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Summary.

In stepped wedge cluster randomized trials, intact clusters of individuals switch from control to 

intervention from a randomly assigned period onwards. Such trials are becoming increasingly 

popular in health services research. When a closed cohort is recruited from each cluster for 

longitudinal follow-up, proper sample size calculation should account for three distinct types of 

intraclass correlations: the within-period, the inter-period, and the within-individual correlations. 

Setting the latter two correlation parameters to be equal accommodates cross-sectional designs. 

We propose sample size procedures for continuous and binary responses within the framework of 

generalized estimating equations that employ a block exchangeable within-cluster correlation 

structure defined from the distinct correlation types. For continuous responses, we show that the 

intraclass correlations affect power only through two eigenvalues of the correlation matrix. We 

demonstrate that analytical power agrees well with simulated power for as few as eight clusters, 

when data are analyzed using bias-corrected estimating equations for the correlation parameters 

concurrently with a bias-corrected sandwich variance estimator.
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1. Introduction

Cluster randomized trials (CRTs) are designed to evaluate the effect of an intervention 

administered at the cluster level. Common reasons for conducting such trials include 

minimizing treatment contamination between individuals in the same cluster, facilitating 

administrative convenience, and avoiding ethical issues (Murray, 1998). In the traditional 
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two-arm parallel design, half of the clusters are assigned to each arm, and the intervention is 

implemented concurrently in the treated clusters. Although frequently used in practice, a 

parallel design may not always be logistically feasible with limited resources (Turner et al., 

2017). The stepped wedge design combats this resource limitation by switching clusters to 

intervention in a staggered fashion. In a stepped wedge design, each cluster starts from the 

control condition and crosses over to receive intervention from a randomly assigned period 

onwards (Hussey and Hughes, 2007). Individual responses within each cluster will be 

assessed during each period based on a cross-sectional sample or a closed cohort, until all 

clusters are exposed to the intervention. The stepped wedge design is sometimes considered 

more ethically acceptable when the intervention is believed to be superior than the standard 

care, and it has been increasingly used in health care research to evaluate the effect from 

changes in the way that health services are delivered or in the training that health care 

professionals received.

A distinguishing feature of a CRT is that responses within the same cluster are more similar 

than those from different clusters, because each cluster is usually not formed at random but 

rather through some natural connections among its members. The intraclass correlation 

coefficient provides a quantitative assessment of this within-cluster similarity, and the 

statistical implications on the sample size due to the intraclass correlation have been well 

studied, particularly in parallel designs (Murray, 1998). When a stepped wedge CRT 

involves cross-sectional measurements on different sets of individuals, two types of 

intraclass correlations have been recognized, the within-period and inter-period correlations 

(Martin et al., 2016). When a closed cohort is recruited from each cluster for longitudinal 

follow-up, an additional within-individual correlation should be considered in the design and 

analysis, since repeated measurements are taken for the same individuals (Hughes et al., 

2015). There are two commonly used statistical models which account for these different 

types of correlations, conditional and marginal models. Although each modeling approach 

has its advantages, an important distinction between them is the difference in interpretation 

of the regression parameters (Preisser et al., 2003). In a stepped wedge trial, the treatment 

effect from a marginal model describes how the average response changes across the subsets 

of population defined by the treated and control cluster-periods. By contrast, the treatment 

effect from a conditional model is interpreted as the average change in responses from 

control to intervention conditional on the unobserved random effects; in other words, this 

interpretation applies to a conceptual population of cluster-periods possessing the same 

values of some latent variables. Correspondingly, the design and analysis of stepped wedge 

CRTs have mostly been based on (generalized) linear mixed models; see, for instance, 

Hussey and Hughes (2007), Woertman et al. (2013); Hemming et al. (2015); Hooper et al. 

(2016). However, since stepped wedge CRTs are often used in health care research to inform 

policy decisions, marginal models carry a straightforward population-averaged interpretation 

and may be preferred. Accordingly, this article proposes methods for designing stepped 

wedge CRTs for analysis with marginal models, with an emphasis on cohort studies.

2. GEE Analyses of Stepped Wedge Designs

We consider a cohort stepped wedge design with I clusters and T periods, where a closed 

cohort of individuals from each cluster are identified at the start of the trial and followed up 

Li et al. Page 2

Biometrics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for repeated measurements. Let yijk be the response of individual k = 1, . . . , Ni from cluster 

i = 1, . . . , I during period j = 1, . . . , T. A complete design is assumed such that 

measurements are taken for all individuals during each period (Hemming et al., 2015). A 

step is defined as the pre-planned time point when at least one cluster crosses over from 

control to intervention. We denote the total number of steps by S (2 ≤ S < T), and the 

number of clusters that cross over at each step by ms such that ∑s = 1
S ms = I. We assume 

there are b ≥ 1 baseline measurements taken for each individual under the control condition, 

and cs ≥ 1 follow-up measurements taken for each individual after step s but prior to step s 
+ 1 (or end of study). Therefore, we associate each measurement time point with a distinct 

period and define the total number of periods T = b + ∑s = 1
S cs. A standard stepped wedge 

design is given by b = cs = 1 for all s, and T = S + 1 (T ≥ 3). A schematic illustration of a 

standard design is given in Figure 1.

Denote μijk as the marginal mean response, which is related to the intervention and period 

effects via the following generalized linear model

g μi jk = β j + Xi jδ, (1)

where g is a link function, βj is the jth period effect, Xij is the treatment indicator of cluster i 
in period j (Xij = 1 if cluster i receives intervention in period j and 0 otherwise), and δ is the 

marginal intervention effect on the link function scale. We further let θ = (β1, . . . , βT, δ)ˊ 
be the vector of parameters in mean model (1), Xi = (Xi1, . . . , XiT,)ˊ be the treatment 

sequence associated with cluster i (i.e., a sequence of zeros followed by a sequence of ones), 

and v(μijk) be the variance function. To characterize the degree of similarity between 

individual responses taken from each cohort, we employ the correlation structure with the 

following specification suggested by Preisser et al. (2003): (i) the within-period correlation, 

α0, that measures the similarity between responses from different individuals within the 

same cluster during the same period (corr(yi jk, yi jk′) = α0 for k ≠ k′); (ii) the inter-period 

correlation, α1, that measures the similarity between responses from different individuals 

within the same cluster but across periods (corr(yi jk, yi j′k′) = α1 for j ≠ jˊ and k ≠ kˊ); (iii) the 

within-individual correlation, α2, that measures the similarity between responses from the 

same individual across periods (corr(yi jk, yi j′k) = α2 for j ≠ j′). Although no additional 

covariates are included in model (1), such an extension is straightforward.

Let yi = (yi11, yi12…, yiTNi
)′ and μi = (μi11, μi12…, μiTNi

)′ be the TNi × 1 response vector and 

marginal mean vector of cluster i, respectively, where TNi is the total number of 

observations in cluster i. We use generalized estimating equations (GEE; Liang and Zeger, 

1986) to estimate the intervention effect in equation (1). We define Di = ∂μi/∂θˊ, and let 

Vi = Ai
1/2RiAi

1/2 be a working covariance matrix for yi, where Ai is the TNi-dimensional 

diagonal matrix with elements ϕv(μijk) with ϕ representing the dispersion parameter; Ri(α) is 

a working correlation matrix that may vary across clusters but is specified by the common 

parameter α = (α0, α1, α2)ˊ. We can succinctly write the working correlation for cluster i as
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Ri = 1 − α0 + α1 − α2 ITNi
+ α2 − α1 JT ⊗ INi

+ α0 − α1 IT ⊗ JNi
+ α1JTNi

,
(2)

where Ju = 1u1u′  is a u × u matrix of ones, Iu is the u × u identity matrix. Both the diagonal 

and off-diagonal Ni × Ni blocks of Ri are of the exchangeable form given by 

1 − α0 INi
+ α0JNi

 and α2 − α1 INi
+ α1JNi

, respectively. If the off-diagonal blocks are 

viewed as scalar elements, Ri assumes an exchangeable form; therefore Ri is termed block 

exchangeable. In Web Appendix A, we show that Ri has four distinct eigenvalues,

λ1 = 1 − α0 + α1 − α2,
λ2 = 1 − α0 − (T − 1) α1 − α2 ,
λi3 = 1 + Ni − 1 α0 − α1 − α2,
λi4 = 1 + Ni − 1 α0 + (T − 1) Ni − 1 α1 + (T − 1)α2 .

The combinations of (α0, α1, α2) for which Ri is positive definite can be efficiently 

determined from the set of linear constraints, min{λ1, λ2, λi3, λi4} > 0.

The GEE estimator θ is obtained by solving ∑i = 1
I Di′Vi

−1 yi − μi = 0. In practice, any 

consistent estimator of α may be used without affecting the consistency of θ (Liang and 

Zeger, 1986). When the dimension of the correlation matrix is large (TNi ≥ 2000), fast 

computation is achieved by directly calculating the following expression and hence avoiding 

numeric matrix inversion (see Web Appendix A for a derivation)

Ri
−1 = 1

λ1
ITNi

−
α2 − α1

λ1λ2
JT ⊗ INi

−
α0 − α1

λ1λi3
IT ⊗ JNi

+
α2 − α1 α0 − α1

λ1λ2λi3
+

α2α0 − α1
λ2λi3λi4

JTNi
.

To reduce the finite sample bias of the correlation parameter estimates, we use an additional 

set of matrix-adjusted estimating equations (MAEE) of Preisser et al. (2008) to estimate α. 

For continuous responses, we further propose to use the bias-corrected moment-based 

estimator for ϕ. For binary responses, ϕ is usually set to be 1. Here, we focus on the marginal 

mean model parameters, and defer the related technical details of MAEE to Web Appendix 

B. When the number of clusters I is sufficiently large (≥ 40), θ is approximately multivariate 

normal with mean θ and covariance estimated by the model-based estimator 

Σ1
−1 = {∑i = 1

I Di′(θ)Vi
−1(α)Di(θ)}−1

, or by the sandwich estimator Σ1
−1Σ0Σ1

−1 where
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Σ0 = ∑
i = 1

I
CiDi′(θ)Vi

−1(α)Biriri′Bi′Vi
−1(α)Di(θ)Ci, (3)

and ri = yi − μi is the residual vector of cluster i. In large samples (I ≥ 40), the sandwich 

estimator provides valid inference regardless of the correct specification of Ri, while the 

consistency of the model-based variance estimator is dictated by the correct specification of 

the correlation structure. In equation (3), setting Ci = IT+1 and Bi = ITNi
 gives the 

uncorrected sandwich estimator of Liang and Zeger (1986), which is referred to as BC0. 

When I is small, BC0 tends to be biased downwards and may inflate the type I error rate 

(Kauermann and Carroll, 2001). We define the cluster leverage by Hi = DiΣ1
−1Di′Vi

−1; setting 

Ci = IT+1 and Bi = ITNi
− Hi

−1/2
 gives the bias-corrected variance estimator of Kauermann 

and Carroll (2001), or BC1. Setting Ci = IT+1 and Bi = ITNi
− Hi

−1
 gives the bias-corrected 

variance estimator of Mancl and DeRouen (2001), or BC2. Setting Ci = diag{(1 − min{r, 

[Qi]jj})−1/2} and Bi = ITNi
, where Qi = Di′Vi

−1DiΣ1
−1, gives the bias-corrected variance of Fay 

and Graubard (2001), or BC3. The bound parameter r usually takes the default value 0.75 to 

avoid over-correction. Since the elements of the cluster leverage matrix are between 0 and 1, 

we have BC0 < BC1 < BC2 (Preisser et al., 2008). Further, BC3 tends to be close to BC1 

(Scott et al., 2017).

For a parallel CRT with binary responses, Lu et al. (2007) found that bias correction for α 
by MAEE slightly improved the coverage probability of the normality-based confidence 

interval of θ using the model-based variance, but such a correction had a negligible effect on 

procedures that used the sandwich estimators, that is, BC0, BC1, and BC2. On the other 

hand, MAEE could substantially reduce the bias of the correlation estimator α (Preisser et 

al., 2008). For a three-level CRT with binary responses, Teerenstra et al. (2010) reported that 

the use of MAEE with a t-test for θ based on the model-based variance estimator or BC1 

maintained the nominal test size and provided power levels close to analytical predictions. 

We investigate in Section 4 the performance of these tests for a cohort stepped wedge design 

with both continuous and binary responses.

Although our presentation focuses on a cohort design, an application to a cross-sectional 

design is straightforward. In a cross-sectional design, the correlation structure may depend 

only on α0 and α1 since usually different sets of individuals are assessed for each cluster at 

different periods, and α2 is no longer required. Therefore, the block exchangeable 

correlation structure Ri reduces to the nested exchangeable structure introduced in 

Teerenstra et al. (2010), and the above GEE procedure can be adapted by setting α2 = α1.

Li et al. Page 5

Biometrics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Statistical Power and Sample Size

Suppose that we are interested in testing the null hypothesis of no intervention effect H0 : δ 
= 0 using a two-sided test. Based on mean model (1), the asymptotic distribution of I(δ − δ)
is normal with mean zero and variance determined by the (T + 1, T + 1)th element of 

cov{ I(θ − θ)}. A normality-based z-test statistic for H0 uses δ /{var(δ )}1/2 and is compared 

to the standard normal distribution. Asymptotically, the power to detect an intervention 

effect of size δ ≠ 0 with a nominal type I error rate α is

power = Φ zα/2 + |δ | / var(δ ) , (4)

where Φ is the standard normal distribution function and zα/2 is the associated upper α/2-th 

quantile. To account for the uncertainty in estimating the asymptotic variance of δ , we may 

alternatively use δ /{var(δ )}1/2 as a t-statistic, which is compared to the t-distribution with I − 

(T + 1) degrees of freedom. Then the power to detect an intervention effect of size δ is 

modified to be

power = Φt, I − (T + 1) tα/2, I − (T + 1) + |δ | / var(δ ) , (5)

where Φt,n is the cumulative t-distribution function with n degrees of freedom and tα/2,n is 

the corresponding upper α/2th quantile. Because critical values associated with the z-test are 

closer to zero, it is expected that the z-test is more likely to result in anti-conservative 

inference for a GEE analysis coupled with BC0 compared to the t-test. On the other hand, 

the two tests may have different implications for the class of bias-corrected sandwich 

estimators, which are known to provide different degrees of inflation relative to the 

uncorrected sandwich variance. In the subsequent power calculations, we assume for 

simplicity that each cluster recruits a cohort of the same size such that Ni = N, λi3 = λ3, and 

λi4 = λ4 for each cluster i.

3.1. Continuous Responses

When the response yijk is continuous and g is the identity link, a closed-form power formula 

can be obtained since we can derive an explicit expression for var(δ ). We assume the 

covariance of yi to be known and given by var(yi) = Vi. Therefore, var(δ ) is the (T + 1, T 

+ 1)th element of the model-based variance Σ1
−1. In Web Appendix C, we show that the 

variance of the intervention effect estimator is

var(δ ) =
(ϕ/N)ITλ3λ4

U2 + ITU − TW − IV λ4 − U2 − IV λ3
, (6)
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where U = ∑i = 1
I ∑ j = 1

T Xi j, W = ∑ j = 1
T (∑i = 1

I Xi j)
2
, and V = ∑i = 1

I (∑ j = 1
T Xi j)

2
 are design 

constants that only depend on the treatment sequence each cluster receives. This variance 

further depends on the correlation parameters through two eigenvalues of the block 

exchangeable correlation matrix, λ3 and λ4. Further, for fixed number of clusters I and 

periods T, as the cohort size N → ∞, we could show that

lim
N ∞

var(δ ) =
ϕI α0 − α1 α0 + (T − 1)α1

(IU − W) α0 + (T − 1)α1 + U2 − IV α1
. (7)

As a result, the limit of var(δ ) is controlled by I, T, and two correlation parameters α0, α1 

(see Web Appendix C for a detailed discussion); expression (7) may be useful as an 

approximation to variance (6) when N is large. We note that the GEE-based variance (6) is 

equivalent to the variance formula provided in Li et al. (2018) based on a linear mixed model 

with three random intercepts. Variance formula (6) generalizes the Hussey and Hughes 

(2007) formula based on a simple linear random intercept model to cohort designs. 

Specifically, if a single correlation parameter is used to characterize the working correlation 

Ri such that α0 = α1 = α2 in (2) and Ri is exchangeable, then (6) reduces to the variance in 

Hussey and Hughes (2007) from noting that ϕ is the total variance components of yijk. For a 

cross-sectional design, the within-period correlation, α0, and the inter-period correlation, α1, 

may be sufficient to represent the correlation structure, that is, one could equate α2 = α1 in 

(2) and adjust the values of λ3 and λ4 in (6) to obtain the appropriate variance. Plugging 

var(δ ) in (4) and (5) gives the analytical power formula for a z-test and a t-test.

In general, directly solving equations (4) and (5) for the required number of clusters is 

difficult. However, in the following case we can derive the design effect of a stepped wedge 

CRT relative to an individually randomized study to facilitate sample size determination. 

Following Woertman et al. (2013), we assume that an equal number of clusters cross over to 

intervention at each step such that ms = m, and further that an equal number of 

measurements are taken after each step such that cs = c for all s = 1, . . . , S. Under such 

simplifications, we obtain a design with I = Sm clusters, T = b + Sc periods, and design 

constants U = 1
2S(S + 1)mc, W = 1

3S3 + 1
2S2 + 1

6S m2c, V = 1
3S3 + 1

2S2 + 1
6S mc2, which can be 

used to simplify var(δ ). We compare the variance of δ  in a stepped wedge design versus its 

counterpart in an individually randomized design, where the sample mean difference is used 

to estimate δ. Given that the sample mean difference has variance 4ϕ/(NSm), the design 

effect defined as the ratio of var(δ ) under these two designs is given by,

design effect = 3
2c(S − 1/S)

(b + Sc)λ3λ4
(Sc/2)λ3 + (b + Sc/2)λ4

. (8)

This design effect generalizes the one given in Woertman et al. (2013) based on the Hussey 

and Hughes (2007) model and agrees with the design effect derived by Hooper et al. (2016) 

based on a linear mixed model. To estimate sample size, we could first compute the required 
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number of individuals in an individually randomized trial, and then multiply by (8) to obtain 

the required number of individuals in a cohort stepped wedge design (rounding up to the 

nearest integer or, for a balanced design, multiple of I). Given the required total number of 

individuals, the required number of clusters, and the required cohort size can be ascertained. 

The design effect could also be used to study how the correlations affect the required sample 

size. Since λ3 and λ4 increase as the within-period correlation α0 increases, the required 

sample size will inflate given a larger value of α0. Therefore, α0 mimics the traditional 

intraclass correlation in a parallel design. However, the impact of the inter-period and 

within-individual correlations are less apparent from expression (8). We plot the design 

effect as a function of α1 and α2 for several scenarios in Web Figures 1 and 2. Both figures 

indicate that larger values of α1 or α2 reduce the required sample size when all the 

correlations are positive. Finally, we remark that power and sample size calculations with 

continuous responses do not depend on the period effect, as variance expression (6) is free of 

βj.

3.2. Binary Responses

When yijk is binary and g is the canonical logit link, the desired variance var(δ ) cannot be 

obtained in closed-form because the marginal variance v(μijk) = μijk(1 − μijk) depends on the 

marginal mean. However, power calculations can be performed by adapting the general 

methodology presented in Rochon (1998). To proceed, we specify a value for I and divide 

the participating clusters into S groups depending on the step at which they cross over to 

receive intervention, and so ms clusters will be included in the sth group. Then, the expected 

longitudinal trajectory over T periods for the sth group of clusters will be assumed as μs = 

(μs1, . . . , μsT)ˊ. This could be informed by previous trials with a similar endpoint or pilot 

data. Note that based on model (1), μs is selected according to μijk = exp(βj + Xijδ)/(1 + 

exp(βj + Xijδ)). Since the design matrix of a cluster in group s based on mean model (1) is 

Zs = (IT, Xs) ⊗ 1N where Xs is the treatment sequence received by all clusters in group s, we 

can solve for θ by generalized least squares, θ = (∑s = 1
S msZs′WsZs)

−1∑s = 1
S msZs′Wsgs, where 

gs = (g(μs1), . . . , g(μsT)ˊ, Ws = As
1/2Rs

−1As
1/2, As = diag{v(μs1), . . . , v(μsT)}, and Rs = R(α) 

is the common block exchangeable correlation matrix. The detectable effect size expressed 

in the log odds ratio, δ, is the (T + 1)th element in θ. The variance var(δ ) is the (T + 1, T 

+ 1)th element of the model-based variance Σ1
−1 = (∑s = 1

S msZs′WsZs)
−1

 , and can be used in 

equations (4) or (5) for power calculations. Unlike with continuous responses, power 

calculation with binary responses implicitly depends on the assumed period effect specified 

in θ, and sensitivity analyses could be conducted to gauge how power changes due to 

different assumptions of the period effect.

4. Simulation Study

We conducted a simulation study to assess the empirical size of the GEE Wald-tests in the 

context of a cohort stepped wedge CRT. Further, we compared the accuracy of the predicted 

power to the empirical power of the tests that maintained the nominal size. We generated 

correlated continuous responses in each cluster from a multivariate normal distribution with 
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mean specified by model (1) and variance R(α) (g is the identity link and the total variance ϕ 
= 1). For illustration purposes, a gently increasing period effect was assumed such that β1 = 

0 and βj+1 − βj = 0.1 × (0.5)j−1 for j ≥ 1. We noted that the conclusions were insensitive to 

the choice of the period effect since these effects were accounted for in the GEE analyses. 

The effect size δ/ϕ1/2 was fixed at zero for studying empirical test size and varied from 

{0.65, 0.40, 0.35, 0.25} for studying power. Additionally, correlated binary responses within 

clusters were generated from a binomial model with marginal mean specified by (1) with a 

logit link and correlation R(α) using the method of Qaqish (2003). Baseline prevalence 

e
β1/ 1 + e

β1  for all clusters were chosen from {0.75, 0.70, 0.65}. We assumed a gently 

decreasing period effect on the logit scale such that βj − βj+1 = 0.1 × 0.5j−1 for j ≥ 1. The 

effect size in odds ratio exp(δ) was fixed at 1 for studying empirical size and varied from 

{0.25, 0.30, 0.45, 0.60} for studying power. For both types of responses, we chose α = (α0, 

α1, α2) = {(0.03, 0.015, 0.2), (0.1, 0.05, 0.2), (0.01, 0.005, 0.4)} to represent a range of 

different correlation values. In particular, the values of α0 are representative of small 

correlations commonly reported in parallel CRTs (Murray, 1998), and the inter-period 

correlation α1 was assumed smaller than α0, as observed in Martin et al. (2016). The values 

of α2 were chosen to reflect small to moderate within-individual correlations in longitudinal 

studies, and were assumed to be larger than α0 and α1. We have also studied scenarios with 

larger values of α2; findings remained similar and the details are omitted for brevity.

We varied the number of clusters I from 8 to 25 since CRTs usually involve a limited 

number of clusters. We also varied the cohort size N from 4 to 25, and the number of steps S 

from 2 to 6 to ensure the predicted power was at least 80%. For simplicity, we focused on 

the standard design with b = 1 baseline measurement and cs = 1 follow-up measurement 

after each step. We assumed that an equal number of ms = I/S clusters crossed over to 

intervention at a randomly-assigned step and so I is a multiple of S = T − 1. For each 

scenario, we generated 1000 data replicates and fit GEE for the mean model and MAEE for 

the block exchangeable correlation structure (the bias-corrected moment-based estimator for 

ϕ given in Web Appendix B was used with continuous responses; ϕ was set as 1 with binary 

responses). We considered both two-sided t-tests and z-tests for testing H0 : δ = 0, 

constructed from the use of five different variance estimators for δ  , the model-based 

variance, BC0, BC1, BC2, and BC3. The convergence rate exceeded 98% for the majority of 

simulation scenarios except for a few cases (a summary of convergence rates along with the 

corresponding simulation scenarios is provided in Web Tables 1 and 2). The nominal test 

size was fixed at 5%, and we considered an empirical size between 3.6% and 6.4% to be 

acceptable according to the margin of error with 1000 replicates from a binomial model. 

Similarly, given the predicted power for each scenario was at least 80%, we considered an 

empirical power that differs at most 2.6% from the nominal value to be in agreement with 

the predicted power.

Figure 2 summarizes the empirical type I error rates of the z-test and the t-test with different 

variance estimators for continuous responses. Overall, the z-test tended to be more liberal 

compared with the corresponding t-test. The empirical size of a z-test was close to nominal 

level with the use of model-based variance or BC2, when there are at least 18 clusters 
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(tended to be liberal otherwise). The use of BC1 and BC3 with a t-test carried valid type I 

error rates across all simulation scenarios (only occasionally conservative), while the use of 

model-based variance or BC2 with a t-test was often conservative. The use of BC0 

frequently led to inflated type I error rates, especially when it was coupled with a z-test. The 

findings for binary responses are similar and presented in Web Figure 3. Using a z-test, the 

empirical power based on the model-based variance was close to the prediction, while the 

empirical power based on BC2 was lower than predicted (Figure 3 and Table 1). Although z-

tests based on the other variance estimators closely matched the analytical power, they 

carried an inflated size throughout. Using a t-test, the empirical power based on BC1 and 

BC3 corresponded well with the predicted power, while the empirical power based on the 

model-based variance may slightly exceed the prediction. The t-test with BC2 had lower 

power than predicted in most scenarios. Simulations with binary responses yielded 

qualitatively similar results, which are presented in Web Figure 4 and Web Table 3.

5. Application

We illustrate our approach to determine the required sample size of a cohort CRT evaluating 

the effect of an intervention on physical function of end-stage renal disease patients in 

Australia (Bennett et al., 2013). The intervention was an accredited exercise physiologist 

coordinated resistance exercise program, offered to improve the health-related quality of life 

for dialysis patients. Each hemodialysis clinic was a cluster, within which patients were 

recruited and followed over time. Since there was prior evidence signaling benefit on 

physical quality of life from the resistance exercise, a stepped wedge design was considered 

appropriate. The randomization was conducted at the clinic level, and responses were 

measured at the patient level. The duration of the study was 48 weeks, with evenly spaced T 
= 4 periods. There were I = 15 participating clinics, and S = 3 steps were considered (a 

schematic illustration is in Figure 1). No exercise programs were offered during the first 

period. The clinics were randomly split into three groups, each containing five clinics, 

crossing over to receive intervention at week 12, 24, or 36. For illustration, we assumed a 

standard design with one measurement at the end of each period (b = cs = 1) and thus a total 

of 4 measurements will be recorded for each patient. Since the number of participating 

clinics was pre-planned, we focused on calculating the required number of patients per clinic 

to achieve at least 80% power at the 5% nominal test size.

The primary outcome was the 30-second sit-to-stand (STS) test, which measured the number 

of times a participant could rise from and return to a seated position in a 30-second time 

frame. A standardized effect size of 0.65 was estimated from a previous study on STS test 

for hemodialysis patients with end-stage renal disease (Bennett et al., 2013). The within-

period correlation was provided as α0 = 0.03 from a previous study (Littenberg and 

MacLean, 2006); we assumed the inter-period correlation as half of the within-period 

correlation, α1 = 0.015, and assigned a conservative value, α2 = 0.2, to the within-individual 

correlation. Since I = 15, we planned to use a t-statistic instead of a z-statistic to avoid 

potential type I error rate inflation from the GEE analysis. Given that an equal number of 

clusters switched to intervention at each step, the design constants are U = IT/2, W = I2T(2T 
− 1)/{6(T − 1)}, V = IT(2T − 1)/6, and variance (6) is
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var(δ ) =
12(ϕ/N)(T − 1)λ3λ4

I(T − 2) (T − 1)λ3 + (T + 1)λ4
. (9)

Power was estimated using equations (5) and (9) to be 72.9% if N = 3 and 83.7% if N = 4, 

therefore four patients would be recruited in each clinic. Because an equal number of 

clusters crossed over to the intervention at each step, we could alternatively use design effect 

(8) directly for sample size estimation. Suppose this was an individually randomized trial, 92 

patients would be required (the working degrees of freedom of a t-test is 10 to match the 

stepped wedge design). Assuming three patients would be recruited in each clinic, the design 

effect is 0.58, indicating a total of 54 patients would be needed and 18 clinics would be 

required. Because we could only afford 15 clinics, we adjusted N = 4, and re-computed the 

design effect to be 0.60. Hence 55 patients would be required for a total of 55/4 ≈ 14 clinics. 

Therefore, including four patients in each of the 15 clinics guaranteed 80% power.

We investigated the sensitivity of power calculation by varying the values of α1 and α2, 

which are less commonly reported than α0. The power prediction was plotted as function of 

α1 and α2 at α0 = {0.03, 0.06, 0.1} assuming I = 15, T = 4 and N = 4. Notably, power 

decreases as α0 increases but increases as either α1 or α2 increases. When α0 = 0.03, the 

power remains above 80% regardless of the values of α1 ∈ (0, 0.1) and α2 ∈ (0, 0.5). When 

α0 takes the upper bound, 0.06, reported in Littenberg and MacLean (2006), small values of 

α1 and α2 may result in slight loss in power (≈ 78% at the lower left corner of Figure 4(b)). 

Additional power loss was observed with a moderate within-period correlation, α0 = 0.1.

6. Discussion

Since a cohort stepped wedge design involves repeated measurements for fixed sets of 

individuals, we consider a block exchangeable correlation structure that models three 

distinct types of correlations for power calculations. The within-period correlation, α0, is 

similar to the conventional intraclass correlation in a parallel CRT. Larger values of α0 

inflate the required sample size for a given level of power. By contrast, larger (positive) 

values of the inter-period correlation, α1, and the within-individual correlation, α2, appear to 

reduce the required sample size. In practice, power calculations should be guided by 

reasonable estimates of these correlations. The within-period correlation is usually estimated 

by the intraclass correlation reported in previous trials with a similar endpoint. However, the 

inter-period correlation is less commonly reported, although such reporting practice is 

advocated (Preisser et al., 2007; Martin et al., 2016). This type of correlation was also 

discussed in designing crossover CRTs, and a default value of half the within-period 

correlation has been recommended in the absence of external information (Giraudeau et al., 

2008). The within-individual correlation could perhaps be obtained from published 

longitudinal studies with a similar endpoint. In any case, the sensitivity of sample size and 

power should be investigated for a range of correlation values, as illustrated in Section 5. 

Notably, the combination of (α0, α1, α2) is valid only if the resulting correlation matrix is 

positive definite; this condition could be efficiently checked by the set of linear constraints 

provided in Section 2.
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In finite samples, we found that the normality-based z-test coupled with the model-based 

variance with correlation estimated by MAEE performed well with a correct size and 

adequate power when there were at least 18 clusters. In this case, the z-test has higher power 

than the t-test and is preferred. This finding agrees with the simulations of Lu et al. (2007) 

based on a two-correlation model. They also reported that for a within-cluster covariate, the 

normality-based confidence interval with BC2 produced better coverage than BC0 and BC1. 

Since the treatment varies within each cluster over time, we confirmed that the z-test using 

BC2 produced closer to nominal size compared to BC0 and BC1. However, this test was 

underpowered. With as few as eight clusters, a t-test coupled with BC1 or BC3 might be 

favored. Similarly, the use of BC1 with a t-test was recommended by Teerenstra et al. (2010) 

in a three-level CRT involving as few as 10 clusters. We noticed that the t-test with the 

model-based variance was conservative under the null. Even though its empirical power 

remained unaffected across the effect sizes we investigated, the model-based variance may 

produce lower power than the use of either BC1 or BC3 for smaller effect sizes (Web Figure 

5). Finally, the t-test might not be universally recommended. In extreme cases where a single 

cluster crosses over at each step, the number of mean model parameters in (1) exceeds the 

number of clusters and the t-test degrees of freedom become inappropriate. To overcome this 

issue, one could assume a linear time trend in model (1) and use this parsimonious 

parameterization to estimate sample size and conduct subsequent analysis. However, such a 

design may be discouraged for practical reasons since it takes longer to finish, and will 

likely increase the burden to collect repeated measurements (Hussey and Hughes, 2007).

In summary, the block exchangeable correlation structure represents a three-correlation 

parameter model and applies to a cohort stepped wedge CRT. For a cross-sectional design, 

the nested exchangeable structure can be obtained as a special case of the block 

exchangeable structure, and our results still apply. We have assumed that the block 

exchangeable structure is the correctly specified correlation model for the responses. 

However, the GEE analyses based on sandwich variance estimators are robust to correlation 

misspecification in that they provide consistent estimation for the intervention effect. If it is 

anticipated at the design phase that the working correlation model is misspecified, power 

calculations require supplementation of a hypothesized true correlation structure and the 

robust sandwich variance should be used to develop a modified sample size procedure 

(Rochon, 1998).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic illustration of a standard, complete stepped wedge design with I = 15 clusters 

and T = 4 periods. There is b = 1 baseline measurement and S = 3 steps. Only cs = 1 follow-

up measurement is taken after each step. Each row represents five randomly selected clusters 

that cross over to receive intervention at a pre-determined step. A blank cell indicates the 

control condition and a gray cell indicates the intervention condition.
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Figure 2. 
Empirical type I error rates for GEE-based (a) z-tests and (b) t-tests for continuous 

responses. MB: model-based variance; BC0: uncorrected sandwich variance; BC1: KC-

corrected sandwich variance; BC2: MD-corrected sandwich variance; BC3: FG-corrected 

sandwich variance.
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Figure 3. 
Differences between the empirical power and the predicted power of GEE-based (a) z-tests 

and (b) t-tests for continuous responses. MB: model-based variance; BC0: uncorrected 

sandwich variance; BC1: KC-corrected sandwich variance; BC2: MD-corrected sandwich 

variance; BC3: FG-corrected sandwich variance.
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Figure 4. 
Predicted power contours as a function of inter-period correlation, α1, and within-individual 

correlation, α2, holding the within-period correlation α0 = {0.03, 0.06, 0.1}, I = 15, T = 4, 

and N = 4. The block exchangeable correlation matrix is positive definite across the range of 

values for all displayed combinations of α0, α1, and α2.
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