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Abstract

Clinical trials with event-time outcomes as co-primary contrasts are common in many areas such
as infectious disease, oncology, and cardiovascular disease. We discuss methods for calculating
the sample size for randomized superiority clinical trials with two correlated time-to-event
outcomes as co-primary contrasts when the time-to-event outcomes are exponentially distributed.
The approach is simple and easily applied in practice.
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1. INTRODUCTION

The determination of sample size and the evaluation of power are critical elements in the
design of a clinical trial. If a sample size is too small, then important effects may not be
detected, whereas a sample size that is too large is wasteful of resources and unethically puts
more participants at risk than necessary. Most commonly, a single outcome is selected as the
primary endpoint and is used as the basis for the trial design including sample size
determination, as well as for interim monitoring and final analyses. However, many recent
clinical trials, especially pharmaceutical clinical trials, have utilized more than one primary
endpoints [1–5]. For example, trials of infectious diseases often have endpoints for clinical
response as well as a microbiological response. The rationale for this is that use of a single
endpoint may not provide a comprehensive picture of the intervention's effects. When
utilizing multiple primary endpoints, clinical trials are designed with the aim being to detect
either T1, effects on all endpoints (referred as `multiple co-primary endpoints'), or T2,
effects on at least one endpoint with a prespecified ordering or nonordering of endpoints [1–
5].

Use of multiple endpoints creates challenges in the evaluation of power and the calculation
of sample size during trial design. Specifically controlling type I and type II errors when the
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multiple primary endpoints are potentially correlated is nontrivial. When designing the trial
to detect effects for all of the endpoints, no adjustment is needed to control type I error. The
hypothesis associated with each endpoint should be evaluated at the same significance level
as is required for all the endpoints. However, type II error will increase as the number of
endpoints being evaluated increases. In contrast, when designing the trial to detect an effect
for at least one of the endpoints, then an adjustment is needed to control type I error.

This paper describes an approach to the evaluation of power and the calculation of sample
size in randomized superiority trials with two correlated time-to-event outcomes as co-
primary contrasts. Sugimoto, Hamasaki, and Sozu [6] and Sugimoto et al. [7] discuss an
approach to sizing clinical trials with two correlated time-to-event outcomes based on the
weighted log-rank statistics. In this paper, we consider a simpler approach that assumes that
the time-to-event outcomes are exponentially distributed.

We may specify any bivariate exponential distribution to define the correlation between two
time-to-event outcomes. Several bivariate exponential distributions with both marginals
being exponential have been proposed (see extensive references in Cox and Oakes [8] and
Kotz, Johnson, Balakrishnan [9]). Of course, the selection will depend on the types of time-
to-event outcomes of interest. In this paper, we consider a situation where two time-to-
events may be correlated but censored with different times or censored at the same time.
Such situations can be seen in several disease areas. For example, in a trial of HIV-infected
patients with advanced Kaposi's sarcoma, the time to Kaposi's sarcoma progression and the
time to HIV virologic failure may be outcomes of co-primary interest. Other infectious
disease trials may use time-to-clinical cure and time-to-microbiological cure as co-primary
contrasts. In such clinical trials, we consider the three copulas, that is, Clayton copula [10],
positive stable copula [11, 12], and Frank copula [13, 14], which have been widely used in
practice. The Clayton copula describes situations of asymmetric late (tail) dependence,
whereas the positive stable copula induces early (tail) dependence. The Frank copula
describes symmetric dependence without tail dependence. For the three copulas, the
correlation will range from 0 to 1. In addition, as a measure of the dependence between pairs
of time-to-event outcomes, we use a correlation discussed by Hsu and Prentice [15], the
correlation between cumulative hazard variables. This correlation is equal to the correlation
between pairs of time-to-event outcomes when each marginal is exponential [16]. Methods
for estimating the correlation in such copulas were discussed by Hsu and Prentice [15], Jung
[16] and Prentice and Cai [17].

On the other hand, in randomized controlled trials evaluating cancer and cardiovascular
disease interventions, event-free survival outcomes are commonly used as co-primary
contrasts. Examples include overall survival, disease-free survival, progression-free
survival, or other combinations of events that include all-cause death. In this situation, death
censors all other events (i.e., competing risk). We do not discuss this complex issue except
to say that in the case of completing risks, Marshall and Olkin's bivariate exponential
distribution (two-parameter copula) [18, 19], which has been widely used in practice, may
be one of suitable distribution for describing the interrelationship between events as a latent
distribution. Fleischer, Gaschler-Markefski, Bluhmki [20] and Rosenkranz [21] discussed
the approaches for modeling the competing risks with the Marshall and Olkin's bivariate
exponential and other related distributions, and they provided the correlations in several
settings. Their results can be straightforwardly discussed within the framework of the
method discussed in the paper. However, there is a restriction on the range of correlation
depending on the marginal hazard rates. Furthermore, without any bivariate exponential
distributions, Machin et al. [22] provided a simple equation for sample size calculation with
competing risks.
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2. REQUIRED SAMPLE SIZE TO COMPARE THE LOG-HAZARD RATES

Consider a randomized clinical trial designed to compare two interventions with a total N
participants being randomized. Let nT = rN participants be assigned to the test intervention
group (T) and nC = (1 − r)N participants to the control intervention group (C). Two survival
time outcomes are to be evaluated as primary endpoints of analysis. Thus, we have nT paired
time-to-event outcomes (TT1i, TT2i)(i = 1, …, nT) for the test intervention group and nC

paired time-to-event outcomes (TC1j, TC2j) (j = 1, …, nC) for the control. Assume that the
time-to-event outcomes (TT1i, TT2i) and (TC1j, TC2j) follow the exponential distribution with
constant hazard rates λTk(t) = λTk and λCk(t) = λCk for T and C for all t > 0, k = 1, 2,
respectively. In addition, the proportion of survivors after t years is given by STk(t) =
exp(−λTkt) for the test intervention group and SCk(t) = exp(−λCkt) for the control
intervention. Furthermore, assume that the two time-to-event outcomes within individual for
the T and C are correlated with ρT and ρC, that is, ρT = corr[TT1i, TT2i] and ρC = corr[TC1j,
TC2j], respectively, but that observations from different individuals are independent.

First, we discuss the sample size derivation for a group comparison without censoring. We
then extend the discussion to a group comparison with limited recruitment and censoring as
is more realistically encountered in practice.

2.1. Without censoring

We now have the two log-transformed (observed) hazard ratios  and

. For large samples, the log-transformed hazard rates  and  are

approximately normal distributed as  and ,
respectively, (k = 1, 2) (Collett [23]). Using the delta method, for large samples, the

distribution of  is approximately bivariate normal with mean
vector μ = (log(λT1/λC1), log(λT2/λC2))T and covariance matrix Σ determined by

So that, similarly, using the delta method, for large samples, the correlation between two

log-transformed hazard ratios  and ,

 is approximately given by ρHR = (1 − r)ρT + rρC. If
we assume a common correlation between the two intervention groups, that is, ρT = ρC = ρ,
we have ρHR = ρ. The correlation between the two log-transformed hazard ratios is equal to
the correlation between two time-to-event outcomes.

We are now interested in testing the hypotheses on each log-transformed hazard ratio to
demonstrate a reduction of occurrence of events over time, that is, H0k : log (λTk/λCk) ≥ 0
versus H1k : log(λTk/λCk) < 0. Let Zk be the test statistics for the log-transformed hazard

ratio  given by

(1)

For the one-sided test for each log-transformed hazard ratio in hazard rates at significance
level α, we are able to reject the null hypothesis H0k if Zk < −zα.
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When requiring joint statistical significance for both log-transformed hazard ratios, the
hypotheses for testing H0 : log(λT1/λC1) ≥ 0 or log(λT2/λC2) ≥ 0 versus H1 : log(λT1/λC1) < 0
and log(λT2/λC2) < 0 are tested by the test statistics (Z1, Z2). For large samples, we have the
power function for statistics (1) given as

(2)

where

This overall power (2) is referred to as `complete power' [24] or `conjunctive power' [25,
26]. For the true hazard rates, the overall power (2) is simply calculated by using the
cumulative distribution function of the bivariate normal distribution, 1 − β = Φ2(−c1, −c2|
ρZ), where the off-diagonal elements of correlation matix ρZ are ρHR = ρ. The total sample
size required for achieving the desired power 1 − β at significance level α is given by

where N is the smallest value satisfying Equation (2) and [N] is the greatest integer less than
N.

2.2. With limited recruitment and censoring

We now consider a more realistic scenario where participants are recruited into the study
over an interval, 0 to T0, and then, all randomized participants are followed to the time of
the event T(T > T0). A major issue in sample size determination is considering the effect of
(right) censoring. We discuss the two approaches: one is to incorporate the censoring into
the test statistics variance but not into their correlation, whereas the other is to incorporate
the censoring into both [6]. The former is simple and easy to calculate but has less precision.
The latter is more precise but requires extensive computations.

Following the notation in Machin et al. [22], Gross and Clark [27] and Lachin [28], if we
denote

for large samples, under the null and alternative hypotheses H0k and H1k, we have the
variances for log-transformed hazard ratio
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respectively (k = 1, 2), where . If we incorporate the censoring into the
test statistics variance but not into their correlation, then the power function can be
calculated by 1 − β = Φ2(−c1, −c2|ρZ) with

and then the total sample size required for achieving the desired power 1 − β at the
significance level α is given by

(3)

where N is the smallest value satisfying the aforementioned power function and [N] is the
greatest integer less than N. These can be simplified by assuming heterogeneous variances.
Then, we have

The total sample size required for achieving the desired power 1 − β at the significance level
α is then given by

(4)

where N is the smallest value satisfying equation  and [N] is the
greatest integer less than N. From the analogy of single binary outcome [29], it is known
that

the sample size (4) will be larger rather than (3), but this may lead to an improvement of
approximation by analogy with sample size determination for a single time-to-event
outcome.

As mentioned in Section 1, we consider the three copulas, that is, Clayton, positive stable,
and Frank copulas to model the two time-to-event outcomes and incorporate the effect of
right censoring into both the test statistic variance and correlation for each of the three
copulas. Sugimoto et al. [6, 7] discussed the method for calculating the correlations between
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test statistics with censoring. We omit details of the method here as Sugimoto et al. [6, 7]
provide the details of calculation and algorithm for the method. Figure 1 illustrates the
relationship between the test statistics and original data correlations for the three copulas
when there is limited recruitment and censoring. For the Clayton copula, the test statistics
correlation is always smaller than the original data correlation, but for Frank copula, it
becomes slightly larger. For the positive stable copula, the statistics correlation is slightly
larger when the original data correlation is between 0 and 0.5, but it is slightly smaller when
the original data correlation is between 0.5 and 1. Thus, when the association between two
time-to-event outcomes is asymmetric late dependence, it would be prudent to incorporate
the censoring into both of the test statistics variance and their correlations in the sample size
calculation as the test statistics correlation from the Clayton model may heavily depend on
censoring. On the other hand, when the association is early dependence or dependence
without tail dependence, we may calculate the sample size by simply incorporating the
censoring into the test statistics variance only, as the test statistics correlations from the
positive stable and Frank copulas do not so much depend on censoring. This will be
confirmed in Section 4.

3. A SIMPLE PROCEDURE FOR SAMPLE SIZE CALCULATION

To find a value of N, we require an iterative procedure. The easiest way is a grid search to
increase N gradually until the power under N exceeds the desired power. However, such a
way often takes much computing time. Sugimoto, Sozu and Hamasaki [30] consider a faster
Newton–Raphson algorithm with a convenient formula for N. With a basic linear
interpolation to find N as a value satisfying Φ2(−c1(N),−c2(N)|ρZ)−(1−β) = 0 (e.g., Fletcher
[31], Gill, Murray and Wright [32]), another faster but simpler procedure is as follows:

Step 0 Select the values of two hazard ratios λT1/λC1 and λT2/λC2, correlation ρ,
significance level for the one-sided test α and the desired power 1 − β.

Step 1 Select the two initial values N0 and N1. Then, calculate Φ2(−c1(N0),−c2(N0)|
ρZ) and Φ2(−c1(N1),−c2(N1)|ρZ)

Step 2 Update the value of N using the following equation

Step 3 If N is an integer, then Nl+1 = N; then Nl+1 = [N] + 1 if otherwise, where [N]
is the greatest integer less than N. Then, evaluate Φ2(−c1(Nl+1),−c2(Nl+1)|ρZ)
with Nl+1

Step 4 If Nl+1 − Nl = 0, then the iteration stops with Nl+1 as the final value. If not,
then go back to Step 2.

Compared with the method in Sugimoto et al. [30], one different computational requirement
is two initial values. Options for the two initial values N0 and N1 include the sample sizes
calculated for detecting the hazard ratio λT1/λC1 or λT2/λC2, with the individual power of 1 −
β at the significance level of α. Another is calculated by the same method but with the
individual power of 1−(1−β)½. This is because N lies between these options. In our
experience with real data and simulation, the iterative procedure earlier tended to converge
in a few steps.
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4. EVALUATION OF SAMPLE SIZE AND POWER

We now evaluate the determination of sample size for two correlated exponential time-to-
event outcomes with limited recruitment and censoring given in Section 2.2. But we
describe the result for NCNHV as the behavior of NCNAN is very similar as seen in that of
NCNHV, although values of NCNAN are always smaller than those of NCNHV.

Figure 2 illustrates how sample size behaves with common correlation ρT = ρC = ρ. Sample
size (assuming equally-sized groups: r = 0.5) was calculated to detect the joint reduction in
both time-to-event outcomes with the overall power of 1 − β = 0.80 at the significance level
of α = 0.025, where T0 = 2 and T = 5, and ST1(5) = ST2(5) = 0.5. Sample sizes were
calculated by incorporating censoring into the test statistics variance only and incorporating
censoring in both of test statistics variance and correlations for each of the three copulas.
The sample sizes decrease as correlation goes toward 1. However, the degree of the decrease
is smaller when the difference between λT1/λC1 and λT2/λC2 is larger. The largest sample
sizes are commonly observed when λT1/λC1 = λT2/λC2. In addition, the Clayton copula
always provides the largest sample size.

We performed a Monte Carlo simulation and computed the empirical power for the log-rank
test (but not the test statistics (1) given in Section 2), which is the most commonly used test
to compare survival curves, under sample sizes discussed in Section 2, to evaluate whether
the desired power is attained by each sample size. We generated pairs of random numbers
(TT1i, TT2i) and (TC1j, TC2j) from the three copulas where each marginal is an exponential
distribution with constant hazard rates λTk for T and λCk for C, and (TT1i, TT2i) and (TC1j,
TC2j) are independent, but within pairs are correlated with ρ = ρT = ρC. For the simulation,
we set the values of the parameters as follows: λT1/λC1 = 0.667, λT2/λC2 = 0.667, 0.625,
0.50, T0 = 2 and T = 5, and ST1(5) = ST2(5) = 0.5. We conducted 100,000 replications to
compute the empirical power for the log-rank test, with each sample size and ρ from 0.0 to
0.95 by 0.05 and 0.99. In addition, each sample size (equally-sized groups: r = 0.5) was
calculated to detect the joint reduction in both time-to-event outcomes with the overall
power of 1 − β = 0.80 at the significance level of α = 0.025.

Figure 3A to C illustrates the behavior of the empirical overall power for the log-rank test
with a common correlation for sample sizes calculated by incorporating censoring into test
statistics variance only and in both of test statistics variance and correlations for each of the
three copulas, where the data for simulation were generated from the three copulas,
respectively. For the Clayton copula (Figure 3A), the empirical power for the sample size
calculated by incorporating censoring into the test statistics variance decrease as correlation
goes toward 1, especially when λT1/λC1 = λT2/λC2 = 0.667, and λT1/λC1 = 0.667 and λT2/λC2

= 0.625, and in particular, the powers are less than the desired power 0.8 as correlation is
greater than approximately 0.4, whereas the empirical powers are greater than the desired
power of 0.8 when the correlation is less than around 0.4. However, when λT1/λC1 = 0.667
and λT2/λC2 = 0.50, all of the empirical powers do not change with correlation, and they are
attained at the desired power of 0.8. On the other hand, the sample size calculated by
incorporating censoring into both the test statistics variance and correlation attains the
desired power of 0.8. For the positive stable and Frank copulas (Figure 3B and C),
regardless of whether censoring is taken into account in the test statistics variance only or
both of the test statistics variance and correlation, the empirical powers do not vary much
with correlation and they attain the desired power of 0.8.

These results suggest that the sample sizes calculated by incorporating censoring only into
the test statistics variance may be effective for early dependency and symmetric dependence
without tail dependency data, even when there is censoring. On the other hand, when the
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data include late high dependence, censoring should be incorporated into both the test
statistics variance and correlation, although it requires extensive computations.

5. SUMMARY AND DISCUSSION

Clinical trials with event-time outcomes as co-primary contrasts are common in many
disease areas. In this paper, we outline a simple method for calculating the sample size for
randomized superiority trials with two correlated time-to-event outcomes when the time-to-
event outcomes are exponentially distributed but censored with different times or censored
at the same time. As mentioned in Section 1, the method discussed here can be
straightforwardly extended to the issue of competing risks if we can model the competing
risks with any bivariate exponential distributions. In addition, this approach provides the
foundation for designing randomized trials with other design characteristics including
noninferiority clinical trials and trials with more than two primary endpoints. Furthermore,
the fundamental results can be used for sizing clinical trials designed to detect an effect on at
least one endpoint.

For the co-primary endpoints problem (our primary interest), because the type II error rate
increases as the number of outcomes increases, we focused attention on the behavior of
power (type II error rate), rather than that of type I error rate. The type I error rate associated

with the rejection region H0 is an increasing function of two values (c1, c2) or ( , ) given
in Section 2. By the analogy of multiple continuous co-primary outcomes as discussed in
Hung and Wang [4], the maximum type I error rate is max(Φ(−c1), Φ(−c2)) for the two time-
to-event outcomes, where Φ(·) is the cumulative function of standard normal distribution.
This means that, to investigate whether the type I error rates for testing the joint significance
is larger than the nominal level, it is enough to investigate whether the type I error rates for
the test for one outcome (marginal) is larger than the nominal level. Then, the behaviors of
the type I error rates for the tests for comparing survival curves are well known (e.g., please
see Lee, Desu and Gehan [33], Peace and Flora [34], Kellerer and Chmelevsky [35] and so
on).

In this paper, to discuss a simpler approach for calculating sample sizes with the two
correlated time-to-event outcomes, we assume that the time-to-event outcomes are
exponentially distributed. This implies that the method discussed here would work if
proportional hazards assumption is satisfied. In real clinical trials, the assumption of
constant hazard function may be unrealistic. So that, in actual sample size determinations,
one may wish to explore a variety of reasonable scenarios including exponential and
nonexponential assumptions. For more general methods, please see Sugimoto et al. [6, 7]. In
addition, for other outcomes such as continuous, binary, and their mixed ones, please see
Sozu, Sugimoto and Hamasaki [36–38].
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Figure 1.
Relationship between correlations for Clayton, positive stable, and Frank copulas with
limited recruitment and censoring, where T0 = 2, λT1/λC1 = λT2/λC2 and ST1(T) = ST2(T).
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Figure 2.
Behavior of the sample size with common correlation ρT = ρC = ρ: sample size (equally
sized groups: r 0.5) was calculated to detect the joint reduction in both of the time-to-event
outcomes with the overall power of 1 − β = 0.80 at the significance level of α = 0.025, where
T0 = 2 and T = 5, λT1/λC1 = 0.667 and ST1(5) = ST2(5) = 0.5 (C: Clayton copula, PS:
positive stable copula, F: Frank copula).
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Figure 3.
Behavior of the empirical overall power for the log-rank test with common correlation ρT =
ρC = ρ: sample size (equally sized groups: r = 0.5) was calculated to detect the joint
reduction in both of the time-to-event outcomes with the overall power of 1 − β = 0.80 at the
significance level of α = 0.025, where T0 = 2 and T = 5, λT1/λC1 = 0.667 and ST1(5) =
ST2(5) = 0.5 A: Data were generated from the Clayton copula. B: Data were generated from
the positive stable copula. C: Data were generated from the Clayton copula.
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