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Sample Size Determination for Regression Models 

 Using Monte Carlo Methods in R 
 

A. Alexander Beaujean, Baylor University 

A common question asked by researchers using regression models is, What sample size is needed for 
my study? While there are formulae to estimate sample sizes, their assumptions are often not met in 
the collected data. A more realistic approach to sample size determination requires more 
information such as the model of interest, strength of the relations among the variables, and any 
data quirks (e.g., missing data, variable distributions, variable reliability). Such information can only 
be incorporated into sample size determination methods that use Monte Carlo (MC) methods. The 
purpose of this article is to demonstrate how to use a MC study to decide on sample size for a 
regression analysis using both power and parameter accuracy perspectives. Using multiple regression 
examples with and without data quirks, I demonstrate the MC analyses with the R statistical 
programming language. 
 

A question posed in the design of many research 
studies is: What sample size is needed? Being able to 
answer this question is important because institutional 
research boards and most granting agencies require that 
investigators specify the size of the sample they intend 
to collect. In addition, most reporting guidelines for 
education, psychology, and health professions research 
require authors to state how they determined their 
sample size (e.g., American Educational Research 
Association, 2006; American Psychological Association 
Publications and Communications Board Working 
Group on Journal Article Reporting Standards, 2008; 
Moher et al., 2010). More practically, conducting a 
study with the wrong sample size can be costly–having 
too few participants results in the inability to find 
effects or precisely estimate their values, while having 
too many participants results in wasting the 
investigators’ valuable resources. 

Typically investigators determine the needed 
sample size via some table or formulae in a textbook 
(e.g., Murphy & Myors, 1998), or by using specifically-
designed software (e.g., Faul, Erdfelder, Lang, & 
Buchner, 2007). While this approach can be useful for 
simple projects, the assumptions used in these 

calculations often do not hold in the actual data. An 
alternative approach to determining the required 
sample size is to use a Monte Carlo (MC) study. 

MC studies use random sampling techniques, 
typically done through computer simulation, to build 
data distributions (Beasley & Rodgers, 2012). 
Researchers often use them as an empirical alternative 
to solve problems that are too difficult to solve through 
statistical or mathematical theory (Fan, 2012). There are 
a variety of uses for MC studies, ranging from 
understanding statistics with unknown sampling 
distributions to evaluating the performance of a 
statistical technique with data that do not meet the 
technique’s assumptions. 

Previously, Muthén and Muthén (2002) showed 
how MC methods can be useful to determine sample 
size for a structural equation model (SEM). While this 
approach has been praised (Barrett, 2007), it requires 
using specialized proprietary software and has not been 
readily accessible to a wide audience. Further, while 
regression is a specific type of 

SEM (Hoyle & Smith, 1994), scholars who rely on 
regression analysis might not understand how they are 
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related. Thus, they may have ignored the MC approach 
to sample size determination. Consequently, there is a 
need to show how to use MC methods, using freely 
accessible software, to determine the needed sample 
size for use with regression models. 

The purpose of this article is to demonstrate the 
use of a MC study to determine the required sample 
size for a multiple regression analysis. I demonstrate 
such analyses using the R (R Development Core Team, 
2014) statistical programing language, which is open 
source, available for multiple operating systems, has 
extensive data simulation facilities, and has great 
flexibility that is unmatched by most other statistics 
programs (Kelley, Lai, & Wu, 2008). 

Power Analysis 

Power analysis was developed concurrently with 
null hypothesis significance testing (NHST), although it 
wasn’t until Jacob Cohen’s work in the 1960s that it 
became popular (Descôteaux, 2007). NHST pits two 
competing hypotheses against each other: the null (H0) 
and the alternative (Ha). When used for power analysis, 
H0 is usually specified to be that the parameter of 
interest equals zero, while Ha is specified to be that the 
parameter does not equal zero. The needed sample size 
in this scenario refers to the number of observations 
required to reject H0. 

Power analysis involves four interrelated concepts:  

a) sample size;  

b) type 1 error (α);  
c) type 2 error (β) or statistical power (1–β); and  
d) effect size (Cohen, 1988).  

The concepts are deterministically related to each other, 
meaning that if three are known, so is the fourth. Thus, 
providing values for type 1 error, type 2 error (or 
power), and the effect size will provide the needed 
sample size. 

Type 1 and type 2 error values are relatively 
straightforward to provide, but an effect size (ES) is 
more difficult to specify (Cohen, 1992). Not only are 
there different types of ESs that use different metrics 
and are only useful with certain kinds of data (Grissom 
& Kim, 2005), but there is usually little knowledge of 
what constitutes a typical or clinically-relevant ES 
magnitude for a given field of study (Hill, Bloom, 
Black, & Lipsey, 2008). In regression, the ES measure 
is usually a regression coefficient or the amount of the 

variance the model explains of the outcome variable 
(i.e., R2). 

Parameter Accuracy 

Many scholars have sharply criticized NHST over 
the last two decades (Cumming, 2014; Wilkinson & 
American Psychological Association Science 
Directorate Task Force on Statistical Inference, 1999). 
More recently, scholars have begun placing the NHST-
related power analysis procedure under scrutiny as well 
(Bacchetti, 2010, 2013). As an alternative to 
determining sample size through a power analysis is to 
determine it using accuracy in parameter estimation 
(AIPE; Kelley & Maxwell, 2003; Maxwell, Kelley, & 
Rausch, 2007). Although the two approaches are not 
mutually exclusive (Goodman & Berlin, 1994), their 
philosophies are very different. In the power analysis 
perspective, interest lies in having just enough accuracy 
so that the value of a parameter estimate is statistically 
different that zero (i.e., rejecting H0). In the AIPE 
perspective, interest lies in the accuracy of a 
parameter’s estimate, no matter if the estimate’s value is 
zero or any other variable. Kelley and Maxwell (2003) 
argued that the AIPE approach leads to a better 
understanding of an effect than the power approach. 
As NHST is embedded in the power approach, the 
only new knowledge it provides is whether a parameter 
is different than zero. Obtaining sufficiently accurate 
parameter estimates, however, can lead to knowledge 
about the parameter’s likely value. 

The accuracy component in AIPE is defined as the 
discrepancy between a parameter’s estimated value and 
its true value in the population (Hellmann & Fowler, 
1999). It is measured by the mean square error of a 
parameter’s estimator, which is comprised of two 
additive parts. The first is variance, the inverse of 
which is precision. The second part is bias. Thus, when 
a parameter estimator is unbiased, accuracy and 
precision are directly related to each other. 

The square root of a parameter’s variance is its 
standard error, which is used for creating a confidence 
interval (CI; Cumming & Finch, 2005). Consequently, 
one way to assess the accuracy of a parameter estimate 
is by examining the width, or half-width, of its CI. The 
half-width is the halved difference between the upper-
bound and lower bound of the CI. The narrower the 
CI (i.e., the smaller the half-width), the more precise 
the parameter estimate and more certainty there is that 
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the observed parameter estimate closely approximates 
the corresponding population value. 

Traditional Methods for Estimating Power and 
Parameter Accuracy 

Many have written about the methods involved in 
determining sample size for a regression analysis using 
traditional power analysis (Dupont & Plummer, 1998; 
Maxwell et al., 2007). It involves the following steps: (a) 
review similar studies to find their ES values; (b) 
determine the expected ES values for the current study; 

(c) set α and power at the desired values; and (d) 
calculate the sample size needed to find the expected 

effect is statistically significant at the givenα level 
while retaining the desired amount of power (Cohen, 
1992). This calculation can be done analytically or 
through computer programs designed for such analyses 
(for a list, see Kelley & Maxwell, 2012, p. 199). 

Determining sample size for a regression using the 
AIPE perspective involves a similar set of steps: (a) 
determine the predictor and outcome variables; (b) 
review studies that used similar variables and find the 
values of the relations between the predictor and 
outcome variables as well as the relations among the 
predictor variables; (c) determine the expected variable 
relations for the current study; (d) set the desired half-
width of the CI and confidence level (e.g., 95%, 90%); 
and (e) calculate the sample size needed to find the 
desired CI half-width for a given confidence level and 
set of variable relations. This calculation can be done 
manually or via a computer program (Kelley, 2007; 
Kelley & Maxwell, 2003). 

Using either the power- or AIPE-based formulae 
and procedures to determine sample size can be useful 
for very simple situations, but has problems when it 
comes to more practical research situations (Bacchetti, 
2013). For example, they typically assume there are no 
missing data and that the collected data will meet the 
assumptions for the statistical tests of interest—
assumptions that are often not met. An alternative to 
the traditional formulae-based method is to use a MC 
study, which can estimate not only the required sample 
size from both the power and AIPE perspectives but 
also can incorporate data quirks such as missing values 
and assumption violations. 

Monte Carlo Methods for Determining 
Sample Size 

Muthén and Muthén (2002) showed how MC 
methods can be useful for determining the sample size 
needed for SEMs based on a power analysis. Generally, 
the procedure they outlined requires simulating a large 
number (m) of samples, each of size n, from a 
population with hypothesized parameter values. The 
model of interest (e.g., regression) is then estimated for 
each of the m samples and the set of m parameter 
values and standard errors are then averaged. The 
required sample size is the smallest value of n that 
produces the desired power for the parameters of 
interest contingent on the simulated data meeting 
certain quality criteria, which I discuss in the 
subsequent section. Muthén and Muthén did not 
discuss parameter accuracy, but this can easily be 
incorporated by select the sample size based on the 
data having the desired CI half-width instead of having 
the desired power. 

Criteria to Determine Monte Carlo Study’s Quality. 

The following statistics can be useful to determine 
the quality of the simulated data in a MC study: (a) 
relative parameter estimate bias, (b) relative standard 
error bias, and (c) coverage. Relative parameter estimate 
bias is: 

����� =  ��  −  �
�
  (1) 

where �
 is the hypothesized (pre-set) value of the 

parameter, and �� is the average parameter estimate 
from the m simulated samples. Relative standard error bias 
is: 

����� =  ��  − ����  (2) 

where ��  is the standard deviation of the m 

parameter estimates, and �� is the average of the m 
estimated standard errors for the parameter. Coverage is 
the percent of the m simulated samples for which the 

(1–α)% CI contains θ. Table 1 contains Muthén and 
Muthén’s (2002) suggested criteria for these statistics. 
Once they are met, power is calculated as the proportion 

of the m simulated samples for which H0 (i.e., θ = 0) 

is rejected using the specified α level. 
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Table 1. Criteria for Monte Carlo Data Quality 

Statistic Criteria 
Coverage Between .91 and .98 
Relative 
parameter bias 

Absolute value ≤ .10 for all 
model parameters 

Relative standard 
error bias 

Absolute value ≤ .10 for all 
model parameters 

  Absolute value ≤ .05 for the 
parameters of major interest 

Note. Taken from Muthén & Muthén (2002, pp. 
605-606). 

 

Decisions to Make in a Monte Carlo Sample Size 
Study. 

Figure 1 contains the required steps for using a 
MC study to determine the needed sample size for a 
regression analysis. Before simulating the data (Step 5), 
a number of decisions need to be made. First, 
determine the regression model to study, which 
includes all pertinent predictor variables as well as the 

nature of the associations between the predictor 
variables and outcome variable. Creating a detailed path 
diagram can greatly facilitate this step (Boker & 
McArdle, 2005). 

Second, decide on population values for every 
parameter. This includes the regression coefficients, the 
scale and reliability of all variables, the amount of 
residual variance, and the covariances among the 
predictor variables. This step will typically be easier if 
the variables are standardized, as this makes the 
covariances become correlations, the regression 
coefficients become standardized, and the intercept 
become zero. After determining the parameter values, 
it is important to check that the implied covariance 
matrix values (i.e., the covariances based on the 
population parameter values) are as expected. As with 
the first step, path diagrams can be very helpful here as 
well. 

Inherent in the second step is the decision on the 
ES value. That is, by specifying the values for the 

1. Decide on regression model. 
1.1. Draw a path diagram of the model to account for all intended relationships (optional). 

2 Decide on population values for all parameters in model, including: regression coefficients, 

scale and reliability of the variables, the amount of residual variance (1 − ��), and covariance 
among the predictor variables. Standardizing the variables makes this step easier. 

2.1. Check values of the implied covariance matrix to make sure they are as expected. 
3. Decide on any data quirks, such as missing values or assumption violations (optional). 
4. Decide on the technical aspects of the MC simulations: 

4.1.  Type 1 error rate (α), which also determines the CI. 

4.2.  Desired power (1–β) or confidence interval half-width. 
4.3.  Number of samples to simulate (m). 
4.4.  Sample size (n) or range of sample sizes. 
4.5.  Random seeds (at least two). 

5. Simulate the m samples of the regression model from Step 2. 
6. In the simulated data, check (cf. Table 1): 

6.1.  Relative parameter and standard error biases. 
6.2.  Coverage. 

7. If the values in Step 6 are acceptable, examine the power or parameter accuracy of the 
parameters of interest. If the values are not high enough, increase n and repeat Steps 5 and 6. 

8. Repeat Steps 5 - 7 using a different random seed. 
9. Compare results of simulated data from both random seeds. 

9.1. If they converge, no need for further simulations of current scenario. 
9.2. If they do not converge, repeat Steps 5 - 8 using different random seeds or larger values 
of m. 

Figure 1. Steps for sample size planning of a regression analysis using a Monte Carlo study. 
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regression coefficients and the predictor variables’ 
covariance, R2 (or any other regression ES measure) is 
already determined. I elaborate on these relations more 
in the first example. 

The third step is to decide on any data quirks, such 
as having missing values or violating any assumptions. 
This step is optional as its usefulness depends on the 
variables and population from which the data will be 
collected. The fourth step requires decisions about 
values for the technical aspects of the MC simulations. 

This includes: α, power, the number of samples to 
simulate (m), the sample sizes (n), and the random 
seeds. The value for m should be large, as the goal is to 
produce stable results and large values for m tend to 
produce quality simulations. Muthén and Muthén 
(2002) suggested setting m to 10,000, but this may be 
excessive for simpler regression models with no data 
quirks (Skrondal, 2000). The initial n to use is 
somewhat arbitrary. If there is no reason to select one 
specific value, then it might be better to decrease m and 
simulate samples for a sequence of ns. 

The random seed is an integer used to initialize the 
pseudo-random number generation for the simulations 
(Marsaglia, 2003). A given seed value generates the 
same sequence of numbers, so using the same seed 
value will simulate the exact same data while using 
different seed values will simulate different data. Using 
different seed values is comparable to taking different 
independent samples from the same population. At a 
minimum, the MC study should be done at least twice 
using two different, randomly selected seed values. The 
results from the two different simulations should 
converge—that is, they should both point towards 
using roughly the same sample size. If that is the case, 
then there is no need for further MC simulations of 
that particular scenario. Otherwise, additional 
simulations using additional seeds may be needed. 

Presentation of Following Material 

In what follows, I present two examples of the MC 
method for determining sample size for regression 
analysis using R. The first example is a typical multiple 
regression model. In the second example, I extend the 
first example by adding data quirks involving: (a) 
missing data, (b) the outcome variable’s distribution, 
and (c) variable reliability. As I discuss a given analysis, 
I present R syntax to conduct the analysis in a separate 
text box for one random seed. The words in gray 

following a pound sign (#) in the syntax are comments, 
so R ignores them. For those with no previous 
experience using R, Venables et al., (2012) provide a 
good introduction. 

Example 1: Multiple Regression 

Background 

A typical regression power analysis involves 
examining a model’s R2 value or a change in R2 from 
one model to another.1 The MC method requires more 
information as it needs values for the relations between 
the outcome variable and all the predictor variables as 
well as the relations among all the predictors. Once 
those are specified, then the model’s R2 can be 
calculated using Equation 3. If the p predictor variables 
and single outcome variable are mean-centered, then  

�� = ���� ��������� = ���� �������� (3) 

where ��� is the p × 1 column vector of 
correlations between each of the predictor variables 
and the outcome, bYX is the p × 1 column vector of 
regression coefficients of each of the predictor 
variables, CXX and VXX are the p × p correlation and 
covariance matrices, respectively, of the predictor 

variables, and ��� is the variance of the outcome 
(Christensen, 2002). A little manipulation of Equation 3 
reveals that the set of standardized regression 
coefficients, b*, can be estimated by 

�∗ = �������� (4) 

Regression Model 

Kelley and Maxwell (2003) presented an example 
of a sample size study for a regression model with three 
predictor variables. The predictor variables’ correlations 
with each other, RXX, as well as the correlations 
between each of the predictor variables and the 

outcome, ���  , are: 

R�� =  �1.00 . 40 . 60. 40 1.00 . 05. 60 . 05 1.00%  and ρ*+ =  �. 50. 30. 10% 

To calculate the R2 value, plug the values into 
Equation 3; likewise, to calculate the standardized 
regression coefficients, plug in the known values into 

                                                 
1
 Cohen (1988) used the -� value, but it is just a 

transformation of R2
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Equation 4. The values for the three regression 
coefficients, respectively, are 0.66, 0.05, and –0.30. 

# correlations between predictors and outcome 
xy <- c(0.5, 0.3, 0.1) 
# correlation matrix among predictors 
C <- matrix(c(1, 0.4, 0.6, 0.4, 1, 0.05, 0.6, 0.05, 1), 

ncol = 3) 
# R2 
R2 <- t(xy) %*% solve(C) %*% xy 
# standardized regression coefficients 
b <- solve(C) %*% xy 

 
Simulating data for regression models with 

multiple predictors can be tricky, as it has to account 
for the relationships among all the variables. Using path 
diagrams eases this process, as proper diagrams show 
all the model parameters. A path diagram for Kelley 
and Maxwell’s (2003) example with the parameter 
values is in Figure 2. 

 
Figure 2. Path model of multiple regression for 
Example 1. 

Another advantage of using path diagrams is that 
they can facilitate specifying the regression model in R, 
as the lavaan (Rosseel, 2012) package uses path models 
for input. The lavaan operators for specifying path 
models are given in Table 2. Beaujean (2014) contains 
some worked examples of regression models using 
lavaan. 

The following syntax specifies the regression 
model (i.e., Figure 2) in lavaan using the known values. 

 

# load lavaan 
library( lavaan) 
# specify regression model with population values  

pop.model<-' 
# regression model 
y ~  0.66*x1 + 0.05*x2 + -0.30*x3 
# predictor variable correlations 
x1~~0.40*x2 + 0.60*x3 
x2~~0.05*x3 
# residual variance 
y ~~ 0.6854*y 
' 
Table 2. lavaan Operators for Specifying Path 
Models. 

Syntax Command Example 
~ Regress onto Regress B onto A: B ~A 

~~ (Co)varaince Variance of A: A ~~A 

  Covariance of A and B: 
A ~~B 

~1 Constant/mean/
intercept 

Regress B onto A, and 
include the intercept in the 

  model: 
  B ~A 

  B ~1 

  or 
  B ~1 + A 

=~ Define reflective 
latent variable 

Define Factor 1 by A-D:
F1 =~A+B+C+D 

* Label or 
constrain 
parameters 
(the 
label/constraint 
has to be pre-
multiplied) 

Label the regression of Z 
onto X as b: 
Z ~b*X 

Make the regression 
coefficient 0.30: 
Z ~.30*X 

 
After specifying the regression model and deciding 

on the population values, Step 2.1. requires checking to 
make sure the specified values produce the correct 
results. This can be done in R by estimating the model 
using the specified parameter values and examining the 
results. To do this in lavaan, use the sem() function with 
the fixed.x=FALSE argument. The fixed.x=FALSE 
argument is required when fixing a predictor variable’s 
variance or covariance. The fitted() function returns the 
model-based means and covariances (i.e., those implied 
by using the fixed parameter values), while the 
cov2cor() converts a covariance matrix to a correlation 
matrix. As I used standardized values for the 
parameters, the covariance and correlation matrices are 
identical for this example. 
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# check model parameters 
pop.fit <- sem(pop.model, fixed.x = FALSE) 
summary(pop.fit, standardized = TRUE, rsquare = 

TRUE) 
# model implied covariances 
pop.cov <- fitted(pop.fit)$cov 
# model implied correlations 
Cov2cor(pop.cov) 

 
The resulting model-implied correlations are the 

same as the values given by Kelley and Maxwell (2003), 
indicating that the regression parameters are specified 
correctly for the MC simulations. As I do not have any 
data quirks in this initial example, the next step is to 
decide on the technical aspects of the MC simulations. 
Kelley and Maxwell (2003) wrote that with n = 237, all 
the 95% CI half-widths will be ≤ 0.15. Thus, I set the 

following: (a) α: .05; (b) CI half-width : ≤ 0.15; (c) n : 
237; (d) random seeds : 565 and 54447; and (e) m : 500. 
I selected a relatively small number for m as this model 
is not very complex. 

Because lavaan cannot run the MC study directly, I 
use the simsem package (Pornprasertmanit, Miller, & 
Schoemann, 2012) for the simulations. This package is 
designed for MC studies of sample size and accepts 
lavaan model specification. All subsequent R syntax is 
for simsem functions. 

Conducting a MC study in simsem requires 
specifying two models. The first generates the samples, 
and is the one I previously specified. The second model 
estimates parameters from the simulated samples. 
Typically, the second model will be the same as the first 
except it will not contain values for the parameters. 

 
# multiple regression data analysis model 
analysis.model <- ' y ~ x1 + x2 + x3 
' 

 

To simulate the data, use the sim() function. Its 
main arguments are: (a) the number of samples, m 
(nRep); (b) the data generating model (generate); (c) the 
model to analyze the data (model); (d) the sample size 
(n); (e) the lavaan function to use for the analysis 
(lavaanfun); and (f) the random seed (seed). The 
multicore argument is optional, but if set to TRUE then 
R will use multiple processors for the simulation. This 
can considerably lessen the time required to create the 
data. 

# load simsem package 
library(simsem) 
# simulate data 
analysis.237 <- sim(nRep = 500, 

model=analysis.model, n = 237, 
generate=pop.model, lavaanfun = "sem", 
seed=565, multicore=TRUE) 

 

The summaryParam() function, using the 
detail=TRUE argument, returns the averaged values of 
interest from the simulated samples. Using the alpha = 
0.05 argument makes all CIs set at 95%. In Table 3, I 
explain each of the output values. 

Table 3 Returned values from simsem’s 
summaryParam() function. 

Name Statistic 

Estimate.Average  Average parameter estimate 
across all samples. 

Estimate.SD Standard Deviation of parameter 
estimates across all samples. 

Average.SE Average of parameter standard 
errors across all samples.  

Power..Not.equal.0. Power of parameter at givenα.a 
Std.Est Average standardized parameter 

estimate across all samples. 
Std.Est.SD Standard deviation of 

standardized parameter estimates 
across all samples. 

Average.Param Specified parameter value. 
Average.Bias The difference between average 

parameter estimate and specified 
parameter value. 

Coverage  Coverage of parameter using  

(1–α)% confidence intervals.a 
Rel.Bias Relative parameter bias. 
Std.Bias Standardized parameter bias 

(�� − �
) ��0   

Rel.SE.Bias Relative standard error bias. 
Average.CI.Width Average (1–α)% confidence 

interval width (not half-width).a 
SD.CI.Width Standard deviation of (1–α)% 

confidence interval width.a 
Note. To produce all the statistics requires using the detail=TRUE 
argument. 
a 
α= .05 by default, but can be changed using the alpha 

argument. 
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# return averaged results from simulated data 
summaryParam(analysis.237, detail = TRUE, alpha 

= 0.05) 
 

The values from the MC study are in the top of 
Table 4. The relative biases and coverage are within 
specified values. As expected, the 95% CI half-widths 
are all ≤ 0.15. Power is ≥ .80 for X1 and X3’s 
regression coefficients, but for X2 it is only .12. This 
illustrates the difference between the power and AIPE 
approaches as parameter estimates can be accurate but 
not powerful, especially when they are very close to 
zero. 

Unknown Sample Size 

If the sample size to use is unknown, then instead 
of giving a single value for the n argument give a range 
of values using the sequence function, seq(). For 
example, to examine power and accuracy for values 
from n = 200 to n = 400, increasing by increments of 
25, use seq(200,400,25) for the n argument. This 
produces one simulation with n = 200, one with n = 
225, and so forth. To increase m at each n, wrap the 
seq() function inside the replicate function, rep(). For 
example, rep(seq(200,400,25), 50) repeats the 200-400 
sequence 50 times (i.e., m = 50). The goal here is not to 
meet the criteria in Table 1, but to hone in on plausible 
values of n using smaller values of m. After finding 
some possible values for n, complete the MC study 
with a single sample size and a much larger m. 

 
# simulate data with sample sizes from 200-400 

increasing by 25 (m=50) 
analysis.n <- sim(nRep = NULL, 

model=analysis.model, 
n = rep(seq(200,400,25), 50), generate=pop.model, 

lavaanfun = "sem", seed=565, 
multicore=TRUE) 

 
Saving the results from the multiple sample size 

simulations allows for the creation of both a power 
curve and an accuracy curve, which is a graph of the  

(1–α)% CI width as a function of sample size. To 
create the the former, use the plotPower() function with 
the parameter of interest as the value for the 

powerParam argument and theαvalue as the value for 
the alpha argument. To crate the latter, use the 
plotCIwidth() function with the parameter of interest as 

the value for the targetParam argument and 1–α as the 

value for the assurance argument.2 Power and accuracy 
curves using sample sizes spanning 200-400 for the 1� − 2 relation are shown in Figures 3a and 3b. 

 

 
Figure 3a. Power curve for Example 1 using 

α = .05. 

 
 

 
Figure 3b. Accuracy curve for Example 1 using  

α= .05. 

 
 

 

                                                 
2  Incorporating a level of assurance (i.e., probability) of the 

CI’s half-width study is a different form of the AIPE perspective 
than I discuss in the current article. For more information about 
it, see Kelley and Maxwell (2008). 
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# power curve of the X2-Y relation 
plotPower(analysis.n, powerParam = "y~x2", alpha 

= 0.05) 
# accuracy curve of the X2-Y relation 
plotCIwidth(analysis.n, c("y~x2"), assurance = 0.95) 

 

An alternative to graphically displaying the results 
is to use the getPower(), findPower(), and getCIwidth() 
functions. The first and third functions return the 
power and CI widths, respectively, for each parameter 
at the specified sample sizes (nVal). The second 
function uses a getPower() object to find the sample 
size for a given level of power. If the findPower() 
function returns the values Inf or NA, it means the 
sample size values are too large or too small, 
respectively, for that parameter at the specified power 
level. 

# find n for power of .80 
power.n <- getPower(analysis.n, alpha=.05, 

nVal=200:300) 
findPower(power.n, iv="N", power=0.80) 
# find CI half-widths when n=200 
getCIwidth(analysis.n, assurance = 0.95, 

nVal=200)/2 
 

Example 2: Multiple Regression 
 With Data Quirks 

For this second example, I add some quirks to the 
data from Example 2. I only present models that 
include one quirk, but combining multiple quirks in a 

single model is a simple extension. 

Data Quirk 1: Missing Data 

Missing data is often a problem in research, so 
conducting a sample size analysis without accounting 
for missing data is often unrealistic (Graham, 2009). 
For the current example, I made 20% of X2's data 
missing completely at random (MCAR), but X1 missing 
values dependent on values of X3. Specifically, when  
X3 = 0, 15% of X1's data is missing; for each unit 
increase and decrease in X3, the amount of missing data 
increases and decreases, respectively. As long as I 
include X3 in the regression model, the missing values 
for X1 are missing at random (MAR).  

simsem has a variety of ways to include missing 
data in the simulations, most of which use the miss() 
function. I use the logit method because it has the 
ability to graph the amount of missing data. The logit 
method requires a lavaan-like script that specifies how 

much data should be missing for a given variable. Each 
line of the script begins with a variable, then the 
regression symbol (~), and then values for the amount 
of missing data. 

The values after the ~ are input for the inverse 
logit function: 

exp (6 +  8�1� +  8�1� +  … )1 +  exp (6 +  8�1� +  8�1� +  … ) (5) 

where a is the intercept, the bs are slope values, 
and the Xs are predictor variables in the regression. For 
example, if a = –1.38 and there are no predictors, then 
the inverse logit value is 0.20, so approximately 20% of 
the values should be missing. Likewise, if a = –1.73 and 
b = 0.25, then approximately 15% of the values are 
missing when X = 0, 19% of the values when X = 1, 
and so forth. 

# specify amount of missing data using logit 
method 

pcnt.missing <- ' 
# 20% of data missing 
x2 ~ -1.38 
# 15% of X1 data is missing when X3 is zero 
x1 ~ -1.73 + 0.25*x3 
' 

To plot the amount of missing data specified in 
the logit equations, use the plotLogitMiss() function. The 
plot for the current example is shown in Figure 4. 

 
Figure 4 . Plot of missing data to include in 

the simulated datasets for 1� and 1�. 
 

# plot amount of missing data specified in the logit 
equations 

plotLogitMiss(pcnt.missing) 
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Having missing values requires determining how 
to estimate the parameters in the presence of this 
missingness. Only full information maximum 
likelihood (FIML) and multiple imputation (MI) are 
available estimation options in simsem, which can be 
used with or without auxiliary variables. For details on 
FIML, MI and auxiliary variables, see Enders (2011). 
By default, simsem uses FIML when there are missing 
values. To use MI requires two additional arguments: 
the number of imputations for each data set (m) and 
the R package to conduct the imputation (package)3. 
Currently, only function from the mice (van Buuren & 
Groothuis-Oudshoorn, 2011) and Amelia II (Honaker, 
King, & Blackwell, 2011) packages can be used for the 
imputation. 

# FIML 
missing.model.fiml <- miss(logit = pcnt.missing) 
# MI 
missing.model.mi <- miss(logit = pcnt.missing, m = 

10, package = "mice") 
# simulate regression data with missing data using 

FIML  
analysis.mis.237 <- sim(nRep=750, 

model=analysis.model, n=237, 
generate=pop.model, lavaanfun = "sem", 
miss=missing.model.fiml, seed=565, 
multicore=TRUE) 

For the current example, I simulated the data with 
n = 237 using FIML to handle the missing data. As I 
included missing values, I increased m to 750. The 
results are given in Table 4. The relative bias and 
coverage values are within specified limits. Compared 
to initial model (Example 1), power decreases slightly 
for X2's and X3's regression coefficients and CI half-
widths for all thee predictors increase. 

X2's regression coefficient is the smallest in value. 
Thus, finding the sample size needed for it to be 
estimated with power of 0.80, would mean that all 
other regression coefficients would have at least a 
power of 0.80. To find the sample size needed for X2's 
regression coefficient to be estimated with power of 
0.80, I use the same procedures described in finding an 
unknown sample size for Example 1. As data are 
missing, I specified the search to go from n = 200 to   

                                                 
3 The m  argument in the miss()  function is not related to 

the number of simulated samples in the MC study, m. 

 

Table 4. Values From Monte Carlo Sample Size Studies. 

  Relative Bias   95% CI 
Half-
Width 

Pre-
dictor 

Model 
Value 

Parameter SE 
Cover-

age 
Power 

No Data Quirks (Example 1) 

X1 0.66 0.01 0.04 0.96 1.00 0.15 
X2 0.05 -0.09 0.00 0.95 0.12 0.12 
X3 -0.30 0.01 0.02 0.95 0.99 0.14 

Missing Data with Full Information Maximum Likelihood
Estimation 

X1 0.66 -0.00 0.03 0.96 1.00 0.18 
X2 0.05 -0.06 0.02 0.95 0.09 0.15 
X3 -0.30 0.01 0.01 0.95 0.94 0.17 

Y ’s Distribution with Excess Skew and Kurtosis 

X1 0.66 -0.18 -0.19 0.67 1.00 0.16 
X2 0.05 -0.15 -0.02 0.95 0.12 0.13 
X3 -0.30 -0.16 -0.09 0.87 0.89 0.15 

Unreliability of X1 and X2 

X1 0.66 0.12 -0.03 0.99 0.48 0.90 
X2 0.05 -1.00 -0.04 0.99 0.04 0.59 
X3 -0.30 0.16 -0.03 0.97 0.25 0.54 

n = 5000, increasing by 200, and using m = 50 
simulations per sample size. The results indicate that 
when n = 3820 power is .80. I already showed that with 
n = 237 the CI half-with is 0.15; increasing it to 3820 
makes the CI half-width approximately 0.06. 

# sample size study for X2 using FIML to handle 
missing data 

# simulate data from n=200 to n=5000 by 25  
missing.n <- sim(nRep=NULL, 

model=analysis.model, 
n=rep(seq(200,5000,200), 50), 
generate=pop.model, lavaanfun = "sem", 
miss=missing.model.fiml, multicore=TRUE) 

# power curve 
plotPower(missing.n, powerParam="y~x2", 

alpha=.05) 
# accuracy curve 
plotCIwidth(missing.n, c("y~x2"), assurance = 0.95) 
 
# find n for power of .80 
power.mis <- getPower(missing.n, alpha=.05) 
findPower(power.mis, iv="N", power=0.80) 
# find CI half-widths 
getCIwidth(missing.n, assurance = 0.95, 

nVal=3820)/2 
 

As a point of comparison, I examined the sample 
size required for a power of .80 using traditional 
methods. Specifically, I used the G*Power program 
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(Faul, Erdfelder, Buchner, & Lang, 2009) and followed 
the steps the authors outlined for a power analysis of a 
single regression coefficient in a multiple regression 
(what they call Deviation of a Single Linear Regression 
Coefficient From Zero). The values I used for the G*Power 
program and its output are in Figure 5, which shows 
that the sample size needed is 2057. 

One way to handle missing data in this situation is 
to divide the sample size required for a complete 
dataset by the proportion of observations thought to be 
without missing values. Thus, if 20% of the 
observations had missing values, then divide n by .80 to 
find the final sample size estimate. Assuming that 
between 20-30% of the data are missing makes the 
required sample size between 2571-2939, likely making 
the study underpowered for X2's effects.  

Data Quirk 2: Non-Normality 

One assumption in multiple regression is that the 
residuals are normally distributed (Williams, Grajales, & 
Kurkiewicz, 2013). There are a variety of ways for the 
residuals to fail to meet this assumption, but a common 
one is for the outcome variable to have a non-normal 
distribution, such as when it has excessive skew or 
kurtosis. For the current example, I made Y's skew 
equal to negative four and its kurtosis equal to seven. A 
plot of such a variable is in Figure 6. 

 

 

 
Figure 6 . Kernel density plot of Y with skew =  
–4 and kurtosis = 7. 

simsem’s bindDist() function makes any of the 
variables in the simulated data have the desired amount 
of skew and kurtosis using the skewness and kurtosis 
arguments, respectively. Skew and kurtosis values need 
to be included for each variable in the data. By setting 
the indDist argument equal to the bindDist() object, the 
sim() function uses the specified skew and kurtosis 
values. 

# add skew and kurtosis to only to Y 
distrib <- bindDist(skewness = c(-4,0,0,0), kurtosis 

= c(7,0,0,0)) 

 

Figure 5 . G*Power value specification for example with missing data. 
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# simulate data with non-normal Y 
analysis.nn.237 <- sim(nRep=10000, 

model=analysis.model, n=237, 
generate=pop.model, lavaanfun = "sem", 
indDist=distrib, seed=565, multicore=TRUE) 

 
The results of the MC simulations with a non-

normal Y variable are in Table 4. With m = 750, the 
relative parameter bias values are outside of the 
specified limits for all three variables, as is the relative 
SE bias and coverage for X1, and the coverage X3. The 
aberrant bias values decrease minimally with a m of 
10,000, indicating that using a typical regression model 
for this data will produce biased regression coefficients. 
Compared to the results from Example 1, the power 
decreased for X3 and the 95% CI half-widths increased 
for all three predictors. As X1's relative SE bias is 
somewhat large, its CI will likely be inaccurate so the 
half-width should be interpreted cautiously. 

Data Quirk 3: Reliability 

Another assumption of multiple regression is that 
the variables are measured without error. While ideal, 
this is seldom the case for measures of psychological 
constructs. Not accounting for measurement 
unreliability in the model results in biased parameter 
estimates and a decrease in power (Cole & Preacher, 
2014). 

One way to account for variables measured 
without perfect reliability is to use single-indicator 
latent variables (Keith, 2006). Single-indicator latent 
variables explicitly model a variable’s variance, which is 

what is affected with unreliable measures. If :�� is a 

variable’s variance and ;��< is the reliability of a 
variable’s scores, then single-indicator latent variables 

fix the variable’s error variance to (1–;��<) :�� , the true 

variance to (;��<) :�� , and the path coefficients to one. 

To make single-indicator latent variables more 
concrete, say the reliability of the scores for X1 and X2 
are both .70. Figure 7 contains a path diagram of the 
regression model with these imperfectly-measured 
variables. Note the addition of the error and true score 
components for X1 and X2. In addition, while the 
correlation and regression coefficients are the same as 
those from Example 1, the residual variance has 
increased from 0.685 to 0.816 because the R2 decreased 
after modeling their unreliability. 

 
Figure 7 . Path model using single-indicator latent 
variables to account for the imperfect reliability of 
X

1 and X
2
, which is .70 for both variables. T 

represents the true score and E represents 
measurement error. The new R2 value can be 
calculated via: 
.66 × .7 × .66 + .05 × .70 × .05 + –.30 × 1 × –.30 
+ (.66 × .40 × .05) × 2 + (.66 × .60 × 
–.30) × 2 + (.05 × .05 × –.30) × 2 = .184. 

 
# data generating model with measurement error 
pop.rel.model <-' 
# measurement model  
x1.true =~ 1*x1  
x2.true =~ 1*x2 
# for reliabilities of .70 
# constrain error variances of X1 and X2 to be .30 
x1 ~~ .3*x1  
x2 ~~ .3*x2 
# constrain true score variances of X1 and X2 to be 

.70 
x1.true ~~ .7*x1.true  
x2.true ~~ .7*x2.true 
# regression 
y ~  0.66*x1.true + 0.05*x2.true + -0.30*x3 
# predictor variables covariance  
x1.true ~~ 0.40*x2.true + 0.60*x3  
x2.true ~~ 0.05*x3 
# residual variance 
y~~ 0.816*y 
' 
 
# data analysis model accounting for measurement 

error 
analysis.rel.model <-' 
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# measurement model  
x1.true =~ 1*x1  
x2.true =~ 1*x2 
# constrain error variances 
x1 ~~ 0.3*x1  
x2 ~~ 0.3*x2 
# constrain true score variances 
x1.true ~~ 0.7*x1.true  
x2.true ~~ 0.7*x2.true 
# predictor variables covariance 
x1.true ~~ x2.true + x3 x2.true ~~ x3 
# regression 
y ~  x1.true + x2.true + x3 
‘ 
# simulate data with unreliable variables 
analysis.rel.237 <- sim(nRep = 750, 

model=analysis.rel.model, n = 237, 
generate=pop.rel.model, lavaanfun = "sem", 
seed=565, multicore=TRUE) 

 
The results of the MC analysis are shown in Table 

4. The relative parameter bias is a little high for X1 and 
X3, and very high for X2. When I set m = 5000, the 
amount of relative parameter bias decreased to –.75 for 
X2, indicating that even higher values of m might 
produce better results for the MC study. The relative 
SE bias and coverage are all within specified limits. 
When compared to the values from Example 1, the 
power for all three regression coefficients substantially 
decreased and the 95% CI half-widths substantially 
increased. 

Discussion 
In this article, I demonstrated the use of a Monte 

Carlo (MC) study for the purpose of deciding on 
sample size in regression models based on power and 
accuracy in parameter estimation (AIPE). In the 
examples, I used a multiple regression model with three 
predictors and examined the sample size needed for 
data without any quirks as well as data with missing 
values, a non-normal outcome, and less-than-perfect 
reliability. For the examples with no data quirks, the 
results mapped directly onto the results from traditional 
formula-based sample size determination methods. 
When there are quirks in the data, however, there are 
no simple formulae to determine sample size. The 
results from the example MC studies showed that 
ignoring these data quirks could result in underpowered 
parameter estimation, inaccurate parameter estimates, 
or both. 

Unlike previous articles that showed how to use 
MC studies to determine sample size, I focused on 
regression models, since they are one of the most 
common ways to analyze data (Troncoso Skidmore & 
Thompson, 2010). In addition, I used the R statistical 
language for all example analyses. As R is free and 
available on many computer operating systems, the 
procedures and R syntax in this article should be 
readily usable by investigators for their own data 
analysis. 

Drawback of Using Monte Carlo Studies 

While one of the purposes of this article was to 
show the flexibility and benefits of the MC approach to 
determining sample size, there is a drawback: it requires 
users to know more about their studies’ variables than 
traditional methods. Investigators have to specify not 

onlyαand power, but they also have to specify values 
for all the variables’ relations. Thus, Cohen’s (1992) 
concern about researchers not knowing appropriate 
effect size values for their particular field is amplified if 
they have to know how all the variables relate to each 
other. In the best situation, scholars would select the 
model’s values from theory or previous research. In the 
complete absence of any theoretical expectations, 
Maxwell (2000) suggested starting with the assumption 
that all zero-order correlations are .30, then changing 
the values to see how it influences the required sample 
size (i.e., sensitivity analysis). Using values of .30 gives 
R2 values around 0.14 (2 predictors) to 0.24 (10 
predictors), which may or may not be appropriate for a 
study. 

Using the AIPE perspective adds yet one more 
piece of information for the investigator to know: an 
appropriate size for the CI half-width. There are 
currently not any guidelines to determine the 
appropriate CI half-width for a regression, but values 
between 0.10 and 0.20 for standardized regression 
coefficients are commonly used in the AIPE literature, 
so are probably a good place to start. Of course, this 
somewhat depends on the hypothesized value of the 
regression coefficient. For example, narrower CIs are 
likely better with coefficient values expected to be close 
to zero in order to determine if the direction of the 
effect is positive or negative. Likewise, if the coefficient 
is expected to be large and well beyond some threshold 
set for usefulness (e.g., a clinically-relevant effect), then 
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having a wider CI may be acceptable as long as its 
bounds do not cross the threshold. 

 

Monte Carlo Study Extensions 

In the current article, I only focused on 
determining the sample size for specific regression 
coefficients. An alternative is to focus on the entire 
model (i.e., omnibus) and base the sample size on the 
R2 value. This is easy to do using the simsem package 
as the amount of error variance (i.e., 1–R2) is already 
included as an estimated parameter in the output. 

Another limitation of the models I used in this 
article is that the outcome variable was continuous. The 
same procedures could be used with variations of this 
model, such as having categorical or count outcomes. 
While this would require more complex models and 
different effect sizes, the same basic procedures still 
apply. Likewise, regression models with nested data 
could also use this approach (e.g., Meuleman & Billiet, 
2009). 
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