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ABSTRACT: Procedures are reviewed and recommendations made for the choice of the size of a sample to estimate the characteristics (some-
times known as parameters) of a population consisting of discrete items which may belong to one and only one of a number of categories with
examples drawn from forensic science. Four sampling procedures are described for binary responses, where the number of possible categories is only
two, e.g., licit or illicit pills. One is based on priors informed from historical data. The other three are sequential. The first of these is a sequential
probability ratio test with a stopping rule derived by controlling the probabilities of type 1 and type 2 errors. The second is a sequential variation of
a procedure based on the predictive distribution of the data yet to be inspected and the distribution of the data that have been inspected, with a stop-
ping rule determined by a prespecified threshold on the probability of a wrong decision. The third is a two-sided sequential criterion which stops
sampling when one of two competitive hypotheses has a probability of being accepted which is larger than another prespecified threshold. The fifth
procedure extends the ideas developed for binary responses to multinomial responses where the number of possible categories (e.g., types of drug or
types of glass) may be more than two. The procedure is sequential and recommends stopping when the joint probability interval or ellipsoid for the
estimates of the proportions is less than a given threshold in size. For trinomial data this last procedure is illustrated with a ternary diagram with an
ellipse formed around the sample proportions. There is a straightforward generalization of this approach to multinomial populations with more than
three categories. A conclusion provides recommendations for sampling procedures in various contexts.

KEYWORDS: forensic science, sample size, evidence evaluation, likelihood ratio, ternary diagram, multinomial data, misleading evidence,
power priors

Sample size determination (SSD) is a crucial aspect of any
experimental design and there have been a number of papers
addressing this subject both from a frequentist and a Bayesian
approach. A review of the subject up to the mid-1990’s can be
found in Ref. (1) and references therein. Most examples in the liter-
ature come from medical studies and from the quality assessment
of products. Another field where SSD may play a crucial role in
the saving of resources is in forensic analysis. For instance, there
may be a consignment of discrete units with certain proportions
containing illegal materials of different types. Such units may be
pills (which may be drugs, possibly of more than one type), CDs
or pornographic computer files. The traditional approach to SSD
from a frequentist perspective is to control some aspects of the
sampling distributions of the statistics that are used for drawing
inference and to define null and alternative hypotheses for the value
of the characteristic of interest (e.g., proportion of pills of a certain
type). The sample size is then determined by controlling the proba-
bilities of type 1 and type 2 errors, respectively, the probabilities of
rejecting the null hypothesis (e.g., that the proportion of pills is less
than a certain value) when it is true and of not rejecting the null
hypothesis when it is false.

Emphasis is given here on the use of Bayesian methodology in
which inferences are made directly about the characteristic of inter-
est which is categorical. The characteristic, conventionally denoted
h, is considered to be random and to have an associated probability
distribution in some relevant population from which all relevant
information about h may be obtained. Such information can include
the mean, the variance and distributional results such that the prob-
ability that h is greater than a certain value, for example, may be

determined. An extension to consider quantities is described in
Refs (2,3).

It is common in forensic analysis to encounter a consignment of
discrete units, some of which may contain illegal material. Exam-
ples of such units are pills, some of which may be illicit, CDs,
some of which may be pirated, or computer files, some of which
may be pornographic. For illicit drugs in pills there may be two or
more mutually exclusive categories for classification (e.g., powder
cocaine, crack cocaine, heroin, LSD, and marijuana). Consider a
sample of known size, n say, taken from the consignment. When
there are only two mutually exclusive categories, such as licit and
illicit, a common distribution associated with the number of pills in
one of the categories, conditional on the total number of pills in
the sample, is the binomial distribution. When there are more than
two mutually exclusive categories, the analogous distribution for
the number of pills in each of the categories is known as a multino-
mial distribution. Izenman points out that inaccuracies may occur
when the whole seizure is being analyzed due to time and man-
power constraints (4). Furthermore, he argues that certain chemical
testing destroys the evidence and that evidence may need to
be shown to the jury or given to the defense to make their own
testing. Also forensic scientists may be exposed to potential health
hazards through airborne dust or physical contact. Thus, for various
reasons, as little analysis as possible is desirable so a sample is ana-
lyzed rather than every member of the consignment. Criteria are
required in order to give meaning to the phrase ‘‘as little...as
possible.’’

Many simple approaches to the determination of a sample size
have been adopted. These approaches include choosing the sample
size to be the size of the square root of the size of the whole con-
signment. Other rules are to analyze a number equal to half the
square root of the size of the whole consignment, or equal to a
certain proportion, such as 10%, of the size of the whole consign-
ment. These methods, although simple to remember, have little or
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no statistical justification and may lead to the inspection of quanti-
ties of pills considerably in excess of those required for an infer-
ence to be made that is sufficient for legal purposes. Methods
based on the beta and binomial distributions for samples in which
all sampled items are illicit are described in Ref. (5) and extended
here to sequential sampling. Samples contain items of more than
one category. For binary models these categories could be licit and
illicit in drug cases and four models are described in this context.

A fifth model is described for samples with more than two catego-
ries. The method described here assumes that the number of catego-
ries is known. The purpose of the sampling is to estimate the
proportions of each category in the consignment. Further work is
required in order to develop a sampling protocol for situations in
which the number of categories is unknown. The example described
here considers three categories for pills in a drug case where the cate-
gories are licit, ecstasy, and LSD. Other examples include:

• a mixture of glass fragments of a known number of categories;
• an autosomal locus with a known number of different alleles;
• soil which is a mixture of several different soil types;
• a pollen composition which is a mixture of several different

types.

In each example, the purpose of the sampling is to estimate the
proportion of each type or category.

Binomial Sampling

Consider circumstances in which a sample of size n items are
taken at random and without replacement from a large population
of size m. Items may be assigned to one and only one of two cate-
gories, conventionally known as ‘‘success’’ and ‘‘failure.’’ As men-
tioned above, examples include illicit or licit drugs, pirated or legal
CDs, pornographic or nonpornographic computer files.

Consider the case of illicit or licit drugs. In some jurisdictions,
the numbers of pills seized is a contributory factor in the determi-
nation of the defendant’s sentence and hence accurate estimation of
these numbers, with knowledge of the associated uncertainty in the
estimation, is important. These numbers may be obtained from esti-
mates of the proportions of drugs in each category by multiplica-
tion of these estimated proportions by the consignment size. The
procedures described here consider estimation of proportions as this
is statistically the best way to proceed. It is straightforward to trans-
form the results into numbers in a consignment.

Denote the proportion of items in the population that are catego-
rized as successes (or, more briefly, known as ‘‘successes’’) as h. In
the context of illicit and licit drugs, the proportion of pills that are
illicit is of interest so a ‘‘success’’ would be an illicit tablet. This
information about the population is then translated to record that for
an item drawn at random from the population (pill from the con-
signment), the probability it is a success (illicit) is h. The population
is deemed to be sufficiently large relative to the sample size that
the probabilities for successive drawings without replacement from
the sample to be successes may be treated as constant and equal to
h; i.e., sampling is taken to be equivalent to sampling with replace-
ment. For small consignments, analyses using the beta–binomial
distribution are appropriate and described in the section on ‘‘Predic-
tive sample size determination.’’ Let X denote the phrase ‘‘the num-
ber of drawings from a sample of size n that are successes’’ (the
number of pills in the sample that are illicit) and let x be the sym-
bol denoting the number of successes (illicit pills) in a sample of
size n. Thus, the phrase ‘‘the probability the number of drawings
from a sample of size n that are successes equals x’’ may be written
symbolically as Pr(X ¼ x). When there are two, and only two

categories for a population into which an item may be placed,
with probabilities h and (1 ) h), respectively, then the number of
successes, X, in a sample of size n, has a binomial distribution

PrðX ¼ xjn; hÞ ¼ n

x

� �
hxð1� hÞðn�xÞ; 0 < h < 1; x ¼ 0; 1; . . . ; n

The vertical bar | denotes conditioning in that symbols to the
right of the bar are taken to be known. Here these are n, the
sample size and h, the probability of a success. The expression
to the left of the bar is taken to be unknown and the expression
whose probability it is desired to determine. Thus, the probabil-
ity statement concerns the probability the number of successes
equals x, conditional on (or ‘‘given’’) n, the sample size and h,
the probability of a success. Sometimes, as in the discussion of
power priors, this function is expressed as a function of h and it
is then known as a likelihood

Lðhjn;X ¼ xÞ ¼ n

x

� �
hxð1� hÞðn�xÞ; 0 < h < 1; x ¼ 0; 1; . . . ; n

ð1Þ

The sample proportion ĥ ¼ x=n provides a good estimate of h.

The variance of ĥ including a so-called ‘‘finite population correc-
tion’’ (m ) n) ⁄ (m ) 1) is

hð1� hÞ
n

m� n

m� 1

� �
(6). As an example of the use of the finite population correction
consider the example where the sample is the whole population
so that n ¼ m. Then the sample proportion is the population
proportion and there is no uncertainty; the variance is zero
which is the result given from the expression of the variance
using the finite population correction. If the sampling fraction
n ⁄ m is low the finite population correction (m ) n) ⁄ (m ) 1) ¼
1 ) (n ) 1) ⁄ (m ) 1) can be ignored. Assume that the sample
proportion is asymptotically Normally distributed. Then

ĥ � N h;
hð1� hÞ

n

� �
ð2Þ

One criterion for the choice of sample size in such a context
is that there should be 100(1 ) a)% confidence that the sample
proportion lies within an interval of desired length 2d of the true
proportion h. Then

za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 � hÞ

n

r
� d

and hence n � z2
a=2hð1 � hÞ=d2 where za/2 is the 100(1 ) a/2)%

point of the standard Normal distribution. For example, when
a ¼ 0.05, za/2 ¼ 1.96, the 97.5% point of the standard Normal
distribution. As h is not known in advance there are two courses
of action. One is to use a prior subjective estimate for h. The other
is to use the value of h for which h(1 ) h) is a maximum which is
when h ¼ 0.5. This latter choice leads to the rule

n �
z2
a=2

4d2
ð3Þ

which is conservative in that it gives the largest sample size
necessary to satisfy the criterion.

Thus, for a ¼ 0.05 and d ¼ 0.01, the sample size n should
be greater than or equal to 1.962 ⁄ (4 · 0.0001) ¼ 3.84 ⁄0.0004 ¼
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9600; i.e., to obtain an estimate of the true proportion in a category
to within 0.01 of the true proportion, with 95% confidence, a sam-
ple of size 9600 items is needed. This is a large sample but also a
stringent criterion. To obtain an estimate of the true proportion in a
category to within 0.1 of the true proportion, with 95% confidence,
a sample of size 96 items is needed. The sample size has to be
increased by a factor of 100 to narrow the width of the interval by
a factor of 10. As an example, for consignments of CDs, with 95%
confidence, an estimate could be given to within 0.1 of the true
proportion of pirated CDs in a consignment if 96 were examined.
In practice, it is suggested 100 CDs be examined.

In a Bayesian paradigm, uncertainty in parameter estimation is
modeled with probability distributions for the parameters of interest.
The beta distribution is commonly chosen to represent uncertainty
about the parameter h and details are given in the Appendix. This
distribution is a so-called conjugate prior distribution for the bino-
mial distribution in that the posterior distribution is also a beta dis-
tribution, but with different parameters.

Let uncertainty about h, the probability of success for an item
drawn in a sample of size n from a population, be represented with
a beta distribution beta(m1,m2). The number of successes, X, in the
sample has a binomial distribution. The combination of the beta
prior and binomial distribution gives a posterior distribution
beta(m1 + x, n ) x + m2) for h which is also a beta distribution, as
a result of the property of conjugacy. The probability density
function is

f ðhjm1 þ x; m2 þ n� xÞ

¼ Cðnþ m1 þ m2Þ
Cðm1 þ xÞCðm2 þ n� xÞ h

m1þx�1ð1� hÞn�xþm2�1;

m1 > 0; m2 > 0; 0 < h < 1; x ¼ 0; 1; . . . ; n ð4Þ

The Bayesian approach provides answers to the questions of
interest of the forensic scientist in that it provides probabilities
for the uncertainties about the probabilities of success (propor-
tions of illicit drugs, proportions of pirated CDs, or porno-
graphic files).

This is in contrast to the frequentist approach in which confi-
dence limits are provided. Confidence limits are limits which apply
in the long run in that if identical conditions apply many times then
these limits will contain the true answer a certain proportion of the
time; no statement is made about the particular occasion under
inspection. Thus, as stated above, for consignments of CDs, the
95% confidence limits are such that in 95% of cases in which CDs
are examined, the proportion of pirated CDs in a sample of size 96
will be within 0.1 of the true proportion of pirated CDs in the
whole consignment.

Likelihood Principle

A method that has been widely used for evaluating statistical
evidence for one hypothesis versus another is the likelihood ratio.
The term ‘‘likelihood ratio’’ is used because reference is made to
‘‘how likely the data x are if one hypothesis (denoted H2 say) is true
relative to how likely the data are if another hypothesis (denoted H1

say) is true.’’ Hacking (7) defined the likelihood law as

If one hypothesis, H1, implies that a random variable X takes the
value x with probability f(x|H1), while another hypothesis, H2,
implies that the probability is f(x|H2), then the observation X ¼ x
is evidence supporting H2 over H1 if f(x|H2) > f(x|H1), and the
likelihood ratio, LR,

f ðxjH2Þ
f ðxjH1Þ

measures the strength of that evidence.
This definition provides a common approach to the evaluation of

evidence in forensic science when H2 is taken as the prosecution
proposition, H1 as the defense proposition, and x as the evidence
that is being evaluated (8). Note that in evidence evaluation the
term proposition is preferred to the term hypothesis, because of the
statistical frequentist connotations of the latter term. The term
‘‘proposition’’ will be used from now on as far as is appropriate.

The LR may also be given as the ratio of the posterior odds in
favor of H2 to the prior odds in favor of H2:

LR ¼ f ðxjH2Þ
f ðxjH1Þ

¼ f ðH2jxÞ=f ðH1jxÞ
f ðH2Þ=f ðH1Þ

ð5Þ

where f(H1) and f(H2) are the prior probabilities, the probabili-
ties that H1 and H2 are true, respectively, prior to the conduct
of the experiment, their ratio is the prior odds in favor of H2,
f(H1|x) and f(H2|x) are the posterior probabilities for proposi-
tions H1 and H2, and their ratio is the posterior odds in favor of
H2. The expression f(H2|x), for example, may be read as the
probability H2 is true, given x successes out of a sample of size
n. The LR is the factor which converts prior odds into posterior
odds. An interpretation of the likelihood ratio is to say that the
evidence is so many times more likely if H2 is true than if H1

is true.
The LR is non-negative and can take values greater than 1. An

LR equal to one indicates that the evidence is equally probable
under either of the two competing propositions. Values of LR
greater than one indicate that the evidence supports H2 over H1

and values smaller than one favor H1 over H2. For ease of interpre-
tation and for the better understanding of the strength of the evi-
dence, the possible values of the LR can be divided into regions to
indicate the differing strengths of the evidence. Therefore, it may
be taken that LRs close to one represent weak evidence and that
LRs greater than some threshold t (t > 1) or less than t)1 represent
moderate or strong evidence in favor of H2 or H1, respectively,
according to some numerical criterion for t. Thresholds (t ¼ 8
and t ¼ 32) with conventional descriptions ‘‘weak,’’ ‘‘moderate,’’
and ‘‘strong’’ have been suggested by Royall (9) such that

• weak evidence
– for H2 over H1: 1 £ LR < 8,
– for H1 over H2: 1/8 < LR £ 1;

• moderate evidence
– for H2 over H1: 8 £ LR < 32,
– for H1 over H2: 1/32 < LR £ 1/8;

• strong evidence
– for H2 over H1: LR ‡ 32,
– for H1 over H2: LR £ 1/32.

There is a nonzero probability that the likelihood ratio may yield
strong evidence supporting H2 over H1 when, in fact, H1 is correct,
or vice versa. The wrong proposition is then accepted. In such a
case the evidence is known as misleading evidence. A probabilistic
limit on this situation is described.

Probability of Accepting the Wrong Proposition

Consider two propositions of interest H1 and H2 concerning a
binomial characteristic, h say, such that H1:h £ hl and H2:h ‡ hu.
This characteristic could be the proportion of illicit drugs in a
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consignment (and by multiplication, the total number in the con-
signment) with interest being in the value for sentencing purposes.
A binomial experiment (i.e., one with a fixed number of items with
two possible categories into which items can be assigned, with a
constant assignation probability for each trial and such that each
trial is independent of all other trials) is conducted and x successes
are observed out of n trials. The LR is given by f(x|H2) ⁄ f(x|H1)
where f is the probability function of the binomial distribution. The
probability of H2 being accepted is

f ðH2jxÞ ¼
f ðxjH2Þf ðH2Þ

f ðxjH1Þf ðH1Þ þ f ðxjH2Þf ðH2Þ
ð6Þ

which can be rewritten as

f ðH2jxÞ ¼
LRf ðH2Þ

f ðH1Þ þ LRf ðH2Þ
ð7Þ

by dividing the numerator and denominator of the right-hand
side by f(x|H1). By further dividing both the numerator and
denominator of the right-hand side by f(H1),

f ðH2jxÞ ¼
LR f ðH2Þ

f ðH1Þ

1þ LR f ðH2Þ
f ðH1Þ

ð8Þ

There are two and only two propositions. If H2 is not true then
H1 is true. Thus, f(H2|x) + f(H1|x) ¼ 1 and hence

f ðH1jxÞ ¼
1

1þ LR f ðH2Þ
f ðH1Þ

ð9Þ

It is evident from Eqs (8) and (9) that the probability of the truth
of either of the two propositions given the data (x successes out of
n items sampled) is a function of the likelihood ratio and the prior
odds f(H2) ⁄ f(H1) in favor of H2.

If both competing propositions are equiprobable a priori
f ðH1Þ ¼ f ðH2Þ ¼ 1

2

� �
, then

f ðH2jxÞ ¼
LR

LRþ 1

and

f ðH1jxÞ ¼
1

LRþ 1

It can be deduced that for any given constant k > 0, Pr(LR ‡
k|H1 is true) £ 1 ⁄k; i.e., the probability of evidence that supports
H2 with an LR ‡ k when H1 is true is £ 1 ⁄k. Evidence that sup-
ports H2 when H1 is true is misleading. Consider S to be the set of
values of x that produce a value of the LR in favor of H2 versus
H1 of at least k. For x 2 S, f(x|H2) ⁄ f(x|H1) ‡ k and hence
f(x|H1) £ f(x|H2) ⁄k, where 2 is read as ‘‘is a member of.’’ Then
Pr(S) ¼

P
x 2 S f(x|H1) £

P
x 2 S f(x|H2) ⁄k £ 1/k. Equation (7)

enables the formation of a scale of evidence in favor of one propo-
sition or the other. For instance, sampling could be stopped when
the probability that one proposition is correct, given the sampled
data, is above some predefined threshold.

Sequential Sampling

Sequential analysis was developed during the Second World
War (10) mainly because war production and development required
results as quickly as possible. In sequential sampling a consignment
(of pills, for example) is inspected, usually one item at a time (but
sometimes in small batches). After inspection of each item (or

small batch) a decision is made as to whether to continue sampling
or to terminate the process. Sampling is terminated when the cumu-
lative sample contains enough information to make a decision
based on some prespecified probabilistic criterion. Analysis happens
as the data are collected in contrast with sampling plans where sta-
tistical analysis is conducted after a sample of a size fixed in
advance has been collected; see Eq. (3) for an example of a sample
size fixed in advance. Sequential sampling is best used when the
emphasis is on decision making and there are well-defined proposi-
tions about which decisions can be made. The methods used to
make decisions from sequential sampling are called stopping rules.
The accumulated data are analyzed at each step to see if one of the
stopping rules has been attained and hence sampling may stop,
otherwise sampling is continued.

Large values (>1) of the likelihood ratio constitute statistical evi-
dence in favor of one proposition whereas small values (<1) are
supportive of the other proposition. The likelihood ratio may be
computed sequentially as data are inspected. In such a case, sam-
pling is stopped when enough data have been collected to support
one of the competing propositions in the sense that the LR is
greater than a threshold t, (e.g., t ¼ 32) or smaller than t)1 (e.g.,
1 ⁄32). A well-known test that distinguishes between two competing
propositions by using the likelihood ratio and controlling the proba-
bilities of type 1 and type 2 errors is the sequential probability ratio
test (SPRT) (10).

Sequential Probability Ratio Test

Suppose that there are two competing propositions H1 and H2

for the value of the parameter h, where h is the proportion of items
in the population falling into a certain category. For example, H1

could be that h ¼ h1 and H2 could be that h ¼ h2, respectively.
As an example consider a seizure of 5000 pills. The exact size

of the seizure is not important for determination of proportions
except that it must be sufficiently large that sampling of the pills
may be considered to be with replacement; i.e., the proportions of
licit and illicit pills remain effectively unchanged with the removal
of a few pills from the consignment. The exact size of the seizure
is relevant when estimates of the absolute numbers of licit and illi-
cit pills are required, for example when sentencing. Assume there
are three levels of criminality associated with the seizure, other
than the one of innocence in which no pills are illicit. These levels
depend on the proportion h of illicit pills in the seizure and are
defined by 0 < h £ 0.2, 0.2 < h < 0.6 and h ‡ 0.6. Therefore, the
propositions being tested are H1:h £ 0.2 versus H2:h ‡ 0.6. The
error probabilities are set as a ¼ 0.01 (probability of a type 1
error, rejecting H1[h £ 0.2] when H1 is true) and b ¼ 0.1 (proba-
bility of a type 2 error, not rejecting H1 when it is false). It is con-
sidered more serious to convict an innocent person (i.e., increase
the likelihood of such a verdict by deciding the proportion of illicit
pills is larger than it actually is) than to fail to convict a guilty
person (i.e., decrease the likelihood of a conviction by deciding the
proportion of illicit pills is less than it actually is). In this context
this would suggest it is more serious to decide h ‡ 0.6 when in fact
h £ 0.2 than vice versa. Hence the probability of the former error
is set at a value a factor of 10 lower than the probability of the
latter error. The exact values of a and b chosen are a matter of
subjective judgment based on consideration of the consequences of
incorrect decisions. A numerical solution is given after the mathe-
matical principles are explained. Notice also that inequalities are
given here for h while the theory is developed for exact values for
h. The results developed for the exact values for h (0.2 and 0.6 in
this example) are conservative for the inequalities in the sense that
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the sample sizes derived using the exact values for h will give error
probabilities no greater than those specified for the inequalities.

Each item sampled is inspected immediately after collection. Fol-
lowing such an inspection a decision has to be made as to whether
one of the propositions should be treated as being true (accepted)
or sampling should be continued. Sampling is stopped when
enough information has been accumulated to accept one of the
competing propositions. Another possibility is that limitations on
resources are such that it is not possible to continue sampling. Sam-
pling is then stopped with the conclusion that there is insufficient
evidence to choose between the two propositions. Observations are
assumed to be independent and are denoted by xi (i ¼ 1,…,n)
where i is the number of the sampling unit. For the consignment of
pills, an observation is the licit or illicit nature of the inspected pill
and xi is set equal to 1 if the pill is illicit and to 0 if the pill is not
illicit. Similar notation may be used for pirated CDs or porno-
graphic computer files or any other similar contexts. The probabil-
ity of observing a sequence x ¼ (x1,x2,…,xn) (of zeros and ones)
assuming H1 to be true is

f ðxjH1Þ ¼ f ðx1jH1Þ � � � f ðxnjH1Þ ð10Þ

and, assuming H2 to be true, is

f ðxjH2Þ ¼ f ðx1jH2Þ � � � f ðxnjH2Þ ð11Þ

where in both situations independence is assumed for the results
from each sampled unit.

The likelihood ratio f(x|H2) ⁄ f(x|H1) is computed after the inspec-
tion of each additional xi. Sampling is stopped either when this
ratio is very small and less than 1 (with an acceptance of H1) or
when the ratio is very large and greater than 1 (with an acceptance
of H2). Two constants, A and B, for the likelihood ratio are upper
and lower limits as follows:

B � f ðxjh2Þ
f ðxjh1Þ

� A ð12Þ

The constants A and B are determined in such a way that the
probability H1 is rejected (i.e., H2 is accepted as being true) when
H1 is actually true is at most a and the probability that H2 is
rejected (i.e., H1 is accepted as being true) when H2 is actually true
is at most b. The SPRT controls the probability of observing evi-
dence that is misleading in the sense that it leads to acceptance of
a certain proposition when the alternative proposition is true.

The probabilities of making a decision with respect to a pair of
propositions under the set of circumstances that each of the com-
peting two propositions in turn is correct is given in Table 1.

The process is terminated with the acceptance of H2, if
f(x|h2) ⁄ f(x|h1) > A. This inequality can be written as f(x|h2) > A
f(x|h1) which is equivalent to 1 ) b > Aa when H2 is correct and
hence A < (1 ) b) ⁄a. Similarly, the process is terminated, with the
acceptance of H1, if f(x|h2) ⁄ f(x|h1) < B and B > b ⁄ (1 ) a). As set-
ting A and B further from one decreases the probabilities of errors,
(1 ) b) ⁄a is a lower limit for A and b ⁄ (1 ) a) is an upper limit for B.

Consider an example using the binomial distribution with success
probability h. Denote individual members of a sample of size n by
xi with xi ¼ 1 for a success (illicit pill, pirated CD, pornographic
computer file) and xi ¼ 0 for a failure (licit pill, legal CD,

nonpornographic computer file) and let x ¼
Pn

i¼1 xi denote the
total number of successes in the sample. Then the total number of
successes has the binomial distribution

PrðX ¼ xjn; hÞ ¼ n

x

� �
hxð1� hÞðn�xÞ; 0 < h < 1; x ¼ 0; 1; . . . ; n

Equation (12) can be analyzed further as

B � f ðxjh2Þ
f ðxjh1Þ

� A;

b
1� a

�
n
x

� �
ð1� h2Þn�xhx

2
n
x

� �
ð1� h1Þn�xhx

1

� 1� b
a

;

log
b

1� a
� n log

1� h2

1� h1
þ x log

h2ð1� h1Þ
h1ð1� h2Þ

� log
1� b

a

ð13Þ

where log denotes Napierian logarithms, i.e., logarithms to
base ‘‘e.’’ With the help of Eq. (13), the SPRT of the proposi-
tion H1:h ¼ h1 versus the proposition H2:h ¼ h2 with proba-
bilities of type 1 and type 2 errors a and b, respectively, can be
summarized as:
• accept H1, if x £ k1 + kn;
• accept H2, if x ‡ k2 + kn;
• continue sampling if k1 + kn < x < k2 + kn where x is the num-

ber of successes and

k1 ¼ log
b

1�a

log h2ð1�h1Þ
h1ð1�h2Þ

ð14Þ

k2 ¼
log 1�b

a

log h2ð1�h1Þ
h1ð1�h2Þ

ð15Þ

k ¼
log 1�h1

1�h2

log h2ð1�h1Þ
h1ð1�h2Þ

ð16Þ

This sequential test, denoted as Q1(a, b) in Table 2, can be seen as
testing the proposition H1:h £ h1 because if the acceptance region is
attained it means strictly that h £ h1 and not just that h ¼ h1. Simi-
larly, the rejection region for H1 corresponds to h ‡ h2.

For a ¼ b, the limits A and B are t ¼ (1 ) a) ⁄a and
t)1 ¼ a ⁄ (1 ) a), respectively. The SPRT is the sequential estima-
tion of the LR until a value larger than (1 ) a) ⁄a or smaller than
a ⁄ (1 ) a) is observed.

An Application of the SPRT

Consider the seizure of 5000 pills and propositions H1:h £ 0.2
and H2:h ‡ 0.6; with a ¼ 0.01, b ¼ 0.1. As stated above, the
inequalities for h may be replaced with equalities when developing
the test protocol. Insertion of the values h1 ¼ 0.2, h2 ¼ 0.6,
a ¼ 0.01, and b ¼ 0.1 into Eqs (14)–(16) gives values for k1,
k2, and k of )1.3, 2.8, and 0.4, respectively. Figure 1 illustrates the
procedure. The two parallel lines represent the lower and upper
thresholds (k1 + kn, k2 + kn) where

k1 þ kn ¼ �1:3þ 0:4n

k2 þ kn ¼ 2:8þ 0:4n

Suppose the first five pills inspected in a sample were found
to be illicit. The line 2.8 + 0.4n is crossed and it can be decided
to act as if H2 is true (h ‡ 0.6).

TABLE 1—Probabilities of accepting a certain hypothesis.

LR>A (Accept H2) LR<B (Accept H1)

H1 is correct a 1)a
H2 is correct 1)b b
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This example may be used to illustrate the result that Pr(LR ‡
k|H1) £ 1 ⁄k. For 5 ‘‘successes’’ out of 5 pills, the
LR ¼ h5

2=h
5
1 ¼ ð0:6=0:2Þ5 ¼ 35 ¼ 243 . Set k ¼ 243. Then

PrðLR � 243jH1Þ ¼ Prð5 successes out of 5 pills jh ¼ 0:2Þ
¼ 0:25 ¼ 1=3125 < 1=243

Bayesian Approaches to Sample Size Determination for

Binary Responses

The work of Royall (9) was extended by De Santis (11) to a
Bayesian setting. De Santis used the LR and determined an appro-
priate sample size to be one for which there was a large probability
of observing strong, correct evidence while there was a small prob-
ability of observing weak, misleading evidence. The probability of
observing strong evidence is associated with the other two probabil-
ities of observing weak and moderate evidence. As before (9),

thresholds need to be set in order to determine what constitutes
strong and weak evidence. The probability of accepting a certain
proposition after data have been observed (Eq. [7]) may provide
such thresholds or Royall’s benchmarks

8; 32;
1
8
;

1
32

� �

might be used (9).
Other Bayesian approaches determine the sample size as that for

which a function, such as the variance (12) of the posterior distri-
bution of the characteristic of interest, h, satisfies some prespecified
criterion, e.g., the variance is less than a certain value. This would
correspond to a requirement to estimate the characteristic to within
a certain precision. Let T(h|xn) denote a function of the posterior
distribution of h whose performance is to be controlled. This is to
be carried out by the design of an experiment that will provide a
sample of size n, and xn denotes the number of members of the
sample with the characteristic, where the subscript in this context
denotes the sample size. Other examples of such functions are the
average posterior interquartile range, the width of the highest pos-
terior density (HPD) interval (13) (a procedure which considers the
posterior density of h, f(h|x), and finds the shortest interval for
which the probability that h lies in that interval is a predetermined
probability, say 0.95) and the posterior probability of a certain
proposition (14). Most Bayesian SSD techniques select the minimal
n for chosen values of � (>0) and a (>0) (significance level) that
satisfy either of the two following statements

E½TðhjxnÞ� � � ð17Þ

or

Pr½TðhjxnÞ=2R� � a ð18Þ

equivalently Pr½TðhjxnÞ 2 R� � 1� a ð19Þ

for an appropriate interval R, where =2 indicates ‘‘is not a mem-
ber of.’’

Average Posterior Variance

In the examples that follow, the criterion that is used is the mean
posterior variance where T(h|xn) ¼ var(h|xn). A reason for using

TABLE 2—Simulation results for sequential sampling from a consignment
with m members from a population with proportion h of successes.

h Criterion
Propositions

Tested Mean
%

False Min Median Max

0.2 Q1(0.01,0.01) 130.40 0 30 125 371
Q1(0.01,0.1) 127.52 0 30 120 323
Q2(0.9) 37.63 0.7 1 8 455
Q2(0.99) h £ 0.1 vs.

h ‡ 0.15
183.91 0 2 143.5 753

Q3(0.1) 300.40 0 257 273 639
Q3(0.3) 210.13 0 47 185 611

0.5 Q1(0.01,0.01) 27.26 0 12 27 51
Q1(0.01,0.1) 27.00 0 13 26 65
Q2(0.9) 2.75 0 1 2 28
Q2(0.99) h £ 0.1 vs.

h ‡ 0.15
7.62 0 2 5 52

Q3(0.1) 349.71 0 345 350 350
Q3(0.3) 53.42 0 9 54 54

0.5 Q1(0.01,0.01) 70.32 0 23 67 167
Q1(0.01,0.1) 35.76 0 8 32 171
Q2(0.9) 26.87 1.7 2 8 300
Q2(0.99) h £ 0.6 vs.

h ‡ 0.7
100.59 0.1 5 78 461

Q3(0.1) 350.02 0 345 350 350
Q3(0.3) 112.10 0.2 9 89 361

0.8 Q1(0.01,0.01) 69.44 0 33 65 179
Q1(0.01,0.1) 70.25 0 30 67 176
Q2(0.9) 27.28 5.5 2 15 241
Q2(0.99) h £ 0.6 vs.

h ‡ 0.7
97.85 0.3 5 86 394

Q3(0.1) 255.19 0 30 257 356
Q3(0.3) 66.05 0 9 49 332

0.12 Q1(0.01,0.01) 62.50 0 5 54 261
Q1(0.01,0.1) 59.60 4 5 54 213
Q2(0.9) 107.48 0 1 10 922
Q2(0.99) h £ 0.03 vs.

h ‡ 0.1
508.70 26.8 1 513 1000

Q3(0.1) 494.70 0 216 501.5 885
Q3(0.3) 464.28 0 42 500.5 898

The proportion h is estimated by the number of successes divided by the
sample size n and n is increased incrementally in steps of 1. Sampling in a
particular simulation is stopped if the appropriate criterion is met, or after
1000 trials if no decision has been made under the relative criterion about
the proportion of successes in the population from which the consignment
has been selected. The process is repeated 1000 times. The criteria are
Q1(a,b): sequential test; stop sampling if x £ k1 + kn or x ‡ k2 + kn where
k1,k2,k are given by Eqs (14)–(16). Q2(p): Normal approximation to the
beta–binomial posterior distribution and sampling is stopped when one of
the competing propositions is accepted with probability p from inequality
Eqs (29) or (30). Q3(l): predictive sample size where l is the width of the
interval given by expression (27); sampling stops when the width of the
interval is less than l.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sample size, n

N
um

be
r 

of
 il

lic
it 

pi
lls

, x

FIG. 1—Monitoring the SPRT. Solid lines represent the lower and upper
thresholds of the procedure.
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that function is its simplicity both in intuitive terms as it is an ana-
logue of Cochran’s (1977) method (Eq. [2]) of determining the
sample size as well as in mathematical terms as a beta conjugate
prior can be used for h leading to a beta posterior with a mathe-
matical expression for the variance (Eq. [49]). The mean posterior
variance criterion finds the minimum n for which

E½varðhjxnÞ� � � ð20Þ

where � is some prespecified limit.

Predictive Sample Size Determination

When the consignment size m is known it is possible to deter-
mine an appropriate sample size by estimation of the distribution
of the number y of items that are illicit in the m)n units not
inspected (15). This is in contrast to the estimation of h, a propor-
tion. The reason for the contrast may be explained in the context
of a super-population. The consignment may itself be considered as
a sample from a larger population, known as a super-population
(such as the overall output of a drug factory), within which h
denotes the proportion of items that are illicit. This proportion may
be estimated from a sample from the consignment under inspection
from the super-population. The super-population may be conceptu-
ally infinite, for example as the total output of the drug factory
may be unknown other than it is extremely large.

The approach that estimates y directly is an alternative to consid-
eration of properties of h, the proportion of illicit items in a con-
signment and, by extension, the super-population. A beta(m1,m2)
prior for h is considered which yields an updated posterior distribu-
tion for h of beta(m1 + x, n ) x + m2). The so-called predictive dis-
tribution of Y is then given by

PrðY ¼ yjxÞ ¼
Z 1

0
PrðY ¼ yjhÞf ðhjxÞdh ð21Þ

where f(h|x) is the posterior distribution of h (beta(m1 + x,
n ) x + m2)) and

PrðY ¼ yjhÞ ¼ m� n

y

� �
hyð1� hÞm�n�y ð22Þ

It can be shown that

PrðY ¼ yjxÞ ¼ m� n

y

� �
Bðm1 þ xþ y;m� x� yþ m2Þ

Bðm1 þ x; n� xþ m2Þ
;

y ¼ 0; . . . ;m� n

a beta–binomial distribution with parameters (m1 + x + y,
m ) x ) y + m2) (5). It is necessary to work with the cumulative
distribution function in order to determine probabilities that Y is
greater than a certain value and hence the total size of the illicit
part of the consignment is greater than a certain value. If m is
large this will involve the summation of many values. It is com-
putationally intensive but feasible with computer software pack-
ages such as MATLAB. If a suitable computer package is not
available an alternative option is to use the beta distribution (5).
Alternatively, the normal approximation to the beta–binomial
distribution may be used (5) where the mean l is given by

l ¼ ðm� nÞðxþ m1Þ
nþ m1 þ m2

ð23Þ

and the variance r2 is given by

r2 ¼ ðm� nÞðxþ m1Þðn� xþ m2Þðmþ m1 þ m2Þ
ðnþ m1 þ m2Þ2ðnþ m1 þ m2 þ 1Þ

ð24Þ

The sample size may then be determined as the smallest n, for
given m and h, such that

PrðY � cm� xnÞ � 1� a ð25Þ

where PrðY � y0Þ ¼
Py0

y¼0 f ðyjxnÞ; xn is the number of illicit
items, and c, 0 £ c £ 1, is a prespecified threshold. Similarly,
there may be interest in satisfying a criterion of the form

PrðY � cm� xnÞ � 1� a ð26Þ

Note that (xn + y) ⁄ m is the proportion of illicit pills in the con-
signment and hence y £ cm ) xn is equivalent to the proportion
(xn + y) ⁄ m £ c. Hence, the above inequalities Eqs (25) and (26)
denote probabilistic bounds on the sample sizes. In summary,
after n and xn have been observed and for given m, a Normal
approximation may be used to determine the total number of illi-
cit pills in the consignment, with mean and variance given by
Eqs (23) and (24), respectively. Therefore, in an extreme sce-
nario and for significance level a, either ya or y1)a illicit pills
are found in the remaining m ) n trials, depending on which of
the propositions Eqs (25) and (26) ‘‘Y less than a certain value’’
or ‘‘Y greater than a certain value’’ are to be tested, with
ya ¼ l + zar, U(za) ¼ a, U(z1)a) ¼ 1 ) a, where U denotes
the cumulative distribution of the standard normal distribution
and 0 £ a £ 0.5. Therefore the 100(1 ) a)% interval for the pro-
portion, h, of illicit pills in the population is the interval

x þ l þ zar
m

;
x þ l þ z1�ar

m

� �
where the subscript n has been dropped from the x for ease of
notation. This method can be used both for making an infer-
ence from the sample to the population and for a sequential
sampling scheme where sampling is stopped when the proba-
bility interval

xþ lþ z1�ar
m

;
xþ lþ zar

m

� �
ð27Þ

has a width less than a certain value l or when the estimated
probability, (x + y) ⁄ m, of an illicit pill in the population falls
into a prespecified interval. In simulation results reported in
Table 2 the first method is used and denoted by Q3(l). There
may be cases where there is interest only in rejecting one of the
two competing propositions without any need for an accurate
estimation of h. A requirement to control the width of the prob-
ability interval may result in a big sample size especially if h is
close to 0.5. Alternatively, sampling may be stopped when
along with the upper and lower bounds satisfying either H1 or
H2, a specific number of sampling units has been inspected,
e.g., 10 or 20.

Items are tested sequentially and stopping rules are defined. For
example, a rule may be to stop if the proportion of illicit drugs in
the consignment is estimated to exceed 60%. Alternatively, a rule
may be to stop if the proportion in the consignment is estimated to
be below 20%. For intermediate values as well as for values that
lie both in the acceptance and rejection regions [i.e., (x + l +
zar) ⁄m lies in the lower region and (x + l + z1)ar) ⁄m in the upper
region] sampling is continued until only one of the two criteria is
satisfied, or an upper limit, e.g., 1000, is reached when it is decided
to behave as if 0.2 < h < 0.6.

Suppose a sample of six units (n ¼ 6) from a seizure of
m ¼ 5000 pills is taken and there are six successes (i.e., the num-
ber x of illicit pills equals the sample size six). The beta prior
is taken to be beta(1,1). The mean l (Eq. [23]) of the posterior
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beta–binomial distribution is 4369.75, a proportion 87.4% of 5000.
The variance r2 (Eq. [24]) is 550.9782. The significance level a is
taken to be 0.01 so that za ¼ )2.3263 and z1)a ¼ 2.3263. Then

ya ¼ l þ zar ¼ 3088:01 and
x þ ya

m
¼ 0:62 > 0:6

i.e., the probability that the true proportion of illicit pills is
greater than 0.62 is 0.99. Sampling is stopped with the decision
to act as if the seizure is contaminated to a degree larger than
60%.

Criterion for Sample Size Calculations for Proportions with

Binary Responses

Return now to consideration of a population proportion rather
than a number of items in a consignment. A criterion where the
scientist wants to be 100p% certain that at least 100l% of a
consignment contains drugs when all n units in the sample contain
illicit drugs is provided by (5). As an example, when p ¼ 0.95
and l ¼ 0.5, the criterion can be written mathematically as

Prðh > 0:5jm1 þ n; m2Þ ¼
R 1

0:5 hnþm1�1ð1� hÞm2�1 dh

Bðnþ m1; m2Þ
� 0:95 ð28Þ

A context different from that of drugs is that of the inspection of
a hand for gunshot residue. A person is suspected of firing a gun.
A sample of particles is taken from his hands and wrists. Sampling
of particles can stop when the first particle of gunshot residue is
found. The problem is to determine a number for the particles that
should be sampled before stopping if no particle has been found.
This number can be determined by using a criterion that the scien-
tist wishes to be 100p% certain that the probability there is no gun-
shot residue present is at least 100l%. In this context possible
values for p and l are 0.95 and 0.99, say. Consider m1 ¼ m2 ¼ 1
(the uniform prior mentioned in the Appendix and the skeptical
prior of the following section) in Eq. (28). Denote the probability
that no gunshot residue is present by h. Then the criterion may be
written mathematically as

Prðh > 0:99j1þ n; 1Þ ¼
R 1

0:99 hn dh

Bðnþ 1; 1Þ ¼ ðnþ 1Þ
Z 1

0:99
hndh � 0:95

(Note that (1 ) h)m2 ) 1 ¼ (1 ) h)0 ¼ 1 when m2 ¼ 1.) The
sample size n is chosen as the smallest integer that satisfies this
inequality. This value is determined as follows.

ðnþ 1Þ
Z 1

0:99
hndh � 0:95) ½hnþ1�10:99 � 0:95

) 1� 0:99nþ1 � 0:95

) 0:99nþ1 � 0:05

) ðnþ 1Þ � logð0:05Þ= logð0:99Þ
) n � 297:07

Thus if the scientist wishes to be 95% certain that the probabil-
ity there is no gunshot residue present is at least 99% then just
under 300 particles have to be examined. This is a very strict
criterion and leads to a large sample size which may not be
possible to achieve in practice. An alternative approach is to
consider the inference that may be made if a fixed sample size
is chosen and no particles of gunshot residue are found in that
sample. For example, if the sample size n is chosen to be 10,
then it can be shown that it is 50% certain that the probability

no gunshot residue is present is greater than 0.94 and approxi-
mately 70% certain that the probability no gunshot residue is
present is greater than 0.90.

It is suggested in Ref. (16) that a community of priors represent-
ing skeptical, enthusiastic, and weak prior beliefs should be consid-
ered in every experiment and that all three beliefs should lead to
the same conclusion in order to make inference about the target
population. Parameter values m1 and m2 need to be found for the
beta distribution that will represent the three different beliefs. Such
parameters can be m1 ¼ 1 and m2 ¼ 1 for the skeptical belief,
m1 ¼ 10 and m2 ¼ 1 for the enthusiastic belief, and m1 ¼ 1 and
m2 ¼ 10 for the weak belief. The sample sizes following this
method and for p ¼ 0.95 and l ¼ 0.5 are 4, 1, and 18, respec-
tively. The last two figures show that an enthusiastic prior belief
requires little extra evidence to satisfy the criterion and a weak
prior belief requires much extra evidence. The results also illustrate
how previous knowledge can lead to variations in the sample size
and hence the cost of analysis. However, such a criterion should be
tested sequentially because if the first item sampled is ‘‘negative’’
sampling has to continue beyond these values. Application of a
sequential sampling scheme enables the prior beliefs to be updated
as samples are investigated.

A Bayesian Two-Sided Sequential Criterion

Suppose that there are two competing propositions H1:h £ h‘
and H2:h ‡ hu, (hu > h‘). These two propositions are tested sequen-
tially. First, some stopping rules are defined. It is decided to act as
if H1 is true if there is at least a p1% probability that h < h‘ and to
act as if H2 is true if there is a p2% probability that h > hu. Sam-
pling is continued until either of these rules is satisfied. Assume a
beta prior, beta(m1,m2), for h. The posterior distribution after the
inspection of the ith sampling unit is also a beta distribution with
parameters m1 + xi and m2 + i ) xi where xi is the number of ‘‘suc-
cesses’’ up to the ith inspected sampling unit, and h is the probabil-
ity of a success.

Therefore, sampling is stopped, either when

Prðh < h‘jm1 þ xi; m2 þ i� xiÞ

¼
R h‘

0 hm1þxi�1ð1� hÞm2þi�xi�1 dh

Bðm1 þ xi; m2 þ i� xiÞ
� p1 ð29Þ

or when

Prðh > hujm1 þ xi; m2 þ i� xiÞ

¼
R 1

hu
hm1þxi�1ð1� hÞm2þi�xi�1 dh

Bðm1 þ xi; m2 þ i� xiÞ
� p2 ð30Þ

For hu ¼ 0.5 and p2 ¼ 0.95, Eq. (30) is equivalent to the cri-
terion suggested in Eq. (28) when only ‘‘successes’’ are
observed (xi ¼ i).

The Use of Historical Data for Determination of the Sample

Size with Power Priors

Prior information from historical data may lead to a substantial
saving of time and financial resources. The so-called power priors
for the incorporation of information from previous studies were
used in Ref. (17) to form a suitable prior for a current study.

Consider the previous example with 5000 illicit pills. There are
no historical data from the suspect but there are historical data
associated with the conditions under which the seizure is captured.
For instance, there may be information about the location where
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the seizure has been found (e.g., hidden in a boat in transit) or
there may be historical data from circumstantial evidence associated
with the suspect (e.g., previous convictions, illegal possession of
weapons, fake transport or other papers, possession of large
amounts of money). Suppose now that the seizure was caught
under circumstances similar to those of a previous seizure of illicit
pills in which 25 pills were analyzed and all of them were found
to be illicit. These 25 pills may be used as historical data. The way
in which the data may be used is explained in general and then this
particular example is developed.

Previous studies should be similar to the current one in that the
same likelihood should be able to be used for inference about the
characteristics of interest. Suppose that the data (sample size and
the number of illicit drugs in the sample) from a previous similar
study are denoted by D0. The power prior fp/(h|D0) that will be
used in the current study is

f pðhjD0Þ / LðhjD0Þf0 f ðhÞ ð31Þ

where h is the parameter of interest, superscript ‘‘p’’ denotes
power prior, L denotes the likelihood and f0 is a coefficient,
between 0 and 1, weighting the effect of historical data on the
current study and f(h) is a prior before consideration of the his-
torical data. As f0 fi 1 the standard posterior of (h|D0) is
obtained whereas as f0 fi 0 the prior that would have been
used in the absence of historical data is obtained. Intermediate
values of f0 are associated with different weights for historical
data, the closer f0 is to 1, the stronger the belief in the validity
and relevance to the case in hand of the historical data.

Suppose a binomial experiment is conducted. A beta prior,
beta(m1,m2), is considered. There is also some information from a
similar experiment conducted in the past. The likelihood obtained
from that previous experiment is

LðhjD0Þ ¼
n0

x0

� �
hx0ð1 � hÞn0�x0

with n denoting the sample size, x the number of successes and
index 0 denoting reference to a previous study; see Eq. (1) with
(n0,x0) ¼ D0. The power prior is a beta with parameters
(f0x0 + m1,f0(n0 ) x0) + m2),

f pðhjD0Þ / LðhjD0Þf0 f ðhÞ

¼ n0

x0

� �
hx0ð1� hÞn0�x0

� �f0

hm1�1ð1� hÞm2�1

/ hf0x0þm1�1ð1� hÞðn0�x0Þf0þm2�1 ð32Þ

Suppose that instead of one, there are multiple (G) prior indepen-
dent sets of results from historical data, denoted by
D0 ¼ (D01,…,D0G)¢. Each previous case is given a weight fgf0

(g ¼ 1,…,G) where f0 is the overall weight that is assigned to pre-
vious data and fg(>0) is the specific weight assigned to case g andPG

g¼1 fg ¼ 1. The power prior in such a situation is defined as

f pðhjD0Þ / ðLðhjD01Þf1 � � � LðhjD0GÞfGÞf0 f ðhÞ ð33Þ

Power priors have been combined with results from simulations,
conducted under experimental conditions, to determine appropriate
sample sizes (18). For various sample sizes, values were generated
from the power prior distribution Eqs (32)–(33) of the parameter of
interest and the information in the posterior distribution was sum-
marized by some statistic such as the posterior variance. Then the
value of that statistic for various sample sizes was plotted against

the corresponding sample sizes. A minimal sample size was chosen
so that a certain criterion was met. Let T(h|xn) denote the statistic
from a sample of size n from the posterior distribution of h, given
data xn, whose performance is to be controlled by appropriate sam-
pling. Examples of such statistics are, as before, the posterior vari-
ance (12), the mean posterior interquartile range and the width of
the HPD interval (13). De Santis’ method (18) for estimation of the
precision of a statistic T in a power prior where the statistic cannot
be determined analytically consists of the following steps:

• Draw a number, let it be b, of h*s ðh�1; . . . ; h�bÞ from the power
prior distribution f p(h*|D0) with given values n0, x0, f0, m1, and
m2. (The symbol * denotes a simulated value.) A typical value
of b may be 1000.

• Draw, for each h*, a simulated sample x�n of size n from the
sampling distribution f(x|h*), to give a likelihood Lðhjx�nÞ.

• Compute f ðhjx�n;D0Þ / Lðhjx�nÞf pðh�jD0Þ for each of the b
generated samples.

• Compute Tðhjx�nÞ for each of the b generated samples.
• Approximate Pr(T(h|xn)) 2 A with the proportion of the b gen-

erated samples Tðhjx�nÞ that belong to the set A. Similarly,
E[T(h|xn)] is estimated by the sample arithmetic mean of the b
generated values Tðhjx�nÞ and varðTðhjx�nÞ by the sample
variance.

This method, with the same b, is applied repeatedly to larger val-
ues of n until the required criterion is met, for example that the
posterior standard error of the statistic T is less than a certain value.
This gives the sample size to be used in future cases for which the
corresponding power prior is relevant.

Suppose the posterior variance for a sample of size n because of
its relative simplicity is chosen as the statistic T of the posterior
distribution. Assume a beta prior and a binomial sample. The
variance of the beta posterior (or power prior) described here is
given by ðm�1m�2Þ=ððm�1 þ m�2Þ

2ðm�1 þ m�2 þ 1ÞÞ where m�1 ¼ f0x0þ
m1 þ x� and m�2 ¼ f0ðn0 � x0Þ þ m2 þ n � x�. This is divided
by the sample size n and then the square root is taken to obtain the
posterior standard error. The simulation process is not required here
as the posterior standard error can be determined analytically.

The sample size could then be chosen as the minimum sample
size for which the posterior standard error is lower than some pre-
specified value, 0.01 or 0.05, for example. In practice by drawing
plots of the posterior standard error against the sample size the
behavior of the procedure can be monitored by observing decreases
in the posterior standard error as the sample size increases and
determining the appropriate sample size as that one after which the
posterior standard error decreases only slightly. A crucial aspect of
the power prior approach is the choice of the weight f0 given to
the previous study. Optimal sample sizes are decreasing functions
of f0 as the less weight that is given to a previous, similar, study
the more uncertainty there is about the current study. The major
advantage of this method is its simplicity and the fact that it
enables numerous scenarios to be considered without any constraint
of time or finance as everything is based on the previous study and
on simulated results.

Consider the consignment of 5000 illicit pills with
n0 ¼ x0 ¼ 25. A beta(1,1) prior is taken. Figure 2 shows the
mean posterior standard error, using De Santis’ method (18), for
various weights f0 given to the previous study, as the sample size
increases. For large values of n the weight given to the previous
study is of little importance. A sample size of 60 seems adequate
regardless of the weight attached to the previous study.

If a large degree of trust (e.g., f0 ¼ 0.8) is permitted for the
historical data, a sample size of 10 yields a posterior standard error
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smaller than 0.01 and that would lead to a considerable saving of
time and financial resources. This can be verified numerically.
First, consider f0 ¼ 0.8, n0 ¼ x0 ¼ 25, m1 ¼ m2 ¼ 1,
n ¼ x* ¼ 10. Then m�1 ¼ 31 and m�2 ¼ 1. The posterior vari-
ance ¼ 31/(322·33).0.0302882 and the posterior standard error
equals 0:030288=

ffiffiffi
n
p
¼ 0:0096 ¼ 0:01, to two decimal places,

when n ¼ 10. Second, consider f0 ¼ 0. Values of
n ¼ x* ¼ 10 give a posterior standard error of 0.024 and values
of n ¼ x* ¼ 20 give a posterior standard error of 0.01. Thus,
without the historical data, the sample size required to provide the
same standard error is bigger by a factor of two.

If there are no historical data available, a similar approach may
be followed by investigating a fraction of the data as if it were his-
torical data. This fraction should be given full weight (f0 ¼ 1) as
it is part of the data. By applying the power prior approach, after
inspecting an initial fraction of the data, the extra samples that
should be taken may be determined.

Comparison by Simulations of Methods for Sample Size

Determination for Binomial Populations

So far, three sequential methods have been suggested for SSD
for binomial populations. The results of comparisons of their per-
formances using simulations are presented in Table 2. The first
method is the SPRT which, in the simulations presented in Table 2,
is denoted by Q1(a, b) where a and b are the probabilities of type
1 and type 2 error, respectively. The other two methods are Bayes-
ian and they employ the conjugacy property of the beta distribution
with respect to binomial sampling to obtain a closed-form posterior
(beta–binomial). In all simulations conducted a beta(1,1) prior was
assumed for the probability of ‘‘success’’ h. One method uses only
the posterior distribution of the population parameter and sampling
is stopped when one of the competing propositions is accepted with
a certain probability (either inequality Eq. [29] or inequality Eq.
[30] is satisfied). This two-sided sequential criterion is denoted by
Q2(p) in Table 2 with p denoting the probability that one of the
competing propositions is accepted. The last method combines
information both from the inspected units, up to a specific point,
and from the predictive distribution of the units not inspected. The
criterion Q3(l) is used and sampling is stopped when the predictive
probability interval, expression (27), is less than l in width.

The analysis of random samples is used for evaluating the differ-
ent criteria. The results presented in Table 2 are obtained from
1000 random samples. All three methods [Q1(a, b), Q2(p), Q3(l)]
are compared on the same simulated samples.

The Q1 criterion (SPRT) yields the most stable results even if
very small type 1 and type 2 error probabilities (a and b) are used.
Also, the mean sample size is always close to the median (slightly
larger), although the distance of the maximum sample to median
sample size is much larger than the corresponding distance of the
median sample size to the minimum one. Very large sample sizes
were observed in less than 0.5% of the samples.

The Q2 criterion (two-sided sequential criterion) is very much
dependent on the probability p defined a priori for selecting one of
the two competing propositions. It gives very small sample sizes
when the true population proportion h is far away from both h1

and h2 or when h1 is not very close to h2. The population propor-
tion is not known in advance and when it is close to either h1 or
h2 the sample size required is increased considerably. Also the dis-
tribution of the sample size is skewed to the right and there is a
considerable probability of obtaining a large sample size. There are
also cases where the entirety of the samples (maximum equals
1000) is investigated without reaching any conclusion.

The Q3 criterion is dependent on the maximum width of the
interval that is specified. For values of h close to 0.5, with a popu-
lation size equal to 1000 and for a maximum permitted width of
the interval equal to 0.1, the sample size required is around 350
with little variation. An increase in the maximum permitted width
of the interval leads, not surprisingly, to a reduction in the required
sample size.

If there is no restriction on the width of the interval, the method
may lead to sample sizes of just one unit with a high probability of
accepting the wrong proposition. Alternatively, the restriction
placed on the width of the probability interval for h can be
removed and a restriction instead placed on the number of sam-
pling units, e.g., to be at least equal to 20. This method leads to
small sample sizes with zero probability of accepting the wrong
proposition in all cases presented in Table 2 with the exception of
the last case (h ¼ 0.12 and h £ 0.03 vs. h ‡ 0.1) which gives a
probability very close to 0.6 (0.571). From various simulations,
under different scenarios, the conclusion is that when h is very
close to either of the propositions being tested there is a high prob-
ability of obtaining misleading results.

Multinomial Sampling

Previous examples have considered a binary response. There are
situations in forensic science where a consignment may have more
than two categories of items in it. For example, in a drug case a
consignment of pills may have three categories such as licit,
ecstasy, and LSD and several other examples have been given in
the introduction. In all of these examples the problem is to deter-
mine the size of the sample needed in order to estimate the propor-
tions of each category.

There are extensions to the ideas presented here for which fur-
ther work is needed. In the examples in the previous paragraph the
number of categories is assumed known. If this is not the case then
a different approach is needed to estimate the number of categories
as well as the proportion of each. Also, even if the number of cate-
gories is known, another problem is to determine how big a sam-
ple is needed in order to ensure there is at least one item in the
sample from each type. This problem has already been considered
above in the example of gunshot residue where the sample size
was determined in order to have a certain probability of detecting
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FIG. 2—Graphs of the sample size versus the average posterior standard
error for various weights assigned to historical data [f0 ¼ (0.2,0.5,0.8)]
for inspection of a consignment of 5000 pills, each of which is either licit
or illicit. Historical data are available of a sample of size n0 ¼ 25 pills in
which all pills were illicit (x0 ¼ 25).
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the presence of a particle of gunshot residue if a certain proportion
of the total number of particles were gunshot residue. The problem
can be extended further. Consider a collection of glass fragments.
The problem is to determine the size of the sample that is needed
to ensure there is at least one item in the sample from each cate-
gory of glass.

Study of the problem of estimation of proportions when there are
more than two categories requires a generalization of the situation
in which there is a binary response and for which a binomial distri-
bution is appropriate. The binomial distribution models the variation
for the number of outcomes of a particular type in a sequence of
independent trials where there are only two possible, mutually
exclusive outcomes and the probability of a particular outcome is
constant and fixed from trial to trial. The generalization models the
variation for the number of outcomes of a particular type in a
sequence of independent trials where there are several possible
mutually exclusive outcomes and the probability of a particular out-
come is constant and fixed from trial to trial. The distribution which
generalizes the binomial distribution is the multinomial distribution.
The probability of a success in a binomial context is denoted h with
the corresponding probability of a failure denoted (1 ) h). Consider,
now, k categories, where k ‡ 2 and k ¼ 2 corresponds to the bino-
mial context. The parameters of the multinomial distribution may be
denoted h ¼ (h1,…,hk)

¢, where
Pk

j¼1 hj ¼ 1 and h1,…,hk > 0.
The distribution is itself denoted Mn(h1,…,hk) where Mn is short
for ‘‘multinomial.’’ The probability function for x is given by

Prðxjn; h1; . . . ; hkÞ ¼
n!
Qk

j¼1 hxi
jQk

j¼1 xj!
ð34Þ

where

Xk

j¼1

hj ¼ 1;
Xk

j¼1

xj ¼ n ð35Þ

It is desired to obtain the set of k intervals Sj, j ¼ 1,…,k, of
the shortest length such that

Pr
\k
j¼1

ðhj 2 SjÞ
( )

� 1� a ð36Þ

The sample proportions are denoted by the vector
ĥ ¼ ðĥ1; . . . ; ĥkÞ0 where ĥj ¼ xj=n. An example for the inter-
vals Sj may be those defined by the absolute difference of the
estimates ĥj and the corresponding parameters hj, and a criterion
that the absolute difference be less than dj, j ¼ 1,…,k. It is
required that the probability will be at least 1)a that all of the
estimated proportions ĥj will simultaneously be within dj of the
true population proportions hj, that is,

Pr
\k
j¼1

jĥj � hjj � dj

( )
� 1� a ð37Þ

It is assumed that the population is large enough for finite popu-
lation correction factors to be ignored and that sample sizes are
large enough for the normal approximation to be used. The sample
proportions ĥ converge asymptotically to a so-called degenerate
multivariate normal distribution

ĥ � N h;Vð Þ ð38Þ

where V ¼ (1/n) (diag(h))hh¢) is the k · k covariance matrix
and diag denotes a diagonal matrix (i.e., a matrix in which
the diagonal terms are the components (h1,…,hk) and the

off-diagonal terms are zero. The covariance matrix V has the
elements (1 ⁄ n)hj(1 ) hj) on its main diagonal and off-diagonal
elements )(1 ⁄ n)hj1

hj2
for j1 „ j2 and j1, j2 ¼ 1,…,k. This is a

singular covariance matrix (i.e., one whose inverse does not
exist) of dimension k ) 1 due to the restriction

Pk
j¼1 hj ¼ 1,

hence the term ‘‘degenerate.’’
A method for constructing simultaneous confidence intervals for

multinomial proportions is presented in Ref. (19). The method
assumes that nhj is large enough (at least 5) for the square of the
Pearson’s residual

Xk

j¼1

ðxj � nhjÞ2

nhj

to be chi-squared distributed with k ) 1 degrees of freedom.
This result was improved through the construction of less con-
servative confidence intervals (19). This improved method was
based on the normal approximation for a binomial proportion
and used Bonferroni’s inequality to put a bound on the probabil-
ity that all of the intervals would be simultaneously correct.
Neither Goodman (20) nor Quesenberry and Hurst (19)
addressed the problem of the sample size. Goodman’s (20)
equation for a (1 ) a)% confidence interval for ĥi is

ĥj � z a
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjð1� hjÞ

n

r
; ĥj þ z a

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjð1� hjÞ

n

r !
ð39Þ

Angers (21) noted that because the distribution of ĥj converges
asymptotically to a degenerate multivariate normal distribution with
a singular variance covariance matrix of rank k ) 1 the correct
(1 ) a)% confidence interval for ĥj is

ĥj � z a
2ðk�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjð1� hjÞ

n

r
; ĥj þ z a

2ðk�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjð1� hjÞ

n

r !
ð40Þ

The probability aj, that the sample estimate ĥj is further than dj

from hj is given by the normal approximation to a binomial
proportion

aj ¼ Prðjĥj � hjj > djÞ ’ 2ðk � 1Þ 1� U
dj

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjð1� hjÞ
p
 ! !

ð41Þ

The smaller the ajs the larger the sample size required in order
to attain them. A decrease in aj implies a decrease in

1 � U
dj

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjð1 � hjÞ
p
 ! !

which arises from an increase in n, for unchanged dj and h. In
the multinomial setting, two simple methods for deriving the
appropriate sample size are as follows:

1 Assume the parameter vector h ¼ (h1,…,hk)
¢ is known. Select

a sample size n, observe x1,…,xk, calculate ĥj; j ¼ 1; . . . ; k and
compute

Pk
j¼1 aj for given dj, j ¼ 1,…,k. If

Pk
j¼1 aj < a,

repeat with a smaller value of n. Otherwise, repeat with a larger
value for n until the smallest n is found such that

Pk
j¼1 aj � a.

The algorithm is usually initialized with sample size equal to
one and the sample size is incremented gradually by one unit at
a time until

Pk
j¼1 aj � a. This method is employed in Ref.

(22) where the vector h was considered known and the sample
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size for obtaining confidence intervals of specified lengths was
to be determined. An obvious disadvantage of this method is
that the vector of proportions attributed to each category is
never known in advance.

2 The second method is to carry out the first procedure with all
possible parameter values to determine the parameter vector
which gives the largest sample size and use this sample size.
This method was applied by Thompson (23) and the form of
the worst case scenario was established. More specifically,
Thompson proved that the worst case scenario for a multinomial
distribution occurs when k ) h (0 £ h £ k) proportions are equal
to zero and the remaining h have probability h)1. If, for a case
with k categories, zero proportions for k ) h of the categories
are observed the dimensionality of the data is reduced by k ) h.
Zero observations for a category are taken to imply the true
probability for the category is zero. For example if there is one
category with zero frequency this means that the appropriate
sample size is estimated considering a vector of equal probabili-
ties assigned to k ) 1 categories. A disadvantage of this method
is that it might lead to unnecessarily large samples especially
when there are categories with high or low proportions and,
therefore, small variances.

Table 3 gives the appropriate sample sizes needed for a trinomial
experiment so that the probability that one or more of the k esti-
mates of proportions hj, j ¼ 1,…,k is outside an interval of length
2d ¼ 2 · 0.05 ¼ 0.1 centered on the true, unknown, proportion
h, will be less than or equal to a. For larger numbers of categories,
the sample sizes are the same as with k ¼ 4 as the worst case
scenario gives zero frequencies to many cells leaving only four
with nonzero and equal probabilities. This is a restriction of the
worst case scenario defined by Thompson.

The effect on sample size of assuming the worst case can be
illustrated with other choices of the set of proportions. Consider
k ¼ 3 and a ¼ 0.05. First, assume the true set of proportions is
h ¼ (0.2,0.3,0.5)¢ rather than the worst case scenario. In that case
the sample size reduces from 624 (Table 3) to 593. If the set
h ¼ (0.05,0.05,0.9)¢ is considered the necessary sample size is
reduced to 182. Assumption of the worst case scenario leads to a
much larger sample size than necessary, with a consequent unnec-
essary expenditure of resources. An alternative Bayesian procedure
is shown to reduce the sample size considerably.

Bayesian techniques for SSD

Given a multinomial likelihood and a Dirichlet prior (Eq. [49])
in the Appendix, the posterior distribution of the parameter vector
h is also a Dirichlet distribution

This posterior distribution can be approximated by the singular
multivariate normal distribution with mean vector l and variance–
covariance matrix V. Then, it can be shown that (1)

T2 ¼ nþ
Xk

j¼1

mj þ 1

 !
ðh� lÞ0V�ðh� lÞ � v2

k�1 ð42Þ

where v2
k�1 denotes the chi-squared distribution with (k ) 1)

degrees of freedom, V) is the generalized inverse of V (see the
Appendix for an explanation of a generalized inverse) and
(m1,…,mk) are the prior parameters of the Dirichlet distribution.
The sample size may be estimated using the requirement
Pr[T2 £ d2] ¼ 1 ) a that leads to the rule

nþ
Xk

j¼1

mj þ 1 � v2
k�1;a=d2 ð43Þ

where d2 ¼ (h ) l)¢V)(h ) l) is an ellipsoid in (k ) 1)-dimen-
sional space, centered on l and v2

k�1;a denotes the percentage
point of v2

k�1 such that for a random variable X2 with a v2
k�1 distri-

bution PrðX2 > v2
k� 1;aÞ ¼ a. Thus, from Eq. (43) a value for n

may be obtained (1). Note, although, that the choice of d and the
choice of parameters for the prior distribution both affect the
choice of sample size. Note that for large values of the prior
parameters, and hence large

Pk
j¼1 mj, one obtains smaller sample

sizes that in extreme cases may even become negative. A negative
result implies that our prior beliefs are so strong that there is no
need to collect more data. The choice of n such that
n � v2

k�1;a=d2 is an appropriate conservative choice.

Power Priors for Multinomial Experiments

The use of historical data for determining the sample size using
power priors for beta and binomial distributions can be extended to
multinomial data by using a Dirichlet prior for the parameters of
interest.

Suppose a multinomial likelihood from a previous experiment
leads to a Dirichlet power prior. More specifically, a Dirichlet prior
with parameters v ¼ (v1,…,vk) is combined with data (x01,…,x0k)
from an experiment subsequent to the choice of prior but before
the planned experiment. These data are given a weight f0. The
Dirichlet power prior is then

f ðh1; . . . ; hkjvÞ /
Yk

j¼1

hx0j

j

 !f0Yk

j¼1

hvj�1
j ¼

Yk

j¼1

hf0x0jþvj�1
j

The power prior, combined with current data (x1,…,xk) yields a
Dirichlet posterior with parameters (f0x0j + xj+vj; i ¼ 1,…,k).
The current data are not known in advance and a simulation-
based approach, as that presented earlier in the context of the
beta distribution, is used to determine the sample size as that for
which a function of the posterior distribution satisfies a prespec-
ified threshold. Such a threshold may be the trace of the poster-
ior covariance matrix (sum of parameter variances) or the sum
of the posterior standard deviations. The parameters of the
Dirichlet posterior distribution are v�j ¼ f0x0j þ xj þ vj. Let
v�0 ¼

Pk
j¼1 v�j . The posterior covariance matrix has variances

varðxjjv�Þ ¼
v�j ðv�0 � v�j Þ
v2

0ðv0 þ 1Þ ¼ njj

and covariances

TABLE 3—Appropriate sample sizes n using Thompson’s method
(d ¼ 0.05) which assumes the worst assignment of proportions,

h1 ¼ … ¼ hk for various significance probabilities a and numbers k of
categories such that the probability one or more of the estimates of the
individual category proportions are outside the intervals of length 2d

centered on the true, unknown, proportions h1,…,hk.

a n k

0.1 510 3
0.05 624 3
0.025 748 3
0.02 788 3
0.01 915 3
0.1 574 4
0.05 684 4
0.01 946 4
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Cðxj1 ; xj2 jv�Þ ¼
�v�j1 v�j2

v2
0ðv0 þ 1Þ ¼ nj1j2 ¼ nj2j1

where v� ¼ ðm�1; . . . ; m�kÞ
0.

Suppose that there are historical data of n0 ¼ 100 observations
from a trinomial population with 20 observations falling in the first
category, 30 observations falling in the second category, and 50
observations falling in the third category [x0 ¼ (20, 30, 50)]. The
criterion for the choice of sample size is to choose as that size of
sample, the value for which the sum of the posterior standard devi-
ations for the three categories is less than some prespecified value.
Figure 3 plots the sample size for the current data versus the sum
of the posterior standard deviations for various weights assigned to
historical data. It can be seen that large sample sizes are needed,
even for f0 ¼ 0.8, to provide estimates of the trinomial propor-
tions in which the sum of the posterior standard deviations is less
than 0.1.

Ternary Diagrams

Ternary diagrams are very popular in the geochemical sciences
(24) and have been extensively used to represent the relative per-
centages of three components as points in an equilateral triangle. A
necessary requirement for the construction of such a diagram is that
the three components should sum to a fixed amount, for example,
to 1 if proportions are being used or to 100 if percentages are being
used. This requirement places the restriction that once two of the
components are known the other is obtained by subtracting the
sum of the two known components from the fixed amount. Hence,
only two out of the three components are freely selected reducing
the dimension of the problem from three to two. Therefore, whilst
ternary diagrams provide a visual representation of apparently
three-dimensional data, they are able to be plotted in two dimen-
sions which eases interpretation. A ternary plot may be represented
as an equilateral triangle as shown in Fig. 4.

Consider a trinomial experiment. Each subject gives only one
response but the cumulative proportion of each category may be
seen as a form of compositional data as the sum of these is a con-
stant (100%). This is illustrated in Table 4 where the cumulative
percentages, up to any number of subjects, may be seen as a
composition.

A brief discussion of the construction of such a diagram is given.
Figure 5 shows the increments along the first axis. If the composi-
tion of the first element is 0.1 then that element would lie on the
line that corresponds to 0.1 in Fig. 5. All elements on that line refer
to two different combinations of the other two variables which
should sum to 0.9.

The representation of the point (0.2, 0.3, 0.5) on a ternary dia-
gram is shown in Fig. 6. Approximation of the multinomial proba-
bility by a multivariate normal (Eq. [38]) enables the construction
of ellipsoidal contours of any precision. Figure 7 shows a 95%
probability ellipse contour. The area E under the ellipse is given as
the product
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FIG. 3—Graphs of the sample size versus the sum of the posterior stan-
dard deviations for various weights assigned to historical data
[f0 ¼ (0.2,0.5,0.8)] based on historical data of a sample of size n0 ¼ 100
pills from a trinomial population with 20 pills licit, 30 pills LSD, and 50
pills ecstasy [x0 ¼ (20,30,50)].
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TABLE 4—Sequential representation of data with three components.

Subject j x1 x2 x3

P
xj1

n %

P
xj2

n %

P
xj3

n %

1 0 1 0 0 100 0
2 1 0 0 50 50 0
3 1 0 0 67 33 0
4 0 0 1 50 25 25
5 0 1 0 40 40 20
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FIG. 5—Ternary diagram showing increments along the A-axis parallel
to the C-axis; the line A ¼ 0 is the line labeled C in the diagram. The
B- and C-axes may be illustrated similarly.
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E ¼ pk1k2 ð44Þ

where k1 and k2 are half the lengths of the major and minor
axes, respectively. For example, for k1 ¼ k2 ¼ k say, the
ellipse is a circle and the area is pk2. Note that each point in
Fig. 7 does not represent a sampling unit but the composition of
the data up to, and including, the inspection of that point. The
first 200 units are depicted in Fig. 7. Units have converged in
the ternary plot and the nucleus of the points has converged
around the true proportions (A ¼ 0.2, B ¼ 0.3, C ¼ 0.5).

A Sequential Method Stopping when the Joint Probability

Interval or Ellipsoid for the Parameter Estimates is Less than

a Given Threshold

In the method described in Ref. (23), the sample size is defined
a priori under the proposition that the worst possible scenario will
happen. Alternatively, a sequential sampling scheme using Thomp-
son’s method can be adopted allowing estimation of the value of
the parameter vector incrementally and thus avoiding use of the
worst possible parameter vector which may be far from being true.
The parameter vector is estimated as sampling units are examined
and the criterion

Pk
j¼1 aj � a is attained much sooner, with a con-

sequent saving of resources.

Furthermore, ellipsoids around the data points can be formed
sequentially and sampling can be stopped when the volume of the
ellipsoid is below a prespecified threshold so long as it is within the
sample space. The procedure can be illustrated in the trinomial case
where data points can be represented graphically in two dimensions
using ternary diagrams but is applicable to any number of dimen-
sions. After each unit has been sampled an ellipsoid of prespecified
probability volume (e.g., 95%) is formed around the latest data point.
Sampling can be stopped when the area of the ellipse is below a cer-
tain proportion of the area of the equilateral triangle (e.g. 1% and
5%). The ellipses are defined by the set of h such that

ðh� l̂Þ0V̂�ðh� l̂Þ � v2
k�1;a

where l̂ and V̂� are given by the posterior mean and covariance
of the Dirichlet distribution in the Appendix.

Suppose that there is a seizure of 10,000 pills suspected to con-
tain illicit drugs. Suppose that out of the N ¼ 10,000 pills, 10%
are ecstasy pills, 20% are nonillicit drugs, and 70% are LSD pills,
although in practice these proportions are not known. The popula-
tion is assumed to be homogeneous in the sense that a simple
inspection of the pills did not reveal any visual differences (e.g.,
shape and color). Thompson’s method leads to a sample size of
624 for d ¼ 0.05 and significance level a ¼ 0.05. The worst
possible scenario in that case is one for which two of the cells have
probability 0.5 while the other has zero probability. This scenario
is far from being true for the specific data. If Thompson’s method
is applied sequentially, vector h ¼ (h1,h2,h3)

¢ is estimated sequen-
tially and comes closer to the vector of true estimates. This leads
to a sample size of 437. For application of the third method, sam-
pling is stopped when the area of the ellipse formed around the
data is below 5% of the area of a ternary diagram, 0:05

ffiffiffi
3
p

=4. This
way, the sample size from one simulation is 88. The ternary dia-
gram and the corresponding ellipse after the inspection of the 88
sampling units are shown in Fig. 8. The ellipse shows a 95%
region for the composition of the data when sampling is stopped.
The estimated proportions are very close to the true ones.

Sequential methods do not necessarily give an invariant sample
size as they are dependent on the data being inspected. Repetitions
may give different sample sizes. The sequential sampling scheme
with a stopping rule defined by the area of the 95% ellipse around
the data points was repeated with 100 simulations from the con-
signment. The average sample size needed was found to be 83.89
with values ranging from 38 to 112 and a standard deviation of 17.
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In all cases a much smaller sample size than both Thompson’s
fixed sample size method and the sequential Thompson’s method
was obtained. Prior information will reduce the variability and lead
to smaller ellipses and consequent smaller sample sizes.

In practice, the guidance to a practicing forensic scientist is to
sample sequentially, calculate the probability ellipse at regular inter-
vals and stop when the necessary criterion is attained. The simula-
tions described here demonstrate that if one wishes to have a 95%
probability that the true proportions lie within an ellipse of area no
greater than 5% of the total sample space then the expected sample
size is 84 (83.89 to two decimal places).

Simulations

The ability of many methods to determine the appropriate sam-
ple size for drawing valid inference is illustrated using a simulation
study and a parametric bootstrap method. One hundred data sets
are generated from multinomial distributions and some of the above
approaches are compared. The criterion to stop sampling when the
area under the 95% ellipse formed by the data is below a threshold
t is denoted by C(t) in Table 5. The modified sequential Thomp-
son’s criterion to stop sampling when

Pk
j¼1 aj � a so that the

probability is at least (1 ) a) that the estimated proportions will
simultaneously be within specified distances d of the population
proportions is denoted I(a, d) in Table 5.

Column �n gives the mean sample size for two different multino-
mial populations, namely Mn(0.2, 0.3, 0.5) and Mn(0.05, 0.05,
0.9). Smaller sample sizes are obtained by controlling the area
under the ellipse formed from the data points than by controlling
the widths of the multiple confidence intervals. These two methods
cannot be compared directly as they do not necessarily have the
same coverage probability. However, the last row [I(0.05, 0.05)] of
Table 5 can be compared to Thompson’s method (under the worst
possible scenario) which gives a sample size of 624, larger than the
one obtained using a sequential approach. Furthermore, the more
unequal the multinomial proportions, the smaller the sample sizes
needed to distinguish between them.

Conclusions

The paper considers the use of some sampling schemes for test-
ing propositions about binomial and multinomial variables. Exam-
ples are given from the forensic sciences. Traditional SSD
techniques (6, 23) are designed to ensure that, in the absence of
prior information for the parameters of interest, the sample size
should be adequate for any possible parameter values. Therefore,
the sample size is determined as that for which a prespecified
threshold is defined under the worst possible scenario. This may

lead to unnecessarily large data sets which require large amounts
of time and financial resources.

Five sampling procedures of which four are for binomial variables
and one is multinomial have been described. One is based on power
priors, informed from historical data. The other four are sequential.
One is an SPRT with a stopping rule derived from the probabilities
of type 1 and type 2 errors. One is a sequential variation of a proce-
dure based on the predictive distribution of the data yet to be
inspected and the distribution of the data that have been inspected,
with a stopping rule determined by a threshold. One is based on esti-
mating the posterior probabilities of the competing propositions
sequentially and sampling is stopped when these probabilities exceed
a prespecified threshold. The fifth is for use with more than two cate-
gories. Sampling is stopped when the joint probability interval or
ellipsoid for the parameter estimates is less than a given threshold.
For trinomial data this last procedure is illustrated in ternary diagrams
with ellipses formed around the sample points. There is a straightfor-
ward generalization to multinomial populations with more categories.
Sequential methods do not yield standard sample sizes every time
they are applied to data sets of similar contexts. Thus it is not possible
to specify in advance of inspection the required size of sample. In all
cases, however, they yield smaller sample sizes than those taken
under the worst possible scenario.

Consider binomial data. The SPRT (Eq. [12]) gives more reliable
and stable results, using fewer samples, than the predictive
approach Eqs (25) and (26) and the two-sided sequential criterion
Eqs (29) and (30). The two-sided sequential criterion yields smaller
sample sizes and there is a very small probability of accepting the
wrong proposition when the true value of h does not lie very close
to the propositions being tested (h1 and h2). Conversely, larger sam-
ple sizes occur when h1 is close to h2 and h is not far from h1 or
h2. The predictive method (14) yields very large samples when
restrictions are imposed on the width of the probability interval of
h. The value of h is not known a priori. Instead of applying just
one SSD method, all three methods (SPRT, predictive method,
two-sided sequential criterion) may be applied simultaneously. If
either the predictive method or the two-sided sequential criterion
provide a conclusion (accept either H1 or H2) check if ĥ is far from
either of the propositions and if this is the case sampling can be
stopped because this suggests the original propositions are incorrect,
otherwise continue sampling until the SPRT provides a conclusion.

Prior elicitation is one of the key aspects of Bayesian analysis and
the power prior approach takes advantage of previous similar studies.
If there is a large seizure of pills suspected to contain illicit substances,
prior information may be acquired by circumstantial evidence. Alter-
natively, a fraction of the data may be investigated as if they were his-
torical data. This fraction should be given full weight (f0 ¼ 1) as it
is part of the data. By applying the power prior approach, after
inspecting an initial fraction of the data, the number of extra samples
that should be investigated may be simply determined.

The method illustrated for trinomial data is easily extended to
multinomial populations with more categories. Obviously, in such a
case, the sampling units cannot be represented graphically using
ternary diagrams but the method can also be applied estimating the
volume (now that the dimension is more than two) of an ellipsoid
sequentially until a threshold is satisfied.
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TABLE 5—Mean sample sizes, �n, based on the sizes of 100 simulations
from multinomial distributions with parameters h ¼ (0.2,0.3,0.5) and

h ¼ (0.05,0.05,0.90).

Criterion �n; h ¼ ð0:2; 0:3; 0:5Þ0 �n; h ¼ ð0:05; 0:05; 0:90Þ0

C(0.01) 498.1 153.19
C(0.02) 254.37 77.58
C(0.05) 55.42 42.14
I(0.05, 0.05) 593.51 181.67

C(t) is the criterion to stop sampling when the area under the 95% ellipse
formed by the data and using the posterior Dirichlet distribution is below
the threshold t for t ¼ 0.01,0.02,0.05. I(a, d) is the criterion to stop
sampling when the sum of the individual significance probabilities aj

(j ¼ 1,…,k) is £a and the probability is at least (1 ) a) that the estimated
proportions, ĥ1; ĥ2; ĥ3, will simultaneously be within specified distances d
(i.e., d1 ¼ d2 ¼ d3 ¼ d) of the true population proportions.
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Appendix

Notation

The following notation is used throughout the paper. Distribu-
tional formulae are given at appropriate points in the text or in the
last part of the Appendix.
• h: the true proportion of a category in the relevant population

(or consignment) (e.g., the proportion of illicit pills in a
consignment);

• n: the size of the sample taken from the population;
• m: the population size (perhaps unknown, perhaps very large)

from which the sample is to be taken;
• x: number of members of a sample of size n belonging to the cate-

gory of interest when h is the probability an individual member
belongs to the category of interest (e.g., the number of illicit pills
in a sample of size n from a consignment of pills of size m);

• y: number of (unknown) members in the (m ) n) members of the
consignment which have not been examined (e.g., the number of
illicit pills in the m ) n pills not examined in a consignment of
pills of size m from which a sample of size n has been examined);

• ĥ ¼ x=n, the sample proportion of successes in n trials, this
ratio is used as an estimate of h;

• t: threshold for the strength of evidence as measured by the
likelihood ratio;

• k: the number of categories in a multinomial experiment (e.g.,
for a trinomial experiment k would be set equal to 3);

• x ¼ (x1,…,xk)
¢ with a fixed sum,

Pk
i¼1 xi ¼ n, the observed

cell frequencies in a sample size n from a multinomial distribu-
tion. A bold x denotes a vector of two or more numbers;

• The ¢ symbol denotes that the set (x1,…,xk) is transposed to be
a column of counts rather than a row. This is a mathematical
convention for representation of a vector.

• The ^ symbol denotes that the characteristic over which it is
placed is an estimate of the uncovered characteristic. The sym-
bol is read as ‘hat.’ Thus ĥi (read as ‘theta-i-hat’) is an estimate
of hi, and v̂arðhiÞ is an estimate of the variance of hi (see the
section on the Dirichlet distribution later in the Appendix);

• hj: for a multinomial experiment, the true proportion of category
j in the population (j ¼ 1,…,k,

Pk
j¼1 hj ¼ 1) (for the trino-

mial example, k would equal 3, and h1,…,h3 would be the pro-
portions [unknown] of the three categories in the consignment);
the column vector (h1,…,hk)

¢ is denoted h;
• ĥj ¼ xj=n: the sample proportion of category j in n trials, an

estimate of hj;
• H1: h £ hl (l for ‘‘lower’’) vs. H2:h ‡ hu, (u for ‘‘upper’’) the

two competing hypotheses being tested throughout the paper;
for drugs cases, the length of sentence may be determined par-
tially on the estimated values for the proportions, h1 and
h2 ¼ 1 ) h1, of illicit and licit categories and where hl and hu

are lower and upper bounds on a sentencing guideline interval;
• beta(m1,m2): beta distribution with parameters m1 and m2. The true

value of the proportion h may be unknown but there may be
prior information about its value; this information is modeled
probabilistically by a distribution known as a beta distribution;
see later in the Appendix for more details;

• Dir(m): Dirichlet distribution with parameter vector m ¼
(m1,…,mk)

¢, mj > 0, j ¼ 1,…,k. The Dirichlet distribution is a
generalization of the beta distribution. The beta distribution
models uncertainty about the proportions, h1 and h2 ¼ 1 ) h1,
in two categories. The Dirichlet distribution models uncertainty
about the proportions, h1,…,hk in each of k categories with
hk ¼ 1 ) (h1 + � � � + hk)1); hj > 0, j ¼ 1,…,k; see later in
the Appendix for more details;

• dj: the maximum permitted distance jhj � ĥjj between hj and
ĥj, the proportion of category j and its estimate in the popula-
tion, to satisfy a threshold. For example, a criterion for the
choice of sample size n may be to choose n such that dj is less
than some prespecified value;

• a: the significance level of a test, the probability of rejecting a
null hypothesis, H1, when it is true. This error is also known as
a type 1 error and can be written as a ¼ Pr(H1 is rejected |H1

is true);
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• b: the probability of not rejecting the null hypothesis H1 when
the alternative H2 is true. This error is known as a type 2 error
and can be written as b ¼ Pr(H1 is not rejected |H2 is true);

• aj: the significance level of category j for comparison of
observed to expected frequencies for that category, j ¼ 1,…,k,
k ‡ 2;

• f0 is the overall weight that is assigned to previous data in a
power prior;

• fg(> 0) is the proportion of the overall weight f0 assigned to
case g in the power prior with

PG
g¼1 fg ¼ 1.

Probability Distributions

Beta Distribution

The beta distribution for a random variable h is a two-parameter
(a, b) continuous probability distribution, denoted beta(a, b) on the
interval (0,1) with probability density function

f ðhjm1; m2Þ ¼
hm1�1ð1� hÞm2�1

Bðm1; m2Þ
; 0 < h < 1 ð45Þ

where

Bðm1; m2Þ ¼
Cðm1ÞCðm2Þ
Cðm1 þ m2Þ

ð46Þ

and

CðzÞ ¼
Z þ1

0
tz�1e�t dt ð47Þ

is the gamma function with C(z) ¼ (z ) 1)! for integer z.
When m1 ¼ m2 ¼ 1 the beta distribution is a so-called uni-
form distribution in that f(h|1,1) ¼ 1, 0 < h < 1. This distribu-
tion is often used as a prior distribution for sampling problems;
see Ref. (5) for examples.

The expected value and the variance of a beta-distributed ran-
dom variable h with parameters m1 and m2 are given by the formu-
lae (48) and (49), respectively.

EðhÞ ¼ m1

m1 þ m2
ð48Þ

varðhÞ ¼ m1m2

ðm1 þ m2Þ2ðm1 þ m2 þ 1Þ
ð49Þ

Dirichlet Distribution

The generalization of the beta distribution to more than two cate-
gories is the Dirichlet distribution. Thus, for h ¼ (h1,…,hk), withPk

j¼1 hj ¼ 1, the Dirichlet probability density function with
parameters (m1,…,mk) is

f ðhjm1; . . . ; mkÞ ¼
Cðm1 þ � � � þ mkÞ
Cðm1Þ � � �CðmkÞ

hm1�1
1 � � � hmk�1

k / hm1�1
1 � � � hmk�1

k

¼
Yk

j¼1

hmj�1
j ð50Þ

The expectation E(hj) of hj is

mjPk
j¼1 mj

The variance of hj is

EðhjÞð1 � EðhjÞÞ
1 þ

Pk
j¼1 mj

The covariance C(hj1
, hj2

), j1 „ j2, between hj1
and hj2

is given
by

Cðhj1 ; hj2Þ ¼
�Eðhj1ÞEðhj2Þ
1 þ

Pk
j¼1 mj

The beta is a conjugate prior for the binomial distribution, the
Dirichlet is a conjugate prior for the multinomial distribution in
that the posterior distributions are beta and Dirichlet, respectively,
the same form of distribution as the prior distribution. Note that the
beta distribution is the special case of the Dirichlet distribution
given when k ¼ 2.

The posterior distribution for h, given x ¼ ðx1; . . . ; xkÞ0;Pk
j¼1 xj ¼ n, is a Dirichlet distribution with

f ðhjxÞ /
Yk

j¼1

hmjþxj�1 ð51Þ

For the posterior distribution, with mj ¼ 1; j ¼ 1,…,k, the esti-
mates of the mean, l, and covariance matrix, V, are given by

l̂ ¼ ðl̂1; . . . ; l̂kÞ0 with

l̂j ¼
mj þ xjP
ðmj þ xjÞ

¼ xj þ 1
ðnþ kÞ :

v̂arðhjÞ ¼
ðxj þ 1Þðnþ k � 1� xjÞ
ðnþ kÞ2ðnþ k þ 1Þ

¼ njj:

Ĉðhj1 ; hj2Þ ¼ �
ðxj1 þ 1Þðxj2 þ 1Þ
ðnþ kÞ2ðnþ k þ 1Þ

¼ nj1j2 ¼ nj2j1 ; j1; j2 ¼ 1; . . . ; k; j1 6¼ j2:

The covariance matrix V is singular because of the condition
that

Pk
j¼1 hj ¼ 1. Thus, the inverse does not exist. However,

one can use what is known as a generalized inverse, denoted
V). There are (k ) 1) independent rows in V. Denote the
(k ) 1) · (k ) 1) matrix formed by the first (k ) 1) rows and
(k ) 1) columns of V by V11. This matrix does have an inverse;
denote it by V�1

11 . Let n01 ¼ ðnk1; . . . ; nk;k� 1Þ denote the first
(k ) 1) elements of the kth row of V (i.e., the kth row with the
last element, nkk omitted). Then, by symmetry, n1 denotes the
last column of V with nkk omitted. Thus, the generalized inverse
V) is given as follows

V ¼ V11 n1
n01 nkk

� �
ð52Þ

V� ¼ V�1
11 0
00 0

� �
ð53Þ

where 0 is a column vector with (k ) 1) zeros and 0¢ is the cor-
responding row vector.
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