoString data and the term “spot” to describe original 55μm 

Visium spots. 
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We drew random subsamples from our unmodified and spiked-in Visium spot “populations” and 

summed up counts from neighbouring spots to mimic NanoString ROIs with larger diameter. We 

made 100 synthetic data sets for each condition (endpoint x N patients x N ROIs x ROI diameter). In 

the original Visium data, correlations between global gene expression profiles in spots within one 

patient were not stronger on average than between spots from different patients. So, the new synthetic 

larger ROIs were randomly assigned to new “patient” or a new ROI from an existing “patient”. The 

simulated data sets were restricted to genes measured on the Nanostring GeoMx Human Whole 

Transcriptome Atlas assay (GPL32201). Genes that were part of the assay and had median expression 

<0.05 TPM in all GTEx tissues (https://gtexportal.org/home/ [43]) were used as negative control 

“background probes” for the GeoDiff method [44].  

Since spatial transcriptomics is a new technology and the NanoString software GeoDiff [44] has not 

been extensively validated yet, we wanted to increase confidence in the results and applied three 

methods to test differences in expression levels of FLNA and PON1 between spiked-in and 

unmodified data sets. Conceptually, all three methods relied on negative binomial mixed effect 

regression models with background or effective library size treated as a threshold or an offset. 

Therefore, expression of a gene of interest was corrected for background.  In all cases, patient group 

was treated as the fixed effect (e.g. “fibrosis progressor” vs “stable fibrosis”) and patient as the 

random intercept. Effective library size was calculated with edgeR [45]. 

Method 1, GeoDiff [44]: 

GeoDiff::fitNBthmDE with gene count ~ group + (1|patient) after following the processing steps 

including the background estimation as described in the package vignette 

(https://bioconductor.org/packages/release/bioc/vignettes/GeoDiff/inst/doc/Workflow_WTA_kidney.

html). 

Method2, glmer.nb [46]:  

lme4::glmer.nb with gene count ~ offset(natural logarithm of effective library size) + group + 

(1|patient)  
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Method 3, GLMMadaptive LRT  [47, 48]:  

Likelihood ratio test (LRT) between full model assuming that there is a group difference and the null 

model assuming that gene expression is explained by technical and within-patient variability.  

Full model: gene count ~ offset(natural logarithm of effective library size) + group + (1|patient) 

Null model: gene count ~ offset(natural logarithm of effective library size) + (1|patient) 

We summarized our simulation setup in Table 1. For the final simulation run, the numbers of 

repeats/random data sets per condition was increased to 1,000. 

Software 

All analyses were conducted in R 4.1.0 [49], Bioconductor version 3.14. Research scripts are enclosed 

with this article (Data S2).  Spatial transcriptomics data was handled with Seurat v4.1.1 [50]. Figures 

were made with ggplot2 [51] and viridis [52]. 

Data availability 

Bulk RNA-sequencing GSE193066 [23] and spatial transcriptomics [34-36] were publicly available.  

Results 

Study endpoints 

Sample size calculation requires definition of the study endpoint. We used a combination of historic 

bulk RNA-sequencing (GSE193066 [23]) and spatial transcriptomics data [34-36] to identify spatial 

gene expression pattens in baseline biopsies that correlated with fibrosis outcome in NAFLD. 

At baseline, 108 genes had higher expression in fibrosis regressors and lower expression in fibrosis 

progressors compared to stable fibrosis individuals. Among these genes, 44 (40.7%) were associated 

with different aspects of lipid metabolism. By contrast, 187 genes had higher baseline expression in 

fibrosis progressors and lower baseline expression in fibrosis regressors. Among these genes, 89 

(47.6%) were associated with actin cytoskeleton, cell projections such as cell leading edge and RHO 

GTPase activity. We used umbrella terms “lipid metabolism” and “cytoskeleton” to denote these 44 

and 89 genes (Data S3).   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524846doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524846


10 

 

The identified gene sets were aggregated into summary scores. Analysis of the summary scores 

confirmed that fibrosis progressors had lower baseline expression of lipid metabolism markers 

(Figure 1A) and higher expression of cytoskeleton markers (Figure 1B) irrespective of their disease 

severity at baseline.  

Lipid metabolism score correlated with hepatocyte score (Figure 1C) while cytoskeleton score 

correlated with extracellular matrix (ECM) (Figure 1D) and mesenchyme scores (Figure 1E) in bulk 

NAFLD livers. Lipid metabolism score co-localized with the hepatocyte fraction in spatial 

transcriptomics on both normal and diseased livers. By contrast, cytoskeleton score co-localized with 

fibrosis areas marked by high expression of ECM and mesenchyme scores in diseased livers (Figure 

1F). We could not further deconvolute which cell type of the mesenchymal lineage (stellate cells, 

activated stellate cells, vascular smooth muscle cells or fibroblasts) could lead to co-localization of 

this expression signal. 

Based on this initial analysis, we formulated two study hypotheses: 

1. Fibrosis regressors have higher baseline expression of the lipid metabolism score in 

hepatocytes than stable-fibrosis individuals.  

2. Fibrosis progressors have higher baseline expression of the cytoskeleton score in the fibrotic 

niche than the fibrosis-stable patients  

To facilitate reading, the study hypotheses were formulated relative to the patient group with higher 

expression. However, the differences in lipid metabolism and cytoskeleton scores were observed in 

both directions (i.e., two sided test, 1. – higher in fibrosis regressors/lower in progressors, 2. – higher 

in progressors/lower in regressors) and had approximately same magnitude compared to the fibrosis-

stable group. The corresponding null hypotheses were that there were no group differences. 

Hypothesis 1 was prioritized as the primary endpoint because we considered isolation of fibrotic niche 

more technically challenging and more likely to fail. However, both hypotheses were biologically 

plausible [53-55], and sample sizes were calculated to address both hypotheses. 
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Next, we needed to turn these hypotheses into quantifiable study endpoints. Hepatocytes are the most 

abundant fraction of liver tissue even in individuals with advanced fibrosis [38-40], so, effect size 

within the hepatocyte fraction would be expected to be only slightly different from the effect size 

observed in bulk liver. By contrast, fibrosis areas constitute 2.8% (2.1– 3.6%) in F1, 4.3% (3.3 - 

5.4%) in F2, 4.8% (3.7 -7.4%) in F3 and 12.3% (8.4 -18.5%) in F4 NAFLD fibrosis stages [37]. Thus, 

expression signal originating within the fibrotic niche may be “diluted” in bulk liver, and we needed 

to translate the effect sizes between bulk liver and fibrotic niche and hepatocyte fraction. Individual 

genes that contributed to the summary scores did not always match the spatial expression pattern for 

the whole score. We found two representative markers PON1 and FLNA that had the most similar 

spatial expression pattern to the lipid metabolism score and cytoskeleton score, respectively (Figure 

2) and based the subsequent calculations on these two genes. Based on the calibration curve analysis 

(Figure S2), we formulated the primary and secondary endpoints as: 

1. Fibrosis regressors have 0.42±0.02 log2 fold higher baseline expression of PON1 in 

hepatocytes than stable fibrosis individuals.  

2. Fibrosis progressors have 1.5±0.11 log2 fold higher baseline expression of FLNA in the 

fibrotic niche than stable fibrosis individuals. 

Initial simulation study 

Using the NanoString GeoMx® Human Whole Transcriptome Atlas Digital Spatial Profiler, gene 

expression data is typically collected from 6-12 regions of illumination (ROIs) per tissue sample 

(MAN-10108-01_GeoMx_DSP_Experimental_Design_Guideline.pdf from 

www.nanostring.com/GeoMxDSP). Historic data indicated that tissue samples may have uneven 

thickness and cell density may be variable within tissue sample. So, the expression measurements 

were expected to have large technical variability in addition to biological variability of expression for 

PON1 in hepatocytes and FLNA in the fibrotic niche. 

Given that the outcome of the experiment may be affected by the sampling variability within the 

tissue sample, we conducted a simulation study to accurately mirror this sampling variability and 

estimate the required number of patients, ROI diameter and number of ROIs per patient.  
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Interestingly, the three methods applied head-to-head on the same synthetic data resulted in distinct 

power surfaces (Figure 3 and 4). However, in all cases, power to detect expression differences 

between the groups increased with increasing number of patients per group but not necessarily with 

increasing number of ROIs per patient (visible in Figure 3 and 4 in each column corresponding to a 

fixed N patients). 

Final simulation study 

The initial simulation study helped us to narrow down the range of experimental conditions to the 

largest ROI size 165μm, two ROIs per patient and at least 4 patients per group. We repeated the 

simulation study but with 1,000 synthetic data sets per condition (Table 2). All three methods were 

run on the same synthetic data, i.e., PON1 and FLNA read counts used to evaluate GeoDiff and 

glmer.nb and GLMMadaptive LRT methods were exactly the same. GeoDiff overestimated log2 fold 

change for the primary endpoint and underestimated log2 fold change for the secondary endpoint 

relative to the actual spike-in. Glmer.nb and GLMMadaptive LRT resulted in smaller log2 fold 

change estimates in the synthetic NanoString data sets than the actual spike-in but were close for the 

primary endpoint (PON1 in hepatocyte fraction median log2 FC 0.33 in simulation vs 0.42 in 

calibration curve analysis). Glmer.nb and GLMMadaptive LRT were faster than GeoDiff (e.g., final 

simulation for the secondary endpoint GeoDff 16.4 h, glmer.nb 6.6h and GLMMadaptive LRT 2.4h). 

However, we did not optimize the code, so runtimes could be reduced further. Convergence rate was 

100% for glmer.nb and GeoDiff. GLMMadaptive LRT converged in 732 to 979 out of 1,000 

iterations with higher failure rate on fewer patients. 

Taking all these factors into consideration, the final sample size was based on the glmer.nb method. 

We calculated that we would need (10 patients x 2 hepatocyte ROIs + 5 patients (subset of the ten) x 2 

fibrotic niche ROIs) x 3 experimental groups (stable fibrosis, fibrosis regressors, fibrosis progressors) 

= 90 samples subjected to sequencing at baseline. If paired follow-up biopsies are profiled for 

exploratory analysis from the same patients and for the same tissue areas, then the total sample size 

for baseline and equal number of follow-up samples is 180 samples. 
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Sensitivity analysis 

The summary scores calculated from normalized data could also be approximated as sum of raw gene 

counts for all genes constituting the score. For example, Spearman correlation between lipid 

metabolism score calculated on normalized counts and sum of raw counts for lipid metabolism genes 

was median 0.79 (IQR 0.72 - 0.82) in the spatial transcriptomics samples. Sensitivity analysis using 

sum of gene counts resulted in similar fold change estimates in calibration curve analysis (Figure S3) 

and similar sample size estimates (Table S1). Fourteen and four patients per group were sufficient to 

reach 80% power for testing group differences in expression of the lipid metabolism and cytoskeleton 

genes in the hepatocyte fraction and fibrotic niche, respectively. 

Discussion 

Sample size calculation is a crucial step in planning studies that are appropriately powered to answer 

the research question. Limited methodological research is available for sample size calculation for 

spatial transcriptomics in clinical research. In this study, we outline how to gather required inputs (e.g. 

estimate effect size based on historic data) and perform sample size estimation for comparison 

between patient groups.  Our biological question of interest was the difference in hepatic gene 

expression levels between patient groups (fibrosis progressors, fibrosis regressors and stable fibrosis 

patients) assayed with NanoString GeoMx spatial transcriptomics. The sampling variability within the 

tissue had to be accounted for but was not of primary interest. The three mixed effect model methods 

produced distinct power surfaces in the initial simulation run despite having similar conceptual basis. 

We attribute these differences to nuances of the software implementation pertaining to calculation of 

model likelihood and p-values. Still, with all three methods, power depended on the number of 

patients per group and not ROIs per patient, which is consistent with theoretical considerations [56]. 

The power of the study depends on the hypothesis/model parameter being tested (in this case, fixed 

effect regression coefficient for patient group). The number of ROIs per patient affects the ability to 

accurately estimate the random effects (in this case, patient-specific intercept terms) and not the fixed 

effect regression coefficients [56]. This represents sharp contrast to the current literature that focuses 

primarily on spatial variability of expression within the tissue and, accordingly, increasing the number 
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of spots or ROIs per tissue sample [5-7]. Whilst group differences between patients could be 

addressed with conventional experimental methods such as RNA-sequencing or even qPCR on FACS 

sorted or laser micro dissected tissue, this presents an impractical barrier in human research when 

spatial transcriptomics with the NanoString platform enables reliable quantification of gene 

expression levels from small areas of archived formalin fixed and paraffin embedded tissue.  

Due to low amount of input material, there is a risk that some ROIs will fail technical quality control 

after acquisition of sequencing data. Therefore, we started the simulation with 2 ROIs per patient and 

endpoint. If one ROI fails technical quality control in a subset of individuals, the remaining replicates 

should still be sufficient to address the study endpoint. For example, if FLNA expression in 165μm 

fibrotic niche ROIs was compared between 5 fibrosis progressors and 5 fibrosis-stable individuals 

(5x2x2 ROI = 20 ROIs) and a third (6) of the ROIs were removed (“failed quality control”) but in a 

way that did not result in complete loss of the affected patients, then power to detect the group 

difference with glmer.nb still remained 78.9% based on evaluation of 1,000 synthetic data sets.  

glmer.nb yielded similar log2 fold change estimates to the actual spike-in, had good convergence rate 

and short runtime, so we decided to test primary and secondary endpoints with this method. We set 

the alpha level to 0.025 (0.05/2 endpoints). We decided that the primary endpoint will be tested first, 

the secondary endpoint will be tested next and any other analyses such as transcriptome-wide 

differential expression will be unpowered exploratory. Standard deviations of random intercepts were 

generally low: median 0.3 (IQR 0.1-0.5) for FLNA in fibrotic niche and median 0.1 (IQR 0.05-0.2) 

for PON1 in hepatocytes for all N patients and ROI size 165µm in the final simulation study. Type I 

error in this scenario should be close to the theoretical level [47] and we did not implement any 

additional steps to control it. However, sensitivity analysis could be conducted via bootstrap method 

[47]. In addition, expression of summary scores for the lipid metabolism and cytoskeleton markers 

could be compared between fibrosis progressors, fibrosis regressors and stable fibrosis individuals in 

sensitivity analysis. We considered this an acceptable approach. If transcriptome-wide significance 

level was desired, alpha could be set to 1.25e-05, which corresponds to (0.05/2 endpoints)/ca. 2,000 

reliably detected genes with 165μm ROI in our reference data. At alpha 1.25e-05, 27 patients per 
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group would be required to achieve 80% power for the primary endpoint (PON1 in hepatocytes) and 

15 patients per group would be required for the secondary endpoint (FLNA in fibrotic niche). 

Our sample size calculation is subject to several other considerations: 

First, the 58 patients with repeated biopsies in Fujiwara et al. cohort were at high risk to develop 

hepatocellular carcinoma and already had detectable liver fibrosis at baseline [23]. Therefore, the 

hypotheses formulated in this cohort might not generalize to all-comer NAFLD population.  

Second, the initial study hypotheses (scores) were based on non-overlapping gene sets. We assumed 

that the two endpoints pertained to different aspects of biology and different tissue fractions and could 

therefore be considered independent, which may not necessarily be the case. 

Third, NAFLD Brunt fibrosis score reflects the relative amount of fibrotic tissue area within the liver. 

We assumed that if the amount of fibrotic tissue subjected to sequencing (i.e., the ROI size) is fixed, 

then we do not need to adjust for fibrosis stage any longer. However, this assumption may not hold 

true if microscopic structure (e.g., cell composition or cell density) differs within fibrotic niche in 

patients with different fibrosis severity. 

Finally, we focused on the sample size calculation and left other experimental considerations outside 

of the scope of the current study. For example, identification of ROIs (antibody selection, labelling 

with fluorescent dyes, reagent concentration etc) and sample randomization (the instrument has 

throughput of 4-8 slides a day, “GeoMx® Digital Spatial Profiler (DSP) Project Design Guide" 

document from  www.nanostring.com/GeoMxDSP) are separate topics. 

In conclusion, NanoString GeoMx is an emerging spatial transcriptomics technology. While some 

considerations such as definition of regions of interest and their size are technology-specific, we 

believe that the sample size calculations for spatial transcriptomics, as for any other technology, are 

predominantly shaped by the biological or clinical study hypothesis. The study hypothesis helps to 

define the analysis method (statistical model), the associated assumptions and the expected effect size 

or minimal clinically meaningful difference. In the absence of knowledge-based hypothesis or a 

dedicated pilot spatial transcriptomics study, the study endpoints can be inferred from prior bulk 
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RNA-sequencing data and re-scaled to tissue fractions corresponding to ROIs in spatial 

transcriptomics as illustrated in our case study.  
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Tables 

Table 1. Setup of the initial simulation. 

Parameter Parameter values 

N patients per group 2-20 

N ROIs per patient 2-10 

PON1 spike-in in 55µm hepatocyte Visium spots prior to aggregation r0.43 

FLNA spike-in in 55µm fibrotic niche Visium spots prior to aggregation r2.9 

ROI diameters 80, 110, 165µ m 

N Visium spots aggregated to achieve the ROI diameters 2, 4, 9 

Alpha 0.025 

Power for primary endpoint (PON1 in hepatocyte fraction) 80% 

Power for secondary endpoint (FLNA in fibrotic niche) 80% 

N repeats per condition (endpoint x N patients x N ROIs x ROI diameter) 100 

Analysis methods GeoDiff, glmer.nb, GLMMadaptive LRT 
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Table 2. Results of the final simulation. (A) Primary endpoint PON1 in 165μm hepatocyte ROIs and 

2 ROIs per patient. (B) Secondary endpoint FLNA in 165μm in fibrotic niche and 2 ROIs per patient. 

Number of patients is indicated per group. Log2 fold change is indicated between spiked-in and 

unmodified simulated data across 1,000 iterations per condition.  

A. GeoDiff  glmer.nb  GLMMadaptive  LRT 

N patients % Power median (IQR) 

log2FC 

% Power median (IQR) 

log2FC 

% Power median (IQR) log2FC 

4 27.3 1.08 (0.82-1.37) 51 0.33 (0.22-0.44) 38.4 0.32 (0.21-0.44) 

5 32.8 1.04 (0.76-1.29) 56.2 0.33 (0.23-0.44) 47.8 0.33 (0.23-0.43) 

6 35.7 0.97 (0.68-1.24) 61.9 0.33 (0.23-0.42) 54.0 0.33 (0.23-0.42) 

7 36.2 0.88 (0.6-1.18) 72.3 0.33 (0.25-0.42) 63.8 0.34 (0.25-0.42) 

8 37.8 0.85 (0.59-1.13) 74.5 0.33 (0.26-0.41) 68.7 0.33 (0.25-0.41) 

9 42.9 0.82 (0.55-1.11) 79.4 0.33 (0.26-0.4) 73.9 0.33 (0.26-0.4) 

10 44.3 0.78 (0.53-1.06) 82.5 0.33 (0.26-0.4) 78.2 0.33 (0.26-0.4) 

11 47.3 0.78 (0.52-1.06) 86.4 0.33 (0.25-0.4) 82.8 0.33 (0.26-0.4) 

12 47.2 0.74 (0.5-0.98) 89 0.33 (0.27-0.39) 86.3 0.33 (0.27-0.39) 

13 49.3 0.74 (0.49-0.99) 90.7 0.33 (0.27-0.39) 88.4 0.33 (0.27-0.39) 

14 50 0.73 (0.48-0.94) 93.1 0.33 (0.27-0.39) 91.5 0.33 (0.27-0.39) 

15 49.3 0.68 (0.45-0.91) 95.1 0.33 (0.27-0.39) 93.6 0.33 (0.27-0.39) 

16 49.4 0.64 (0.42-0.87) 96.6 0.33 (0.28-0.39) 95.2 0.33 (0.28-0.39) 

17 56.6 0.68 (0.47-0.91) 97.1 0.33 (0.28-0.39) 96.2 0.33 (0.28-0.39) 

18 49.5 0.6 (0.42-0.84) 97.4 0.33 (0.28-0.39) 96.6 0.33 (0.28-0.39) 

19 56.8 0.64 (0.43-0.87) 98.9 0.34 (0.29-0.38) 98.4 0.34 (0.29-0.39) 

20 55.5 0.61 (0.41-0.84) 99 0.33 (0.28-0.38) 98.8 0.33 (0.28-0.38) 

B. GeoDiff  glmer.nb  GLMMadaptive  LRT 

4 33.4 0.83 (0.56-1.13) 72.7 1.04 (0.8-1.22) 60.4 1.02 (0.77-1.21) 

5 36.9 0.82 (0.58-1.07) 80.8 1.04 (0.85-1.22) 70,9 1.03 (0.83-1.2) 

6 39.9 0.82 (0.57-1.09) 84 1.04 (0.84-1.22) 76.2 1.04 (0.83-1.21) 

7 43.4 0.81 (0.57-1.08) 87.7 1.05 (0.87-1.2) 82.0 1.05 (0.86-1.19) 

8 46.2 0.81 (0.59-1.03) 91 1.03 (0.85-1.19) 86.6 1.02 (0.84-1.17) 

9 49.7 0.81 (0.61-1.07) 93.7 1.04 (0.88-1.18) 90.7 1.03 (0.87-1.17) 

10 54.9 0.81 (0.61-1.07) 93.5 1.03 (0.88-1.16) 91.4 1.02 (0.88-1.16) 

11 56.7 0.84 (0.63-1.09) 97.2 1.04 (0.89-1.16) 95.8 1.04 (0.89-1.16) 

12 55.9 0.8 (0.61-1.02) 97.5 1.04 (0.89-1.16) 96.3 1.03 (0.89-1.15) 

13 59.7 0.82 (0.63-1.06) 98.1 1.02 (0.89-1.15) 97.3 1.02 (0.88-1.14) 

14 58.6 0.8 (0.62-1.03) 98.5 1.03 (0.9-1.15) 98.2 1.03 (0.9-1.15) 

15 64.3 0.81 (0.63-1.03) 99.5 1.02 (0.9-1.14) 99.3 1.02 (0.9-1.14) 

16 66.3 0.82 (0.63-1.05) 99.3 1.04 (0.92-1.15) 98.9 1.04 (0.92-1.15) 

17 64 0.82 (0.64-1.04) 99.5 1.03 (0.91-1.14) 99.3 1.03 (0.9-1.14) 

18 67.8 0.8 (0.62-0.99) 99.8 1.02 (0.91-1.12) 99.8 1.02 (0.91-1.13) 

19 68.3 0.81 (0.64-1.03) 100 1.03 (0.92-1.13) 100.0 1.04 (0.91-1.13) 

20 69.3 0.8 (0.64-1.02) 99.8 1.03 (0.92-1.12) 99.7 1.03 (0.92-1.12) 
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Figure legends 

Figure 1. Initial hypothesis generation. (A) Relative expression of lipid metabolism score in baseline 

biopsies stratified by 2-year outcome and baseline fibrosis stage in bulk NAFLD liver GSE193066. N 

stable-fibrosis individuals = 28, fibrosis progressors = 15 and fibrosis regressors = 15. Table on the 

side shows coefficients from the multivariate linear regression model, in which relative expression 

score is a function of 2-year outcome, fibrosis stage and NAS score at baseline. (B) Relative 

expression of cytoskeleton score in baseline biopsies stratified by 2-year outcome and baseline 

fibrosis stage in bulk NAFLD liver GSE193066. Notations are as in panel (A). Possible source of 

expression signal (C-E) in NAFLD bulk liver GSE193066 and (F) in spatial transcriptomics 

experiments. Correlations in spatial transcriptomics were computed across the total tissue area within 

each sample separately.  

Figure 2. PON1 and FLNA as representative markers. Correlation between (A) PON1 and hepatocyte 

score and (B) FLNA and cytoskeleton score in bulk NAFLD liver GSE193066. Co-localization of (C) 

PON1 with lipid metabolism score in hepatocyte fraction and (D) FLNA with cytoskeleton score in 

fibrotic niche in representative non-tumour liver region adjacent to hepatocellular carcinoma. Colors 

indicate relative expression of summary marker scores. These scores are in arbitrary log2 units: blue – 

low, green – moderate, red – high. 

Figure 3. Power surface obtained for the primary endpoint (PON1 in hepatocytes) in the initial 

simulation. This analysis was used to narrow down the range of experimental conditions (N patients x 

N ROIs per patient x ROI size). 

Figure 4. Power surface obtained for the secondary endpoint (FLNA in fibrotic niche) in the initial 

simulation. This analysis was used to narrow down the range of experimental conditions (N patients x 

N ROIs per patient x ROI size). 
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