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SUMMARY
Cluster randomized trials in health care may involve three instead of two levels, for instance, in
trials where different interventions to improve quality of care are compared. In such trials, the
intervention is implemented in health care units (“clusters”) and aims at changing the behavior of
health care professionals working in this unit (“subjects”), while the effects are measured at the
patient level (“evaluations”). Within the generalized estimating equations (GEE) approach, we
derive a sample size formula that accounts for two levels of clustering: that of subjects within
clusters and that of evaluations within subjects. The formula reveals that sample size is inflated,
relative to a design with completely independent evaluations, by a multiplicative term that can be
expressed as a product of two variance inflation factors, one that quantifies the impact of within-
subject correlation of evaluations on the variance of subject-level means and the other that
quantifies the impact of the correlation between subject level means on the variance of the cluster
means. Power levels as predicted by the sample size formula agreed well with the simulated power
for more than 10 clusters in total, when data was analyzed using bias-corrected estimating
equations for the correlation parameters in combination with the model-based covariance
estimator or the sandwich estimator with a finite sample correction.
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1. Introduction
Cluster randomized trials, i.e. trials which randomize intact groups of individuals
(“clusters”) instead of the individuals themselves, have become common in health and
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health care research (Donner and Klar, 2000; Murray, 1998; Murray, Varnell, and Blitstein,
2004; Campbell, Donner, and Klar, 2007; Ukoumunne et al., 1999). They are a natural
design choice when an intervention aims to improve patients health by innovating the
provision of health care around the patient (Donner and Klar, 2000). The intervention is then
implemented at the level of health care professionals (e.g. clinicians, physicians, nurses,
caregivers) or health service units (e.g. practices, hospitals), while the hypothesized
favorable effects are measured at the level of the patients. Trials such as these have two
levels: subjects (e.g. patients) are nested within clusters (e.g. physicians). As a more recent
development, cluster randomized trials with three levels have begun to find application in
health care research. An example is the Dutch Helping Hands trial which compares two
strategies to improve adherence to hand hygiene guidelines in hospitals. Each strategy is
implemented in a subset of the wards (“clusters”), and subsequently nurses (“subjects”) are
observed with respect to their level of guideline adherence in opportunities for hand hygiene
(“evaluations”). Data from trials such as these are correlated in ‘twofold’ nested fashion:
evaluations (hand hygiene opportunities) are correlated within subjects (nurses) that are, in
turn, correlated within clusters (wards). The statistical analysis method used and therefore
the corresponding sample size calculation needs to take account of this twofold nested
correlation structure. Statistical models that account for such clustering fall into two
categories, depending on the interpretation of their regression parameters: population-
averaged (marginal) or cluster-specific (conditional) models. Each approach has its own
merits (Preisser, Lu, and Qaqish, 2008; Preisser, 2004) but for covariates that do not vary
within clusters, population-averaged model parameters have an easy interpretation, while the
interpretation of cluster-specific model parameters may be difficult or misleading. To
illustrate, consider the model parameter for treatment in a cluster trial. In a population-
averaged model, it describes how the response average changes across the subsets of the
population defined by treatment. In a cluster-specific model, the treatment parameter is
specific for a given cluster and describes the difference in response when that particular
cluster would have been observed in the control condition and in the treatment condition,
which is an unobserved effect, because each cluster is observed in one condition only. For
this reason, population-averaged models have been recommended for analyzing cluster-
specifc covariates (Zeger, Liang, and Albert, 1988; Neuhaus, Kalbfleisch, and Hauck, 1991;
Heagerty, 1999).

Sample size and statistical power for a cluster-specific model of a three level cluster
randomized trial have recently been considered, viz. a linear mixed model for continuous
responses (Heo and Leon, 2008). In this paper, we focus on a population-averaged model for
three-level cluster randomized trials fitted with generalized estimating equations (GEE) and
we derive a GEE-sample size formula for a post-test design. Furthermore, we conduct a
simulation study to evaluate the accuracy (practical applicability) of this formula. The
evaluation is complicated, however, because the standard covariance estimator of GEE (the
empirical sandwich estimator) has inflated type I errors when the number of clusters is
small, typically below 40 (Kauermann and Carroll, 2001; O'Brien and Fitzmaurice, 2004).
Approaches to deal with small samples have been proposed (Mancl and DeRouen, 2001;
Fay and Graubard, 2001; Pan and Wall, 2002; Morel, Bokossa, and Neerchal, 2003;
Kauermann and Carroll, 2001). We validate the sample size formula with simulated test size
(empirical type I error rate) and power of Wald tests that are based on a small sample
correction to the empirical standard error due to Kauermann and Carroll (2001). For
comparison, also the performance of the Wald test with the model-based standard error and
the Wald test with small sample correction due to Mancl and DeRouen (2001) was
investigated. Finally, the Dutch Helping Hands trial is used to illustrate the proposed sample
size formula.
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2. Statistical Model
Typically, a response is observed under certain characteristics or conditions that may affect
it and these may be at the level of evaluation, subject and/or cluster level. Consider a
population-averaged (marginal) model where evaluation  of subject  in
cluster i = 1, . . . , N yields a response yijk which is observed given a covariate vector Xijk =
(xijk1, . . . ,xijkp)t. Let μijk = E(yijk|Xijk) be the marginal mean response given Xijk i.e. μijk is the
mean response of a population of cluster-subject-evaluations that is characterized by Xijk.
The relation of the covariates and the marginal mean is described in a generalized linear

model (GLM) as  where β is a p × 1 vector of regression parameters to be
estimated from the data and g(μijk) the link function. The covariance structure is defined by

within-cluster correlations and marginal variances  where ν(μijk) is

the variance function and  is the scale parameter. We employ a ‘nested exchangeable’
(‘nested compound symmetry’) correlation structure, i.e. 1) the correlation between
evaluations within the same subject is constant (corr(xijk,xijk′) = r for k ≠ k) and 2) the
correlation between evaluations in the same cluster, but of different subjects is constant
(corr(xijk, xij′k′) = ρ for j ≠ j).

3. GEE and the three level exchangeable correlation structure

Let , , and  be the 
response vector,  marginal mean response vector, and  covariate matrix of

subject j in cluster i, respectively. Furthermore, let  and 
be the vector of responses and marginal mean responses of the subjects in cluster i,
respectively. GEE is an approach for fitting the GLMs for correlated data using a
multivariate analogue of the quasi-score function (Wedderburn, 1974). Define Di = ∂μi/∂β

and let  be a ‘working covariance matrix’ for Yi, where Ai is a diagonal
matrix with elements ν(μijk) and Ri = Ri(α) is a ’working correlation matrix that may vary
across clusters but is specified by a common parameter vector α, e.g. α = (r, ρ)t. Then, the
three level exchangeable correlation structure defined in section 2 is

where  where 1s is an s-column vector of ones, BDiagt(A) is a block diagonal matrix
with matrix element A replicated t times, and Iu is the identity matrix of dimension u. The
combinations (p, r) for which Ri is positive definite, can be determined using the SAS/IML
macro provided in web appendix 1.

The GEE estimate  is obtained by solving . Any consistent estimate of
α may be used (Liang and Zeger, 1986). Fast computation, even in cases of large clusters
common to cluster trials, and in the extension to unbalanced data, is provided by calculation
of an expression (see web appendix 2 for the derivation) that avoids matrix inversion

(1)
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To provide a degree of correction to the small sample bias of α estimates, we use the set of
“matrix adjusted” estimating equations (MAEE) described in (Preisser, Lu, and Qaqish,
2008). Asymptotically (i.e. when N is sufficiently large),  has a multivariate normal
distribution with mean β and covariance estimated by the model-based variance estimator

or by the sandwich estimator

Sandwich estimators provide valid inference regardless of the correct specification of Ri,
provided the number of clusters is sufficiently large, whereas the consistency of the model-
based variance estimator requires correct specification of the correlation structure. In the
sandwich estimator, Bi are matrices that may be defined to provide a partial correction to the
small sample bias of the uncorrected sandwich estimator of Liang and Zeger (1986) that is
given by Bi = Ini, where  is the total number of evaluations in the ith cluster).
Defining the cluster leverage (Lu et al., 2007) as , the small sample (i.e.
when the number of clusters is small) correction of Mancl and DeRouen is given by Bi = (Ini
– Hi)–1 and that of Kauermann and Carroll by Bi = (Ini – Hi)–1/2 (Lu et al., 2007).

In finite samples, Lu et al. (2007) reported that bias correction for α-estimation via MAEE
mildly improved the confidence interval coverage of the marginal mean regression
parameters β based upon the model-based covariance estimator but such correction had
essentially no effect on procedures that used sandwich estimators. On the other hand, MAEE
may substantially reduce the bias of the estimator of, and improve inference on, α (Preisser
et al., 2008). The three-level cluster randomized design with nested exchangeable
correlation structure can be analyzed with the general purpose software made available at
http://www.bios.unc.edu/jpreisse.

4. Sample size and statistical power
4.1 General formula for the two-sample case

Suppose the treatment assignment is coded in the last column of the clusters covariate

matrices  and the corresponding last parameter of β is βp. The asymptotic

variance of  is determined by the (p, p)th (right-lower) corner element of

. To account for the uncertainty in estimating the variance, we will use t-

percentiles in the Wald tests i.e. , where  and

 will be referred to a t-distribution with N – p degrees of freedom. The
statistic of interest is the difference (on the link function scale) in the mean response of all
evaluations in the control clusters and that in the intervention clusters. Asymptotically, the
power to detect a difference βp of size b, with a two-sided type I error rate α given by sample
size N is approximately
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(2)

where Φt,n is the cumulative distribution function of the t-distribution with n degrees of
freedom. Conversely, the approximate number of clusters required to provide power 1 – γ
satisfies the relation

where tα,Np is the 100α% percentile from the t-distribution with N – p degrees of freedom.
For power and sample size calculations, we assume the (co)variances to be known i.e.

. In the calculation of the sample size below, we assume that the total of N
clusters is divided in πN clusters in the control arm and (1 – π)N clusters in the intervention
arm. Furthermore, we assume the GLM model has no further covariates (p = 2). We restrict
to post-test only designs i.e. g(μijk) = β1x1ijk + β2x2ijk (x1 is only 1s, x2 is the cluster level
treatment indicator). In other words: Xijk = [x1ijk, x2ijk] = [1, x2ijk] is a two-column matrix
with the first column consisting of ones and the second column consisting of the treatment
indicator.

4.2 Variance inflation factor
A simplification we make in the sample size calculations is that all clusters are of the same
size (same number of subjects in each cluster and same number of evaluations in each
subject) and have the same type of correlation structure, i.e. the correlation matrix R is the
same for all clusters. Generalizing the calculations of Shih for continuous and binary

outcomes (Shih, 1997) shows , where 1tR–11 is the sum of all matrix
elements of the inverse of the correlation matrix R, and var0 is proportional to the variance
without account of clusterings (see 4.3 and 4.4 below). For the three level exchangeable
correlation matrix, it is shown in web appendix 2 that 1tR–11 = (nsne)/ϕ where

(3)

Here ρs,ne is the correlation between mean evaluation scores of two different subjects within
the same cluster. The variance inflation factor ϕ for the three level design is the product of
variance inflation factors from 2-level designs operating within subjects at the evaluation
level and within clusters at the subject level. Equivalently, ϕ = 1 + (ne – 1)r + ne(ns – 1)ρ,
the variance inflation factor that applies to a maximum likelihood analysis of a three level
hierarchical cluster randomized trial (Heo and Leon, 2008). Note the GEE variance inflation
factor is the same for continuous as well as binary outcome, as in the two-level cluster
randomized designs (Shih, 1997). It reduces to the familiar variance inflation factor of the
two-level design (subjects nested within clusters), when one evaluation per subject is taken
(ne = 1).
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4.3 Sample size for continuous outcomes
Under the identity link function, the marginal mean model is μijk = β1+β2x2ijk with variance

var(yijk|Xijk) = ν(μijk) = σ2. Then  (Shih, 1997), so that the sample
size is a solution to

(4)

4.4 Sample size for binary outcomes
The marginal mean model is now logit(μijk) = β1 + β2xijk with variance var(yijk|Xijk) = ν(μijk)
= μijk(1–μijk). The difference to be detected is b = log(P0/(1–P0))–log(P1/(1–P1)). Analogous
to Shih (1997):

(5)

so that the required number of clusters is a solution to

(6)

For two-level binary data (ne = 1), ϕ = 1 + (ns – 1)ρ and our sample size formula reduces to
that of Shih (1997), formula (10). For one level binary data (ne = ns = 1), ϕ = 1 and the
sample size formula reduces to that of the two-sample Wald test for logistic regression,
formula (5) in Vaeth and Skovlund (2004), noting that the variance of this Wald test statistic
is 1.

In principle, equation (4) and (6) have to be solved iteratively, but a practical approach is to
substitute z-percentiles for the t-percentiles and multiply the result by the factor (N+1)/(N
−1) (p. 118 of Steel and Torrie (1980)).

5. Simulation study
5.1 Simulation design

As we expected that the accuracy of the sample size formula would be less for binary than
for continuous outcomes, we restricted the validation of our sample size formula to binary
outcomes. Correlated binary data for the model given in section 4.4 were generated using
SAS/IML according to the method of Qaqish (2008), see web appendix 3. Since our interest
was in cluster randomized studies with a small to moderate total number of clusters, we
varied the total number of clusters (N) from 6 to 56 and we took ρ much smaller than r: (r,
ρ) = (0.60, 0.05), (0.10, 0.005). We varied across the simulation scenarios the number of
subjects per cluster (ns) from 5 to 50 and the number of evaluations (ne) from 2 to 6 (see
Table 1). Regression parameters β1 and β2 were determined according to specifications of
the probabilities of an event in the two treatment groups: p0 and p1 for control and
intervention clusters, respectively. For evaluation of test size β2 was set 0. The correct
models for marginal mean and correlations were fit using GEE in combination with matrix
adjusted estimating equations (MAEE) for a and four estimators for the variance of : the
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model-based estimator (MB), the uncorrected sandwich estimator (rob), the sandwich
estimator with the small sample correction due to the Kauermann and Carroll correction
(KC) and that of Mancl and DeRouen (MD). From 1000 simulations, test size and power

were estimated as the proportion of times , when β2 = 0 and β2 ≠ 0,
respectively, where t0.975,N–2 is 97.5th percentage point of the t-distribution with N – 2
degrees of freedom, and SE denotes the standard error. The questions addressed by the
simulation study are: 1) what is the minimal number of clusters needed so that the different
Wald tests (based on different variance estimators) for H0 : β2 = 0 provide type I error rates
near the nominal 0.05 level and 2) for those Wald tests that best maintain the type I error
rate near the nominal level in small samples: how well do the power levels predicted by the
sample size formula agree with empirical power generated by the simulation experiment?

5.2 Simulation results
The convergence rate exceeded 99% for all simulated cases. To assess whether the test size
was nominal and the power level as predicted by the sample size formula (6) was accurate,
we considered a simulated test size between 3.6% and 6.4% to be compatible with a true test
size of 5% and we considered a power level that differs at most 2.6% from the predicted
level to be in agreement with the sample size formula. The rationale for this is that a true test
size of 0.05 and power 0.80-0.90 have (approximate) standard errors of 0.7% and 1.3%,
respectively, based on the binomial standard error . Figure 1 summarizes the results for test
size. The test size of the model-based variance estimator (MB) and the sandwich estimator
with Kauermann-Carroll correction (KC) was near nominal, even for as few as six clusters.
The Mancl-DeRouen (MD) variance estimator gave test sizes below 6.4%, but was too
conservative ( < 3.6%) for fewer than 20 clusters. Not surprisingly, test sizes for the robust
variance estimator were inflated. Figure 2 and Table 1 provide the power results for the best
two performing methods from Figure 1. The power of tests based on MB and KC
corresponded well with that of formula (6) when the number of clusters was greater than 10,
but was up to 5% smaller than predicted for N = 8, and up to 10% smaller for N = 6.

6. Application
The variance inflation factor (3) implies that many different combinations (N, ns, ne) of total
number of clusters, number of subjects per cluster, and number of evaluations per subject
provide the same level of power to detect a given effect. Therefore, it is worthwhile to assess
the feasibility of several scenarios in a particular application, the Helping Hands Trial.
Hospital acquired infections are a burden to patients and the health care system, while the
(most effective) obvious preventive measure, hand hygiene, is simple as well as
underutilized. The Helping Hands trial (Netherlands Organization for Health Research and
Development ZonMw, grant nr 80-007028-98-07101) compares two strategies to enhance
adherence to hygiene guidelines. The first focuses on the nurses (training, feedback) and the
wards (facilities), while the second strategy adds elements based on social influence in
groups (norms and target setting within the nurse team). Randomization and implementation
is done at the ward level and targets at changing nurse behavior. However, a binary outcome
reflects whether guidelines are followed for each hand hygiene opportunity.

The researchers expect that the standard and extended strategy will result in an adherence of
60% and 70%, respectively. Uncorrected for correlation, the total sample size for a 1: 1
allocation is N0 = 718 (formula (4) with ϕ = 1). It is reasonable to suppose that the behavior
of an individual nurse with respect to hand hygiene is rather consistent (r = 0.6) and that the
sharing of a common (working) environment results in some correlation of nurses's
evaluations within a ward (ρ = 0.3). The researchers can make ca. 3 evaluations on ca. 15
nurses in each ward. Calculating for the number of wards (clusters) from ns = 15 and ne = 3,
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gives N = 58. Figure 3 illustrates how sensitive power is for uncertainty in ρ and r: power
remains above 75% when ρ ≤ 0.04 (given r = 0.6) and when r ≤ 0.84 (given ρ = 0.03). The
region depicted falls entirely in the range (ρ, r) for which R is positive definite.

7. Discussion
The nested exchangeable correlation structure in a three level model for a posttest only trial
is a direct generalization of the exchangeable correlation structure that is commonly used in
two-level cluster randomized trials. It is suitable when the lowest level units are
exchangeable within the middle level units and the middle level units are exchangeable
within the highest level units. In the Helping Hands trial, evaluation of adherence to hygiene
guidelines is nested within nurses which are nested within wards. As all the nurses in a ward
share the same program, the nurses within wards are considered exchangeable. Since the
evaluations ‘measure’ an underlying property or trait of a nurse (hygiene behavior), it is
reasonable to suppose these evaluations are exchangeable within nurse. Another example
where a nested exchangeable correlation is reasonable is when students are nested within
classes within schools. The nested exchangeable correlation structure proposed in this paper
is also applicable to nested cross-sectional cluster randomized trials (Murray, 1998; Preisser,
Lohman, and Rathouz, 2002; Feldman and McKinlay, 1994), where clusters are measured
repeatedly, but the subjects in those clusters are different for different times. For example, in
the pretest-posttest the cross-sectional design discussed in Preisser et al. (Preisser et al.,
2003), pairs of within-cluster observations from the same time are assumed to have one
correlation e.g. r), while those from different times are assumed to have another (e.g., ρ).
Notwithstanding the use of the same correlation structure, the respective variance inflation
factors and test statistics differ: a pretest-posttest is employed in Preisser et al. (2003) versus
a posttest in the Helping Hands trial.

The fact that the variance inflation factor derived for GEE equals the variance inflation
factor of a mixed effects model for continuous outcomes leads to some interesting
observations. First, this illustrates that power calculations for GEE Wald tests can be derived
from appropriate summary statistics (Preisser et al., 2003; Preisser et al., 2007), in this case
the treatment mean. Second, this equality of variance inflation factors conveys a bonus: the
optimal allocation of units to the three levels that was derived for continuous 3-level random
effects models (Moerbeek, Van Breukelen, and Berger, 2000; Teerenstra et al., 2008) can be
identified as the optimal allocation for both continuous and binary 3-level GEE analyses.
Despite the similarity in the variance inflation factor in the mixed effects and GEE analysis,
there is also a difference: the correlations in the GEE framework are allowed to be negative
unlike in mixed effects models. However, negative correlations are uncommon in cluster
randomized trials (Donner and Klar, 2000). A conspicuous detail is that the variance
inflation factor of GEE is the same for both continuous as binary outcomes. Shih observed
this earlier for two-level cluster randomized trials (Shih, 1997): following his calculations, it
can be seen that the variance inflation factor for posttest designs only depends on the
correlation matrices of the clusters (Pan and Wall, 2002; Shih, 1997) and this generalizes
easily to more than 2 levels.

A simplification we made in the sample size calculations is that all clusters are of the same
size (same number of subjects in each cluster and same number of evaluations in each
subject). Research into the impact of varying cluster size for ordinary (two-level) cluster
randomization showed that the coefficient of variation of the cluster sizes enters the
(simplified) sample size formulas (Manatunga, Hudgens, and Chen, 2001; van Breukelen,
Candel, and Berger, 2007; Eldridge, Ashby, and Kerry, 2006). We expect similar results for
the three level case, but this is subject of future research.
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In practice, not only treatment but also other (influential) covariates are often included in the
analysis model. Generally, this will decrease the (residual) variance (Murray and Blitstein,
2003) and increase the power, so that the sample size formula presented will be
conservative. However, also the number of degrees of freedom for the test statistic will be
reduced (Section 4.1). In cluster trials with (very) few clusters, this may offset any gain due
to variance reduction and may actually result in a loss of power.

Our simulation study showed that the MAEE in combination with the model-based
covariance estimator and the Kauermann-Carroll (KC) corrected covariance estimator had
near nominal test size and power levels in agreement with the sample size formula down to a
total number of clusters of 10. In contrast, the Mancl-DeRouen (MD) corrected covariance
estimator resulted in too conservative test size. An explanation for this is that MD
consistently overestimates the variance when the number of clusters is small (Lu et al.,
2007). Our findings at first glance appear to contradict those of Lu et. al (2007) who
recommend the MD variance estimator over KC for the analysis of cluster trials. However,
their recommendation were based on the construction of confidence intervals using standard
normal quantiles, whereas t-quantiles were employed in this paper. In more apparent
harmony with the results reported here, Lu et al. (2007) found that for a cluster level
covariate (such as the treatment indicator in a cluster randomized trial), KC tends to have
better coverage (again, using standard normal quantiles) than MD, but this observation was
restricted to small cluster sizes (e.g., size four or six).

Intuitively, one would expect that a sample size calculation based on a model-based
covariance estimator followed by an analysis using a robust covariance estimator would
result in some loss in precision and hence power in small samples. For large samples (many
clusters), the proposed sample size formula will accurately characterize the behavior (i.e.,
power and Type I error) of the GEE test statistics, since the robust GEE covariance
estimator is a consistent estimator for the (assumed) true model-based covariance matrix. In
small samples, the robust GEE covariance estimator tends to underestimate the true
covariance matrix and the increased variability of the sandwich estimator is known to
adversely affect the small sample performance of test statistics. This led to the proposal of
finite sample corrections to the sandwich estimator (Kauermann and Carroll, 2001)
evaluated in this paper. Our simulation study shows that for moderately sized cluster
randomized trials, an analysis using the robust covariance estimator with KC correction has
power as predicted by the sample size calculation based on the model-based covariance
matrix.

An entirely different situation occurs if sample size calculations are based on an incorrectly
specified model-based covariance matrix, so that the planned power is not likely to be
realized. Nonetheless, the GEE analysis based on a robust covariance estimator is a
consistent estimator of the (unknown) true variance under a correctly specified model for the
marginal mean, whereas use of an incorrectly specified model-based covariance matrix in
the analysis will give invalid results. Although the ‘robust-GEE’ analysis would be valid, it
would likely be under- or overpowered. Following Rochon (1998), one could specify a
sample size formula for GEE based on a “robust covariance matrix” with the understanding
that two covariance models are being specified, a (assumed) true covariance matrix (e.g.,
whose structure may vary across specified subpopulations) and a working covariance matrix
to be specified in the GEE at the analysis stage (e.g., Rochon, 1998).

As a practical conclusion, MAEE in combination with the model-based or KC-corrected
covariance estimator protects the type I error in a GEE analysis of 3-level cluster
randomized trials that have as few as three clusters per condition (at least in the specific
model treated here). Moreover, when using either of these two analysis methods, the sample
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size calculation (variance inflation factor) presented is accurate for planning a three level
cluster randomized trial with at least 5 clusters per condition.
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Figure 1.
Test size of the model-based covariance estimator (MB) and the sandwich estimators with no
correction (rob), the Kauermann and Carroll correction (KC), or Mancl and DeRouen
correction (MD)
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Figure 2.
Power of the model-based covariance estimator (MB) and the sandwich estimator with the
Kauermann and Carroll correction (KC)
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Figure 3.
Power as a function of r and ρ (Section Application)
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