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Abstract

Background: Stepped wedge trials (SWTs) can be considered as a variant of a clustered randomised trial, although in

many ways they embed additional complications from the point of view of statistical design and analysis. While the

literature is rich for standard parallel or clustered randomised clinical trials (CRTs), it is much less so for SWTs. The

specific features of SWTs need to be addressed properly in the sample size calculations to ensure valid estimates of

the intervention effect.

Methods: We critically review the available literature on analytical methods to perform sample size and power

calculations in a SWT. In particular, we highlight the specific assumptions underlying currently used methods and

comment on their validity and potential for extensions. Finally, we propose the use of simulation-based methods to

overcome some of the limitations of analytical formulae. We performed a simulation exercise in which we compared

simulation-based sample size computations with analytical methods and assessed the impact of varying the basic

parameters to the resulting sample size/power, in the case of continuous and binary outcomes and assuming both

cross-sectional data and the closed cohort design.

Results: We compared the sample size requirements for a SWT in comparison to CRTs based on comparable number

of measurements in each cluster. In line with the existing literature, we found that when the level of correlation within

the clusters is relatively high (for example, greater than 0.1), the SWT requires a smaller number of clusters. For low

values of the intracluster correlation, the two designs produce more similar requirements in terms of total number of

clusters. We validated our simulation-based approach and compared the results of sample size calculations to

analytical methods; the simulation-based procedures perform well, producing results that are extremely similar to the

analytical methods. We found that usually the SWT is relatively insensitive to variations in the intracluster correlation,

and that failure to account for a potential time effect will artificially and grossly overestimate the power of a study.

Conclusions: We provide a framework for handling the sample size and power calculations of a SWT and suggest

that simulation-based procedures may be more effective, especially in dealing with the specific features of the study

at hand. In selected situations and depending on the level of intracluster correlation and the cluster size, SWTs may be

more efficient than comparable CRTs. However, the decision about the design to be implemented will be based on a

wide range of considerations, including the cost associated with the number of clusters, number of measurements

and the trial duration.
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Background

Sample size calculations for a trial are typically based on

analytical formulae [1], often relying on the assumption of

(approximate) normality of some test statistic used for the

analysis. In the case of cluster RCTs (CRTs), where clusters

rather than individuals are randomised, the outcomes for

participants within a cluster are likely to be more similar

than those between clusters.

The most common approach to computing the opti-

mal sample size for a CRT is to formally include some

form of variance inflation, often expressed in terms of a

design effect (DE) [2–7], the factor by which the sample

size obtained for an individual RCT needs to be inflated

to account for correlation in the outcome [8]. In the sim-

plest case, the DE is computed as a function of the number

of individuals in each cluster and the intracluster corre-

lation (ICC), which quantifies the proportion of the total

variance due to variation between the clusters. In prac-

tice, a preliminary size is computed as if the trial were an

individual RCT and the sample size is obtained by multi-

plying this by the DE, which thus quantifies the inflation

in the sample size resulting from the reduced amount of

information due to the lack of independence across the

observations. In the case of standard CRTs, there is a con-

siderable literature dealing with more complicated scenar-

ios, for example, when repeated measures are obtained

from individuals within the clusters [9]. Stepped wedge

trials (SWTs) are a variant of CRTs where all clusters

receive the intervention in a randomised order. They also

have additional features which need to be formally taken

into account in the sample size calculations, including:

the number of crossover points; the number of clusters

switching intervention arm at each time point; possible

time and/or lag effect, indicating that the intervention

effect may not be instantaneous; and the dynamic aspects

of the underlying population, for example, whether the

data are collected for a SWT in a cross-sectional man-

ner or they are repeated measurements on the same

individuals.

The available literature for sample size and power calcu-

lations for a SWT is much less rich than that on parallel

or cluster randomised trials. In addition to the risk of

bias and logistic challenges [10, 11], this is perhaps one

of the reasons for the limited development of trials based

on the SWT design, at least until very recent times [11].

Indeed, many SWT studies published between 1950 and

2010 did not report formal sample size calculations, and

for those which did, descriptions of the details were not

adequate [12, 13]. Nonetheless, some improvements have

been made over the last few years, and a number of

papers have been published on sample size calculations for

SWT. These include the pivotal paper published in 2007

by Hussey and Hughes (HH) [14], which provided both

analytic formulae and the results of a simulation exercise

for sample size calculations. Methods for the computa-

tion of DEs for a SWT have also been recently proposed

[15, 16].

Despite the recent increase in the number of published

trials using stepped wedge designs, a recent review on the

reporting of the conduct of SWTs [11] suggests only a

few studies mentioning the ICC and a justification for its

assumed value, which effect sizes were adopted and the

other assumptions on which the calculations were based.

Of the 38 studies identified in the review, 8 did not report

any form of sample size calculation (5 of these were only

based on trial registration) and 10 used formulae for par-

allel or cluster RCTs. Of those accounting for the stepped

wedge design, the most common method used was that

of HH [14], while only one study used the DE defined by

Woertman et al. [15], one used the method proposed by

Moulton et al. [16] and three used simulations to com-

pute the sample size. Of the 30 studies which reported a

sample size calculation, just 19 included the ICC, of which

only a few appeared to be based on previous research.

Given the often longitudinal nature of SWTs, it is surpris-

ing that only 9 accounted for possible drop-out. Moreover,

the sample size calculations did not always match the

methods of analysis undertaken, and although many of

the studies used repeated measures designs, adjusting for

covariates and assessing possible time by intervention

interactions effects, they did not take these into account

in the sample size calculations.

Existing guidance on sample size calculations for a SWT

is also limited by the fact that it has mainly focussed solely

on cross-sectional designs, ignoring the more complex

clustering which occurs in studies where repeated mea-

surements are taken from the same individuals [14–16].

For cross-sectional outcome data, these are assumed to

be measured at discrete times linked to the timing of the

‘steps’ (crossover points) in the design and it is assumed

that the analysis will include data from one crossover after

all clusters have changed to the intervention condition

and from one crossover before. Other typical assumptions

include equal cluster sizes, no intervention by time inter-

actions, no cluster-by-intervention effect and categorical

time effects (we return to this point later).

Very recently, Hemming et al. [17] have provided analyt-

ical formulae for power calculations for specific variations

on HH’s basic formulation. These include the case of

multiple levels of clustering, for example, an intervention

being implemented in wards within hospitals, and what

they term the ’incomplete’ SWT design, in which clus-

ters may not contribute data for some time periods, for

example, because of implementation periods in which the

clusters transition from the control to the intervention

arm, or to avoid excessive measurement burden. Never-

theless, as suggested in [18], to date reliable sample size

algorithms for more complex designs, such as those using
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cohorts rather than cross-sectional data, have not yet been

established.

The objective of this paper is to provide a critical review

of the analytical methods currently available for sample

size calculations for a SWT and to suggest the potential

extension of these closed-form methods to simulation-

based procedures, which may be more appropriate and

offer more flexibility in matching the complexity of the

model used for the analysis. We show the results of

a simulation study, comparing the performance of the

simulation-based approach to that of the closed-form

calculations, and finally give some recommendations on

when either procedure may be more accurate.

Methods

Analytical methods for sample size calculations in a

stepped wedge trial

Before we proceed, we note that since this is a method-

ological paper, no ethical approval was required for any

of the aspects we present and discuss in the following

sections. There are three main papers detailing the sam-

ple size requirements for a SWT. The first one is that of

HH, who proposed power calculations for stepped wedge

designs with cross-sectional data and investigated the

effect on power of varying several parameters. The basic

model considered by HH assumes I clusters, J crossover

points and K individuals sampled per cluster at each time

point. In the most basic formulation, the observed con-

tinuous response is then modelled as Yijk = μij + eijk ,

where

μij = μ + αi + βj + Xijθ

is the cluster- and time-specific mean, while eijk ∼
Normal(0, σ 2

e ) represent independent individual-level

error terms (within-cluster variability). Here, μ is the

overall intercept, αi ∼ Normal(0, σ 2
α ) are a set of cluster-

specific random effects, βj are fixed effects for time j, Xij

is an intervention indicator taking on the value 1 if cluster

i is given the active intervention at time j and 0 otherwise,

and θ is the intervention effect. This model implies that

the response Yijk is normally distributed with mean μij

and total variance σ 2
y = σ 2

α + σ 2
e , while the cluster-level

variance is
σ 2

α+σ 2
e

K [1 + (K − 1)ρ], where ρ = σ 2
α

σ 2
α+σ 2

e
is the

ICC.

HH’s power calculations are based on the Wald test

statistic, computed as the ratio between the point estimate

of the intervention effect and its standard deviation. The

main complexity lies in the computation of the variance

of the estimator of the intervention effect; nevertheless, in

the relatively standard case considered by HH, this can be

expressed analytically as

V (θ) =
Iσ 2(σ 2 + Jσ 2

α )

(IU − W )σ 2 + (U2 + IJU − JW − IV )σ 2
α

,

where σ 2 = σ 2
e
K , whileU =

∑

ij Xij,W =
∑

j

(
∑

i Xij

)2
and

V =
∑

i

(

∑

j Xij

)2
are all easily computable functions of

the design matrix. The within- and between-cluster varia-

tions are usually not known a priori, but similar to the case

of standard parallel or cluster RCTs, suitable estimates can

be plugged in, perhaps using information from previous

or pilot studies.

The power is computed as

Power = �

(

θ
√
V (θ)

− zα/2

)

where � is the cumulative standard normal distribution

and zα/2 is its (1 − α/2)−th quantile. This formulation

assumes exchangeability across time within each cluster;

that is, the same correlation is assumed between indi-

viduals regardless of whether or not they are exposed to

the intervention or the control. Furthermore, the model

takes into account external time trends, but assumes they

are equal for all clusters. Incorporating such time effects

is necessary for SWTs, particularly for cases where the

outcome is likely to vary over time [19].

Drawing on asymptotic theory, HH’s calculations can be

easily extended to the case in which the outcome is not

normally distributed. Using HH’s calculations, Hemming

and Girling [20] have also written a Stata [21] routine

steppedwedge, which allows continuous, binary and

rate outcomes. The routine allows the specification of

the number of clusters randomised at each crossover, the

number of crossover points and the average cluster size.

Analytical sample size calculations based on design effects

As an alternative to HH’s formulation, some authors have

proposed sample size calculations based on the deriva-

tion of a design effect, an approach commonly used in

standard parallel CRTs. For example, Woertman et al.

[15] suggest the use of (what they term) a DE, based on

HH’s formulation. Their approach assumes that the out-

come measurements are obtained from each cluster at a

number of discrete time points and that the number of

participants measured at each of these crossover points

is the same across times and clusters. The formula to

compute the correction factor (CF) depends on the num-

ber of crossover points at which the clusters switch to

the intervention (J), the number of baseline measurement

times (B), the number of measurement times during each

crossover (T), the number of participants measured at

each time in each cluster (K) and the ICC ρ:

CF =
1 + ρ(JTK + BK − 1)

1 + ρ
(

1
2 JTK + BK − 1

)

3(1 − ρ)

2T
(

J − 1
J

) .
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The overall sample size in terms of participants (each

contributing one measurement) is then obtained as

n = nRCT × (B + JT) × CF

where nRCT is the sample size computed for a correspond-

ing parallel individual RCT without baseline data. Thus,

we note here that the correction factor cannot be consid-

ered as a DE in a conventional sense, and in fact the proper

formulation is

DEW = (B + JT) × CF.

The underlying assumptions behind this formulation

are similar to those used by HH, with the exceptions that

the same number of clusters switches at each crossover

and the number of measurements after each crossover

is constant. Because the calculation of this DE is based

on HH’s model, it applies only to cross-sectional settings,

so that each measurement is from a different individ-

ual participant. For example, measurements may arise

from sampling a small fraction of a large cohort at each

time point, or repeated cohorts of new individuals may

be exposed to intervention or control conditions at each

crossover and provide outcomemeasures at the end of the

crossover. However, Woertman et al. erroneously applied

their DE to a setup in which the same cohort of individuals

was observed repeatedly over time.

Often, in a SWT measurements are not obtained at

discrete times; for example, consider the commonly con-

ducted design termed a continuous recruitment short

period exposure design, in [22]. In such a design DEW
can be used by considering the cluster size K to be the

number of individuals recruited (that is, providing out-

come measurements) per cluster during each crossover,

setting T = 1 and B equal to the ratio of the number

of outcome measurements obtained before roll-out to the

number obtained during each subsequent crossover.

A similar methodology based on the computation of a

specific DE for a SWT was proposed by Moulton et al.

[16], specifically for survival data. Their DE considers the

case where the main analysis consists of comparisons of

the outcome for the clusters receiving the intervention to

those who have yet to receive it. Assuming that all the

clusters receive the intervention by the last time point J, in

this case the test is based on a log-rank statistic

Z =

∑J
j=1

[

d1j − Y 1
j

(

d∗
j

Y ∗
j

)]

√

∑J
j=1

Y 1
j

Y ∗
j

(

1 −
Y 1
j

Y ∗
j

) (

Y ∗
j −d∗

j

Y ∗
j −1

)

d∗
j

where: {d0j , d
1
j } indicate the number of new cases at time

j, respectively in the clusters that are not treated (labelled

by the superscript 0) and in those that are treated (labelled

by the superscript 1); {Y 0
j ,Y

1
j } indicate the number of sub-

jects at risk at time j in the untreated and treated clusters,

respectively; d∗
j = d0j +d1j and Y ∗

j = Y 0
j +Y 1

j are the total

incident cases and number at risk at time j.

The log-rank statistic can be computed assuming either

a standard CRT scheme or a time-varying allocation of

the clusters to the intervention. The comparison between

its values under the two scenarios provides a measure of

the DE for a SWT. The final sample size calculation is

then performed by inflating a suitable standard sample

size (based on [23]) by this factor. In the original paper

[16], the computation of the values for d0j and d1j is based

on simulations, but we note here that their procedure is

fundamentally different from the one we describe in the

next sections and, as such, we still class this method as a

form of analytical calculation.

Limitations of analytical sample size calculations

As mentioned above, the main limitation of the ana-

lytical methods of [14–16] is that they are not directly

applicable when repeated measures are taken on the

same individuals over time, due to the additional level

of correlation implied in this case. Thus, calculations

based on cross-sectional data are likely to overestimate

the required sample size for a design involving repeated

measurements.

More importantly, while analytical formulae and DEs

are generally simple to use, the extra complexity of sev-

eral potential SWT designs means that these cannot be

directly used without applying the necessary modifica-

tions to the original formulation, to align the design and

analysis models for the SWT under consideration. Con-

sequently, the use of simulation-based methods has been

suggested as a valid and more general alternative [24],

which can be used to cater for the specific features of a

SWT.

Simulation-based sample size calculations

The use of a simulation-based approach to determine the

optimal sample size for a study is not a new concept, nor

is it specific to the design of SWTs [25–27]. Stated briefly,

the idea is to consider a model to represent the data gener-

ating process (DGP), which describes how the researchers

envisage the way in which the trial data will eventually be

observed. This should be the model that is used to anal-

yse the data, after the study has been conducted. Using

the assumed DGP, data can be simulated a large number

of times and the resulting ’virtual trials’ can be analysed

using the proposed analysis model.

Some of the parameters may be varied across the sim-

ulations: for example, it is interesting to investigate the

results obtained by varying the total number of obser-

vations. The optimal sample size is set to the minimum

number of subjects for which the proportion of simulated
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trials that correctly deem the intervention as significant

at the set α−level is greater than or equal to the required

power.

The main advantage of using simulation-based

approaches to determine the sample size is that, in princi-

ple, any DGP can be assumed, no matter how complex. Of

course, trials associated with more complicated designs

will also require longer computational time to produce a

sufficient number of runs to fully quantify the operating

characteristics, for example, in terms of the relationship

between power and sample size. This is essential to

estimate the required sample size properly.

Cross-sectional data designs

The simplest situation is probably that of a repeated cross-

sectional design in which measurements are obtained at

discrete times from different individuals. This manner of

taking measurements is consistent with an open cohort

SWT in which a small fraction of the participants in each

trial cluster is sampled for measurements at each time

[22].

In this case, the general framework for the simulation-

based approach can be described as follows. Individual

variability in the observed data Yijk is described using

a suitable distribution depending on the nature of the

outcome and characterised by cluster- and time-specific

mean μij and an individual (within-cluster) level variance

σ 2
e . The mean of the outcome is described by a linear

predictor, on a suitable scale:

φij = g(μij) = μ + αi + βj + Xijθ .

When considering symmetrical and continuous data, we

may assume a normal distribution, and thus the function

g(·) is just the identity. For example, [28] assessed the

impact of a nutritional intervention on preventing weight

loss using this formulation. The assumption of normality

is by no means essential: for instance, if we were aware

of potential outliers, we could assume a more robust t

distribution for the observed data.

In a simulation-based framework, it is straightforward

to extend this structure to account for other types of out-

comes; for example, binary responses are appropriately

dealt with by assuming a Bernoulli distribution for the

individual data and then considering a log-linear predictor

on the odds, that is, g(μij) = logit (μij). This is the frame-

work used by [29] to identify the proportion of patients

obtaining a pre-specified weight loss, that is, modify-

ing the definition of the primary outcome for the trial

of [28].

Similarly, it is possible to consider count data modelled

assuming a Poisson distribution and then a log-linear pre-

dictor for the mean g(μij) = log (μij), as in the trial

described by Bacchieri et al. [30], who assessed the effec-

tiveness of a cycling safety program by determining the

number of accidents over time pre- and post-intervention.

Notice also that this definition of the linear predictor

applies to continuous and skewed observations, which can

be modelled using a lognormal or a gamma distribution.

Closed cohort designs

Another relevant situation is represented by repeated

measurements on the same cohort of individuals, termed

a closed cohort in [22]. Under this design, it is necessary to

account for the induced correlation between the measure-

ments obtained by the same individual. This is easily done

by adding a random effect vik ∼ Normal (0, σ 2
v ), which

is specific to the k-th individual in cluster i, to each of

the linear predictors described above. In the most basic

formulation this then becomes

φij = g(μij) = μ + αi + βj + Xijθ + vik ,

but of course it is possible to extend this to combine

the cluster- and individual-specific random effect with

other features. This construction can be easily extended to

account for ’multiple layers of clustering’ (similar to those

mentioned in [17]).

Modelling extensions formore complex data generating

processes

The use of simulation-based sample size calculations

proves particularly effective to model the extra complexity

implied by non-standard cases. Examples are the inclusion

of additional covariates, which may or may not depend

on time or the cluster allocation to the intervention, as

well as more structured effects (such as interactions or

higher order effects for the intervention or other covari-

ates included in the model, such as quadratic trends).

One relevant potential extension to the model is to con-

sider a data generating process including an additional

cluster-specific random effect, so that the linear predictor

becomes

φij = g(μij) = μ + αi + βj + Xij(θ + ui),

depending on the suitable link function g(·). Here ui ∼
Normal (0, σ 2

u ) and σ 2
u is a variance term common to all

the clusters. These terms can be interpreted as cluster-

specific variations in the intervention effect. Alternatively,

the term (θ + ui) can be interpreted as a cluster-varying

slope for the intervention effect.

This structure may be relevant, for example, to address

cases where variations in how the intervention is imple-

mented in different clusters are likely to occur. Notice that

the data will inform the estimation of σ 2
u so that, if there is

no evidence of cluster-specific variations in the interven-

tion effect, this parameter will be estimated to be 0 and

thus all clusters will be estimated to have the same inter-

vention effect. In practical terms, in order to perform the

simulation-based sample size calculations, it is necessary
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to provide an estimate of the variance σ 2
u . This may not

be known with precision, and thus it is helpful to perform

sensitivity analysis on the actual choice.

Another interesting extension to the framework

involves including a random effect to model time, for

example βj ∼ Normal (0, σ 2
β ) with σ 2

β specifying a vari-

ance term common to all time points. Alternatively,

the time effect may be specified using more complex

specifications such as random walks. HH have already

discussed this possibility and suggested that it “might

be particularly appropriate if temporal variations in the

outcome were thought to be due to factors unrelated to

changes in the underlying disease prevalence (e.g. changes

in personnel doing outcome surveys)”. Again, this would

not have any substantial implication on our simulation

methods, although the additional time-specific random

effect would make the structure of the models more

complex and thus potentially increase the computational

time.

Notice that these more general constructions involve

the specification of suitable values for additional parame-

ters and that, while often providing a more robust option,

as seems intuitively obvious, these complications in the

modelling structure will generally increase the required

sample size. In addition, thesemore complexmodels apply

equally to cross-sectional and cohort designs.

Simulation procedure

Regardless of themodelling assumptions for the outcomes

or the form assumed for the cluster- and time-specific

mean, the simulation procedure can be schematically

described as follows.

i. Select a total sample size n (for example, total number

of individuals measured) and a suitable combination

of the number of clusters I and time points J.
ii. Provide an estimate of the main parameters. These

can be derived from the relevant literature or expert

opinion. We recommend thorough sensitivity

analyses to investigate the impact of these

assumptions on the final results, in terms of optimal

sample size. In the simplest case described above,

these include:

a. The design matrix X , describing how the

clusters are sequentially allocated to the

intervention arm;

b. The intercept μ, which represents an

appropriate baseline value;

c. The assumed intervention effect θ ;

d. The between- and within-cluster variances σ 2
α

and σ 2
e . Given the relationship between these

two variances and the ICC, it is possible to

supply one of them and the ICC, instead.

iii. Simulate a dataset of size n from the assumed model.

In the simplest case mentioned above, this amounts

to the following steps:

a. Simulate a value for each of the random

cluster-specific effects αi ∼ Normal(0, σ 2
α );

b. Simulate a value for the fixed time-specific

effect βj, for example, a linear trend;

c. Compute the linear predictor by plugging in

the values for the relevant quantities; note that

this represents the mean of the outcome, on a

suitable scale;

d. Simulate a value for the outcome from the

assumed distribution and using the

parameters derived in the previous steps.

iv. Analyse the resulting dataset and record whether the

intervention effect is detected as statistically

significant.

Steps iii and iv are repeated for a large number S of

times for each of the selected values of n, and the pro-

portion of times in which the analysis correctly detects

the assumed intervention effects as significant is used as

the estimated power. The lowest value of n in correspon-

dence of which the estimated power is not less than the

pre-specified threshold (usually 0.8 or 0.9) is selected as

the optimal sample size. A Monte Carlo estimate of the

error around the estimated power can be easily computed

and used as a guideline to determine the optimal number

of simulations to be used. In many situations, a value of S

in the order of 1,000s will suffice.

Sensitivity to the choice of the fundamental parameters

can be checked by selecting different values and repeat-

ing the procedure. For example, it is possible to assess

the impact of varying the cluster size. An alternative

version of this algorithm may involve the adoption of

a fully Bayesian approach [31]; this amounts to mod-

elling the uncertainty in the basic parameters using

suitable probability distributions. For example, one could

assume that, based on currently available evidence, the

between-cluster standard deviation is likely to lie in a

range between two extreme values a and b. This may be

translated, for example, into a prior uniform distribution

defined in (a, b). The sample size calculations would

then account for the extra uncertainty in the actual value

of this parameter. The benefits of this strategy are of

course higher if genuine information is available to the

researchers.

Results

We used both analytical and simulation-based calcula-

tions to assess several aspects of a SWT, in terms of

sample size calculations.
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As suggested by Hemming et al. [32], in some cases

the information provided by the within-cluster analysis

in a SWT may lead to an improvement in efficiency, in

comparison to a CRT with the same number of overall

measurements. This is due to the fact that not only are

within-cluster comparisons used to estimate intervention

effects, but also within-subject comparisons [33]. Thus,

we first assess the efficiency of a SWT against a stan-

dard CRT by comparing the sample size resulting from

applying several alternative calculationmethods and upon

varying the ICC.

Then, we validate the simulation-based approach

against the analytical formulation of HH, for cross-

sectional data. Finally, we use the simulation-based

approach to assess the impact of varying the basic param-

eters to the resulting sample size/power, in the case

of continuous and binary outcomes and assuming both

cross-sectional data and the closed cohort design.

All simulations and analyses were performed using the

freely available software R [34]. A package will be made

available, containing suitable functions to perform ana-

lytic and simulation-based calculations to determine the

sample size of a SWT.

SWT versus CRT

For all types of outcomes described above and assuming

cross-sectional data, we computed the number of clus-

ters required to obtain 80 % power to detect a specified

intervention effect using the following methods: a stan-

dard inflation factor based on a CRT (results are presented

in the first two columns of Table 1); the DE of Woertman

et al. (the third column); the analytical values of HH (the

fourth column).

For all the outcomes, we considered a linear time

trend and arbitrarily assumed a standardised effect size of

around 0.25, obtained by setting the following inputs:

• Continuous outcome : baseline value μ = 0.3;

intervention effect θ = −0.3785; total standard

deviation σy = 1.55.
• Binary outcome : baseline probability μ = 0.26;

intervention effect OR = exp(θ) = 0.56.
• Count outcome : baseline rate μ = 1.5; intervention

effect RR = exp(θ) = 0.8.

The values selected for the examples are loosely based on

three of the trials we have reviewed [28–30].

For the two DE methods, we first computed the sam-

ple size required for a parallel RCT and then applied the

suitable inflation factor. In the SWT design, we consid-

ered a common setting with K = 20 subjects per cluster

at each of a total of J = 6 time points at which measure-

ments were collected, that is, one baseline time at which

all the clusters are in the control arm and 5 times at which

Table 1 Estimated number of clusters for three sample size

calculation methods used in SWTs, as a function of the ICC and

outcome type (continuous, binary and rate) to obtain 80 % power

ICC Standard CRT inflation factor DE inflation
factor based on
Woertman et al.

Analytical power
based on HH

K = 20, J = 1 K = 120, J = 1 K = 20, J = 6 K = 20, J = 6

Continuous outcomea

0 26 5 8 9

0.1 74 55 12 12

0.2 122 105 11 11

0.3 170 155 10 10

0.4 218 205 9 9

0.5 266 256 7 7

Binary outcomeb

0 25 5 8 10

0.1 71 53 12 13

0.2 117 101 11 12

0.3 163 149 9 11

0.4 209 197 8 10

0.5 256 246 7 8

Count outcomec

0 24 4 8 8

0.1 69 51 11 11

0.2 114 98 10 10

0.3 159 145 9 9

0.4 203 192 8 8

0.5 248 238 7

a Intervention effect = −0.3785; σy = 1.55; sample size for a parallel RCT = 253

subjects per arm.
bBaseline outcome probability = 0.26; OR = 0.56; sample size for a parallel RCT = 243

subjects per arm.
cBaseline outcome rate = 1.5; RR = 0.8; sample size for a parallel RCT = 236 subjects

per arm.

Notation: K = number of subjects per cluster; J = total number of time points,

including one baseline

the clusters sequentially switch to the intervention arm.

Conversely, we considered two cases for the CRT: in the

first one, we assumed the same number of measurements

per cluster as in the SWT K = 20, while in the second

we assumed a cluster size equal to the total number of

subjects in the corresponding SWTs (that is, 120 subjects,

each measured at one single time point). We programmed

the analytical calculations of HH in R and validated the

output using the steppedwedge routine in Stata.

For all outcomes, we varied the ICC from 0, indicating

no within-cluster correlation, to 0.5, which can be con-

sidered a high level of correlation, particularly in clinical

settings. The methods discussed here are all based on the

assumption that information is provided in terms of the
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total variance σ 2
y , which is in turn used to determine the

between-cluster variance σ 2
α = σ 2

y ρ. This poses no prob-

lem in the computation of DEW and the HHmethod, since

they are both based on (approximate) normality of the

outcomes. Thus, it is easy to control which source of vari-

ation is inputted through the variance parameter, which is

separate from the linear predictor.

Table 1 shows that, in comparison with the standard

CRT, the SWT can be much more efficient, under the

settings we have considered. As previously reported [14],

for increasingly larger values of the ICC (roughly speak-

ing, greater than 0.1), the total number of measurements

computed as I(J + 1)K required to achieve 80 % power is

increasingly smaller for a SWT than for either form of the

CRT that we consider here. On the contrary, for very small

values of the ICC, the two CRTs considered in Table 1

require a marginally smaller number of observations. This

result is consistent across the three types of outcomes.

The DE computed using the method of Woertman et al.

produces results very similar to those of the original HH

calculations, particularly for continuous and count out-

comes, in which cases the computed number of clusters is

identical for the two methods.

Simulation-based versus analytical sample size calculations

We then compared the results of the simulation-based

approach applied to three types of outcomes with the

HH analytical calculations. Notice that in the binary and

count outcome cases it is more cumbersome to assume

that information is provided in terms of the total vari-

ance. This is because, unlike the normal distribution,

the Bernoulli and Poisson distributions are characterised

by a single parameter, which simultaneously determines

both the linear predictor and the variance. Consequently,

because the linear predictor includes the cluster-specific

random effects αi, assuming a fixed total variance σ 2
y

implies a re-scaling of the baseline value μ to guarantee

that the resulting total variance approximates the required

value.

For this reason, when using a simulation-based

approach for non-normally distributed outcomes it is eas-

ier to provide information on the within-cluster variance

σ 2
e as input, which is then used to determine the between-

cluster variance as σ 2
α = σ 2

e
ρ

1−ρ
. Since it is also possible

to provide the within-cluster variance as input for the

HH calculations, we use this strategy here, while keep-

ing the numerical values from the previous example. This

explains why the numbers for themethod of HH in Table 2

differ from those in Table 1.

The simulation-based power calculations are obtained

by using the procedure described in the previous sections,

repeating the process 1 000 times and assessing the result-

ing power within Monte Carlo error. As shown in Table 2,

there was very good agreement between the method of

Table 2 Comparison of the simulation-based approach with the

analytical formulae of HH. The cells in the table are the estimated

number of clusters as a function of the ICC and outcome type

(continuous, binary and rate) to obtain 80 % power

ICC Analytical power based on HH Simulation-based calculations

K = 20, J = 6 K = 20, J = 6

Continuous outcomea

0 9 9

0.1 13 13

0.2 14 13

0.3 14 14

0.4 14 14

0.5 14 14

Binary outcomeb

0 11 15

0.1 17 16

0.2 18 17

0.3 18 18

0.4 18 18

0.5 18 18

Count outcomec

0 8 8

0.1 13 12

0.2 13 12

0.3 13 12

0.4 13 11

0.5 13 11

a Intervention effect = −0.3785; σe = 1.55.
bBaseline outcome probability = 0.26; OR = 0.56.
cBaseline outcome rate = 1.5; RR = 0.8.

Notation: K = number of subjects per cluster; J = total number of time points,

including one baseline

HH and our simulations, particularly for the case of con-

tinuous outcome in which the results were identical. For

binary and count outcome, the estimated numbers of clus-

ters required to obtain 80 % power were slightly less

aligned between the simulations and the method of HH.

This is not entirely surprising, given that HH assume

approximate normality, while our simulations directly

address non-normality using binomial and Poisson mod-

els, respectively.

Closed cohort design versus cross-sectional data:

continuous and binary outcomes

Effect size and ICC

Figures 1 and 2 show the power computed using our

simulation-based approach as a function of the assumed

effect size and the ICC for the continuous and binary
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Fig. 1 Power curves for a continuous outcome assuming: 25 clusters,

each with 20 subjects; 6 time points including one baseline. We varied

the intervention effect size and the ICC variations. Panel (a) shows the

analysis for a repeated closed cohort (cross-sectional) design, while

panel (b) depicts the results for a closed cohort design. In panel (b)

the selected ICCs are reported for cluster and participant level

outcome, respectively. We assume I = 25 clusters each

with K = 20 subjects and a total of J = 6 measurements.

In both figures, panel (a) shows the results for the cross-

sectional data, while panel (b) depicts those for the closed

cohort design.

It is clear that large increases in the ICC at the cluster

level for cross-sectional data result in a decline in power.

In the closed cohort design case, we assessed the sensi-

tivity of different specifications of the ICC both at the

cluster and at the participant level. While in the case of

continuous outcomes, changes in the ICC seem to only

marginally affect the power, when considering a binary

Fig. 2 Power curves for a binary outcome assuming: 25 clusters, each

with 20 subjects; 6 time points including one baseline. We varied the

intervention effect size and the ICC variations. Panel (a) shows the

analysis for a repeated closed cohort (cross-sectional) design, while

panel (b) depicts the results for a closed cohort design. In panel (b)

the selected ICCs are reported for cluster and participant level

outcome, large values of the ICC (particularly at the clus-

ter level) seem to reduce the power more substantially. In

any case, the impact of the ICC appears less important

than that of the mean difference.

Number of crossover points

Figures 3 and 4 illustrate the effect of varying the num-

ber of clusters randomised each time and the number of

crossover points with continuous and binary outcomes,

respectively.

We assumed a fixed setup including I = 24 clusters

and varied the total number of crossover points J from
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Fig. 3 Power curves for a continuous outcome assuming 24 clusters,

each with 20 subjects. We varied the ICC and the number of

randomisation crossover points. Panel (a) shows the analysis for a

repeated closed cohort (cross-sectional) design, while panel (b)

depicts the results for a closed cohort design (assuming

individual-level ICC of 0.0016)

6 (that is, 4 clusters randomised at each time) to 2 (that

is, 12 clusters randomised at each time). In both designs,

we assume that subjects are measured once at each time

point and that there is an individual level ICC of 0.0016

(again loosely based on the setting presented in [28, 29]).

Therefore, for cross-sectional data we assume more indi-

viduals are measured per cluster with a larger number

of crossover points, and for a closed cohort setting, we

assume more measurements are taken on each individual

with a larger number of crossover points.

Not surprisingly, the highest power is consistently

observed as the number of crossover points increases

Fig. 4 Power curves for a binary outcome assuming 24 clusters, each

with 20 subjects. We varied the ICC and the number of randomisation

crossover points. Panel (a) shows the analysis for a repeated closed

cohort (cross-sectional) design, while panel (b) depicts the results for

a closed cohort design (assuming individual-level ICC of 0.0016)

and thus the number of clusters randomised at each

crossover decreases. Consequently, optimal power will

be achieved when only one cluster switches to the

intervention arm at each time point. However, as noted

previously by HH, in some practical cases it may be

unfeasible for logistic reasons to have a large number of

crossover points. Thus, measurement points should be

maximised within the constraints of resource availability.

In line with [35], the power gains from increasing the

number of crossover points are not linear — with smaller

gains when moving from four to six than when going

from two to three crossover points. Given the potential
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additional cost of increasing the number of crossover

points and resulting total number of measurements, it

may not pay off to inflate the number of crossover points

substantially.

Time effect

Failure to include a time effect in the analysis model, when

one was assumed in the DGP, significantly but erroneously

inflated the power. Figure 5 shows our analysis for a con-

tinuous outcome, assuming I = 25 clusters, each with

K = 20 subjects and a total of J = 6 measurements; panel

(a) describes the case of a repeated cohort design, while

panels (b) and (c) consider the case of a cohort design with

individual level ICC of 0.1 and 0.5, respectively.

For the repeated cohort design, the power was also

slightly inflated when time was included in the model as

a continuous as opposed to a factor variable. The greater

impact of variations in low ICC values for the repeated

cohort design is clearly visible, as is the lesser sensitivity

of the closed cohort design to variations in the within-

cluster correlation. Studies based on continuous outcomes

would therefore benefit from the use of a closed cohort

design when there is substantial uncertainty on the ICC at

the cluster level; however, there does not appear to be a

general benefit of repeated measures over cross-sectional

measurements.

Figure 6 illustrates the effect on power of misspecifica-

tion of the time effect in the case of a binary outcome upon

varying the assumed values of the ICC. Similarly to what

occurs in the continuous outcome case, failure to account

for a time effect in the analysis when one is assumed in the

DGP results in an overestimation of the power for both

repeated cohorts (panel a) and closed cohorts (panels b

and c).

Previous research on CRTs has found that modelling

time in the analysis substantially reduces the magnitude

of the impact of the ICC without reducing the degrees

of freedom available for the error term [36]. Given the

results of Figs. 5 and 6, this does not appear to be the

case for a stepped wedge design, where the impact of

varying the ICC is relatively similar for the analysis

ignoring and the one including the time effect. We note

Fig. 5 Power curves for a continuous outcome assuming 25 clusters, each with 20 subjects and 6 time points at which measurements are taken

(including one baseline time). We varied the way in which the assumed linear time effect is included in the model (if at all). Panel (a) shows the

results for a repeated cohort design; panel (b) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.1 and varying the

participant-level ICC; panel (c) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.5 and varying the participant-level ICC
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Fig. 6 Power curves for a binary outcome assuming 25 clusters, each with 20 subjects and 6 time points at which measurements are taken

(including one baseline time). We varied the way in which the assumed linear time effect is included in the model (if at all). Panel (a) shows the

results for a repeated cohort design; panel (b) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.1 and varying the

participant-level ICC; panel (c) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.5 and varying the participant-level ICC

however that this result may not hold for different spec-

ification of the time effect (for example, as a quadratic

term).

Random intervention effect

We have also evaluated the impact of specifying a model

including a random intervention effect. In the simula-

tions, the power decreases considerably upon increasing

the assumed standard deviation for the intervention

random effect, that is, by assuming increasingly substan-

tial variability in the intervention effect by cluster. For

instance, it nearly halves for the binary case described

above, when assuming a moderately large standard devi-

ation for the random intervention effect (specifically, a

value of σu = 0.3). Of course, as the assumed value for

σu gets closer to 0, there is less and less difference with

the base case, including a fixed intervention effect only.

The increase in the underlying variability (and therefore

in the resulting sample size) seems to be lower in the case

of continuous and normally distributed outcomes.

Discussion

The claim that SWTs are more efficient than a parallel

group CRT in terms of sample size [15] has come under

heavy criticism, for example, in [32], where it is suggested

that the SWT design is beneficial only in circumstances

when the ICC is high, while it produces no advantage as it

approaches 0. This finding was corroborated by [37]. Sub-

sequently some of the authors of the original article [15]

clarified in a letter [38] that their claims for superior effi-

ciency for the stepped wedge design relate to the option

to use fewer clusters, whilst the number of individual par-

ticipants is often greater. Moreover, HH appear to suggest

that the advantage in power from a SWT seen in their

work and that of Woertman comes from the increase in

the number of participants (assuming as do HH a design

with cross-sectional data collected at every crossover) and

not the additional randomised crossover points. Kotz et al.

[39] argued that power could be amplified to a similar

level in standard parallel trials by simply increasing the

number of pre- and post-measurements, an assumption
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supported by Pearson et al. [40], who provided an informal

comparison between the implementation of a particular

intervention using the stepped wedge design and a non-

randomised pre-test-post-test design. This issue has been

recently re-examined by Hemming et al. [18], who sug-

gest that a SWT with more than 4 crossover points may

be more efficient than a pre-post RCT.

In our work we have also considered the case of cross-

sectional data in which each participant provides one

measurement to the trial and considered a CRT with the

same number of measurements per cluster as a SWT.

Under these assumptions, our results are in line with those

pointed out above and suggest that, at the cluster size con-

sidered, a SWT is more efficient unless the ICC is rather

low, for example, much less than 0.1. In other words,

given cross-sectional data and the same number of par-

ticipants measured per cluster, the SWT may often be a

more efficient trial design and so will require fewer clus-

ters. The SWT is a design in which a lot of information

can be gained from each cluster by increasing the num-

ber of measurements per cluster, and is suited to settings

where clusters are limited or expensive to recruit. In other

settings the costs of adding a cluster to a trial may be low,

and it may be more efficient for a given total number of

measurements in the trial to conduct a CRT with a large

number of clusters (few measurements per cluster) than a

SWT with a smaller number of clusters. The CRT would

then also be of shorter duration. More generally the costs

of a trial may relate to the number of clusters, the trial

duration, the total number of participants and the total

number of measurements all together in a complex way.

Hence, while a SWT is often chosen because there is no

alternative trial design, when a SWTor CRT could both be

chosen and maximum power is the goal, then the choice

between them given the total trial budget requires careful

consideration.

In our study, the stepped wedge design was found to

be relatively insensitive to variations in the ICC, a find-

ing reported previously in [14]. We also found that in

the case where measurements are taken at each discrete

time point in the SWT, for a fixed number of clusters

the resulting power increases with the number of ran-

domisation crossover points. This is rather intuitive, since

for these designs an increase in the number of crossover

points equates to an increase in the number of measure-

ments; hence, more information will be available and the

number of subjects required will be lower. In practice, the

most extreme situation of having one cluster randomised

to the intervention at each time point may be unfeasible

for these designs. A practical strategy is to simply max-

imise the number of time intervals given constraints on

the number of clusters that can logistically be started at

one time point and the desired length of the trial. More-

over, in sensitivity analyses (not shown) it appeared that

the gain of increasing the number of crossover points

while keeping the number of clusters and the total number

of measurements fixed was modest, in comparison with

the efficiency gain from adding clusters or measurements

to the design. Increasing the number of subjects per clus-

ter may also result in power gains, but as with CRTs, these

may be minimal [41].

The failure to consider a time effect when one existed

erroneously increased the power. Consequently, we advise

researchers to ensure that the effect of time is accounted

for in the power calculations, at least as a failsafe measure.

Inclusion of time as a factor only minimally reduced the

power in comparison to the case in which it was included

as a continuous variable, using a linear specification. For

generalisability of the time effect and simplicity in the

interpretation of the model, it is perhaps even more effec-

tive to use a set of dummy variables for the time periods,

instead of a single factor [42].

The inclusion of a random intervention effect produced

an increase in the resulting sample size; this was an intu-

itive result, as our simulations assumed an increase in

the underlying variability across the clusters. It is worth

bearing this possibility in mind when designing a SWT,

as the assumption of a constant intervention effect across

the clusters being investigated may often be unrealistic,

thus leading to potentially underpowered studies. Again,

the flexibility of the simulation-based methods allows the

incorporation of this feature in a relatively straightforward

way.

Not all design possibilities were addressed in our study:

for example, the impact of unequal cluster sizes was not

considered. In general terms, we would expect a loss

of power if the cluster sizes vary substantially, which

is consistent with the literature on CRTs [43]. Using a

simulation-based approach, relevant information about

the expected distribution of cluster sizes in the trial may

be easily included in the power computations.

The effect of drop-out was also not fully assessed. This

may be relevant, since the extended time required for

SWTs may reduce retention, resulting in missing data and

loss of power. The impact of drop-out may vary according

to how individuals participate in the trial and how mea-

surements are obtained. For cross-sectional data, drop-

out can be addressed in a standard manner by inflating

the sample size. Drop-out in closed cohort trials, where

repeated measurements on individuals are obtained, may

be most problematic. Assumptions about the drop-out

mechanism and its variation between clusters can be

incorporated into a simulation-based approach and their

impact on the resulting sample size assessed at the design

stage.

Throughout our analysis, time was only considered as

a fixed effect. The reason underlying this assumption is

that interest was in controlling for temporal trends and
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fluctuations in prevalence of the outcomes over the course

of the particular trials. Including time as a random effect

would also result in a more complex model, as adjacent

time periods are unlikely to be independent. However,

as noted in [14], such an approach might be appropri-

ate if temporal variations in the outcome were thought to

be due to factors unrelated to changes in the underlying

prevalence of the outcome (such as changes in personnel

collecting the outcome data), which may not always be the

case.

In line with other articles in this special issue, our work

highlights that while SWTs can produce benefits and pro-

vide valuable evidence (particularly in implementation

research), they are usually also associated with extra com-

plexity in the planning and analysis stage, in comparison

to other well-established trial designs. For this reason, it is

important to apply the best available methods to carefully

plan the data collection. In our work, we have highlighted

some of the features that may hinder this process.We plan

to make an R package available to allow the practitioners

to use both analytical and simulation-based methods to

perform sample size calculations in an effective way.

Conclusions

Our systematic review [11] suggests that, in general, five

main methods have been used to calculate sample sizes

for SWTs: standard parallel RCT sample size calculations,

variance inflation for CRTs, using a specific DE (as in

[15]), analytical methods based on normal approximations

(such as the method of HH) and simulation-based calcu-

lations [24]. Hemming et al. [18] point out that to date

no method has been established to compute the required

sample size for a SWT under a cohort design.

In general, simulation-based approaches appeared to be

a very effective procedure for computing sample size in

SWTs, given the constrained nature of DEs and other ana-

lytical calculations. For example, complex design features

such as varying cluster sizes can be readily incorporated

into simulations. Similarly, it is fairly straightforward to

investigate differing time effects, that is, linear, expo-

nential or fractional forms. Moreover, currently available

analytical forms are based on stepped wedge designs

using cross-sectional outcome data measured at dis-

crete time points and thus are not straightforward to

adapt to other potential designs. Reliance on sample

size calculations for cross-sectional data collection when

repeated samples on the same individuals are taken is

likely to result in overestimation of the required sam-

ple size and thus in wasted resources and unnecessary

participation.
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