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Abstract

Blinding is a critical component in randomized clinical trials along with treatment effect 

estimation and comparisons between the treatments. Various methods have been proposed for the 

statistical analyses of blinding-related data but there is little guidance for determining the sample 

size for this type of data, especially if blinding assessment is done in pilot studies. In this paper, 

we try to fill this gap and provide simple methods to address sample size calculations for a ‘new’ 

study with different research questions and scenarios. The proposed methods are framed in terms 

of estimation/precision or statistical testing to allow investigators to choose the best suited method 

for their goals. We illustrate the methods using worked examples with real data.
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1. Introduction

Blinding has been widely perceived to be important in randomized controlled trials (RCT) 

and other comparative evaluations. Traditionally, blinding-related issues have been discussed 

more qualitatively or conceptually, for example, “blinding is important” and “double (or 

triple) blind is the best” (Hopton and Macpherson, 2011; Jadad, et al., 1996; Kolahi, et al., 

2009; Wilsey, et al., 2016). In the last two decades, a growing number of studies on blinding 

have pursued a quantitative approach to study design, data collection, analysis and 

interpretation (Arandjelovi&cacute;, 2012; Bang, et al., 2010; Chow and Shao, 2004; James, 

et al., 1996; Jeong, et al., 2013; Wilsey, et al., 2016; Wright, et al., 2012). Nowadays, 

blinding is also emphasized in non-pharmacological trials, like trials involving devices or 

physical therapy, in order to demonstrate internal validity. Meta-analyses of blinding have 

offered some optimistic news about the feasibility of blinding for some interventions, which 
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are traditionally believed to be hard to blind, including non-drug or non-injection (Boutron, 

et al., 2007; Brinjikji, et al., 2010; Freed, et al., 2014; Hopton and Macpherson, 2011; 

Houweling, et al., 2014; Moroz, et al., 2013; Wilsey, et al., 2016).

Despite various statistical and methodological proposals, there is still little guidance 

concerning the determination of minimal or adequate sample size (N) for blinding 

assessment in a statistically justifiable manner. In the past, it was not unusual for a 

statistician to advise clients seeking sample size calculations for a blinding assessment to 

take a sample of at least N=30, or perhaps N=100 patients, in the absence of a good 

reference. In some cases, statisticians may have even said, “Use any N available”. Recently, 

Shin et al. (Shin, et al., 2016) proposed a pilot RCT on acupuncture with 2 centers and 

selected a blinding index (BI) as one of the study outcomes (Bang, et al., 2004). This team 

recruited 40 participants which may be reasonable for a pilot study testing a clinical 

outcome, but it is unclear whether it is sufficient for testing a blinding outcome. In another 

example, Vernon and his colleagues proposed a new study for blinding assessment of real vs. 

control cervical manipulation procedures with multiple chiropractors following an initial 

study (Vernon, et al., 2013). The investigators decided to use a BI for evaluation of blinding 

as the primary outcome, but found a lack of statistically sound recommendations in the 

blinding literature to inform the choice of the sample size (Vernon, 2017) https://

clinicaltrials.gov/ct2/show/NCT01772966.

The growing interest in statistical analyses of blinding outcomes in recent years 

(Arandjelovi&cacute;, 2012; Baethge, et al., 2013; Crisp, 2015; Hertzberg, et al., 2008; 

Houweling, et al., 2014; Wright, et al., 2012) creates the need to address sample size 

calculations in order to improve the quality of inference on analysis of blinding data. The 

key question is how to determine the sample size for a new stand-alone study, such as a pilot 

study focusing on masking, evaluation of short-term blinding (Walter, et al., 2005), or part of 

a large phase III RCT, in which blinding assessment may be defined as a secondary aim.

In this article, we propose simple and intuitive ways to address this question. Since blinding 

studies, unlike evaluations of clinical effectiveness, do not have clear-cut aims, we present 

three different research scenarios and describe methodologies to obtain sample sizes in each 

case. The proposed methods can be integrated into traditional frameworks (e.g., estimation 

or statistical testing) with clear underlying mechanisms and operational characteristics, and 

the calculations are straightforward. Of note, we recommend the proposed methods for 

power calculations while designing a ‘new’ study, and that post-hoc power calculations be 

avoided (CONSORT, 2010; Hoenig and Heisey, 2001).

2. Methods: background, notation, and proposals

Studies focusing on treatment comparison or survey research generally have clear and well-

defined goals, such as detection of treatment effect with high power, or ensuring the margin 

of error not exceeding a desired bound. Conversely, blinding assessment studies tend to have 

somewhat subjective or varied goals. Regardless of the divergent goals, blinding studies are 

driven by two questions at the design and analysis stages: 1) was the blinding broken? and 2) 

if so, are the outcome data affected? These two questions can be converted into statistically 
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relevant scenarios reliant on the format of blinding assessment data. Typically, blinding data 

are presented as a 2×3 table with two allocation arms (Treatment (T=1) vs. Control (C=2)) 

and three choices for guess (1(=T), 2(=C), 3(=Don’t know)) as in Table 1. Some researchers 

use a 2×2 format without the ‘Don’t know’ option, while some others use a 2×5 format 

accounting for degree of belief (e.g., ‘strongly believe’, ‘somewhat believe’), which can be 

reduced to a 2×3 format (Bang, et al., 2004; James, et al., 1996; Mathieu, et al., 2014; 

Wright, et al., 2012).

In this view, the three statistically relevant scenarios would be: 1) testing the independence 

of allocation and guess; 2) estimating arm-specific trinomial proportions of guess and their 

contrast; and 3) testing the effect of allocation-guess interaction on the clinical outcome. In 

the rest of this section, we derive the formulas for the sample size required for each of the 

three scenarios with adoption or adaptation of existing methods or ideas, followed by the 

Worked examples in the next section.

Let nij represent a cell count in a 2×3 table with blinding data (see Table 1; i=1,2 and 

j=1,2,3). The row sums, n1. and n2., define the sample sizes for each arm, and the total 

sample size is equal to N=n1.+n2. Unless specified differently, we assume 1:1 allocation 

(n1.=n2.=n and N=2*n) and α=0.05. Also, we denote joint and conditional probabilities as 

pij and pj|i, respectively. Parameter and estimator notation may be used interchangeably 

when the context is clear, as it is a common practice in research on N/power.

2.1 Scenario 1: Testing the independence of allocation and guess

The first and most natural consideration for an investigator seeing data in a 2×3 table (as in 

Table 1) would be a classical test of the independence of allocation (row) and guess 

(column) or the homogeneity of the response in multiple groups (Agresti, 2013; Mathieu, et 

al., 2014). The Pearson Chi-square and Likelihood Ratio (LR) tests are standard tests for the 

association in an unordered rxc table, with r arms and c guesses.

Under the alternative hypothesis, Chi-square and LR statistics, commonly denoted as X2 and 

G
2 in the literature, have large-sample noncentral chi-squared distributions. Let p

i j
 denote 

the joint probability in cell (i,j), where i represents the allocation (i=1,2), j represents the 

guess (j=1,2,3), and p
i j

 denote the joint probability in cell (i,j) under the null (the 

independence hypothesis); ∑ p
i j

= ∑ p
i j

= 1.  Using this notation, the noncentrality 

parameter (λ) for Pearson Chi-square equals

λ = N∑
i, j

p
i j

− p
i j

2
/ p

i j
,

and the noncentrality parameter for LR statistic equals

λ = 2N∑
i, j

p
i j

log
p

i j

p
i j

.
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The desired sample size (N) for a chi-squared test can be obtained from the power equation 

P X
υ, λ
2 > χ

υ
2

α , where υ = r − 1 × c − 1  is the degrees of freedom (df). If the data from 

‘previous’ studies are available and we want to detect the similar observed differences, p
i j

and p
i j

 can be estimated as nij/N and (ni.*n.j)/N
2, respectively. Approximations can be done 

using published or built-in table, e.g., (Agresti, 2013); see the Worked Examples below.

2.2 Scenario 2: Estimation of (a) arm-specific trinomial proportions and (b) their contrast

Blinding data for a given arm i can be viewed as a sample from a trinomial distribution with 

probabilities p1 i
, p2 i

, p3 i
, and ∑

j = 1

3

p
j i

=1. In this subsection, we consider 

determination of the sample size required in each arm (n) to ensure the estimation of these 

probabilities and/or their difference (namely, BI) with a specified level of precision.

First, let us consider the estimation of the probabilities. In this case, the objective is to find 

the smallest sample size n for arm i such that the estimated proportions are simultaneously 

within specified distances of true population proportions with a probability of at least 1-α, 

that is,

P ∩
j = 1

3

p
j i

− p
j i

≤ d
j

≥ 1 − αfor arm i .

The sample size determination procedures proposed by Tortora (Tortora, 1978) and 

Thompson (Thompson, 1987) are based on the simultaneous confidence intervals (CIs) for 

the multinomial model. Tortora constrained the width of the jth category interval, j=1,2,3, to 

be ≤2 d
j
 and obtained the following formula for n,

n = max
j = 1, 2, 3

z
α/ 2 × 3
2

p
j i

1 − p
j i

/d
j
2

where z
α/ 2 × 3  is the upper (α/6)*100th percentile of the standard normal distribution. The 

total sample size N can be obtained as N=2*n, where n is the larger value between the 

sample sizes obtained for each arm. In the absence of prior knowledge about p
j i

, the ‘worst-

case’ (in view of the maximal n required) would be to use the probabilities vector (1/2,1/2,0) 

for each arm. Assuming d
j

= d for each category j, the (maximal) n for each arm can be 

further simplified as

n =
z
α/6
2

4d
2

=
1.43279

d
2

for α = 0.05 .

In contrast, Thompson described the general form of the ‘worst’ parameter vector under the 

constraint of the equal width, d
j

= d. His theoretical result depends on the specified level of 
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α: for example, (1/3,1/3,1/3) is the ‘worst-case’ parameter vector if α=0.05, whereas 

(1/2,1/2,0) is the ‘worst-case’ parameter vector if α=0.025; see Table 1 in (Thompson, 1987). 

His procedure results in smaller sample sizes and hence is attractive under the condition of 

the equal width intervals. The conservative sample size using the Thompson’s method is 

given by

n =
2⋅z

α/6
2

9d
2

=
1.27359

d
2

for α = 0.05 Eq (1)

which is lower than the Tortora’s counterpart. Both methods would result in sample size 

estimates that ensure a specified confidence range for the estimated probabilities.

Next, we consider the estimation of the BI. Bl is an arm-specific index for blinding 

assessment defined as a contrast between the probability of correct guess and the probability 

of incorrect guess:

BIT = p1 1 − p2 1and BIC = p2 2 − p1 2 .

In a 2×2 format without the ‘Don’t know’ option, the BI reduces to BIi = 2pi − 1 for i = T , C, 

where p
T

= p1 1 and p
C

= p2 2. Estimators for the BIs can be obtained by replacing the arm-

specific probabilities by their estimators:

BIT = n1T
− n2T

/n
T

andBIC = n2c
− n1c

/n
c

.

BI quantifies the correct guess beyond chance (50%) or imbalance between correct vs. 

incorrect guesses in the blinding data as in Table 1. For example, BI=0 represents ‘random 

guess’; BI=0.3 represents a 30% imbalance in guess toward the correct guess, say, 40% 

participants guessed T vs. 10% guessed C in arm T; BI=−0.3 represents an imbalance of 

30% toward the incorrect guess. BI is usually interpreted in terms of possible blinding 

scenarios, along with qualitative data (e.g., reasons for guess), whenever available. After all, 

there are contexts in which correct guesses are not undesirable, and may provide insight, 

such as when they reflect ‘wishful thinking’ (Bang, 2016; Brinjikji, et al., 2010).

A standard 2-sided CI for BI with (1-α) confidence level for the treatment arm i is:

(p1 i
− p2 i

) ± z
α/2⋅ p1 i

1 − p1 i
+ p2 i

1 − p2 i
+ 2p1 i

p2 i
/n

i
.

Assuming 1:1 allocation as before, the objective is to find a sample size n such that the 

inequality z
α/2⋅ [p

^
1 i

1 − p1 i
+ p2 i

1 − p2 i
+ 2p1 i

p2 i
]/n ≤ d holds for a specified 

threshold d. Solving this inequality in terms of n yields
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n = z
α/2
2

p1 i
1 − p1 i

+ p2 i
1 − p2 i

+ 2p1 i
p2 i

/d2 .

Using the method of Lagrange multipliers, we can show that the maximal sample size is 

reached when p3|i=0 and p1|i=p2|i=(1-p3|i)/2. In this case, the maximal sample size is attained 

at the trinomial vector (p1|i=p2|i=p3|i)=(1/2, 1/2, 0) simplifying the above formula to 

n=z2
α/2/d2. This result has two important implications: a) allowing ‘Don’t know’ as a guess 

category decreases the required sample size; and b) in a 2×2 format, the maximal value of 

Var( BI
^

i
)= 4*Var( p

i
) is reached at the binomial vector (1/2, 1/2), resulting in the maximum 

sample size equal to n=z2
α/2/d2. Interestingly, this sample size is 4 times of the well-known 

conservative sample size for estimation of the probability of event in binomial data.

To summarize, with good estimates for trinomial or binomial probabilities, the sample size 

for each arm is given as n=z2
α/2[p1|i(1-p1|i)+p2|i(1-p2|i)+2p1|ip2|i)]/d

2 for a 2×3 format, and n 

= z2
α/2[4pi(1-pi)]/d

2 for a 2×2 format. In the absence of good estimates, the conservative 

sample size

n = z
2
α/2/d2 Eq (2)

with p=1/2 can be used for both formats. It can be seen from these formulae that a 

fundamental operational characteristic, common in virtually all sample size estimations, 

applies here as well: the more stringent the threshold (or the narrower the CI), the larger the 

sample size required.

2.3 Scenario 3: Testing the effect of allocation-guess interaction on the clinical outcome

Breached blinding has a potential to distort clinical findings, leading to biased estimates of 

treatment effects with unknown direction (Bang, 2016; Mathieu, et al., 2014). In the 

presence of allocation-guess interaction, the estimated average treatment effect (ATE) may 

depend on the guess status (1(=T), 2(=C), 3(=Don’t know)) resulting in meaningfully 

different ATEs in subgroups of different guess status. For instance, the ATE estimate 

obtained from those who guessed T can be positive, in favor of treatment, while the estimate 

from those who guessed C can be negative or null. In these situations, detecting the 

interaction between allocation and guess with a reasonable power could be of scientific 

interest.

Testing the effect of allocation-guess interaction on a (continuous) clinical outcome may be 

understood in a framework of a two-way fixed effects unbalanced ANOVA. Let y
ijk

 be the 

outcome from the kth patient in arm i with guess j, where i=1,2; j=1,2,3; and k=1,…,nij, and 

the cell sizes nij (non-zero) are defined in Table 1. In a 2×3 case, a univariate general linear 

model can be parametrized as

y
ijk

= μ
i j

+ ε
ijk

, i = 1, 2; j = 1, 2, 3
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where ε
ijk

are normally distributed independent and identical errors with mean zero and 

variance σ2. This model can be written in matrix notation as y = XB + ε, where X is a design 

matrix of size N × m of zeros and ones (m=6 in our case), and B = μ11 μ12 μ13 μ21 μ22 μ23

(Elston and Bush, 1964).

Testing the null hypothesis of no interaction between allocation and guess is equivalent to 

testing the equality of ATE for each category of guess. This hypothesis can be viewed as a 

special case of a linear hypothesis H0: LB=0 vs. HA: LB≠0, with L being a q × m contrast 

matrix of full rank, where q is the number of contrasts. For example, for an overall test of no 

interaction effect, L =
1 0

0 1

−1 −1

−1 0

0 1

−1 1
. The F-statistic is given by

F =
LB ′(L(X′X)−1

L′)
−1

LB /q

e′e/ N − m

with B = (X′X)−1
X′y and e′e = y − XB ′ y − XB . Under HA, F is distributed as F(q, N-m, λ) 

with a noncentrality parameter λ = LB ′(L(X′X)−1
L′)

−1
LB /σ2. The sample size is computed 

by inverting the power equation P(F(q, N-m, λ)≥Fα(q, N-m)); see (Castelloe and O’Brien, 

2001; Elston and Bush, 1964; Muller and Peterson, 1984; O’Brien, 1986; O’Brien and 

Shieh, 1992) for details and general theory.

In summary, use of this method requires outcome data for allocation by guess status from 

historical studies, preliminary data, or pre-specified values (Chow and Shao, 2004; Wright, 

et al., 2012). Thus, the utility of this method may be limited in practice when it is difficult to 

come up with plausible inputs, although it may be of ultimate interest related to blinding 

assessment. See Section 3.3 for an illustrative example from Chow and Shao, where 

suspected breached blinding might have been problematic and warranted further 

investigation.

3. Worked examples

Even with technically sound methods, a crucial issue is how to implement the methods and 

make sensible decisions in practice. In this section, we illustrate sample size calculations 

using inputs from published data to assist in designing a ‘new’ study.

If a new study is designed as a pilot study where blinding is the primary outcome, trialists 

may use our N methods directly (e.g., a wide margin can be predefined for a pilot, and a 

narrow margin for a real study). If blinding is defined a secondary or tertiary outcome in a 

‘new’ study, trialists may choose N for primary clinical outcome, which is typically done in 

RCTs (Briggs, 2000). If N was obtained for a primary clinical outcome, we can calculate 

what power or precision of the estimate of the blinding parameter can be attained with this 

N. Toward making an overall conclusion, we adopt Cohen’s logic (Cohen, 1990): determine 

the sample size necessary to detect a negligible signal/indication of breached blinding with 

high probability. After the research is carried out using that sample size, and the result is not 

significant, the conclusion is justified that no nontrivial signal exists, at a given level. This 
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does, in fact, probabilistically show the intended null hypothesis of no more than a trivial 

small signal (i.e., blinding is acceptable).

3.1. Scenario 1: Testing the independence of allocation and guess

The sample size under this scenario can be obtained manually or using SAS macros 

powerRxC or Unifypow (SAS Institute, Cary, NC), among others (Castelloe and O’Brien, 

2001; O’Brien and Shieh, 1992). As an illustrative example of a manual calculation, the real 

(rather than hypothetical) data from a study for blinding assessment of a sham cervical 

manipulation procedure (Vernon, et al., 2013) is used as an input for calculation of a sample 

size for a new study. Rigorous blinding evaluation was chosen as a primary aim of the new 

study (Vernon, 2017). The self-reported guess status collected from a secondary analysis in 

an earlier study is presented in Table 2 and it may be used to obtain the observed joint 

probabilities in a 2×3 table: 0.25, 0.14, 0.11 for arm T and 0.14, 0.23, 0.125 for arm C for 

guess 1,2,3, respectively. The expected joint probabilities under independence are: 0.195, 

0.1875, 0.115 for guess of 1,2,3 in both arms. Using this information, the noncentrality 

parameter for Pearson Chi-square equals λ=0.054*N. The approximate power for a number 

of different N values can be obtained from the table ‘Power of Chi-squared Test for α=0.05’ 

in (Agresti, 2013) or various statistical software: if N=20, λ = 1.08, the power is 

approximately 0.13 (with df=2). Similar calculations show that N=176 will be required to 

test the same hypothesis with 80% power. In addition, the noncentrality parameter for the 

LR test equals λ=0.055*N, which is very similar to a Pearson’s as expected. Sample SAS 

codes are provided in Appendix. Of note, resulting estimates can be unstable or unreliable 

with low cell counts.

3.2. Scenario 2: Estimation of (a) arm-specific trinomial proportions and (b) their contrast

Proportions obtained from previous studies can be used to inform sample size calculations. 

For example, Vernon et al. (Vernon, et al., 2013) observed the trinomial proportions (0.5, 

0.28, 0.22) in arm T and (0.28, 0.47, 0.25) in arm C in an immediate post-treatment 

evaluation of blinding. Park et al.’s acupuncture trial (Park, et al., 2005) also observed the 

proportions of guess near 0.5 (e.g., 26/49). In the absence of prior data on trinomial 

proportions or with the observed proportions close to 0.5, as in the trials above, the 

conservative sample size for one arm can be obtained using n =
z
α/6
2

4d
2

. For example, with 

α=0.05, the sample size equals n=574, 144, 36 for d=0.05, 0.1, 0.2, respectively. The sample 

sizes corresponding to the Thompson’s method equal n=510, 128, 32. Since in the blinding 

context, p1|i and p2|i near 0.5 are quite plausible (whereas extreme scenarios such as (0;0;1) 

are rare), these conservative sample sizes are reasonably justified.

Next, we discuss the estimation of BI, the contrast of the arm-specific proportions. Recent 

systematic reviews and meta-analyses on blinding provide a new insight on the range of 

feasible values of the BI in different types of studies (Baethge, et al., 2013; Freed, et al., 

2014; Moroz, et al., 2013). For example, Freed et al. (Freed, et al., 2014) focused on meta-

analysis of BI in trials of psychiatric disorders. It is remarkable that a large number of 

studies included in Freed et al. produced the BI (in weighted average) close to 0 in the 
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control arm, where BI=0 corresponds to a ‘random guess’, supposedly the most ideal 

blinding scenario (Bang, 2016). Therefore, in the absence of good input about a possible 

value of BI in a future study, BI=0 could be a reasonable starting point for sample size 

calculation.

For a blinding data collected in a 2×3 format, BI=0 is implied by all parameter vectors of the 

form of p1 i
, p1 i

, 1 − 2p1 i
, where 0 ≤ p1 i

≤ 1/2. Table 3 presents sample calculations for 

this case obtained for two thresholds (d=0.1 and d=0.2) for p1 i
= 0.1, 0.2, 0.3, 0, 4, 0.5. The 

results in the table clearly demonstrate that as p1 i
 values get closer to zero (implying that 

more people are expected to answer ‘Don’t know’), the required sample size decreases. 

When p1 i
 value gets closer to 0.5, a larger sample size is required. The ‘worst-case’ 

corresponds to p1 i
= 0.5, in which case 2×2 and 2×3 formats are equivalent and the required 

sample size reaches its maximum value. All confirm our theoretical results in Section 2.2. 

Notice a 5-fold difference in sample size required for the case (0.1, 0.1, 0.8) as opposed to 

the case (0.5, 0.5, 0) for the same value of α and d. The tighter the desired width of the CI 

(=2*d), the larger the sample size required, e.g., 4 times for d=0.1 vs. 0.2.

As an illustration, when a future study on blinding assessment of cervical manipulation is 

designed after a pilot study (Vernon, et al., 2013), and the team anticipates BI values to be in 

the range [0, 0.1], the required sample size per arm would be 86 (assuming parameter vector 

of (0.5, 0.4, 0.1)) or 97 (assuming (0.5, 0.5, 0)) with d=0.2. These sample sizes correspond 

to N=2*86=172 or N=2*97=194 which is comparable to the N=176 obtained under Scenario 

1.

As noted above, our methods can also be used to assess the power or estimation precision for 

blinding (defined as a secondary or tertiary outcome) in the studies with the sample size 

obtained for clinical outcome. To exemplify the use of our methods for this common 

scenario, assume that a research team is planning a new trial to estimate the effect of real vs. 

sham acupuncture on muscle spasticity as primary outcome. The Ashworth scale for muscle 

spasticity is defined as a dichotomized outcome (yes/no increase in muscle tone). The team 

is informed by a previous trial (Park, et al., 2005) and wants to detect a clinically meaningful 

difference of 33% vs. 22% for real vs. sham acupuncture, respectively. The sample size 

n=276 for each arm is required to detect this difference with α=5% and 80% power with a 

1:1 allocation via the Fisher exact test. If we decide to use the Thompson’s formula for a 

trinomial vector and a conservative formula for BI, Equations (1) and (2), we get d=0.07 and 

0.12, respectively, with the given n. Thus, we may expect that the total sample size N=552 is 

sufficient to make the goal of reliable blinding assessment achievable in the planning stage.

3.3. Scenario 3: Testing the effect of allocation-guess interaction on the clinical outcome

Chow and Shao (Chow and Shao, 2004) analyzed the Brownell and Stunkard’s data 

(Brownell and Stunkard, 1982) focusing on breached blinding, the role of consent form, and 

its potential impact on the clinical outcome in the weight loss trial. The observed blinding 

data (Table 4) yielded substantial agreement between the allocation and guess and very high 

BI values (BIT=0.67 and BIC=0.52; markedly larger than the previously suggested threshold, 
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0.2 (Freed, et al., 2014; Kolahi, et al., 2009; Park, et al., 2008)), which may be indicative of 

possible breach in blinding. Moreover, dramatic interaction between allocation and guess on 

the clinical outcome of weight loss is apparent in Figure 1, created using the summary 

statistics provided in the original papers (Brownell and Stunkard, 1982; Chow and Shao, 

2004). These summary statistics may be used to reproduce the raw outcome data closely.

In this and similar situations, we would be interested in the sample size required to test the 

overall interaction (i.e., the equality of ATEs for all guess categories) as well as the custom 

interaction (e.g., the equality of ATEs between those who guessed T and those who guessed 

C) with sufficient power in a new study. The method for sample size determination described 

in Section 2.3 can be implemented using GLMpower procedure in SAS; see Appendix for a 

sample code. Cell means, cell counts and error variance σ2 are the sample required inputs. 

An estimate of the error variance may be obtained by fitting a two-way ANOVA model to 

the re-constructed raw data or crudely approximated as σ≈ ( y
max

− y
min

)/6, where y
max

 and 

y
min

 stand for maximal and minimal values of a reasonably symmetric outcome. Using the 

re-constructed raw data, we obtained ≈ 5, thus confirming the previous estimation (Chow 

and Shao, 2004). We ran an additional power analysis with σ ≈ 4 − −20 /6 = 4 using 

information provided in raw data plot (Brownell and Stunkard, 1982) for an illustration 

purpose.

Again, let us assume that we are planning to design a new trial, with the primary outcome 

defined as weight loss and blinding being selected as one of the secondary outcomes. We 

hypothesize in this case that the clinically meaningful difference in weight loss between 

treatment and placebo is about 3.5 kg with a conservative value σ=5. Assuming a 1:1 

allocation, α=1% and power=95% (these strict conditions are assumed to minimize false 

positive results and ensure very high power), n=74 for each arm (total N=148) will be 

required to test the difference in means.

Using the results in Table 4, we can conclude that this sample size will be sufficient to detect 

overall and custom interactions defined above for blinding with high power (>90%) at 

α=5%. Let us now consider another, conservative situation with sample size N=98. This 

sample size is ~30% lower than N=148 but is double the original sample size (N=49) used in 

Brownell and Stunkard (1982). Using this sample size with the standard assumptions of 

α=5% and power=80%, we will be able to detect a true difference of <3 kg in treatment vs. 

control groups. Using the results in Table 4, we can now conclude that a sample size in the 

range of 100-150 would be sufficient to detect interactions of interest defined above with 

power >80% assuming σ ≈ 5 and α=5%.

On the other side, the power to detect the difference in ATE among those who guessed T vs. 

those who answered ‘Don’t know’ is very low (~5%), which is expected as the associated 

ATE lines have nearly the same slopes in Figure 1. At the same time, we might assume that 

those who chose ‘Don’t know’ tend to be neutral or less biased. A similar analysis can be 

repeated with a different classification for guess status: guess correctly vs. guess incorrectly 

vs. not guess, as attempted by Chow and Shao.
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This exercise demonstrates the feasibility of sample size and power calculations in the 

setting where we design a new study and reasonable blinding data along with the outcome 

data are available for inputs as educated guess. Although this type of data is rare in the 

present literature, we believe that growing research on blinding will yield more collection 

and reporting of similar data.

4. Discussion

In this paper, we consider the three qualitatively different scenarios relevant to quantitative 

analysis of blinding, and present methods of sample size determination for planning a future 

study with a blinding assessment component. The scenarios are framed in terms of 

estimation and precision (Scenario 2a & b)) as well as statistical testing and power (Scenario 

1 and 3). We illustrated the three ─ real and hypothetical ─ scenarios with Worked 

examples using published data and exemplified the calculations manually or using a 

statistical software.

The methods and examples in this paper offer users a suite of formulae that can be used to 

determine sample sizes in order to conduct a spectrum of studies, from a pilot or feasibility 

study (Walter, et al., 2005) to a full scale RCT. Since power and sample size calculation 

should be tailored to a specific research question, the choice of the particular method and 

formula depends on the goals and input availability. The proposed methods could be 

particularly essential for studies testing and establishing a newly developed control, sham or 

placebo intervention. Blinding assessment is also desirable for studies that test if the two 

treatments are easily distinguishable and there are no clinical outcomes (say, masking).

The proposed methods can be implemented in a flexible manner for different purposes. For 

example, when designing a pilot study, researchers may decide to use the formulae in the 

paper with a wider margin of error than that which is suitable for a real trial: for example, 

0.2 can be set as a targeted threshold for estimation of the BI in a pilot study, and 0.1 in a 

larger, actual trial. If a research team decides to evaluate blinding in a very large trial, the 

sample size formulae may be used to create a subsample from the entire sample, e.g., 

(COMMIT, 2005), to which a blinding questionnaire could be administered. Similarly to 

power/sample size analysis relevant to a clinical outcome, if the sample size used in blinding 

assessment is substantially lower than the ones justifiable by the methods in our paper, the 

designation of “pilot or feasibility” study may be reasonable.

We want to discuss some limitations. First, we considered studies with a 1:1 allocation and 2 

arms since blinding data is optimally interpreted in this setting. With a 2:1 allocation, we are 

not fully certain if P(correct guess)=0.5 is still the most ideal value; some patients may use 

50% in their guess (between T vs. C), while others may use 66.7% if they were informed 

about the allocation ratio and remember it (Bang, 2016; Brownell and Stunkard, 1982). N/

power calculations for advanced designs (e.g., with 2:1 allocation, clustering or crossover 

designs) as well as accounting for other complex issues (e.g., informative drop-out) in RCT 

are possible topics for future research (Bang, et al., 2010; Park, et al., 2005; Roy, 2012; 

Zhang, et al., 2013).
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Second, we did not handle multiple testing rigorously, partly because we do not pursue 

rigorous hypothesis testing in blinding. Of note, we framed the problem in classical 

superiority testing with a 2-sided CI/test, not equivalence test or a 1-sided hypothesis/CI, 

which may be more relevant to blinding. The main reason behind our decision was to avoid 

unnecessary complexity (e.g., equivalence margin), because blinding is a tool, not a goal, 

and any numerical analysis alone should not be used for binary designation (e.g., success or 

failure) (Bang and Park, 2013; Zhang, et al., 2013). Along the same line, we emphasize the 

importance of the estimation-based method described in Scenario 2 in the blinding context. 

Finally, post-hoc or retrospective power calculation should be avoided (CONSORT, 2010; 

Hoenig and Heisey, 2001).

In closing, we propose the methods for sample size and power calculations which can be 

used for exploratory or planning purposes, and can address different research questions, 

inputs and settings commonly encountered in blinding.
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Appendix: Sample SAS codes

1. Scenario 1

data Vernon;

 do Treat=1 to 2;

  do Guess=1 to 3;

   input freq @@; output;

  end;

 end;

datalines;

16 9 7

9 15 8

;

%powerRxC(data=Vernon,row=Treat,col=Guess,count=freq,nrange=

%str(20,50,100,176,200 to 500 by 100))

2. Scenario 3

data Chow;

input Treat Guess Outcome Weight;

datalines;

1 1 9.6 19

1 2 3.9 3

1 3 12.2 2
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2 1 2.6 3

2 2 6.1 16

2 3 5.8 6

;

proc glmpower data=Chow;

class Treat Guess;

model Outcome = Treat | Guess;

weight Weight;

contrast ‘Inter-overall’ Treat*Guess 1 0 −1 −1 0 1, Treat*Guess 0 1 −1 0 −1 

1;

contrast ‘Inter-tailored (ATE in 1(=T) vs. 2(=C))’ Treat*Guess 1 −1 0 −1 1 0;

power

stddev = 4 5

ntotal = 148 98

power = .;

run;
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Figure 1. Clinical outcome by allocation and guess status

Created using data from Brownell and Stunkard (1982) and Chow and Shao (2004).

drug: Guess T; placebo: Guess C; dnk: Guess ‘Don’t know’.
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Table 1

Notations used to summarize typical blinding data

Guess, count Total

Allocation 1 (=T) 2 (=C) 3 (=Don’t know) Sample size

Treatment (T)
n11 n12 n13 n1⋅ (= n

T⋅)

Control (C)
n21 n22 n23 n2⋅ (= n

C⋅)

J Biopharm Stat. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landsman et al. Page 18

Table 2

Blinding data from Vernon et al. (2013) and Sample size/Power

a. Blinding data

Guess Total

Allocation Real Sham Don’t know Sample size

Real 16 9 7 32

Sham 9 15 8 32

b. Sample size and power ( α = 0.05)

N Power of Pearson Chi-square Power of LR

20 0.14 0.14

50 0.30 0.30

100 0.56 0.55

176 0.80 0.81

200 0.85 0.86

300 0.96 0.96
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Table 3

Sample size (nT.) for the estimation of BI in treatment arm ( α = 0.05)

BIT = P1|T-P2|T d=0.2 d=0.1

BIT = 0

0.1-0.1 20 77

0.2-0.2 39 154

0.3-0.3 58 231

0.4-0.4 77 308

0.5-0.5* 97 385

BIT = 0.1

0.1-0.0 9 35

0.2-0.1 28 115

BIT = 0.1, 0.2, 0.3, 0.4

0.3-0.2/0.3-0.1 48/35 189/139

0.4-0.3/0.4-0.2/0.4-0.1 67/54/40 266/216/158

0.5-0.4/0.5-0.3/0.5-0.2/0.5-0.1 86/73/59/43 342/292/235/170

P1|T=expected proportion of persons who guessed 1 (=T).

P2|T=expected proportion of persons who guessed 2 (=C).

BIT denotes blinding index and nT. denotes sample size in Treatment arm.

*
The required sample size in this case is equivalent to a conservative sample size in a 2×2 format (without “Don’t Know” category), n=z2α/2/d2.
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Table 4

Blinding and outcome data from Brownell and Stunkard (1982) and Sample size/Power

a. Blinding data

Guess, count Total

Allocation Active drug Placebo Don’t know Sample size

Active drug 19 3 2 24

Placebo 3 16 6 25

b. Mean weight loss (kg) in subgroups defined by allocation and guess

Guess

Assignment Active drug Placebo Don’t know Overall

Active drug 9.6 3.9 12.2 9.1

Placebo 2.6 6.1 5.8 5.6

c. Sample size and power ( α = 0.05)

Source
σ

N Power

Main effect of guess (df=2) 4 148 0.860

4 98 0.682

5 148 0.668

5 98 0.481

Overall interaction (df=2) 4 148 0.994

4 98 0.948

5 148 0.942

5 98 0.806

Tailored interaction (df=1)
ATE among guess=T vs.
ATE among guess=C

4 148 0.994

4 98 0.954

5 148 0.947

5 98 0.829

df: degrees of freedom; ATE: average treatment effect.
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