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Abstract 

 

The sample size required for a cluster randomised trial is inflated compared to an individually 

randomised trial because outcomes of participants from the same cluster are correlated. 

Sample size calculations for longitudinal cluster randomised trials (including stepped wedge 

trials) need to take account of at least two levels of clustering: the clusters themselves, and 

times within clusters. We derive formulae for sample size for repeated cross-section and 

closed cohort cluster randomised trials with normally distributed outcome measures, under a 

multi-level model allowing for variation between clusters and between times within clusters. 

Our formulae agree with those previously described for special cases such as cross-over and 

ANCOVA design, though simulation suggests that the formulae could underestimate required 

sample size when the number of clusters is small. Whether using a formula or simulation, a 

sample size calculation requires estimates of nuisance parameters, which in our model 

include the intracluster correlation, cluster autocorrelation and individual autocorrelation. A 

cluster autocorrelation less than 1 reflects a situation where individuals sampled from the 

same cluster at different times have less correlated outcomes than individuals sampled from 

the same cluster at the same time. Nuisance parameters could be estimated from time series 

obtained in similarly clustered settings with the same outcome measure, using analysis of 

variance to estimate variance components.  

 

Keywords: clinical trial design, cluster randomized trial, intracluster correlation, sample size, 

stepped wedge 
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1. Introduction 

 

Cluster randomised trials take as their unit of randomisation a cluster or collective of 

individual participants [1]. This is typically for pragmatic reasons: the intervention might be 

delivered at cluster level, for example, or there might otherwise be a risk of contamination 

between treatments delivered to participants in the same cluster. The sample size required for 

a cluster randomised trial is inflated compared to an individually randomised trial because 

outcomes of participants from the same cluster are correlated [2]. A number of articles [3–9] 

have discussed the calculation of sample size for cluster randomised clinical trials in which 

two or more independent cross sections are taken from each cluster at given time intervals, 

with all the participants at any given time in any given cluster receiving either the 

experimental or the control treatment. The analysis of such a trial should ideally take account 

of two levels of clustering: the clusters themselves and the cross-sections within clusters. 

Sample size calculations assuming this kind of hierarchical multi-level model have been 

described for a general family of repeated cross-section designs including parallel group and 

stepped wedge designs [8]. 

 

Stepped wedge designs randomise clusters to trial arms with varying delays in switching 

from the control to the experimental intervention [10–12] – see Figure 1 for an example. 

There is growing interest in the use of stepped wedge trials to evaluate service delivery and 

other health interventions delivered at an organisational or institutional level, particularly 

when a policy decision to implement the intervention across a number of clusters has already 

been made [7, 13]. In such cases stepped wedge designs have a practical advantage over 

parallel group designs when there are only sufficient resources to “switch on” the 
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intervention in a small number of clusters at any given time [10, 11, 14], and they may also 

have a statistical power advantage [6, 15, 16].  

 

Longitudinal cluster randomised trials need not involve taking repeated cross-sections. A 

recent review [17] has described a broad typology of stepped wedge designs, differentiated 

according to how individuals are exposed, whether the same individuals are exposed to both 

the control and the intervention, and how outcome measurements are obtained. One 

alternative to a repeated cross-section design is a closed cohort design in which participants 

are all identified at the start of the trial and then followed over time. No general approach to 

calculating sample size for a closed cohort cluster randomised trial has been described in the 

literature [7, 9], though Girling & Hemming, in their study of relative efficiency and optimal 

design [18], have demonstrated the common ground between closed cohort and repeated 

cross-section designs, building on work done in the special case of the ANCOVA design (a 

parallel group design with a single baseline and single follow-up assessment) [5]. In this 

article we establish a common framework for sample size calculations for longitudinal 

designs which includes a number of previously published results as special cases. 

 

In Section 2 we review the process of sample size calculation for a repeated cross-section 

cluster randomised trial, which has been described elsewhere [8], and in Section 3 we show 

how to adapt this calculation to the closed cohort situation. In Section 4 we present an 

example of a sample size calculation for a closed cohort cluster randomised trial, using our 

derived formula and using simulation. Finally in Section 5 we discuss our findings and some 

suggestions for further work. 

 

2. Repeated cross-section cluster randomised trials 
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2.1. Statistical model 

 

We consider a continuous, normally distributed outcome measure. To keep things simple we 

assume the same number of individuals is sampled in each cross-section of each cluster. In 

addition, all the designs considered in this article will have the same number of clusters 

randomised to each arm of the trial. We assume cross-sections are taken within clusters at 

predefined, discrete times following randomisation. Note this is qualitatively different to a 

design involving continuous recruitment of participants over time [17], in which the sample 

size at each step would depend on its duration and the rate of recruitment.   

 

Suppose, then, that in each of L trial arms l=1,…,L there are K clusters k=1,…,K, each of 

which has cross-sections taken at times t=0,1,2,…T after randomisation, with each cross-

section consisting of m individuals, i=1,…,m. We assume a model in which the outcome for 

individual i at time t in cluster k, arm l is 

 

 𝑌𝑖𝑡𝑘𝑙 = 𝛾 + 𝜃𝑡 + 𝐴𝑙𝑡𝛿 + 𝜉𝑘𝑙 + 𝜂𝑡𝑘𝑙 + 𝜀𝑖𝑡𝑘𝑙, (1) 

 

where 𝜀𝑖𝑡𝑘𝑙~N(0, 𝜎error2 ) 𝜂𝑡𝑘𝑙~N(0, 𝜎time|clust2 ) 𝜉𝑘𝑙~N(0, 𝜎clust2 ), 
 

with the 𝜀𝑖𝑡𝑘𝑙, 𝜂𝑡𝑘𝑙 and 𝜉𝑘𝑙 all independent of one another, and 

 

𝐴𝑙𝑡 = {1 if arm 𝑙 is receiving the experimental treatment at time 𝑡0 if arm 𝑙 is receiving the control treatment at time 𝑡.          
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This hierarchical multi-level model includes random effects which model variation between 

clusters (𝜉𝑘𝑙) and also variation between times within a cluster (𝜂𝑡𝑘𝑙). The parameter  is the 

treatment effect, which we assume is maintained once the intervention has been introduced. 

The model also includes a fixed effect of time, 𝜃𝑡, which must be estimated independently of 

the treatment effect so that a systematic change over time is not mistaken for an effect of 

treatment. For identifiability we set 𝜃0=0. Note that in cluster randomised trials with a 

stepped wedge design it is quite usual for all the clusters to be randomised simultaneously, so 

that an effect of time since randomisation is the same as an effect of calendar time – an 

equivalence rarely found in individually randomised trials [19]. 

 

It will be convenient to transform the nuisance parameters 𝜎error2 , 𝜎time|clust2  and 𝜎clust2  into 

three new parameters 

 𝜎2 = 𝜎error2 + 𝜎time|clust2 + 𝜎clust2  

 𝜌 = (𝜎time|clust2 + 𝜎clust2 ) (𝜎error2 + 𝜎time|clust2 + 𝜎clust2 )⁄  

 𝜋 = 𝜎clust2 (𝜎time|clust2 + 𝜎clust2 )⁄  

 

where σ2 is the total variance and  is the intra-cluster correlation – i.e. the correlation 

between assessments of two individuals sampled from the same cluster at the same time. The 

interpretation of  is discussed below. 

 

2.2. Sample size calculation 
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We use the following notation for different settings: SI = Single cross-section, Individually 

randomised; SC = Single cross-section, Cluster randomised; RC = Repeated cross-section, 

Cluster randomised; CI = Closed cohort, Individually randomised; CC = Closed cohort, 

Cluster randomised. 

 

We define 𝑛SI to be the total sample size required to detect treatment effect 𝛿∗ with power 1 − 𝛽 at two-sided significance level α, by comparing two independent groups of equal size, 

randomised at the individual level and assessed once. 𝑛SI can be calculated using the 

approximate formula [20]: 

 

 𝑛SI = 4( 𝜎𝛿∗)2 (𝑧1−𝛼/2 + 𝑧1−𝛽)2 (2) 

 

where 𝑧𝑝 is the 100pth centile of a standard normal distribution. Alternatively this sample 

size can be obtained from standard tables or software. 

 

Using a single cross-section cluster randomised (SC) design the total number of clusters 

required, allowing for the clustering [2], becomes 

 𝑁SC = DeffC(𝑚, 𝜌) × 𝑛SI𝑚  

 

where DeffC is the design effect due to cluster randomising 

 

 DeffC(𝑚, 𝜌) = 1 + (𝑚 − 1)𝜌. (3) 
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If the same clusters are assessed in repeated cross sections then fewer clusters are required to 

achieve the same power. The efficiency of a repeated cross-section design under model (1) 

can be determined by finding the linear unbiased estimator for the treatment effect that has 

smallest variance. Formulae for sample size have been derived elsewhere [8]. The total 

number of clusters required is 

 

 𝑁RC = DeffR(𝑟RC) × DeffC(𝑚, 𝜌) × 𝑛SI𝑚  (4) 

 

where 𝑟RC is the correlation between two sample means of m participants from the same 

cluster in different cross-sections 

 

 𝑟RC = 𝑚𝜌𝜋1 + (𝑚 − 1)𝜌 (5) 

  

and DeffR(𝑟) is the design effect due to repeated assessment for correlation r 

 

DeffR(𝑟) = 𝐿2(1 − 𝑟)(1 + 𝑇𝑟)4(𝐿𝐵 − 𝐷 + (𝐵2 + 𝐿𝑇𝐵 − 𝑇𝐷 − 𝐿𝐶)𝑟) 
 

with constants B,C and D defined from matrix A in (1) 

 𝐵 = Σ𝑡𝑙𝐴𝑙𝑡,   𝐶 = Σ𝑙(Σ𝑡𝐴𝑙𝑡)2,  𝐷 = Σ𝑡(Σ𝑙𝐴𝑙𝑡)2. 
 

Each cluster has 𝑚(𝑇 + 1) participants; hence the total number of participants required for a 

repeated cross-section cluster randomised trial is 
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 𝑛RC = DeffR(𝑟RC) × DeffC(𝑚, 𝜌) × (𝑇 + 1)𝑛SI. (6) 

 

In (5) the parameter  is the limit of 𝑟RC as 𝑚𝜌 → ∞, and can thus be interpreted as the 

correlation between two population means from the same cluster at different times. We refer 

to  as the cluster autocorrelation [5]. 

 

Consider, for example, a stepped wedge design of the form shown in Figure 1, but with an 

arbitrary number of steps L. In this case T = L and matrix A is given by 

 

𝐀 = ( 
 0 1 10 0 10 0 0 ⋯⋯⋯ 1 11 11 1⋮ ⋮ ⋮ ⋮ ⋮0 0 0 … 0 1) 

 . 
 

The design effect due to repeated assessment is then 

 

 DeffR,L-step(𝑟) = 3𝐿(1 − 𝑟)(1 + 𝐿𝑟)(𝐿2 − 1)(2 + 𝐿𝑟)  (7) 

 

and the total required sample size becomes 

 

 𝑛RC,L-step = 3𝐿(1 − 𝑟RC)(1 + 𝐿𝑟RC)(𝐿 − 1)(2 + 𝐿𝑟RC) (1 + (𝑚 − 1)𝜌)𝑛SI. (8) 

 

 

2.3. Related sample size formulae 
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The general formula (6) includes some previously described formulae as special cases. 

Consider, for example, a cross-over design with L = 2, T = 1, and matrix A given by 

 𝐀 = (1 00 1). 
 

Then the design effect due to repeated assessment becomes 

 

DeffR,cross(𝑟) = 1 − 𝑟2  

 

and the total required sample size becomes 

 𝑛RC,cross = (1 + (𝑚 − 1)𝜌 − 𝑚𝜌𝜋)𝑛SI 
 

which reproduces the formula of Giraudeau and colleagues [4] for a repeated cross-section 

cluster randomised cross-over trial. 

 

Alternatively, consider the ANCOVA design, with L = 2, T = 1, and matrix A given by 

 𝐀 = (0 00 1). 
 

In this case the design effect due to repeated assessment becomes 

 DeffR,ANCOVA(𝑟) = 1 − 𝑟2 



11 

 

 

and the total required sample size becomes 

 𝑛RC,ANCOVA = 2(1 − 𝑟RC2 )(1 + (𝑚 − 1)𝜌)𝑛SI 
 

which is equivalent to the formula of Teerenstra and colleagues [5] for a repeated cross-

section cluster randomised trial with an ANCOVA design. 

 

If we make the simplifying assumption in model (1) that 𝜎time|clust2 = 0 (or equivalently that 𝜋 = 1), then equation (6) reduces to the sample size formula of Hussey & Hughes [3], and 

(8) reduces to the formula of Woertman and colleagues [6] for a stepped wedge design. This 

simplified model with 𝜋 = 1 is also the one assumed in Hemming and colleagues’ 

“steppedwedge” sample size procedure in Stata [21]. 

 

3. Closed cohort cluster randomised trials 

 

3.1. Statistical model 

 

In a closed cohort cluster randomised trial we follow the same participants over time rather 

than taking a fresh cross-section from each cluster at each time. We assume that the 

participants in a given cluster are all identified at the beginning of the trial and assessed at a 

series of predefined, discrete times following randomisation. For any given assessment all 

participants from a given cluster are exposed either to the experimental or the control 

treatment. In a closed cohort design we need to allow for dependence between outcomes 

assessed in the same participant over time. The simplest way to model this is to assume an 
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additional random effect of participant [7]. Thus we assume a model in which the outcome at 

time t=0,…,T for individual i=1,…,m in cluster k=1,…,K, arm l=1,…,L is 

 

 𝑌𝑖𝑡𝑘𝑙 = 𝛾 + 𝜃𝑡 + 𝐴𝑙𝑡𝛿 + 𝜉𝑘𝑙 + 𝜁𝑖𝑘𝑙 + 𝜂𝑡𝑘𝑙 + 𝜀𝑖𝑡𝑘𝑙, (9) 

 

where 𝜀𝑖𝑡𝑘𝑙~N(0, 𝜎error2 ) 𝜁𝑖𝑘𝑙~N(0, 𝜎indiv|clust2 ) 𝜂𝑡𝑘𝑙~N(0, 𝜎time|clust2 ) 𝜉𝑘𝑙~N(0, 𝜎clust2 ), 
 

with the 𝜀𝑖𝑡𝑘𝑙, 𝜂𝑡𝑘𝑙 , 𝜁𝑖𝑘𝑙 and 𝜉𝑘𝑙 all independent of one another, and 

 

𝐴𝑙𝑡 = {1 if arm 𝑙 is receiving the experimental treatment at time 𝑡0 if arm 𝑙 is receiving the control treatment at time 𝑡.          
 

This is no longer a hierarchical model: individuals are not nested within times, nor times 

within individuals – instead each individual is assessed at each time, and there is a random 

effect of individual within cluster, 𝜁𝑖𝑘𝑙, and a random effect of time within cluster, 𝜂𝑡𝑘𝑙. This 

is an example of a cross-classified multi-level model [22]. The random effect of time within 

cluster might be the result of changes to the way in which treatment is delivered at a given 

cluster over time, and represents a kind of interaction between time and cluster. 

 

We define 

 𝜎2 = 𝜎error2 + 𝜎indiv|clust2 + 𝜎time|clust2 + 𝜎clust2  
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 𝜌 = (𝜎time|clust2 + 𝜎clust2 ) (𝜎error2 + 𝜎indiv|clust2 + 𝜎time|clust2 + 𝜎clust2 )⁄  

 𝜋 = 𝜎clust2 (𝜎time|clust2 + 𝜎clust2 )⁄  

 𝜏 = 𝜎indiv|clust2 (𝜎error2 + 𝜎indiv|clust2 )⁄  

 

where, as in model (1), σ2 is the total variance,  is the intracluster correlation (the correlation 

between assessments of two individuals from the same cluster at the same time) and  is the 

cluster autocorrelation (the correlation between two population means from the same cluster 

at different times).  is the correlation between two assessments of the same individual at 

different times in a given cluster, or the individual autocorrelation [5]. 

 

3.2. Sample size calculation 

 

As noted above, the efficiency of a trial design under a mixed model such as (1) or (9) can be 

determined by finding the linear unbiased estimator for the treatment effect that has smallest 

variance [8]. In the present case we can reasonably restrict attention to estimators that are 

linear combinations of the cluster means at each time, �̅�∙𝑡𝑘𝑙, since each individual from the 

same cluster at a given time is assessed under the same conditions, and therefore will 

contribute equally to the treatment effect estimate. Comparing models (1) and (9) for given K 

and A we see that �̅�∙𝑡𝑘𝑙 has the same essential structure in both, with variance given by the 

same expression in m, 𝜎2 and  under both models. The only other thing that matters to the 

variance of the treatment effect estimator is the correlation, r, between �̅�∙𝑡1𝑘𝑙 and �̅�∙𝑡2𝑘𝑙 for any 
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k, l, 𝑡1 ≠ 𝑡2. In other words, for given K, A, m, 𝜎2,  and r the best linear unbiased estimator 

is the same whether we are considering model (1) or model (9).Consequently the number of 

clusters per group, K, required to achieve given statistical power for given A, m, 𝜎2,  and r 

is the same for a closed cohort cluster randomised (CC) design as for a repeated cross-section 

cluster randomised (RC) design. This equivalence has been noted previously in the special 

case of the ANCOVA design [5]. Thus from (4) we know that the total number of clusters 

required to achieve power 1 − 𝛽 at two-sided significance level α to detect a treatment effect 𝛿∗ is 

 𝑁CC = DeffR(𝑟CC) × DeffC(𝑚, 𝜌) × 𝑛SI𝑚  

 

where 𝑟CC is the correlation [5] between �̅�∙𝑡1𝑘𝑙 and �̅�∙𝑡2𝑘𝑙 for any k, l, 𝑡1 ≠ 𝑡2 under model (9): 

 

 𝑟CC = 𝑚𝜌𝜋 + (1 − 𝜌)𝜏1 + (𝑚 − 1)𝜌 . (10) 

 

In a closed cohort design there are m participants per cluster, so the total number of 

participants required for a closed cohort cluster-randomised trial is 

 

 𝑛CC = DeffR(𝑟CC) × DeffC(𝑚, 𝜌) × 𝑛SI. (11) 

 

In the case of a stepped wedge cohort design this agrees with the formula derived by de Hoop 

and colleagues [23]. Note that for a closed cohort individually randomised (CI) design, with 

m = 1,  and  effectively zero, and r = , the total number of participants required becomes 
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𝑛CI = DeffR(𝜏) × 𝑛SI. 
 

This brings us back to familiar formulae for individually randomised trials with longitudinal 

designs [24]. For example, in an individually randomised trial with an ANCOVA design the 

total number of participants required is 

 𝑛CI,ANCOVA = (1 − 𝜏2) × 𝑛SI. 
 

General sample size formulae for repeated cross-section and closed cohort cluster randomised 

trials are summarised in Table 1, for easy reference. Design effects due to repeated 

assessment are tabulated by Hooper & Bourke [8] for a variety of designs and families of 

designs. 

 

4. Sample size calculation in practice 

 

4.1 Example 

 

A recent review of stepped wedge trials published between 2010 and 2014 [17] identified 11 

trials with a closed cohort design. We use one of these – an evaluation of the “Girls on the 

Go!” program to improve self-esteem in young women in Australia [25] – as an exemplar for 

our approach to sample size calculation. Clusters in this case were schools: primary schools 

were randomised to a two-step design (with assessments at baseline and after two successive 

school terms) and secondary schools to a three-step design (with assessments at baseline and 

after three successive terms). We consider the design of a three-step study. For their power 

calculation the investigators assumed 10 participants per cluster and an intracluster 
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correlation of 0.33. The primary outcome measure was the Rosenberg Self-Esteem Scale – a 

ten-item scale with each item scoring 1–4. Previous research using this scale [26] suggests an 

individual autocorrelation of around 0.7. There is less basis for the cluster autocorrelation – 

we will assume a figure of 0.9. Informed by a pilot study the investigators powered their trial 

to detect a difference of 1.5 standard deviations. This seems optimistic, and we consider 

instead the sample size to achieve 80% power at the 5% significance level to detect a mean 

difference of 2 on the Rosenberg Self-Esteem Scale, assuming a standard deviation () of 5. 

 

If this was a single cross-section, individually randomised trial, the total sample size required 

(equation 2) would be 198. For a single cross-section cluster randomised trial this would need 

to be multiplied by the design effect due to cluster randomising (equation 3), which in this 

case is 3.97, giving a total sample size of 786. Some statistical power can be reclaimed, 

however, with the longitudinal design: the correlation between two cluster sample means 

from the same cluster at different times (equation 10) is 0.8662; hence the design effect due 

to repeated assessment in a 3-step stepped wedge design (equation 7) is 0.1178. The total 

sample size required, according to our formula (equation 11), is therefore 786 × 0.1178 = 93. 

This sample size requirement would not quite be achieved with 3 clusters in each arm, but is 

more than met if we include 4 clusters per arm, or 12 clusters (120 individuals) in total 

(working back from equations (11) and (2) this gives a power of 89.3%). 

 

4.2 Sample size by simulation 

 

Simulation has been recommended as a robust alternative to approximate sample size 

formulae for stepped wedge trials [9]. For the example above we also determined the required 

sample size by simulation, using the simsam package in Stata [27], with a bespoke 
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programme to generate a data-set from our model and analyse it using mixed regression with 

restricted maximum likelihood (programme and simsam output are available in the 

Supporting Information for this article). The simsam package confirms that 4 clusters in each 

arm are needed to achieve 80% power, the estimate of power with 4 clusters per arm being 

consistent with the value obtained from the formula (99% Monte Carlo confidence interval 

88.7% - 89.5%). However, simulation also shows in this case that the Type I error rate 

exceeds 5% - a general problem affecting small-sample inference using linear mixed models 

[28]. If we could adjust the test to control this level correctly then the power would be 

reduced (corrections such as that of Kenward & Roger [28] are available but are 

computationally intensive, prohibiting large numbers of simulations for estimating power). 

 

4.3 Sensitivity of sample size to assumptions 

 

One advantage of the formula over simulation is that it allows us to relate the total required 

sample size to the sample size per cluster and the various nuisance parameters. Figure 2 

shows the overall design effect – defined here as the product of the design effect due to 

repeated assessment and the design effect due to cluster randomising – for differing values of 

the intracluster correlation, cluster autocorrelation, individual autocorrelation, and sample 

size per cluster, in the example of a 3-step closed cohort stepped wedge design. The overall 

design effect determines the required sample size for given effect size, significance and 

power. 

 

Required sample size increases with sample size per cluster. When the intracluster correlation 

is close to 1 and the cluster autocorrelation is close to 0, the required sample size is relatively 

insensitive to the intracluster correlation, cluster autocorrelation or individual autocorrelation. 
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However, for larger sample sizes per cluster, and for individual autocorrelations close to 1, 

the required sample size is particularly sensitive to the intracluster correlation when the latter 

is close to 0, and particularly sensitive to the cluster autocorrelation when the latter is close to 

1. The sensitivity to the cluster autocorrelation is also magnified at larger intracluster 

correlations (note that the intracluster correlation and cluster autocorrelation both increase 

from right to left on the graphs, to aid three-dimensional visualisation of the surfaces). 

 

In practical applications the intracluster correlation is often assumed to be small, and a 

simplified model with a cluster autocorrelation of 1 may also be assumed (Cf Hussey & 

Hughes [3]), but we would do well to be conservative and overestimate the intracluster 

correlation, and underestimate the cluster autocorrelation, given the sensitivities noted above. 

In the “Girls on the Go!” example the value assumed for the intracluster correlation is 

relatively high, so the sample size is particularly sensitive to an over-optimistic estimate of 

cluster autocorrelation. Note that in stepped wedge trials clusters are usually randomised in 

one go, at the start of the trial, so there is no possibility of modifying the sample size of a 

closed cohort part-way through using interim estimates of nuisance parameters.  

 

5. Discussion 

 

We have shown how to calculate sample size for a longitudinal cluster randomised trial with 

a repeated cross-section or closed cohort design. Randomising in clusters reduces statistical 

power, but assessing the same individuals or clusters under the control and experimental 

condition at different times can be an efficient approach to design. In choosing a design for 

any trial, investigators must weigh the competing costs associated with numbers of clusters, 

individual participants, assessments, and time-points. In this article we have only attempted 
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to consider the question of sample size: methodological problems such as how to prevent 

attrition bias in longitudinal cluster randomised trials, and how and when to obtain consent 

will need further practical investigation [7, 14]. 

 

The general formula given here for the design effect due to repeated assessment applies to 

any “complete” design [29] – that is, one where every trial arm includes an assessment at 

every time-point. Formulae for incomplete designs such as the dog-leg design can be derived 

as a separate exercise [8, 30]. Our models assume the same number of clusters in each arm, 

though the results are easily generalised to other cases by subdividing unequally sized arms 

into smaller arms which all have the same number of clusters (or simply by re-defining each 

cluster to be an arm). The most efficient distribution of clusters between arms in a complete 

stepped wedge design with a given number of steps has been described elsewhere [18, 31]. 

Our formulae are derived for continuous, normally distributed outcome measures, but can be 

extended naturally to binary outcomes by extending the definitions of intracluster correlation 

and individual autocorrelation in some appropriate way [32]. We have not considered the 

issue of variable cluster size [33].  

 

Asymptotic sample size formulae will underestimate required sample size when the number 

of clusters is small. More research is needed to determine rules of thumb for correcting the 

sample size in this case. Simulation and formulae may both turn out to have a useful role in 

planning longitudinal cluster randomised trials. More work is also needed on analysis: our 

model for closed cohort cluster randomised trials requires an analysis of cross-classified 

random effects, methods for which are available in existing statistical computing packages 

such as Stata, SAS, SPSS, R and MLwiN. In the case of designs with more than two time-

points our random effects models effectively assume an “exchangeable” correlation structure 
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within clusters and individuals over time, that is one in which the cluster or individual 

autocorrelation is the same whichever two time-points we consider. Exchangeability 

assumptions are common to most existing approaches to sample size calculation for 

longitudinal cluster randomised trials. How reasonable they are depends on the outcome 

measure, the interval between assessments, the nature of the intervention, and the nature of 

the clusters and participants. Analysis using alternative correlation structures and the 

robustness of an exchangeability approach to sample size calculation in these cases warrant 

further investigation, as do methods to combat Type I error rate inflation when the number of 

clusters is small. 

 

Whether we use a formula or simulation to determine sample size for a repeated cross-section 

or closed cohort cluster randomised trial, we need estimates of the nuisance parameters. 

These could, in principle, be estimated from time series obtained in similarly clustered 

settings with the same outcome measure, using analysis of variance to estimate variance 

components. The intracluster correlation can be estimated from a single cross-section, and 

this parameter is already widely reported for a variety of outcomes and settings. The 

individual autocorrelation of an outcome measure may be known from validation studies. The 

hardest parameter to quantify is likely to be the cluster autocorrelation. It is tempting to set 

the latter to 1, but this will lead to an over-estimate of the correlation between sample means 

from the same cluster at different times, and hence an under-estimate of the required sample 

size – that is an underpowered study. A cluster autocorrelation less than 1 allows us to model 

situations where the correlation between outcomes of two individuals sampled from the same 

cluster at different times (𝜋𝜌) is smaller than the correlation between outcomes of two 

individuals sampled from the same cluster at the same time (𝜌). This is well appreciated in 

the context of cluster randomised cross-over trials, where Giraudeau and colleagues [4] have 
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suggested assuming a cluster autocorrelation of 0.5 in the absence of other guidance, but less 

so for stepped wedge designs: of ten reports of stepped wedge trials published between 2010 

and 2014 [34], none included a component of variance between times within clusters in the 

analysis. In a repeated cross-section design some of the variation between times within a 

cluster arises because the different cross-sections come from different cohorts, and we might 

expect closed cohort studies, by definition, to have higher cluster autocorrelations than 

repeated cross-section studies. Such general rules of thumb are speculative, however. More 

work is urgently needed to evaluate and report cluster autocorrelations from real-life time 

series. Perhaps authors of longitudinal cluster randomised trials should be encouraged to 

report estimates of cluster autocorrelations, just as intracluster correlations are already 

routinely reported. 
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Figure legends 

 

Figure 1. Schematic illustration of assessment in a stepped wedge trial design with five steps. 

Assessments in each arm at each of times 0 to 5 are made under either the experimental 

treatment or the control treatment, and the trial arms differ according to the delay with which 

clusters move from the control to the experimental treatment. 

 

Figure 2. Overall design effect for a 3-step closed cohort stepped wedge trial design, 

according to the intracluster correlation (ICC), cluster autocorrelation (CAC), individual 

autocorrelation (IAC), and sample size per cluster, m. 
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Table 1. Formulae for sample size to achieve given power using repeated cross-section and 

closed cohort cluster randomised trial designs. 

 Repeated cross-section: Closed cohort: 

 at each time-point (0,1,2,…,T), m 

participants are sampled from each 

cluster 

m participants are sampled from 

each cluster at baseline and 

assessed at every time-point 

Total number 

of clusters 

DeffR(𝑟) × DeffC(𝑚, 𝜌) × 𝑛SI𝑚  DeffR(𝑟) × DeffC(𝑚, 𝜌) × 𝑛SI𝑚  

 

Total number 

of participants 

DeffR(𝑟) × DeffC(𝑚, 𝜌) × (𝑇 + 1)𝑛SI DeffR(𝑟) × DeffC(𝑚, 𝜌) × 𝑛SI 

Correlation, r, 

between two 

sample means 

from the same 

cluster at 

different times 

𝑚𝜌𝜋1 + (𝑚 − 1)𝜌 
𝑚𝜌𝜋 + (1 − 𝜌)𝜏1 + (𝑚 − 1)𝜌  

  

nSI is the total number of participants required for a single cross-section, individually 

randomised design;  is the intracluster correlation;  is the cluster autocorrelation;  is the 

individual autocorrelation. For definitions of the design effect due to repeated assessment, 

DeffR, and the design effect due to cluster randomising, DeffC, see the text. 
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Supporting information legend 

 

Sample size calculation by simulation in Stata, for the example given in the article: Stata code 

and output (pdf) 
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SUPPORTING INFORMATION FOR: 

Sample size calculation for stepped wedge and other longitudinal cluster randomised trials 

Richard Hooper, Steven Teerenstra, Esther de Hoop, Sandra Eldridge 

 

Sample size calculation by simulation in Stata, for the example given in the article 

 

 

1. Stata code 

 
program define s_cohortstep, rclass 
 
*** This programme generates and analyses a data-set 
*** from a closed cohort, stepped wedge trial. 
 
 version 12.0 
 syntax, SD(real) ICC(real) CAC(real) IAC(real)  /// 
  NCLUSPERGRP(integer) CLUSSIZE(integer)  /// 
  NSTEP(integer)  /// 
  TIMECOEFF(real) TREATCOEFF(real) 
 
 drop _all 
 
 scalar sdclus=`sd'*sqrt(`icc'*`cac') 
 scalar sdtime=`sd'*sqrt(`icc'*(1-`cac')) 
 scalar sdchar=`sd'*sqrt(`iac'*(1-`icc')) 
 scalar sderr=`sd'*sqrt((1-`iac')*(1-`icc')) 
 
 set obs `=`nstep'*`ncluspergrp'' 
 gen idclus=_n 
 gen group=1+mod(_n-1,`nstep') 
 gen rand_clus=rnormal(0,sdclus) 
 forvalues i=0/`nstep' { 
   gen rand_time`i'=rnormal(0,sdtime) 
 } 
 
 expand `clussize' 
 sort idclus 
 gen id=_n 
 gen rand_char=rnormal(0,sdchar) 
 
 reshape long rand_time, i(id) j(time) 
 sort idclus id time 
 
 gen treat=(time>=group) 
 gen rand_err=rnormal(0,sderr) 
 gen y=`timecoeff'*time+`treatcoeff'*treat+  /// 
  rand_clus+rand_time+rand_char+rand_err 
 
 xtmixed y i.time treat || idclus: || idclus: R.time || id:, reml 
 return scalar p=2*normal(-abs(_b[treat]/_se[treat])) 
 
end 
 
*** NB the data generation step in s_cohortstep assumes 
*** a linear effect of time for convenience, but the 
*** analysis fits time as a categorical variable. 
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*** The simsam command determines sample size by simulation. To 
*** download simsam use the command "findit simsam" and follow 
*** instructions for installation – a help file is included. 
 
*** NB as specified below simsam takes a very long time to run, 
*** because of the high precision specified for the estimates. 
*** The package can arrive at a less precise solution more 
*** quickly: e.g. try prec(0.05) instead of prec(0.005). 
 
set seed 210815 
 
simsam s_cohortstep ncluspergrp,  /// 
 assuming(sd(5) icc(0.33) cac(0.9) iac(0.7)  /// 
  clussize(10) nstep(3) timecoeff(0))  /// 
 detect(treatcoeff(2))  /// 
 null(treatcoeff(0))  /// 
 p(.8) start(2) inc(1) prec(0.005) 

 

 

2. Output 

 
------------------------------------------------------ 
iteration nclusp~p              power (99% CI) 
------------------------------------------------------ 
        1        2 ........... 0.6100 (0.4765, 0.7327) 
        2        4 ........... 0.8910 (0.8632, 0.9150) 
        3        4 ........... 0.8859 (0.8775, 0.8940) 
        4        4 ........... 0.8908 (0.8868, 0.8946) 
        5        3 ........... 0.7922 (0.7871, 0.7973) 
------------------------------------------------------ 
     null        4 ........... 0.0584 (0.0532, 0.0640) 
------------------------------------------------------ 
 
   ncluspergrp = 4 
        achieves 89.08% power (99% CI 88.68, 89.46) 
          at the 5% significance level 
    to detect 
    treatcoeff = 2 
     assuming 
            sd = 5 
           icc = 0.33 
           cac = 0.9 
           iac = 0.7 
      clussize = 10 
         nstep = 3 
     timecoeff = 0 
 
     under null:  5.84% power (99% CI  5.32,  6.40) 
 
If continuing, use prec/inc < 4.9e-02 
 
 

 


