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An important step when designing an empirical study is to justify the sample size
that will be collected. The key aim of a sample size justification for such studies is
to explain how the collected data is expected to provide valuable information given
the inferential goals of the researcher. In this overview article six approaches are dis-
cussed to justify the sample size in a quantitative empirical study: 1) collecting data
from(almost) theentirepopulation, 2) choosinga sample sizebasedonresourcecon-
straints, 3) performing an a-priori power analysis, 4) planning for a desired accuracy,
5) using heuristics, or 6) explicitly acknowledging the absence of a justification. An
important question to consider when justifying sample sizes is which effect sizes are
deemed interesting, and the extent to which the data that is collected informs infer-
ences about these effect sizes. Depending on the sample size justification chosen,
researchers could consider 1)what the smallest effect size of interest is, 2)whichmin-
imal effect size will be statistically significant, 3) which effect sizes they expect (and
what they base these expectations on), 4) which effect sizes would be rejected based
on a confidence interval around the effect size, 5) which ranges of effects a study has
sufficient power to detect based on a sensitivity power analysis, and 6) which effect
sizes are expected in a specific research area. Researchers can use the guidelines pre-
sented in this article, for example by using the interactive form in the accompanying
online Shiny app, to improve their sample size justification, and hopefully, align the
informational value of a study with their inferential goals.
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Scientists perform empirical studies to collect data
that helps to answer a research question. The more
data that is collected, the more informative the study
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will be with respect to its inferential goals. A sample
size justification should consider how informative the
data will be given an inferential goal, such as estimat-
ing an effect size, or testing a hypothesis. Even though
a sample size justification is sometimes requested in
manuscript submissionguidelines,when submitting a
grant to a funder, or submitting a proposal to an ethi-
cal review board, the number of observations is often
simply stated, but not justified. This makes it difficult
to evaluate how informative a studywill be. To prevent
such concerns from emerging when it is too late (e.g.,
after a non-significant hypothesis test has been ob-
served), researchers should carefully justify their sam-
ple size before data is collected.

Six Approaches to Justify Sample Sizes

Researchers often find it difficult to justify their sam-
ple size (i.e., a number of participants, observations,
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Table 1
Overview of possible justifications for the sample size in a study.

Type of justification When is this justification applicable?

Measure entire population A researcher can specify the entire population, it is finite, and it is possible
tomeasure (almost) every entity in the population.

Resource constraints Limited resources are the primary reason for the choice of the sample size
a researcher can collect.

Accuracy The research question focusses on the size of a parameter, and a researcher
collects sufficient data to have an estimate with a desired level of accuracy.

A-priori power analysis The research question has the aim to test whether certain effect sizes can
be statistically rejected with a desired statistical power.

Heuristics A researcher decides upon the sample size based on a heuristic, general rule
or norm that is described in the literature, or communicated orally.

No justification A researcher has no reason to choose a specific sample size, or does not have
a clearly specified inferential goal and wants to communicate this honestly.

or any combination thereof). In this review article six
possible approaches are discussed that can be used to
justify thesample size inaquantitative study (seeTable
1). This is not an exhaustive overview, but it includes
the most common and applicable approaches for sin-
gle studies.1 The first justification is that data from (al-
most) the entire population has been collected. The
second justification centers on resource constraints,
which are almost always present, but rarely explic-
itly evaluated. The third and fourth justifications are
based on a desired statistical power or a desired ac-
curacy. The fifth justification relies on heuristics, and
finally, researchers can choose a sample size without
any justification. Each of these justifications can be
stronger or weaker depending on which conclusions
researchers want to draw from the data they plan to
collect.

All of these approaches to the justification of sample
sizes, even the ‘no justification’ approach, give others
insight into the reasons that led to the decision for a
sample size in a study. It should not be surprising that
the ‘heuristics’ and ‘no justification’ approachesareof-
ten unlikely to impress peers. However, it is important
to note that the value of the information that is col-
lected depends on the extent to which the final sam-
ple size allows a researcher to achieve their inferential
goals, and not on the sample size justification that is
chosen.

The extent to which these approaches make other re-
searchers judge the data that is collected as informa-
tive dependson thedetails of thequestiona researcher
aimed to answer and the parameters they chose when

determining the sample size for their study. For ex-
ample, a badly performed a-priori power analysis can
quickly lead to a study with very low informational
value. These six justifications are not mutually exclu-
sive, andmultiple approaches canbeconsideredwhen
designing a study.

SixWays to EvaluateWhich Effect Sizes are
Interesting

The informativeness of the data that is collected de-
pends on the inferential goals a researcher has, or in
some cases, the inferential goals scientific peers will
have. A shared feature of the different inferential goals
considered in this review article is the question which
effect sizes a researcher considers meaningful to dis-
tinguish. This implies that researchers need to evalu-
ate which effect sizes they consider interesting. These
evaluations rely on a combination of statistical prop-
erties and domain knowledge. In Table 2 six possi-
bly useful considerations are provided. This is not in-
tended to be an exhaustive overview, but it presents
common and useful approaches that can be applied
in practice. Not all evaluations are equally relevant
for all types of sample size justifications. The on-
line Shiny app accompanying this manuscript pro-
vides researchers with an interactive form that guides
researchers through the considerations for a sample
size justification. These considerations often rely on

1The topic of power analysis for meta-analyses is out-
side the scope of this manuscript, but see Hedges and Pigott
(2001) and Valentine, Pigott, and Rothstein (2010).
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the same information (e.g., effect sizes, the number of
observations, the standard deviation, etc.) so these six
considerations should be seen as a set of complemen-
tary approaches that can be used to evaluate which ef-
fect sizes are of interest.

To start, researchers should consider what their small-
est effect size of interest is. Second, although only rel-
evant when performing a hypothesis test, researchers
should consider which effect sizes could be statisti-
cally significant given a choice of an alpha level and
sample size. Third, it is important to consider the
(range of) effect sizes that are expected. This requires
a careful consideration of the source of this expecta-
tion and the presence of possible biases in these ex-
pectations. Fourth, it is useful to consider the width of
the confidence interval around possible values of the
effect size in the population, and whether we can ex-
pect this confidence interval to reject effects we con-
sidered a-priori plausible. Fifth, it is worth evaluating
the power of the test across a wide range of possible
effect sizes in a sensitivity power analysis. Sixth, a re-
searcher can consider the effect size distribution of re-
lated studies in the literature.

The Value of Information

Since all scientists are faced with resource limitations,
they need to balance the cost of collecting each ad-
ditional datapoint against the increase in information
that datapoint provides. This is referred to as the value
of information (Eckermann, Karnon, & Willan, 2010).
Calculating the value of information is notoriously dif-
ficult (Detsky, 1990). Researchers need to specify the
cost of collecting data, andweigh the costs of data col-
lectionagainst the increase inutility thathavingaccess
to the data provides. From a value of information per-
spective not every data point that can be collected is
equally valuable (J. Halpern, Brown Jr, & Hornberger,
2001; Wilson, 2015). Whenever additional observa-
tions do not change inferences in a meaningful way,
the costs of data collection can outweigh the benefits.

The value of additional information will in most cases
be a non-monotonic function, especially when it de-
pends on multiple inferential goals. A researcher
might be interested in comparing an effect against a
previously observed large effect in the literature, a the-
oretically predicted medium effect, and the smallest
effect that would be practically relevant. In such a
situation the expected value of sampling information
will lead to different optimal sample sizes for each in-
ferential goal. It could be valuable to collect infor-
mative data about a large effect, with additional data

having less (or even a negative) marginal utility, up
to a point where the data becomes increasingly in-
formative about a medium effect size, with the value
of sampling additional information decreasing once
moreuntil the studybecomes increasingly informative
about the presence or absence of a smallest effect of
interest.

Because of the difficulty of quantifying the value of
information, scientists typically use less formal ap-
proaches to justify the amount of data they set out to
collect in a study. Even though the cost-benefit anal-
ysis is not always made explicit in reported sample
size justifications, thevalueof informationperspective
is almost always implicitly the underlying framework
that sample size justifications are based on. Through-
out the subsequent discussion of sample size justifica-
tions, the importanceof considering the valueof infor-
mation given inferential goals will repeatedly be high-
lighted.

Measuring (Almost) the Entire Population

In some instances it might be possible to collect data
from (almost) the entire population under investiga-
tion. For example, researchers might use census data,
are able to collect data from all employees at a firm or
study a small population of top athletes. Whenever it
is possible to measure the entire population, the sam-
ple size justification becomes straightforward: the re-
searcher used all the data that is available.

When the entire population is measured there is no
need to perform a hypothesis test. After all, there is no
population to generalize to.2 When data from the en-
tire population has been collected the population ef-
fect size is known, and there is no confidence interval
to compute. If the total population size is known, but
not measured completely, then the confidence inter-
val width should shrink to zero the closer a study gets
to measuring the entire population. This is known as
the finite population correction factor for the variance
of the estimator (Kish, 1965). The variance of a sam-
ple mean is σ2/n, which for finite populations is mul-
tiplied by the finite population correction factor of the
standard error:

FPC =

√

(N −n)

(N −1)

2It is possible to argue we are still making an inference,
even when the entire population is observed, because we
have observed ametaphorical population from one ofmany
possible worlds, see Spiegelhalter (2019).
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Table 2
Overview of possible ways to evaluate which effect sizes are interesting.

Type of evaluation Which question should a researcher ask?

Smallest effect size of interest What is the smallest effect size that is considered theoretically or
practically interesting?

Theminimal statistically Given the test and sample size, what is the critical effect size that can
detectable effect be statistically significant?

Expected effect size Which effect size is expected based on theoretical predictions or
previous research?

Width of confidence interval Which effect sizes are excluded based on the expected width of the
confidence interval around the effect size?

Sensitivity power analysis Across a range of possible effect sizes, which effects does a design
have sufficient power to detect when performing a hypothesis test?

Distribution of effect sizes What is the empirical range of effect sizes in a specific research area,
in a research area and which effects are a priori unlikely to be observed?

whereN is the size of the population, and n is the size
of the sample. WhenN is much larger than n, the cor-
rection factor will be close to 1 (and therefore this cor-
rection is typically ignored when populations are very
large, even when populations are finite), and will not
have a noticeable effect on the variance. When the to-
tal population is measured the correction factor is 0,
such that the variance becomes 0 aswell. For example,
when the total population consists of 100 top athletes,
and data is collected from a sample of 35 athletes, the
finite population correction is

√

(100−35)/(100−1) =
0.81. The superb R package can compute popula-
tion corrected confidence intervals (Cousineau & Chi-
asson, 2019).

Resource Constraints

A common reason for the number of observations in a
study is that resource constraints limit the amount of
data that can be collected at a reasonable cost (Lenth,
2001). In practice, sample sizes are always limited by
the resources that are available. Researchers practi-
cally always have resource limitations, and therefore
even when resource constraints are not the primary
justification for the sample size in a study, it is always
a secondary justification.

Despite the omnipresence of resource limitations, the
topic often receives little attention in texts on exper-
imental design (for an example of an exception, see
Bulus and Dong (2021)). This might make it feel like
acknowledging resource constraints is not appropri-
ate, but the opposite is true: Because resource limita-

tions always play a role, a responsible scientist care-
fully evaluates resource constraints when designing a
study. Resourceconstraint justificationsarebasedona
trade-off between the costs of data collection, and the
value of having access to the information the data pro-
vides. Even if researchersdonot explicitly quantify this
trade-off, it is revealed in their actions. For example,
researchers rarely spend all the resources they have on
a single study. Given resource constraints, researchers
are confronted with an optimization problem of how
to spend resources acrossmultiple researchquestions.

Time and money are two resource limitations all sci-
entists face. A PhD student has a certain time to com-
plete a PhD thesis, and is typically expected to com-
plete multiple research lines in this time. In addition
to time limitations, researchers have limited financial
resources that often directly influence howmuch data
can be collected. A third limitation in some research
lines is that theremight simply be a very small number
of individuals from whom data can be collected, such
as when studying patients with a rare disease. A re-
source constraint justification puts limited resources
at the center of the justification for the sample size
that will be collected, and starts with the resources a
scientist has available. These resources are translated
into an expected number of observations (N ) that a
researcher expects they will be able to collect with an
amount of money in a given time. The challenge is to
evaluate whether collecting N observations is worth-
while. How dowe decide if a study will be informative,
and when should we conclude that data collection is
not worthwhile?
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When evaluating whether resource constraints make
data collection uninformative, researchers need to
explicitly consider which inferential goals they have
when collecting data (Parker & Berman, 2003). Hav-
ingdataalwaysprovidesmoreknowledgeabout the re-
searchquestion thannothavingdata, so inanabsolute
sense, all data that is collected has value. However, it
is possible that the benefits of collecting the data are
outweighed by the costs of data collection.

It ismost straightforward to evaluatewhether data col-
lection has valuewhenwe know for certain that some-
one will make a decision, with or without data. In
such situations any additional data will reduce the er-
ror rates of a well-calibrated decision process, even if
only ever so slightly. For example, without data wewill
not perform better than a coin flip if we guess which
of two conditions has a higher true mean score on a
measure. With some data, we can perform better than
a coinflip bypicking the condition that has the highest
mean. With a small amount of data we would still very
likelymake amistake, but the error rate is smaller than
without any data. In these cases, the value of informa-
tionmight be positive, as long as the reduction in error
rates ismorebeneficial than the cost of data collection.

Anotherway inwhicha small dataset canbevaluable is
if its existence eventually makes it possible to perform
a meta-analysis (Maxwell & Kelley, 2011). This argu-
ment in favor of collecting a small dataset requires 1)
that researchers share the data in a way that a future
meta-analyst can find it, and 2) that there is a decent
probability that someone will perform a high-quality
meta-analysis that will include this data in the future
(S. D. Halpern, Karlawish, & Berlin, 2002). The uncer-
tainty about whether there will ever be such a meta-
analysis should be weighed against the costs of data
collection.

One way to increase the probability of a future meta-
analysis is if researchers commit to performing this
meta-analysis themselves, by combining several stud-
ies they have performed into a small-scale meta-
analysis (Cumming, 2014). For example, a researcher
might plan to repeat a study for the next 12 years in
a class they teach, with the expectation that after 12
years ameta-analysis of 12 studies would be sufficient
to draw informative inferences (but see ter Schure and
Grünwald (2019)). If it is notplausible that a researcher
will collect all the required data by themselves, they
can attempt to set up a collaboration where fellow re-
searchers in their field commit to collecting similar
datawith identicalmeasures. If it isnot likely that suffi-
cientdatawill emergeover time to reach the inferential
goals, there might be no value in collecting the data.

Even if a researcher believes it is worth collecting data
becausea futuremeta-analysiswill beperformed, they
will most likely perform a statistical test on the data.
To make sure their expectations about the results of
such a test are well-calibrated, it is important to con-
sider which effect sizes are of interest, and to perform
a sensitivity power analysis to evaluate the probability
of a Type II error for effects of interest. From the six
ways to evaluate which effect sizes are interesting that
will be discussed in the second part of this review, it
is useful to consider the smallest effect size that can
be statistically significant, the expected width of the
confidence interval around the effect size, and effects
that can be expected in a specific research area, and
to evaluate the power for these effect sizes in a sensi-
tivity power analysis. If a decision or claim is made, a
compromise power analysis is worthwhile to consider
whendeciding upon the error rateswhile planning the
study. When reporting a resource constraints sample
size justification it is recommended to address the five
considerations in Table 3. Addressing these points ex-
plicitly facilitatesevaluating if thedata isworthwhile to
collect. To make it easier to address all relevant points
explicitly, an interactive formto implement the recom-
mendations in this manuscript can be found at https:
//shiny.ieis.tue.nl/sample_size_justification/.

A-priori Power Analysis

When designing a study where the goal is to test
whether a statistically significant effect is present, re-
searchers often want to make sure their sample size is
large enough to prevent erroneous conclusions for a
range of effect sizes they care about. In this approach
to justifying a sample size, the value of information is
to collect observations up to the point that the proba-
bility of an erroneous inference is, in the long run, not
larger than a desired value. If a researcher performs a
hypothesis test, there are four possible outcomes:

1. A false positive (or Type I error), determined by
the α level. A test yields a significant result, even
though the null hypothesis is true.

2. A false negative (or Type II error), determined by
β, or 1 - power. A test yields a non-significant
result, even though the alternative hypothesis is
true.

3. A true negative, determined by 1-α. A test yields
anon-significant resultwhen thenull hypothesis
is true.

4. A true positive, determined by 1-β. A test yields
a significant result when the alternative hypoth-
esis is true.

https://shiny.ieis.tue.nl/sample_size_justification/
https://shiny.ieis.tue.nl/sample_size_justification/
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Table 3
Overview of recommendations when reporting a sample size justification based on resource constraints.

What to address How to address it?

Will a future meta-analysis Consider the plausibility that sufficient highly similar studies will be
be performed? performed in the future tomake ameta-analysis possible.

Will a decision or claim bemade If a decision is made then any data that is collected will reduce error
regardless of the amount of data rates. Consider using a compromise power analysis to determine Type
that is available? I and Type II error rates. Are the costs worth the reduction in errors?

What is the critical effect size? Report and interpret the critical effect size, with a focus on whether
a expected effect sizes could yield significant results. If not,
indicate the interpretation of the data will not be based on p values.

What is the width of the Report and interpret the width of the confidence interval. What will
confidence interval? an estimate with this much uncertainty be useful for? If the null

hypothesis is true, would rejecting effects outside of the confidence
interval be worthwhile (ignoring how a designmight have low power
to actually test against these values)?

Which effect sizes will a design Report a sensitivity power analysis, and report the effect sizes that
have decent power to detect? can be detected across a range of desired power levels (e.g., 80%, 90%,

and 95%) or plot a sensitivity analysis.

Given a specified effect size, alpha level, and power,
an a-priori power analysis can be used to calculate the
number of observations required to achieve the de-
sired error rates, given the effect size.3 Figure 1 illus-
trates how the statistical power increases as the num-
ber of observations (per group) increases in an inde-
pendent t testwitha two-sidedalpha levelof 0.05. Ifwe
are interested in detecting an effect of d = 0.5, a sam-
ple size of 90 per condition would give us more than
90% power. Statistical power can be computed to de-
termine the number of participants, or the number of
items (Westfall, Kenny, & Judd, 2014) but can also be
performed for single case studies (Ferron & Onghena,
1996; McIntosh & Rittmo, 2020)

Although it is common to set the Type I error rate to 5%
and aim for 80% power, error rates should be justified
(Lakens, Adolfi, et al., 2018). As explained in the sec-
tion on compromise power analysis, the default rec-
ommendation to aim for 80% power lacks a solid jus-
tification. In general, the lower the error rates (and
thus the higher the power), the more informative a
study will be, but themore resources are required. Re-
searchers should carefully weigh the costs of increas-
ing the sample size against the benefits of lower error
rates, which would probably make studies designed
to achieve a power of 90% or 95% more common for
articles reporting a single study. An additional con-
sideration is whether the researcher plans to publish
an article consisting of a set of replication and exten-

sion studies, inwhich case theprobability of observing
multiple Type I errors will be very low, but the proba-
bility of observing mixed results even when there is a
true effect increases (Lakens&Etz, 2017), whichwould
also be a reason to aim for studies with low Type II er-
ror rates, perhaps even by slightly increasing the alpha
level for each individual study.

Figure 2 visualizes two distributions. The left distribu-
tion (dashed line) is centered at 0. This is a model for
the null hypothesis. If the null hypothesis is true a sta-
tistically significant result will be observed if the effect
size is extremeenough (in a two-sided test either in the
positive or negative direction), but any significant re-
sult would be a Type I error (the dark grey areas un-
der the curve). If there is no true effect, formally sta-
tistical power for a null hypothesis significance test is
undefined. Any significant effects observed if the null
hypothesis is true are Type I errors, or false positives,
which occur at the chosen alpha level. The right dis-
tribution (solid line) is centered on an effect of d = 0.5.
This is the specified model for the alternative hypoth-
esis in this study, illustrating the expectation of an ef-
fect of d = 0.5 if the alternative hypothesis is true. Even

3Power analyses canbeperformedbasedon standardized
effect sizes or effect sizes expressed on the original scale. It is
important to know the standard deviation of the effect (see
the ‘Know Your Measure’ section) but I find it slightly more
convenient to talk about standardized effects in the context
of sample size justifications.
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Figure 1. Power curve for an independent t testwith an
effect ofd = 0.5 andα = 0.05 as a function of the sample
size.

though there is a trueeffect, studieswill notalwaysfind
a statistically significant result. This happens when,
due to randomvariation, the observed effect size is too
close to 0 to be statistically significant. Such results are
false negatives (the light grey area under the curve on
the right). To increase power, we can collect a larger
sample size. As the sample size increases, the distribu-
tionsbecomemorenarrow, reducing theprobability of
a Type II error.4

It is important to highlight that the goal of an a-priori
power analysis is not to achieve sufficient power for
the true effect size. The true effect size is unknown.
The goal of an a-priori power analysis is to achieve suf-
ficient power, given a specific assumption of the ef-
fect size a researcher wants to detect. Just like a Type
I error rate is the maximum probability of making a
Type I error conditional on the assumption that the
null hypothesis is true, an a-priori power analysis is
computed under the assumption of a specific effect
size. It is unknown if this assumption is correct. All
a researcher can do is to make sure their assumptions
are well justified. Statistical inferences based on a test
where the Type II error is controlled are conditional on
the assumption of a specific effect size. They allow the
inference that, assuming the true effect size is at least
as large as that used in the a-priori power analysis, the
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Figure 2. Null (d = 0, grey dashed line) and alternative
(d = 0.5, solid black line) hypothesis, with α = 0.05 and
n = 80 per group.

maximumType II error rate in a study is not larger than
a desired value.

This point is perhaps best illustrated if we consider a
study where an a-priori power analysis is performed
both for a test of the presence of an effect, as for a test
of the absence of an effect. When designing a study, it
essential to consider the possibility that there is no ef-
fect (e.g., amean difference of zero). An a-priori power
analysis can be performed both for a null hypothesis
significance test, as for a test of the absence of amean-
ingful effect, such as an equivalence test that can sta-
tistically provide support for the null hypothesis by re-
jecting the presence of effects that are large enough to
matter (Lakens, 2017; Meyners, 2012; Rogers, Howard,
& Vessey, 1993). When multiple primary tests will be
performed based on the same sample, each analysis
requires a dedicated sample size justification. If pos-
sible, a sample size is collected that guarantees that
all tests are informative, which means that the col-
lected sample size is based on the largest sample size
returned by any of the a-priori power analyses.

For example, if the goal of a study is to detect or reject
an effect size of d = 0.4 with 90% power, and the alpha
level is set to 0.05 for a two-sided independent t test,
a researcher would need to collect 133 participants in
each condition for an informative null hypothesis test,
and 136 participants in each condition for an informa-
tive equivalence test. Therefore, the researcher should
aim to collect 272 participants in total for an informa-
tive result for both tests that areplanned. This doesnot
guarantee a study has sufficient power for the true ef-

4These figures can be reproduced and adapted in an on-
line shiny app: http://shiny.ieis.tue.nl/d_p_power/.

http://shiny.ieis.tue.nl/d_p_power/
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fect size (which cannever be known), but it guarantees
the study has sufficient power given an assumption of
the effect a researcher is interested in detecting or re-
jecting. Therefore, an a-priori power analysis is useful,
as long as a researcher can justify the effect sizes they
are interested in.

If researchers correct the alpha levelwhen testingmul-
tiple hypotheses, the a-priori power analysis shouldbe
based on this corrected alpha level. For example, if
four tests are performed, an overall Type I error rate of
5% is desired, and a Bonferroni correction is used, the
a-priori power analysis should be based on a corrected
alpha level of .0125.

An a-priori power analysis can be performed analyti-
cally, orbyperformingcomputer simulations. Analytic
solutions are faster but less flexible. A common chal-
lenge researchers face when attempting to perform
power analyses for more complex or uncommon tests
is that available software does not offer analytic solu-
tions. In these cases simulations can provide a flexible
solution to perform power analyses for any test (Mor-
ris, White, & Crowther, 2019). The following code is
an example of a power analysis in R based on 10000
simulations for a one-sample t test against zero for a
sample size of 20, assuming a true effect of d = 0.5. All
simulations consist of first randomly generating data
based on assumptions of the data generating mecha-
nism(e.g., anormaldistributionwithameanof0.5and
a standarddeviationof 1), followedbya testperformed
on the data. By computing the percentage of signifi-
cant results, power can be computed for any design.

p <- numeric(10000) # to store p-values

for (i in 1:10000) { #simulate 10k tests

x <- rnorm(n = 20, mean = 0.5, sd = 1)

p[i] <- t.test(x)$p.value # store p-value

}

sum(p < 0.05) / 10000 # Compute power

There is a wide range of tools available to perform
power analyses. Whichever tool a researcher decides
to use, it will take time to learn how to use the software
correctly to performameaningful a-priori power anal-
ysis. Resources to educate psychologists about power
analysis consist of book-length treatments (Aberson,
2019; Cohen, 1988; Julious, 2004; Murphy, Myors, &
Wolach, 2014), general introductions (Baguley, 2004;
Brysbaert, 2019; Faul, Erdfelder, Lang, & Buchner,
2007; Maxwell, Kelley, & Rausch, 2008; Perugini, Gal-
lucci, &Costantini, 2018), andan increasingnumberof
applied tutorials for specific tests (Brysbaert&Stevens,
2018; DeBruine & Barr, 2019; P. Green & MacLeod,

2016; Kruschke, 2013; Lakens &Caldwell, 2021; Schoe-
mann,Boulton,&Short, 2017;Westfall et al., 2014). It is
important to be trained in the basics of power analysis,
and it can be extremely beneficial to learn how to per-
form simulation-based power analyses. At the same
time, it is often recommended to enlist the help of an
expert, especially when a researcher lacks experience
with a power analysis for a specific test.

When reporting an a-priori power analysis, make sure
that the power analysis is completely reproducible. If
power analyses are performed in R it is possible to
share the analysis script and information about the
version of the package. Inmany software packages it is
possible to export thepower analysis that is performed
as a PDF file. For example, in G*Power analyses can
be exported under the ‘protocol of power analysis’ tab.
If the software package provides no way to export the
analysis, add a screenshot of the power analysis to the
supplementary files.

Figure 3. All details about the power analysis that is
performed can be exported in G*Power.

The reproducible report needs to be accompanied by
justifications for the choices that were made with re-
spect to the values used in the power analysis. If the
effect size used in the power analysis is based on pre-
vious research the factors presented in Table 5 (if the
effect size is based on a meta-analysis) or Table 6 (if
the effect size is based on a single study) should be dis-
cussed. If an effect size estimate is based on the exist-
ing literature, provide a full citation, and preferably a
direct quote from the article where the effect size esti-
mate is reported. If the effect size is based on a small-
est effect size of interest, this value should not just
be stated, but justified (e.g., based on theoretical pre-
dictions or practical implications, see Lakens, Scheel,
and Isager (2018)). For an overview of all aspects that
should be reportedwhen describing an a-priori power
analysis, see Table 4.
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Table 4
Overview of recommendations when reporting an a-priori power analysis.

What to take into account? How to take it into account?

List all primary analyses Specify all planned primary analyses that test hypotheses for which Type I
that are planned. and Type II error rates should be controlled.

Specify the alpha level List and justify the Type I error rate for each analysis. Make sure to correct
for each analysis for multiple comparisons where needed.

What is the desired power? List and justify the desired power (or Type II error rate) for each analysis.

For each power analysis, specify Report the effect size metric (e.g., Cohen’s d, Cohen’s f), the effect size
the effect size metric, the effect (e.g., 0.3). and the justification for the effect size, and whether it is based
size, and the justification for is based on a smallest effect size of interest, a meta-analytic effect size
powering for this effect size. estimate, the estimate of a single previous study, or some other source.

Consider the possibility that Perform a power analysis for the test that is planned to examine the
the null hypothesis is true. absence of a meaningful effect (e.g., power for an equivalence test).

Make sure the power analysis Include the code used to run the power analysis, or print a report
is reproducible. containing the details about the power analyses that has been performed.

Planning for Precision

Some researchers have suggested to justify sample
sizes based on a desired level of precision of the es-
timate (Cumming & Calin-Jageman, 2016; Kruschke,
2018; Maxwell et al., 2008). The goal when justify-
ing a sample size based on precision is to collect data
to achieve a desired width of the confidence interval
around a parameter estimate. The width of the con-
fidence interval around the parameter estimate de-
pends on the standard deviation and the number of
observations. The only aspect a researcher needs to
justify for a sample size justificationbasedonaccuracy
is the desired width of the confidence interval with re-
spect to their inferential goal, and their assumption
about the population standard deviation of the mea-
sure.

If a researcher has determined the desired accuracy,
and has a good estimate of the true standard devia-
tion of the measure, it is straightforward to calculate
the sample size needed for a desired level of accuracy.
For example, when measuring the IQ of a group of in-
dividuals a researcher might desire to estimate the IQ
scorewithin an error rangeof 2 IQpoints for 95%of the
observedmeans, in the long run. The required sample
size to achieve this desired level of accuracy (assuming
normally distributed data) can be computed by:

N =

(

z · sd

error

)2

whereN is the number of observations, z is the critical
value related to the desired confidence interval, sd is
the standard deviation of IQ scores in the population,
and error is thewidth of the confidence interval within
which themean should fall, with the desired error rate.
In this example, (1.96 × 15 / 2)ˆ2 = 216.1 observations.
If a researcher desires 95%of themeans to fall within a
2 IQpoint range around the truepopulationmean, 217
observations should be collected. If a desired accuracy
for a non-zeromean difference is computed, accuracy
is based on a non-central t-distribution. For these cal-
culations an expected effect size estimate needs to be
provided, but it has relatively little influence on the re-
quired sample size (Maxwell et al., 2008). It is also pos-
sible to incorporateuncertainty about theobservedef-
fect size in the sample size calculation, knownasassur-
ance (Kelley &Rausch, 2006). TheMBESS package in R
provides functions to compute sample sizes for a wide
range of tests (Kelley, 2007).

What is less straightforward is to justify how a desired
level of accuracy is related to inferential goals. There is
no literature that helps researchers to choose a desired
width of the confidence interval. Morey (2020) con-
vincingly argues thatmost practical use-cases of plan-
ning for precision involve an inferential goal of distin-
guishing an observed effect from other effect sizes (for
a Bayesian perspective, see Kruschke (2018)). For ex-
ample, a researcher might expect an effect size of r =
0.4 and would treat observed correlations that differ
more than 0.2 (i.e., 0.2 < r < 0.6) differently, in that ef-
fects of r = 0.6 or larger are considered too large to be
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caused by the assumed underlying mechanism (Hil-
gard, 2021), while effects smaller than r = 0.2 are con-
sidered too small to support the theoretical prediction.
If the goal is indeed to get an effect size estimate that is
preciseenoughso that twoeffects canbedifferentiated
with high probability, the inferential goal is actually a
hypothesis test, which requires designing a study with
sufficient power to reject effects (e.g., testing a range
prediction of correlations between 0.2 and 0.6).

If researchers do not want to test a hypothesis, for
example because they prefer an estimation approach
over a testing approach, then in the absence of clear
guidelines that help researchers to justify a desired
level of precision, one solution might be to rely on a
generally accepted norm of precision to aim for. This
norm could be based on ideas about a certain reso-
lution below which measurements in a research area
no longer lead to noticeably different inferences. Just
as researchers normatively use an alpha level of 0.05,
theycouldplanstudies toachieveadesiredconfidence
interval width around the observed effect that is de-
termined by a norm. Future work is needed to help
researchers choose a confidence interval width when
planning for accuracy.

Heuristics

Whena researcher uses a heuristic, they are not able to
justify their sample size themselves, but they trust in a
sample size recommended by some authority. When
I started as a PhD student in 2005 it was common to
collect 15 participants in each between subject condi-
tion. When asked why this was a common practice,
no one was really sure, but people trusted there was
a justification somewhere in the literature. Now, I re-
alize there was no justification for the heuristics we
used. As Berkeley (1735) already observed: “Men learn
the elements of science fromothers: And every learner
hath a deference more or less to authority, especially
the young learners, few of that kind caring to dwell
long uponprinciples, but inclining rather to take them
upon trust: And things early admittedby repetitionbe-
come familiar: And this familiarity at length passeth
for evidence.”

Some papers provide researchers with simple rules of
thumb about the sample size that should be collected.
Such papers clearly fill a need, and are cited a lot, even
when the advice in these articles is flawed. For exam-
ple,WilsonVanVoorhis andMorgan (2007) translatean
absoluteminimumof50+8observations for regression
analyses suggested by a rule of thumb examined in S.
B. Green (1991) into the recommendation to collect

~50 observations. Green actually concludes in his ar-
ticle that “In summary, no specific minimum number
of subjects orminimumratio of subjects-to-predictors
was supported”. He does discuss how a general rule of
thumb of N = 50 + 8 provided an accurate minimum
number of observations for the ‘typical’ study in the
social sciences because these have a ‘medium’ effect
size, as Green claims by citing Cohen (1988). Cohen
actually didn’t claim that the typical study in the social
sciences has a ‘medium’ effect size, and instead said
(1988, p. 13): “Many effects sought in personality, so-
cial, andclinical-psychological researchare likely tobe
small effects as here defined”. We see how a string of
mis-citations eventually leads to a misleading rule of
thumb.

Rules of thumb seem to primarily emerge due to
mis-citations and/or overly simplistic recommenda-
tions. Simonsohn, Nelson, and Simmons (2011) rec-
ommended that “Authors must collect at least 20 ob-
servations per cell”. A later recommendation by the
same authors presented at a conference suggested to
use n > 50, unless you study large effects (Simmons,
Nelson, & Simonsohn, 2013). Regrettably, this advice
is now often mis-cited as a justification to collect no
more than 50 observations per conditionwithout con-
sidering the expected effect size. If authors justify
a specific sample size (e.g., n = 50) based on a gen-
eral recommendation in another paper, either they are
mis-citing the paper, or the paper they are citing is
flawed.

Another commonheuristic is to collect the samenum-
ber of observations as were collected in a previous
study. This strategy is not recommended in scientific
disciplines with widespread publication bias, and/or
where novel and surprising findings from largely ex-
ploratory single studies are published. Using the same
sample size as aprevious study is only a valid approach
if the sample size justification in the previous study
also applies to the current study. Insteadof stating that
you intend to collect the same sample size as an earlier
study, repeat the sample size justification, and update
it in light of any new information (such as the effect
size in the earlier study, see Table 6).

Peer reviewers and editors should carefully scrutinize
rules of thumb sample size justifications, because they
can make it seem like a study has high informational
value for an inferential goal even when the study will
yield uninformative results. Whenever one encoun-
ters a sample size justificationbasedonaheuristic, ask
yourself: ‘Why is this heuristic used?’ It is important to
knowwhat the logic behind a heuristic is to determine
whether the heuristic is valid for a specific situation.
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In most cases, heuristics are based on weak logic, and
not widely applicable. It might be possible that fields
develop valid heuristics for sample size justifications.
For example, it is possible that a research area reaches
widespread agreement that effects smaller than d =
0.3 are too small to be of interest, and all studies in a
field use sequential designs (see below) that have 90%
power to detect a d = 0.3. Alternatively, it is possible
that a field agrees that data should be collected with a
desired level of accuracy, irrespective of the true effect
size. In these cases, valid heuristics would exist based
on generally agreed goals of data collection. For exam-
ple, Simonsohn (2015) suggests to design replication
studies that have 2.5 times as large sample sizes as the
original study, as this provides 80%power for an equiv-
alence test against an equivalence bound set to the ef-
fect theoriginal studyhad33%power todetect, assum-
ing the true effect size is 0. As original authors typi-
cally do not specifywhich effect sizewould falsify their
hypothesis, the heuristic underlying this ‘small tele-
scopes’ approach is a good starting point for a replica-
tion study with the inferential goal to reject the pres-
ence of an effect as large as was described in an earlier
publication. It is the responsibility of researchers to
gain the knowledge todistinguish validheuristics from
mindlessheuristics, and tobeable to evaluatewhether
a heuristic will yield an informative result given the in-
ferential goal of the researchers in a specific study, or
not.

No Justification

It might sound like a contradictio in terminis, but it is
useful todistinguishafinal categorywhere researchers
explicitly state they do not have a justification for their
sample size. Perhaps the resources were available to
collectmoredata, but theywerenot used. A researcher
could have performed apower analysis, or planned for
precision, but they did not. In those cases, instead of
pretending therewasa justification for the sample size,
honesty requires you to state there is no sample size
justification. This is not necessarily bad. It is still pos-
sible to discuss the smallest effect size of interest, the
minimal statistically detectable effect, thewidth of the
confidence interval around the effect size, and to plot
a sensitivity power analysis, in relation to the sample
size thatwas collected. If a researcher trulyhadno spe-
cific inferential goals when collecting the data, such
anevaluation canperhapsbeperformedbasedon rea-
sonable inferential goals peers would have when they
learn about the existence of the collected data.

Donot try to spin a storywhere it looks like a studywas
highly informative when it was not. Instead, transpar-

ently evaluate how informative the studywas given ef-
fect sizes that were of interest, and make sure that the
conclusions follow from the data. The lack of a sam-
ple size justification might not be problematic, but it
might mean that a study was not informative for most
effect sizes of interest, which makes it especially dif-
ficult to interpret non-significant effects, or estimates
with large uncertainty.

What is Your Inferential Goal?

The inferential goal of data collection is often in some
way related to the size of an effect. Therefore, to design
an informative study, researchers will want to think
about which effect sizes are interesting. First, it is use-
ful to consider three effect sizes when determining the
sample size. The first is the smallest effect size a re-
searcher is interested in, the second is the smallest ef-
fect size that can be statistically significant (only in
studies where a significance test will be performed),
and the third is the effect size that is expected. Beyond
considering these three effect sizes, it can be useful to
evaluate ranges of effect sizes. This can be done by
computing thewidthof the expected confidence inter-
val around an effect size of interest (for example, an ef-
fect size of zero), and examine which effects could be
rejected. Similarly, it can be useful to plot a sensitivity
curve and evaluate the range of effect sizes the design
has decent power to detect, as well as to consider the
range of effects forwhich the design has lowpower. Fi-
nally, there are situations where it is useful to consider
range of effects that are likely to be observed in a spe-
cific research area.

What is the Smallest Effect Size of Interest?

The strongest possible sample size justification is
based on an explicit statement of the smallest effect
size that is considered interesting. A smallest effect
size of interest can be based on theoretical predictions
orpractical considerations. For a reviewof approaches
that can be used to determine a smallest effect size of
interest in randomized controlled trials, see Cook et
al. (2014) and Keefe et al. (2013), for reviews of differ-
ent methods to determine a smallest effect size of in-
terest, see King (2011) and Copay, Subach, Glassman,
Polly, and Schuler (2007), and for a discussion focused
on psychological research, see Lakens, Scheel, et al.
(2018).

It can be challenging to determine the smallest effect
size of interest whenever theories are not very devel-
oped, or when the research question is far removed
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from practical applications, but it is still worth think-
ing about which effects would be too small to matter.
A first step forward is to discuss which effect sizes are
consideredmeaningful in a specific research line with
your peers. Researchers will differ in the effect sizes
they consider large enough to be worthwhile (Murphy
et al., 2014). Just asnotevery scientistwill findevery re-
search question interesting enough to study, not every
scientist will consider the same effect sizes interesting
enough to study, and different stakeholders will differ
inwhich effect sizes are consideredmeaningful (Kelley
& Preacher, 2012).

Even though it might be challenging, there are impor-
tant benefits of being able to specify a smallest effect
size of interest. Thepopulationeffect size is alwaysun-
certain (indeed, estimating this is typically one of the
goals of the study), and therefore whenever a study is
powered for an expected effect size, there is consider-
able uncertainty about whether the statistical power
is high enough to detect the true effect in the popu-
lation. However, if the smallest effect size of interest
can be specified and agreed upon after careful delib-
eration, it becomes possible to design a study that has
sufficient power (given the inferential goal to detect or
reject the smallest effect size of interest with a certain
error rate). A smallest effect of interest may be sub-
jective (one researcher might find effect sizes smaller
than d = 0.3 meaningless, while another researcher
might still be interested in effects larger than d = 0.1),
and there might be uncertainty about the parameters
required to specify the smallest effect size of interest
(e.g., when performing a cost-benefit analysis), but af-
ter a smallest effect size of interest has been deter-
mined, a study can be designed with a known Type 2
error rate to detect or reject this value. For this rea-
son an a-priori power based on a smallest effect size
of interest is generallypreferred,whenever researchers
are able to specify one (Aberson, 2019; Albers & Lak-
ens, 2018; Brown, 1983; Cascio&Zedeck, 1983; Dienes,
2014; Lenth, 2001).

TheMinimal Statistically Detectable Effect

Theminimal statistically detectable effect, or the criti-
cal effect size, provides information about the smallest
effect size that, if observed, would be statistically sig-
nificant given a specified alpha level and sample size
(Cook et al., 2014). For any critical t value (e.g., t = 1.96
for α = 0.05, for large sample sizes) we can compute a
critical mean difference (Phillips et al., 2001), or a crit-
ical standardized effect size. For a two-sided indepen-
dent t test the critical mean difference is:

Mcrit = tcrit

√
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1
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+
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and the critical standardizedmean difference is:

dcrit = tcrit
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In Figure 4 the distribution of Cohen’s d is plotted for
15 participants per group when the true effect size is
either d = 0 or d = 0.5. This figure is similar to Figure 2,
with the addition that the criticald is indicated. We see
that with such a small number of observations in each
group only observed effects larger than d = 0.75 will be
statistically significant. Whether such effect sizes are
interesting, and can realistically be expected, should
be carefully considered and justified.
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Figure 4. Critical effect size for an independent t test
with n = 15 per group and α = 0.05.

G*Power provides the critical test statistic (such as the
critical t value)whenperforming a power analysis. For
example, Figure 5 shows that for a correlation based
on a two-sided test, with α = 0.05, and N = 30, only
effects larger than r = 0.361 or smaller than r = -0.361
can be statistically significant. This reveals that when
the sample size is relatively small, the observed effect
needs to be quite substantial to be statistically signifi-
cant.

It is important to realize that due to random variation
each study has a probability to yield effects larger than
thecritical effect size, even if the trueeffect size is small
(or even when the true effect size is 0, in which case
each significant effect is a Type I error). Computing
a minimal statistically detectable effect is useful for a
study where no a-priori power analysis is performed,
both for studies in the published literature that do not



SAMPLE SIZE JUSTIFICATION 13

Figure 5. The critical correlationof a test basedon a to-
tal sample sizeof 30andα=0.05calculated inG*Power.

report a sample size justification (Lakens, Scheel, et al.,
2018), as for researcherswho relyonheuristics for their
sample size justification.

It can be informative to ask yourself whether the criti-
cal effect size for a study design is within the range of
effect sizes that can realistically be expected. If not,
thenwhenever a significant effect is observed inapub-
lished study, either the effect size is surprisingly larger
than expected, or more likely, it is an upwardly biased
effect size estimate. In the latter case, given publica-
tion bias, published studies will lead to biased effect
size estimates. If it is still possible to increase the sam-
ple size, for example by ignoring rules of thumb and
insteadperforming ana-priori power analysis, thendo
so. If it is not possible to increase the sample size, for
example due to resource constraints, then reflecting
on the minimal statistically detectable effect should
make it clear that an analysis of the data should not
focus on p values, but on the effect size and the con-
fidence interval (see Table 3).

It is alsouseful tocompute theminimal statisticallyde-
tectable effect if an ‘optimistic’ power analysis is per-
formed. For example, if you believe a best case sce-
nario for the true effect size is d = 0.57 and use this op-

timistic expectation in an a-priori power analysis, ef-
fects smaller than d = 0.4 will not be statistically sig-
nificant when you collect 50 observations in a two in-
dependent group design. If your worst case scenario
for the alternative hypothesis is a true effect size of
d = 0.35 your design would not allow you to declare
a significant effect if effect size estimates close to the
worst case scenario are observed. Taking into account
the minimal statistically detectable effect size should
makeyou reflectonwhether ahypothesis testwill yield
an informative answer, and whether your current ap-
proach to sample size justification (e.g., theuseof rules
of thumb, or letting resource constraints determine
the sample size) leads to an informative study, or not.

What is the Expected Effect Size?

Although the true population effect size is always un-
known, there are situations where researchers have a
reasonable expectation of the effect size in a study,
and want to use this expected effect size in an a-priori
power analysis. Even if expectations for the observed
effect size are largely a guess, it is always useful to ex-
plicitly consider which effect sizes are expected. A re-
searcher can justify a sample size based on the effect
size they expect, even if such a studywould not be very
informative with respect to the smallest effect size of
interest. In suchcases a study is informative for one in-
ferential goal (testing whether the expected effect size
is present or absent), but not highly informative for the
second goal (testing whether the smallest effect size of
interest is present or absent).

There are typically three sources for expectations
about the population effect size: a meta-analysis, a
previous study, or a theoretical model. It is tempt-
ing for researchers to be overly optimistic about the
expected effect size in an a-priori power analysis, as
higher effect size estimates yield lower sample sizes,
but being too optimistic increases the probability of
observing a false negative result. When reviewing a
sample size justification based on an a-priori power
analysis, it is important to critically evaluate the justi-
fication for the expected effect sizeused inpower anal-
yses.

Using an Estimate from aMeta-Analysis

In a perfect world effect size estimates from a meta-
analysis would provide researchers with the most ac-
curate information about which effect size they could
expect. Due to widespread publication bias in sci-
ence, effect size estimates from meta-analyses are
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regrettably not always accurate. They can be bi-
ased, sometimes substantially so. Furthermore, meta-
analyses typically have considerable heterogeneity,
which means that the meta-analytic effect size esti-
mate differs for subsets of studies that make up the
meta-analysis. So, although itmight seemuseful touse
ameta-analytic effect sizeestimateof theeffect youare
studying in your power analysis, youneed to take great
care before doing so.

If a researcher wants to enter a meta-analytic effect
size estimate in an a-priori power analysis, they need
to consider three things (see Table 5). First, the stud-
ies included in the meta-analysis should be similar
enough to the study they are performing that it is rea-
sonable to expect a similar effect size. In essence,
this requires evaluating the generalizability of the ef-
fect size estimate to the new study. It is important
to carefully consider differences between the meta-
analyzed studies and the planned study, with respect
to themanipulation, themeasure, the population, and
any other relevant variables.

Second, researchers should check whether the effect
sizes reported in the meta-analysis are homogeneous.
If not, and there is considerable heterogeneity in the
meta-analysis, it means not all included studies can
be expected to have the same true effect size esti-
mate. A meta-analytic estimate should be used based
on the subset of studies thatmost closely represent the
planned study. Note that heterogeneity remains a pos-
sibility (even direct replication studies can show het-
erogeneity when unmeasured variables moderate the
effect size in each sample (Kenny& Judd, 2019;Olsson-
Collentine, Wicherts, & van Assen, 2020)), so the main
goal of selecting similar studies is to use existing data
to increase the probability that your expectation is ac-
curate, without guaranteeing it will be.

Third, the meta-analytic effect size estimate should
not be biased. Check if the bias detection tests that are
reported in the meta-analysis are state-of-the-art, or
performmultiple bias detection tests yourself (Carter,
Schönbrodt, Gervais, & Hilgard, 2019), and consider
bias corrected effect size estimates (even though these
estimates might still be biased, and do not necessarily
reflect the true population effect size).

Using an Estimate from a Previous Study

If a meta-analysis is not available, researchers often
rely on an effect size from a previous study in an a-
priori power analysis. Thefirst issue that requires care-
ful attention is whether the two studies are sufficiently
similar. Just as when using an effect size estimate from

a meta-analysis, researchers should consider if there
are differences between the studies in terms of the
population, the design, the manipulations, the mea-
sures, or other factors that should lead one to expect a
different effect size. For example, intra-individual re-
action time variability increases with age, and there-
fore a study performed on older participants should
expect a smaller standardized effect size than a study
performed on younger participants. If an earlier study
used a very strongmanipulation, and youplan to use a
more subtlemanipulation, a smaller effect size should
be expected. Finally, effect sizes do not generalize to
studies with different designs. For example, the effect
size for a comparison between two groups is most of-
ten not similar to the effect size for an interaction in a
follow-up study where a second factor is added to the
original design (Lakens & Caldwell, 2021).

Even if a study is sufficiently similar, statisticians have
warned against using effect size estimates from small
pilot studies in power analyses. Leon, Davis, andKrae-
mer (2011) write:

Contrary to tradition, a pilot study does
not provide a meaningful effect size esti-
mate for planning subsequent studies due
to the imprecision inherent in data from
small samples.

The two main reasons researchers should be careful
when using effect sizes from studies in the published
literature in power analyses is that effect size estimates
from studies can differ from the true population effect
sizedue to randomvariation, and thatpublicationbias
inflates effect sizes. Figure 6 shows the distribution for
η2

p for a study with three conditions with 25 partici-
pants in each condition when the null hypothesis is
true and when there is a ‘medium’ true effect of η2

p =
0.0588 (Richardson, 2011). As in Figure 4 the critical
effect size is indicated, which shows observed effects
smaller than η2

p = 0.08 will not be significant with the
given sample size. If the null hypothesis is true effects
larger thanη2

p = 0.08will be a Type I error (the dark grey
area), and when the alternative hypothesis is true ef-
fects smaller than η2

p = 0.08 will be a Type II error (light
grey area). It is clear all significant effects are larger
than the true effect size (η2

p = 0.0588), so power anal-
yses based on a significant finding (e.g., because only
significant results are published in the literature) will
be based on an overestimate of the true effect size, in-
troducing bias.

But even if we had access to all effect sizes (e.g., from
pilot studies you have performed yourself) due to ran-
dom variation the observed effect size will sometimes
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Table 5
Overview of recommendationswhen justifying the use of ameta-analytic effect size estimate for a power analysis.

What to take into account How to take it into account?

Are the studies in the Are the studies in themeta-analyses very similar in design, measures, and
meta-analysis similar? the population to the study you are planning? Evaluate the generalizability

of the effect size estimate to your study.

Are the studies in the Is there heterogeneity in themeta-analysis? If so, use themeta-analytic
meta-analysis homogeneous? effect size estimate of themost relevant homogenous subsample.

Is the effect size estimate Did the original study report bias detection tests, and was there bias?
unbiased? If so, it might be wise to use amore conservative effect size estimate,

based on bias correction techniques while acknowledging these corrected
effect size estimates might not represent the truemeta-analytic effect
size estimate.

be quite small. Figure 6 shows it is quite likely to ob-
serve an effect of η2

p = 0.01 in a small pilot study, even
when the true effect size is 0.0588. Entering an effect
size estimate of η2

p = 0.01 in an a-priori power analy-
sis would suggest a total sample size of 957 observa-
tions to achieve 80% power in a follow-up study. If re-
searchersonly followuponpilot studieswhen theyob-
serve an effect size in the pilot study that, when en-
tered into a power analysis, yields a sample size that is
feasible to collect for the follow-up study, these effect
size estimates will be upwardly biased, and power in
the follow-up study will be systematically lower than
desired (Albers & Lakens, 2018).
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Figure 6. Distribution of partial eta squared under the
null hypothesis (dotted grey curve) and amedium true
effect of 0.0588 (solid black curve) for 3 groups with 25
observations.

In essence, the problemwith using small studies to es-
timate the effect size that will be entered into an a-
priori power analysis is that due to publication bias or

follow-upbias the effect sizes researchers endupusing
for their power analysis do not come from a full F dis-
tribution, but fromwhat is knownas a truncated F dis-
tribution (Taylor & Muller, 1996). For example, imag-
ine if there is extreme publication bias in the situation
illustrated in Figure 6. The only studies that would be
accessible to researchers would come from the part of
the distribution where η2

p > 0.08, and the test result
would be statistically significant. It is possible to com-
pute an effect size estimate that, based on certain as-
sumptions, corrects for bias. For example, imagine we
observe a result in the literature for aOne-Way ANOVA
with 3 conditions, reported as F (2, 42) = 0.017, η2

p =
0.176. If wewould take this effect size at face value and
enter it as our effect size estimate in an a-priori power
analysis, the suggested sample size to achieve would
suggestweneed tocollect 17observations ineachcon-
dition.

However, if we assume bias is present, we can use the
BUCSS R package (S. F. Anderson, Kelley, & Maxwell,
2017) to perform a power analysis that attempts to
correct for bias. A power analysis that takes bias into
account (under a specific model of publication bias,
based on a truncated F distribution where only sig-
nificant results are published) suggests collecting 73
participants in each condition. It is possible that the
bias corrected estimate of the non-centrality param-
eter used to compute power is zero, in which case it
is not possible to correct for bias using this method.
As an alternative to formally modeling a correction
for publication bias whenever researchers assume an
effect size estimate is biased, researchers can simply
use amore conservative effect size estimate, for exam-
ple by computing power based on the lower limit of
60% two-sided confidence interval around the effect
size estimate, which Perugini, Gallucci, and Costan-
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tini (2014) refer to as safeguard power. Both these ap-
proaches lead to a more conservative power analysis,
but not necessarily a more accurate power analysis. It
is simply not possible to perform an accurate power
analysis on the basis of an effect size estimate from a
study that might be biased and/or had a small sample
size (Teare et al., 2014). If it is not possible to specify
a smallest effect size of interest, and there is great un-
certainty about which effect size to expect, it might be
more efficient to perform a studywith a sequential de-
sign (discussed below).

To summarize, an effect size from a previous study in
an a-priori power analysis can be used if three condi-
tions are met (see Table 6). First, the previous study
is sufficiently similar to the planned study. Second,
therewas a low risk of bias (e.g., the effect size estimate
comes from a Registered Report, or from an analysis
for which results would not have impacted the likeli-
hood of publication). Third, the sample size is large
enough to yield relatively accurate effect size estimate,
basedon thewidthof a 95%CI around theobservedef-
fect size estimate. There is always uncertainty around
the effect size estimate, and entering the upper and
lower limit of the 95% CI around the effect size esti-
mate might be informative about the consequences
of the uncertainty in the effect size estimate for an a-
priori power analysis.

Using an Estimate from a Theoretical Model

When your theoretical model is sufficiently specific
such that you can build a computational model, and
you have knowledge about key parameters in your
model that are relevant for the data you plan to col-
lect, it is possible to estimate an effect size based on
the effect size estimate derived from a computational
model. For example, if one had strong ideas about the
weights for each feature stimuli share and differ on,
it could be possible to compute predicted similarity
judgments for pairs of stimuli based on Tversky’s con-
trastmodel (Tversky, 1977), andestimate thepredicted
effect size for differences between experimental con-
ditions. Although computational models that make
point predictions are relatively rare, whenever they are
available, they provide a strong justification of the ef-
fect size a researcher expects.

Compute the Width of the Confidence Interval
around the Effect Size

If a researcher can estimate the standard deviation of
the observations that will be collected, it is possible

to compute an a-priori estimate of the width of the
95% confidence interval around an effect size (Kelley,
2007). Confidence intervals represent a range around
an estimate that is wide enough so that in the long run
the true population parameter will fall inside the con-
fidence intervals 100 - α percent of the time. In any
single study the true population effect either falls in
the confidence interval, or it doesn’t, but in the long
run one can act as if the confidence interval includes
the true population effect size (while keeping the error
rate inmind). Cumming (2013) calls the difference be-
tween the observed effect size and the upper 95% con-
fidence interval (or the lower 95% confidence interval)
themargin of error.

If we compute the 95% CI for an effect size of d = 0
based on the t statistic and sample size (Smithson,
2003), we see that with 15 observations in each con-
dition of an independent t test the 95%CI ranges from
d = -0.72 to d = 0.725. The margin of error is half the
width of the 95% CI, 0.72. A Bayesian estimator who
uses an uninformative prior would compute a credi-
ble intervalwith the same (or a very similar) upper and
lower bound (Albers, Kiers, & Ravenzwaaij, 2018; Kr-
uschke, 2011), and might conclude that after collect-
ing the data they would be left with a range of plausi-
ble values for the population effect that is too large to
be informative. Regardlessof the statisticalphilosophy
you plan to rely on when analyzing the data, the eval-
uation of what we can conclude based on the width of
our interval tells us that with 15 observation per group
we will not learn a lot.

One useful way of interpreting the width of the con-
fidence interval is based on the effects you would be
able to reject if the true effect size is 0. In other words,
if there is no effect, which effects would you have been
able to reject given the collected data, and which ef-
fect sizes would not be rejected, if there was no effect?
Effect sizes in the range of d = 0.7 are findings such as
“People become aggressive when they are provoked”,
“People prefer their own group to other groups”, and
“Romantic partners resemble one another in physical
attractiveness” (Richard, Bond, & Stokes-Zoota, 2003).
The width of the confidence interval tells you that you
can only reject the presence of effects that are so large,
if they existed, you would probably already have no-
ticed them. If it is true that most effects that you study
are realistically much smaller than d = 0.7, there is
a good possibility that we do not learn anything we
didn’t already know by performing a study with n = 15.

5Confidence intervals around effect sizes can be com-
puted using the MOTE Shiny app: https://www.aggieerin.
com/shiny-server/

https://www.aggieerin.com/shiny-server/
https://www.aggieerin.com/shiny-server/
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Table 6
Overview of recommendations when justifying the use of an effect size estimate from a single study.

What to take into account How to take it into account?

Is the study sufficiently similar? Consider if there are differences between the studies in terms of the
population, the design, themanipulations, themeasures, or other factors
that should lead one to expect a different effect size.

Is there a risk of bias? Evaluate the possibility that if the effect size estimate had been smaller,
you would not have used it (or it would not have been published). Examine
the difference when entering the reported, and a bias corrected, effect
size estimate in a power analysis.

How large is the uncertainty? Studies with a small number of observations have large uncertainty.
Consider the possibility of using amore conservative effect size estimate
to reduce the possibility of an underpowered study for the true effect size
(such as a safeguard power analysis).

Evenwithoutdata, inmost research lineswewouldnot
consider certain large effects plausible (although the
effect sizes that are plausible differ between fields, as
discussed below). On the other hand, in large samples
where researchers can for example reject the presence
of effects larger than d = 0.2, if the null hypothesis was
true, this analysis of the width of the confidence in-
terval would suggest that peers inmany research lines
would likely consider the study to be informative.

We see that the margin of error is almost, but not ex-
actly, the same as the minimal statistically detectable
effect (d = 0.75). The small variation is due to the fact
that the 95% confidence interval is calculated based
on the t distribution. If the true effect size is not zero,
the confidence interval is calculatedbasedon thenon-
central t distribution, and the 95% CI is asymmetric.
Figure7visualizes three t distributions, onesymmetric
at 0, and two asymmetric distributions with a noncen-
trality parameter (the normalized difference between
the means) of 2 and 3. The asymmetry is most clearly
visible in very small samples (the distributions in the
plot have 5 degrees of freedom) but remains notice-
able in larger sampleswhen calculating confidence in-
tervals and statistical power. For example, for a true
effect size of d = 0.5 observed with 15 observations
per group would yield ds = 0.50, 95% CI [-0.23, 1.22].
If we compute the 95% CI around the critical effect
size, we would get ds = 0.75, 95% CI [0.00, 1.48]. We
see the 95% CI ranges from exactly 0.00 to 1.48, in line
with the relation between a confidence interval and a
p value, where the 95% CI excludes zero if the test is
statistically significant. As noted before, the different
approaches recommendedhere to evaluate how infor-
mative a study is are often based on the same informa-
tion.
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Figure 7 . Central (black) and 2 non-central (darkgrey
and lightgrey) t distributions.

Plot a Sensitivity Power Analysis

A sensitivity power analysis fixes the sample size, de-
sired power, and alpha level, and answers the ques-
tion which effect size a study could detect with a de-
sired power. A sensitivity power analysis is therefore
performed when the sample size is already known.
Sometimes data has already been collected to answer
a different research question, or the data is retrieved
from an existing database, and you want to perform
a sensitivity power analysis for a new statistical anal-
ysis. Other times, you might not have carefully con-
sidered the sample sizewhenyou initially collected the
data, and want to reflect on the statistical power of the
study for (ranges of) effect sizes of interest when ana-
lyzing the results. Finally, it is possible that the sam-
ple size will be collected in the future, but you know
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that due to resource constraints the maximum sam-
ple size you can collect is limited, and you want to re-
flect on whether the study has sufficient power for ef-
fects that you consider plausible and interesting (such
as the smallest effect size of interest, or the effect size
that is expected).

Assume a researcher plans to perform a study where
30 observations will be collected in total, 15 in each
between participant condition. Figure 8 shows how to
perform a sensitivity power analysis in G*Power for a
study where we have decided to use an alpha level of
5%, and desire 90% power. The sensitivity power anal-
ysis reveals the designed study has 90% power to de-
tect effects of at leastd = 1.23. Perhaps a researcher be-
lieves that a desired power of 90% is quite high, and is
of the opinion that it would still be interesting to per-
form a study if the statistical power was lower. It can
then be useful to plot a sensitivity curve across a range
of smaller effect sizes.

Figure 8. Sensitivity power analysis in G*Power soft-
ware.

The two dimensions of interest in a sensitivity power
analysis are the effect sizes, and the power to observe a
significant effect assuming a specific effect size. These
two dimensions can be plotted against each other to
create a sensitivity curve. For example, a sensitivity
curve can be plotted in G*Power by clicking the ‘X-

Y plot for a range of values’ button, as illustrated in
Figure 9. Researchers can examine which power they
would have for an a-priori plausible range of effect
sizes, or they can examine which effect sizes would
provide reasonable levels of power. In simulation-
based approaches to power analysis, sensitivity curves
can be created by performing the power analysis for
a range of possible effect sizes. Even if 50% power is
deemed acceptable (in which case deciding to act as
if the null hypothesis is true after a non-significant re-
sult is a relatively noisy decision procedure), Figure 9
shows a study designwhere power is extremely low for
a large range of effect sizes that are reasonable to ex-
pect in most fields. Thus, a sensitivity power analy-
sis provides an additional approach to evaluate how
informative the planned study is, and can inform re-
searchers that a specificdesign isunlikely to yield a sig-
nificant effect for a range of effects that one might re-
alistically expect.

Figure 9. Plot of the effect size against the desired
power when n = 15 per group and alpha = 0.05.

If the number of observations per group had been
larger, the evaluation might have been more positive.
Wemight not have had any specific effect size inmind,
but if we had collected 150 observations per group, a
sensitivity analysis could have shown that power was
sufficient for a range of effects we believe is most in-
teresting to examine, and we would still have approx-
imately 50% power for quite small effects. For a sen-
sitivity analysis to bemeaningful, the sensitivity curve
shouldbe comparedagainst a smallest effect size of in-
terest, or a range of effect sizes that are expected. A
sensitivity power analysis has no clear cut-offs to ex-
amine (Bacchetti, 2010). Instead, the idea is to make
a holistic trade-off between different effect sizes one
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might observe or care about, and their associated sta-
tistical power.

The Distribution of Effect Sizes in a Research Area

In my personal experience the most commonly en-
tered effect size estimate in an a-priori power analysis
for an independent t test is Cohen’s benchmark for a
‘medium’ effect size, because of what is known as the
default effect. When you openG*Power, a ‘medium’ ef-
fect is the default option for an a-priori power analy-
sis. Cohen’s benchmarks for small, medium, and large
effects should not be used in an a-priori power anal-
ysis (Cook et al., 2014; Correll, Mellinger, McClelland,
& Judd, 2020), and Cohen regretted having proposed
these benchmarks (Funder & Ozer, 2019). The large
variety in research topics means that any ‘default’ or
‘heuristic’ that is used to compute statistical power is
not justunlikely to correspond toyouractual situation,
but it is also likely to lead to a sample size that is more
substantiallymisalignedwith the question you are try-
ing to answer with the collected data.

Some researchers havewonderedwhat abetter default
would be, if researchers have no other basis to decide
uponaneffect size for ana-priori power analysis. Brys-
baert (2019) recommends d = 0.4 as a default in psy-
chology, which is the average observed in replication
projects and several meta-analyses. It is impossible
to know if this average effect size is realistic, but it is
clear there is huge heterogeneity across fields and re-
search questions. Any average effect size will often de-
viate substantially from the effect size that should be
expected in a planned study. Some researchers have
suggested tochangeCohen’sbenchmarksbasedon the
distribution of effect sizes in a specific field (Bosco,
Aguinis, Singh, Field, & Pierce, 2015; Funder & Ozer,
2019; Hill, Bloom, Black, & Lipsey, 2008; Kraft, 2020;
Lovakov & Agadullina, 2017). As always, when effect
size estimates are based on the published literature,
oneneeds to evaluate thepossibility that the effect size
estimates are inflated due to publication bias. Due
to the large variation in effect sizes within a specific
research area, there is little use in choosing a large,
medium, or small effect size benchmark based on the
empirical distribution of effect sizes in a field to per-
form a power analysis.

Having some knowledge about the distribution of ef-
fect sizes in the literature canbeusefulwhen interpret-
ing the confidence interval around an effect size. If in a
specific research area almost no effects are larger than
the value you could reject in an equivalence test (e.g.,
if the observed effect size is 0, the design would only

reject effects larger than for example d = 0.7), then it is
a-priori unlikely that collecting the datawould tell you
something you didn’t already know.

It is more difficult to defend the use of a specific ef-
fect size derived from an empirical distribution of ef-
fect sizes as a justification for the effect size used in an
a-priori power analysis. One might argue that the use
of an effect size benchmark based on the distribution
of effects in the literature will outperform awild guess,
but this is not a strong enough argument to form the
basis of a sample size justification. There is a point
where researchers need to admit they are not ready
to perform an a-priori power analysis due to a lack
of clear expectations (Scheel, Tiokhin, Isager, & Lak-
ens, 2020). Alternative sample size justifications, such
as a justification of the sample size based on resource
constraints, perhaps in combinationwith a sequential
study design, might bemore in line with the actual in-
ferential goals of a study.

Additional ConsiderationsWhen Designing an
Informative Study

So far, the focus has been on justifying the sample size
for quantitative studies. There are a number of re-
lated topics that can be useful to design an informa-
tive study. First, in addition to a-priori or prospective
power analysis and sensitivity power analysis, it is im-
portant to discuss compromise power analysis (which
is useful) and post-hoc or retrospective power analysis
(which is not useful, e.g., Zumbo and Hubley (1998),
Lenth (2007)). When sample sizes are justified based
on an a-priori power analysis it can be very efficient
to collect data in sequential designs where data col-
lection is continued or terminated based on interim
analyses of the data. Furthermore, it is worthwhile to
consider ways to increase the power of a test without
increasing the sample size. An additional point of at-
tention is to have a good understanding of your de-
pendent variable, especially it’s standarddeviation. Fi-
nally, sample size justification is just as important in
qualitative studies, and although there has beenmuch
less work on sample size justification in this domain,
someproposals exist that researchers canuse todesign
an informative study. Each of these topics is discussed
in turn.

Compromise Power Analysis

In a compromise power analysis the sample size and
the effect are fixed, and the error rates of the test are
calculated, based on a desired ratio between the Type I
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and Type II error rate. A compromise power analysis is
useful both when a very large number of observations
will be collected, as when only a small number of ob-
servations can be collected.

In the first situation a researcher might be fortunate
enough to be able to collect somany observations that
the statistical power for a test is very high for all effect
sizes that are deemed interesting. For example, imag-
ine a researcher has access to 2000 employees who are
all required to answer questions during a yearly eval-
uation in a company where they are testing an inter-
vention that should reduce subjectively reported stress
levels. You are quite confident that an effect smaller
than d = 0.2 is not large enough to be subjectively no-
ticeable for individuals (Jaeschke, Singer, & Guyatt,
1989). With an alpha level of 0.05 the researcher would
have a statistical power of 0.99, or a Type II error rate of
0.01. This means that for a smallest effect size of inter-
est of d = 0.2 the researcher is 8.30 timesmore likely to
make a Type I error than a Type II error.

Although the original idea of designing studies that
control Type I and Type II error error rates was that re-
searchers would need to justify their error rates (Ney-
man&Pearson, 1933), a commonheuristic is to set the
Type I error rate to 0.05 and the Type II error rate to
0.20, meaning that a Type I error is 4 times as unlikely
as a Type II error. The default use of 80% power (or a
20% Type II or β error) is based on a personal prefer-
ence of Cohen (1988), who writes:

It is proposed here as a convention that,
when the investigatorhasnootherbasis for
setting the desired power value, the value
.80 be used. This means that β is set at
.20. This arbitrary but reasonable value is
offered for several reasons (Cohen, 1965,
pp. 98-99). The chief among them takes
into consideration the implicit convention
for α of .05. The β of .20 is chosen with the
idea that the general relative seriousness of
these two kinds of errors is of the order of
.20/.05, i.e., that Type I errors are of the or-
der of four times as serious as Type II er-
rors. This .80 desired power convention is
offeredwith the hope that it will be ignored
whenever an investigator can find a basis
in his substantive concerns in his specific
research investigation to choose a value ad
hoc.

We see that conventions are built on conventions: the
norm to aim for 80% power is built on the norm to set

the alpha level at 5%. What we should take away from
Cohen is not that we should aim for 80% power, but
that we should justify our error rates based on the rel-
ative seriousness of each error. This is where compro-
mise power analysis comes in. If you share Cohen’s be-
lief that a Type I error is 4 times as serious as a Type
II error, and building on our earlier study on 2000 em-
ployees, it makes sense to adjust the Type I error rate
when the Type II error rate is low for all effect sizes
of interest (Cascio & Zedeck, 1983). Indeed, Erdfelder,
Faul, and Buchner (1996) created the G*Power soft-
ware in part to give researchers a tool to perform com-
promise power analysis.

Figure 10. Compromise power analysis in G*Power.

Figure 10 illustrates howa compromise power analysis
is performed inG*PowerwhenaType I error is deemed
to be equally costly as a Type II error, which for for a
studywith1000observationsper conditionwould lead
to a Type I error and a Type II error of 0.0179. As Faul,
Erdfelder, Lang, and Buchner (2007) write:

Of course, compromisepower analyses can
easily result inunconventional significance
levels greater than α = .05 (in the case of
small samples or effect sizes) or less than α
= .001 (in the case of large samples or effect
sizes). However, we believe that the bene-
fit of balanced Type I and Type II error risks
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often offsets the costs of violating signifi-
cance level conventions.

This bringsus to the second situationwhere a compro-
mise power analysis can be useful, which is when we
know the statistical power inour study is low. Although
it is highly undesirable to make decisions when error
rates are high, if one finds oneself in a situation where
a decision must be made based on little information,
Winer (1962) writes:

The frequent use of the .05 and .01 levels of
significance is a matter of convention hav-
ing little scientific or logical basis. When
the power of tests is likely to be low under
these levels of significance, and when Type
I and Type II errors are of approximately
equal importance, the .30 and .20 levels of
significancemaybemore appropriate than
the .05 and .01 levels.

For example, if we plan to perform a two-sided t test,
can feasibly collect atmost 50 observations in each in-
dependent group, and expect a population effect size
of 0.5, we would have 70% power if we set our alpha
level to 0.05. We can choose to weigh both types of er-
ror equally, and set the alpha level to 0.149, to end up
with a statistical power for an effect of d = 0.5 of 0.851
(given a 0.149 Type II error rate). The choice of α and
β in a compromise power analysis can be extended to
take prior probabilities of the null and alternative hy-
pothesis into account (Maier & Lakens, 2022; Miller &
Ulrich, 2019; Murphy et al., 2014).

A compromise power analysis requires a researcher to
specify the sample size. This sample size itself requires
a justification, so a compromise power analysis will
typically be performed together with a resource con-
straint justification for a sample size. It is especially
important to perform a compromise power analysis if
your resource constraint justification is strongly based
on the need to make a decision, in which case a re-
searcher should think carefully about the Type I and
Type II error rates stakeholders are willing to accept.
However, a compromise power analysis also makes
sense if the sample size is very large, but a researcher
did not have the freedom to set the sample size. This
might happen if, for example, data collection is part
of a larger international study and the sample size is
based on other research questions. In designs where
the Type II error rates is very small (and power is very
high) some statisticians have also recommended to
lower the alpha level to prevent Lindley’s paradox, a

situation where a significant effect (p < α) is evidence
for the null hypothesis (Good, 1992; Jeffreys, 1939).
Lowering the alpha level as a function of the statisti-
cal power of the test can prevent this paradox, provid-
ing another argument for a compromise power analy-
siswhen sample sizes are large (Maier & Lakens, 2022).
Finally, a compromisepoweranalysisneedsa justifica-
tion for the effect size, either based on a smallest effect
size of interest or an effect size that is expected. Table
7 lists three aspects that should bediscussed alongside
a reported compromise power analysis.

What to do if Your Editor Asks for Post-hoc Power?

Post-hoc, retrospective, or observed power is used to
describe the statistical power of the test that is com-
puted assuming the effect size that has been estimated
from the collected data is the true effect size (Lenth,
2007; Zumbo&Hubley, 1998). Post-hocpower is there-
fore not performed before looking at the data, based
on effect sizes that are deemed interesting, as in an
a-priori power analysis, and it is unlike a sensitiv-
ity power analysis where a range of interesting effect
sizes is evaluated. Because a post-hoc or retrospec-
tive power analysis is based on the effect size observed
in the data that has been collected, it does not add
any information beyond the reported p value, but it
presents the same information in a different way. De-
spite this fact, editors and reviewers often ask authors
to perform post-hoc power analysis to interpret non-
significant results. This is not a sensible request, and
whenever it is made, you should not comply with it.
Instead, you should perform a sensitivity power analy-
sis, and discuss the power for the smallest effect size of
interest and a realistic range of expected effect sizes.

Post-hoc power is directly related to the p value of the
statistical test (Hoenig & Heisey, 2001). For a z test
where the p value is exactly 0.05, post-hoc power is al-
ways 50%. The reason for this relationship is thatwhen
a p value is observed that equals the alpha level of the
test (e.g., 0.05), the observed z score of the test is ex-
actly equal to the critical value of the test (e.g., z = 1.96
in a two-sided test with a 5% alpha level). Whenever
the alternative hypothesis is centered on the critical
value half the values we expect to observe if this alter-
native hypothesis is true fall below the critical value,
and half fall above the critical value. Therefore, a test
whereweobservedap value identical to thealpha level
will have exactly 50% power in a post-hoc power anal-
ysis, as the analysis assumes the observed effect size is
true.

For other statistical tests, where the alternative distri-
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Table 7
Overview of recommendations when justifying error rates based on a compromise power analysis.

What to take into account How to take it into account?

What is the justification Specify why a specific sample size is collected (e.g., based on resource
for the sample size? constraints or other factors that determined the sample size).

What is the justification Is the effect size based on a smallest effect size of interest or an
for the effect size? expected effect size?

What is the desired ratio of Weigh the relative costs of a Type I and a Type II error by carefully
Type I vs Type II error rates? evaluating the consequences of each type of error.

bution is not symmetric (such as for the t test, where
the alternative hypothesis follows a non-central t dis-
tribution, see Figure 7), a p = 0.05 does not directly
translate to an observed power of 50%, but by plotting
post-hoc power against the observed p value we see
that the two statistics are always directly related. As
Figure 11 shows, if the p value is non-significant (i.e.,
larger than 0.05) the observed power will be less than
approximately 50% in a t test. Lenth (2007) explains
how observed power is also completely determined by
the observed p value for F tests, although the state-
ment that a non-significant p value implies a power
less than 50% no longer holds.
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Figure 11. Relationship between p values and power
for an independent t test with α = 0.05 and n = 10.

When editors or reviewers ask researchers to report
post-hoc power analyses they would like to be able to
distinguish between true negatives (concluding there

is no effect, when there is no effect) and false neg-
atives (a Type II error, concluding there is no effect,
when there actually is an effect). Since reporting post-
hoc power is just a different way of reporting the p
value, reporting the post-hoc power will not provide
an answer to the question editors are asking (Hoenig
& Heisey, 2001; Lenth, 2007; Schulz & Grimes, 2005;
Yuan&Maxwell, 2005). To be able to draw conclusions
about the absence of a meaningful effect, one should
perform an equivalence test, and design a study with
high power to reject the smallest effect size of interest
(Lakens, Scheel, et al., 2018). Alternatively, if no small-
est effect size of interest was specified when designing
the study, researchers can report a sensitivity power
analysis.

Sequential Analyses

Whenever the sample size is justified based on an a-
priori power analysis it can be very efficient to col-
lect data in a sequential design. Sequential designs
control error rates across multiple looks at the data
(e.g., after 50, 100, and150observationshavebeencol-
lected) and can reduce the average expected sample
size that is collected compared to a fixed design where
data is only analyzed after the maximum sample size
is collected (Proschan, Lan, &Wittes, 2006;Wassmer &
Brannath, 2016). Sequential designs have a long his-
tory (Dodge & Romig, 1929), and exist in many vari-
ations, such as the Sequential Probability Ratio Test
(Wald, 1945), combining independent statistical tests
(Westberg, 1985), group sequential designs (Jennison
& Turnbull, 2000), sequential Bayes factors (Schön-
brodt, Wagenmakers, Zehetleitner, & Perugini, 2017),
and safe testing (Grünwald, deHeide, & Koolen, 2019).
Of these approaches, the Sequential Probability Ratio
Test is most efficient if data can be analyzed after ev-
ery observation (Schnuerch & Erdfelder, 2020). Group
sequential designs, where data is collected in batches,
provide more flexibility in data collection, error con-



SAMPLE SIZE JUSTIFICATION 23

trol, and corrections for effect size estimates (Wassmer
& Brannath, 2016). Safe tests provide optimal flexibil-
ity if there aredependenciesbetweenobservations (ter
Schure & Grünwald, 2019).

Sequential designs are especially useful when there is
considerableuncertaintyabout theeffect size, orwhen
it is plausible that the true effect size is larger than
the smallest effect size of interest the study is designed
to detect (Lakens, 2014). In such situations data col-
lection has the possibility to terminate early if the ef-
fect size is larger than the smallest effect size of inter-
est, but data collection can continue to the maximum
sample size if needed. Sequential designs can prevent
wastewhen testing hypotheses, both by stopping early
when the null hypothesis can be rejected, as by stop-
ping early if the presence of a smallest effect size of in-
terest can be rejected (i.e., stopping for futility). Group
sequential designs are currently the most widely used
approach to sequential analyses, and can be planned
and analyzed using rpact (Wassmer & Pahlke, 2019) or
gsDesign (K. M. Anderson, 2014).6

Increasing Power Without Increasing the Sample
Size

Themost straightforward approach to increase the in-
formational value of studies is to increase the sam-
ple size. Because resources are often limited, it is also
worthwhile to explore different approaches to increas-
ing the power of a test without increasing the sample
size. The first option is to use directional tests where
relevant. Researchers often make directional predic-
tions, such as ‘we predict X is larger than Y’. The sta-
tistical test that logically follows from this prediction
is a directional (or one-sided) t test. A directional test
moves the Type I error rate to one side of the tail of the
distribution,which lowers the critical value, and there-
fore requires less observations to achieve the same sta-
tistical power.

Although there is some discussion about when direc-
tional tests are appropriate, they are perfectly defen-
sible from a Neyman-Pearson perspective on hypoth-
esis testing (Cho & Abe, 2013), which makes a (pre-
registered) directional test a straightforward approach
to both increase the power of a test, as the riskiness
of the prediction. However, there might be situations
where you do not want to ask a directional question.
Sometimes, especially in research with applied con-
sequences, it might be important to examine if a null
effect can be rejected, even if the effect is in the op-
posite direction as predicted. For example, when you
are evaluating a recently introducededucational inter-

vention, and you predict the interventionwill increase
the performance of students, you might want to ex-
plore thepossibility that students performworse, tobe
able to recommend abandoning the new intervention.
In such cases it is also possible to distribute the error
rate in a ‘lop-sided’ manner, for example assigning a
stricter error rate to effects in the negative than in the
positive direction (Rice & Gaines, 1994).

Another approach to increase the power without in-
creasing the sample size, is to increase the alpha level
of the test, as explained in the section on compromise
power analysis. Obviously, this comes at an increased
probability of making a Type I error. The risk of mak-
ing either type of error should be carefully weighed,
which typically requires taking into account the prior
probability that the null-hypothesis is true (Cascio &
Zedeck, 1983; Miller & Ulrich, 2019; Mudge, Baker,
Edge, & Houlahan, 2012; Murphy et al., 2014). If you
have to make a decision, or want tomake a claim, and
the data you can feasibly collect is limited, increasing
the alpha level is justified, either based on a compro-
mise power analysis, or based on a cost-benefit analy-
sis (Baguley, 2004; Field, Tyre, Jonzén, Rhodes, & Poss-
ingham, 2004).

Another widely recommended approach to increase
the power of a study is use a within participant design
where possible. In almost all cases where a researcher
is interested in detecting a difference between groups,
a within participant design will require collecting less
participants than a between participant design. The
reason for the decrease in the sample size is explained
by the equation below from Maxwell, Delaney, and
Kelley (2017). The number of participants needed in
a two group within-participants design (NW) relative
to the number of participants needed in a two group
between-participants design (NB), assuming normal
distributions, is:

NW =
NB(1−ρ)

2

The required number of participants is divided by two
because in a within-participants design with two con-
ditionseveryparticipantprovides twodatapoints. The
extent to which this reduces the sample size com-
pared to a between-participants design also depends
on the correlation between the dependent variables
(e.g., the correlation between the measure collected

6Shiny apps are available for both rpact: https:
//rpact.shinyapps.io/public/ and gsDesign: https:
//gsdesign.shinyapps.io/prod/

https://rpact.shinyapps.io/public/
https://rpact.shinyapps.io/public/
https://gsdesign.shinyapps.io/prod/
https://gsdesign.shinyapps.io/prod/
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in a control task and an experimental task), as in-
dicated by the (1-ρ) part of the equation. If the
correlation is 0, a within-participants design simply
needs half as many participants as a between partic-
ipant design (e.g., 64 instead 128 participants). The
higher the correlation, the larger the relative bene-
fit of within-participants designs, and whenever the
correlation is negative (up to -1) the relative benefit
disappears. Especially when dependent variables in
within-participants designs are positively correlated,
within-participants designs will greatly increase the
power you can achieve given the sample size you have
available. Use within-participants designs when pos-
sible, but weigh the benefits of higher power against
the downsides of order effects or carryover effects that
might be problematic in a within-participants design
(Maxwell et al., 2017).7 For designs with multiple fac-
tors with multiple levels it can be difficult to specify
the full correlation matrix that specifies the expected
population correlation for each pair of measurements
(Lakens & Caldwell, 2021). In these cases sequential
analyses might provide a solution.

In general, the smaller the variation, the larger the
standardized effect size (because we are dividing the
raw effect by a smaller standard deviation) and thus
the higher the power given the same number of obser-
vations. Some additional recommendations are pro-
vided in the literature (Allison, Allison, Faith, Paultre, &
Pi-Sunyer, 1997; Bausell & Li, 2002; Hallahan & Rosen-
thal, 1996), such as:

1. Use better ways to screen participants for stud-
ies where participants need to be screened be-
fore participation.

2. Assign participants unequally to conditions (if
data in the control condition is much cheaper to
collect than data in the experimental condition,
for example).

3. Use reliable measures that have low error vari-
ance (Williams, Zimmerman, & Zumbo, 1995).

4. Smart use of preregistered covariates (Meyvis &
Van Osselaer, 2018).

It is important to consider if these ways to reduce the
variation in the data do not come at too large a cost
for external validity. For example, in an intention-to-
treat analysis in randomized controlled trials partici-
pants who do not comply with the protocol are main-
tained in the analysis such that the effect size from the
study accurately represents the effect of implement-
ing the intervention in the population, and not the ef-
fect of the intervention only on those people who per-
fectly follow the protocol (Gupta, 2011). Similar trade-

offs between reducing the variance and external valid-
ity exist in other research areas.

Know YourMeasure

Although it is convenient to talk about standardizedef-
fect sizes, it is generally preferable if researchers can
interpret effects in the raw (unstandardized) scores,
and have knowledge about the standard deviation of
theirmeasures (Baguley, 2009; Lenth, 2001). Tomake it
possible for a research community to have realistic ex-
pectations about the standard deviation of measures
they collect, it is beneficial if researchers within a re-
searchareause the samevalidatedmeasures. Thispro-
vides a reliable knowledge base that makes it easier to
plan for a desired accuracy, and to use a smallest ef-
fect size of interest on the unstandardized scale in an
a-priori power analysis.

In addition to knowledge about the standard deviation
it is important to have knowledge about the correla-
tions between dependent variables (for example be-
cause Cohen’s dz for a dependent t test relies on the
correlation between means). The more complex the
model, the more aspects of the data-generating pro-
cess need to be known to make predictions. For ex-
ample, inhierarchicalmodels researchersneedknowl-
edgeabout variancecomponents tobeable toperform
apower analysis (DeBruine&Barr, 2019;Westfall et al.,
2014). Finally, it is important to know the reliability
of your measure (Parsons, Kruijt, & Fox, 2019), espe-
cially when relying on an effect size from a published
study that used a measure with different reliability, or
when the same measure is used in different popula-
tions, inwhich case it is possible thatmeasurement re-
liability differs betweenpopulations. With the increas-
ing availability of open data, it will hopefully become
easier to estimate these parameters using data from
earlier studies.

Ifwe calculate a standarddeviation froma sample, this
value is an estimate of the true value in thepopulation.
In small samples, our estimate can be quite far off,
while due to the law of large numbers, as our sample
size increases, wewill bemeasuring the standard devi-
ationmoreaccurately. Since the sample standarddevi-
ation is an estimate with uncertainty, we can calculate
a confidence interval around the estimate (Smithson,
2003), and design pilot studies that will yield a suffi-
ciently reliable estimate of the standarddeviation. The

7You can compare within- and between-participants
designs in this Shiny app: http://shiny.ieis.tue.nl/within_
between.

http://shiny.ieis.tue.nl/within_between
http://shiny.ieis.tue.nl/within_between
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confidence interval for the variance σ2 is provided in
the following formula, and the confidence for the stan-
dard deviation is the square root of these limits:

(N −1)s2/χ2

N−1:α/2
,(N −1)s2/χ2

N−1:1−α/2

Whenever there is uncertainty about parameters, re-
searchers can use sequential designs to performan in-
ternal pilot study (Wittes & Brittain, 1990). The idea
behind an internal pilot study is that researchers spec-
ify a tentative sample size for the study, perform an
interim analysis, use the data from the internal pilot
study to update parameters such as the variance of
the measure, and finally update the final sample size
that will be collected. As long as interim looks at the
data are blinded (e.g., information about the condi-
tions is not taken into account) the sample size can
be adjusted based on an updated estimate of the vari-
ance without any practical consequences for the Type
I error rate (Friede & Kieser, 2006; Proschan, 2005).
Therefore, if researchers are interested in designing an
informative study where the Type I and Type II error
rates are controlled, but they lack information about
the standard deviation, an internal pilot study might
be an attractive approach to consider (Chang, 2016).

Conventions asmeta-heuristics

Evenwhen a researchermight not use a heuristic to di-
rectly determine the sample size in a study, there is an
indirect way in which heuristics play a role in sample
size justifications. Sample size justifications based on
inferential goals such as a power analysis, accuracy, or
a decision all require researchers to choose values for
a desired Type I and Type II error rate, a desired ac-
curacy, or a smallest effect size of interest. Although
it is sometimes possible to justify these values as de-
scribed above (e.g., based on a cost-benefit analysis),
a solid justification of these values might require ded-
icated research lines. Performing such research lines
will not always be possible, and these studies might
themselves not be worth the costs (e.g., it might re-
quire less resources to perform a study with an alpha
level that most peers would consider conservatively
low, than to collect all the data that would be required
to determine the alpha level based on a cost-benefit
analysis). In these situations, researchers might use
values based on a convention.

When it comes to adesiredwidthof a confidence inter-
val, a desiredpower, or any other input values required
to perform a sample size computation, it is important

to transparently report the use of a heuristic or con-
vention (for example by using the accompanying on-
line Shiny app). A convention such as the use of a 5%
Type 1 error rate and 80% power practically functions
as a lower threshold of the minimum informational
value peers are expected to acceptwithout any justifi-
cation (whereaswith a justification, higher error rates
can also be deemed acceptable by peers). It is impor-
tant to realize that noneof these values are set in stone.
Journals are free to specify that they desire a higher in-
formational value in their author guidelines (e.g., Na-
ture Human Behavior requires registered reports to be
designed to achieve 95% statistical power, andmyown
department has required staff to submit ERB propos-
als where, whenever possible, the study was designed
to achieve 90%power). Researcherswho choose to de-
sign studies with a higher informational value than a
conventional minimum should receive credit for do-
ing so.

In the past some fields have changed conventions,
such as the 5 sigma threshold now used in physics to
declare a discovery instead of a 5% Type I error rate.
In other fields such attempts have been unsuccessful
(e.g., Johnson (2013)). Improved conventions should
be context dependent, and it seems sensible to es-
tablish them through consensus meetings (Mullan &
Jacoby, 1985). Consensus meetings are common in
medical research, and have been used to decide upon
a smallest effect size of interest (for an example, see
Fried, Boers, and Baker (1993)). In many research ar-
eas current conventions can be improved. For exam-
ple, it seemspeculiar tohaveadefault alpha level of 5%
both for single studies and formeta-analyses, and one
could imagine a future where the default alpha level
in meta-analyses is much lower than 5%. Hopefully,
making the lack of an adequate justification for cer-
tain input values in specific situations more transpar-
ent will motivate fields to start a discussion about how
to improve current conventions. The online Shiny app
links togoodexamplesof justificationswherepossible,
andwill continue to be updated as better justifications
are developed in the future.

Sample Size Justification in Qualitative Research

A value of information perspective to sample size jus-
tification also applies to qualitative research. A sam-
ple size justification in qualitative research should be
based on the consideration that the cost of collect-
ing data from additional participants does not yield
new information that is valuable enough given the in-
ferential goals. One widely used application of this
idea is known as saturation and is indicated by the
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observation that new data replicates earlier observa-
tions, without adding new information (Morse, 1995).
For example, let’s imagine we ask people why they
have a pet. Interviews might reveal reasons that are
grouped into categories, but after interviewing 20peo-
ple, no new categories emerge, at which point satu-
ration has been reached. Alternative philosophies to
qualitative research exist, and not all value planning
for saturation. Regrettably, principled approaches to
justify sample sizes have not been developed for these
alternative philosophies (Marshall, Cardon, Poddar, &
Fontenot, 2013).

When sampling, the goal is often not to pick a repre-
sentative sample, but a sample that contains a suffi-
cientlydiversenumberof subjects such that saturation
is reached efficiently. Fugard and Potts (2015) show
how tomove towards amore informed justification for
the sample size in qualitative research based on 1) the
number of codes that exist in the population (e.g., the
number of reasons people have pets), 2) the proba-
bility a code can be observed in a single information
source (e.g., the probability that someone you inter-
view will mention each possible reason for having a
pet), and 3) the number of times you want to observe
each code. They provide an R formula based on bino-
mial probabilities to compute a required sample size
to reach a desired probability of observing codes.

A more advanced approach is used in Rijnsoever
(2017), which also explores the importance of different
sampling strategies. In general, purposefully sampling
information from sources you expect will yield novel
information ismuchmore efficient than random sam-
pling, but this also requires a good overview of the ex-
pected codes, and the sub-populations in which each
code can be observed. Sometimes, it is possible to
identify information sources that, when interviewed,
would at least yield one new code (e.g., based on infor-
mal communicationbeforean interview). Agoodsam-
ple size justification in qualitative research is based
on 1) an identification of the populations, including
any sub-populations, 2) an estimate of the number
of codes in the (sub-)population, 3) the probability a
code is encountered in an information source, and 4)
the sampling strategy that is used.

Discussion

Providing a coherent sample size justification is an es-
sential step in designing an informative study. There
are multiple approaches to justifying the sample size
ina study, dependingon thegoal of thedata collection,
the resources that are available, and the statistical ap-

proach that is used to analyze the data. An overarch-
ingprinciple in all these approaches is that researchers
consider the valueof the information they collect in re-
lation to their inferential goals.

The process of justifying a sample sizewhen designing
a study should sometimes lead to theconclusion that it
is notworthwhile to collect thedata, because the study
does not have sufficient informational value to justify
the costs. There will be cases where it is unlikely there
will ever be enough data to perform a meta-analysis
(for example because of a lack of general interest in the
topic), the informationwill not beused tomake adeci-
sion or claim, and the statistical tests do not allow you
to test ahypothesiswith reasonable error ratesor to es-
timate an effect sizewith sufficient accuracy. If there is
no good justification to collect the maximum number
of observations that one can feasibly collect, perform-
ing the study anyway is a waste of time and/or money
(Brown, 1983; Button et al., 2013; S. D. Halpern et al.,
2002).

The awareness that sample sizes in past studies were
often too small tomeet any realistic inferential goals is
growing among psychologists (Button et al., 2013; Fra-
ley &Vazire, 2014; Lindsay, 2015; Sedlmeier &Gigeren-
zer, 1989). As an increasing number of journals start
to require sample size justifications, some researchers
will realize they need to collect larger samples than
they were used to. Thismeans researchers will need to
request more money for participant payment in grant
proposals, or that researchers will need to increas-
ingly collaborate (Moshontz et al., 2018). If you believe
your research question is important enough to be an-
swered, but you are not able to answer the question
with your current resources, one approach to consider
is to organize a research collaboration with peers, and
pursue an answer to this question collectively.

A sample size justification should not be seen as a
hurdle that researchers need to pass before they can
submit a grant, ethical review board proposal, or
manuscript for publication. When a sample size is
simply stated, instead of carefully justified, it can be
difficult to evaluate whether the value of the informa-
tion a researcher aims to collect outweighs the costs
of data collection. Being able to report a solid sample
size justificationmeans a researchers knowswhat they
want to learn froma study, andmakes it possible to de-
sign a study that can provide an informative answer to
a scientific question.
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