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Abstract. Predictive spatial modelling is an important task in

natural hazard assessment and regionalisation of geomorphic

processes or landforms. Logistic regression is a multivariate

statistical approach frequently used in predictive modelling;

it can be conducted stepwise in order to select from a num-

ber of candidate independent variables those that lead to the

best model. In our case study on a debris flow susceptibil-

ity model, we investigate the sensitivity of model selection

and quality to different sample sizes in light of the following

problem: on the one hand, a sample has to be large enough to

cover the variability of geofactors within the study area, and

to yield stable and reproducible results; on the other hand, the

sample must not be too large, because a large sample is likely

to violate the assumption of independent observations due to

spatial autocorrelation. Using stepwise model selection with

1000 random samples for a number of sample sizes between

n = 50 and n = 5000, we investigate the inclusion and exclu-

sion of geofactors and the diversity of the resulting models as

a function of sample size; the multiplicity of different mod-

els is assessed using numerical indices borrowed from in-

formation theory and biodiversity research. Model diversity

decreases with increasing sample size and reaches either a

local minimum or a plateau; even larger sample sizes do not

further reduce it, and they approach the upper limit of sample

size given, in this study, by the autocorrelation range of the

spatial data sets. In this way, an optimised sample size can be

derived from an exploratory analysis. Model uncertainty due

to sampling and model selection, and its predictive ability,

are explored statistically and spatially through the example

of 100 models estimated in one study area and validated in a

neighbouring area: depending on the study area and on sam-

ple size, the predicted probabilities for debris flow release

differed, on average, by 7 to 23 percentage points. In view of

these results, we argue that researchers applying model se-

lection should explore the behaviour of the model selection

for different sample sizes, and that consensus models created

from a number of random samples should be given prefer-

ence over models relying on a single sample.

1 Introduction

Spatial modelling, i.e. finding and applying a model of the

spatial distribution of some phenomenon, can be used for two

slightly different purposes: first for regionalisation, i.e. the

transfer of findings from the surveyed area to some larger re-

gion. In geomorphology, the methodological framework for

regionalising the occurrence of a process or a landform (that

is associated with the activity of geomorphic processes) is

termed “predictive geomorphological mapping” (Luoto and

Hjort, 2005). It can be helpful in reducing time, cost and,

to some degree, subjectivity associated with area-wide ge-

omorphological mapping (van Asselen and Seijmonsbergen,

2006). Second, models are applied to identify areas where

the phenomenon might occur in the future, even or espe-

cially where there is no evidence of recent activity. The (spa-

tial) probability of occurrence of an event forms an important

factor of the hazard term in quantitative risk assessment, al-

though for a complete formulation one also needs to consider

the temporal probability and the magnitude–frequency rela-

tionship of events (Guzzetti et al., 2006a). However, spatial

modelling includes some temporal aspects as well. Specifi-

cally for landslides, the most important underlying assump-

tions (see Pike et al., 2003, for more) are (i) that landslides
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can occur and/or have occurred in the larger area wherever

the conditions are equal or similar to those in the surveyed

area and (ii) that future events will take place under condi-

tions the same as or similar to those in the past (e.g. Fabbri

et al., 2003).

In this study, we apply the method of multivariate logis-

tic regression to the identification of potential debris flow

initiation sites in a high mountain catchment; the spatial

unit is the raster cell (as opposed to e.g. slope units; see

Van Den Eeckhaut et al., 2009). Together with discriminant

analysis (e.g. Baeza and Corominas, 2001), soft comput-

ing techniques – such as “weights of evidence” (Bonham-

Carter, 1994; Neuhäuser and Terhorst, 2006) or “certainty

factor” (e.g. Binaghi et al., 1998) – and artificial neural

networks (e.g. Lee et al., 2003; Ermini et al., 2005; Liu

et al., 2006), logistic regression belongs to the most fre-

quently chosen approaches to spatial modelling of land-

slides (Atkinson et al., 1998; Ohlmacher and Davis, 2003;

Beguería and Lorente, 2003; Brenning, 2005; Ayalew and

Yamagishi, 2005; Beguería, 2006; Van Den Eeckhaut et al.,

2006; Meusburger and Alewell, 2009; Van Den Eeckhaut

et al., 2010; Atkinson and Massari, 2011; Ruette et al., 2011;

Guns and Vanacker, 2012). Recently, some published studies

dealt specifically with debris flow susceptibility models on

the regional scale; for the identification of potential release

areas, a range of different approaches has been used, includ-

ing heuristic (Horton et al., 2008; Kappes et al., 2011; Fischer

et al., 2012) and statistical ones (Heckmann and Becht, 2009;

Blahut et al., 2010a, b). The so-delineated release areas can

be used as starting points for models that predict the path-

ways, lateral extent, runout length and other relevant proper-

ties of debris flows (e.g. Blahut et al., 2010b; Kappes et al.,

2011), which is important for hazard assessment and has

also been used in geomorphological applications, for exam-

ple research on sediment cascades (Wichmann et al., 2009;

Heckmann and Schwanghart, 2013).

In order to use a model for prediction, a sample has to be

drawn, and the model parameters of the population are esti-

mated based on that sample. Sampling is essential, because

event and non-event units show spatial autocorrelation (see

Sect. 1.2), and dependent data lead too easily to the rejection

of null hypotheses and the incorrect declaration of parame-

ters as significant; Legendre (1993) explains this for ecolog-

ical models (see also Van Den Eeckhaut et al., 2006). Using

a stepwise approach, the predictor variables for an effective

yet parsimonious model are selected from a set of candidate

geofactors (Sect. 3.2.2). Brenning (2005) found that logistic

regression with stepwise variable selection yielded the low-

est error rates in his comparison of different statistical meth-

ods. Logistic regression was also the best single method in

the comparative study by Rossi et al. (2010), and exhibited

the highest area under the curve (AUC) for “fine slope units”

(second rank in overall comparison) in Carrara et al. (2008),

a study specifically referring to debris flows.

The choice of predictor variables will understandably de-

pend on the sample (Guns and Vanacker, 2012), and it is

also clear that the aim of every susceptibility model should

be a reliable and reproducible prediction. This prediction

should not depend too much on the sample that is taken in

order to select the variables and estimate the model param-

eters. Several previous studies do not involve sampling at

all (e.g. Ohlmacher and Davis, 2003; Ruette et al., 2011);

i.e. they use all available data for estimating the model pa-

rameters. The majority of studies use only one single sample

(e.g. Atkinson et al., 1998; Van Den Eeckhaut et al., 2006;

Meusburger and Alewell, 2009), the size of which usually

depends on the number or size of landslide initiation zones

(see Sect. 1.1). Recognising the dependence of model results

on the sample, Brenning (2005) takes 50 samples to com-

pare error rates across different sample sizes and statistical

methods. Beguería (2006) and Guns and Vanacker (2012) ap-

ply 50-fold replication in order to estimate the robustness of

the modelling result with respect to sampling, and Van Den

Eeckhaut et al. (2010) calculate an ensemble of 25 mod-

els from different samples of their data. Hjort and Marmion

(2008) conduct repeat sampling to explore the influence of

sample size on the predictive power of (among others) multi-

ple logistic regression models for predictive geomorphologi-

cal mapping.

The present study has two main foci that will be devel-

oped in detail in the following subsections. It is not the aim

of our study to find out the best performing method for a

debris flow susceptibility model (comparative studies of pre-

dictive models were carried out, for example, by Brenning,

2005; Marmion et al., 2008; Carrara et al., 2008; Vorpahl

et al., 2012); we deliberately chose logistic regression for

its widespread use, and for the relevant assumption of sam-

ple independence which we found to be frequently neglected

in previous studies. First, we explore the sensitivity of step-

wise model selection to sample size. Sections 1.1 and 1.2

will explain why the sample size must neither be too small

nor too large. In this context, the main aim of the study is

to investigate if an “optimal” sampling size can be found

as a compromise between samples too small and too large.

Second, we quantify the uncertainty inherent in a stepwise

modelling approach, with respect to (i) the selection of ge-

ofactors, (ii) model parameters, and (iii) the spatial pattern

of uncertainty in the resulting susceptibility map. This study

aim will be developed in Sect. 1.3.

1.1 Constraints on sample size 1: why the sample must

not be too small

In inferential statistics, confidence intervals are calculated

for population parameters based on a sample; the width of

the former depends, besides the desired confidence level, on

the sample size. Small samples result in large standard er-

rors and wide confidence intervals for the population param-

eters. In the case of regression parameters, small samples
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cause the estimation to be uncertain, and there is a higher

risk of coefficients being insignificant when the respective

confidence interval includes zero. With respect to replicate

sampling and model selection, it is expected that the diver-

sity of models (and hence the dependence of the models on

the sample) will be large in this case.

Moreover, in a large study area, a small sample is unlikely

to cover the variability of geofactors, especially if several of

them are part of the model. Here, a larger sample would in-

clude more information on the study area and would possibly

provide a better model. There are rules of thumb that estimate

the minimum sample size for a regression analysis on the ba-

sis of a constant (e.g. > 50), of the ratio of observations and

predictor variables, or of a combination of the latter; such

rules have been explored in light of significance, power and

effect size, e.g. by Green (1991), who found “some support”

for the rule of thumb nmin ≥ 50 + 8 m, where nmin is the min-

imum sample size and m is the number of predictor variables.

In this study, when we speak of sample size, we always

address a sample of “non-events”, i.e. a sample of raster cells

without debris flow initiation. If a random sample referred to

all raster cells, including event and non-event cells, the num-

ber of event cells in the sample would certainly be smaller

than in the original inventory. This would cause a loss of in-

formation particularly for those cells that represent the target

of the modelling exercise; therefore, all initiation areas will

be represented in the models and only the size of the non-

event sample is varied in our investigation. Besides the non-

event sample size, the relative sample size nrel (i.e. the areal

extent of the total sample divided by the size of the study

area) will be reported.

1.2 Constraints on sample size 2: why the sample must

not be too large

While it is intuitive that larger samples contain more infor-

mation that can be used by the model, and the model might

be better, there are several reasons why the sample size must

not be too large either.

King and Zeng (2001) argue that the non-event sample size

has to be kept as small as possible because of the dispro-

portionate cost and effort of acquiring data for many vari-

ables and observations that are not related to the target phe-

nomenon (event). Like in political science, the acquisition

of observations is costly in ecology (with the application of

regression models to the spatial prediction of species distri-

bution). In this context, the complexity of the investigated

systems is reflected in large numbers of predictors; more-

over, the logistic difficulty of mapping the presence or ab-

sence of a species in large and remote areas should not be

underestimated (see e.g. Stockwell and Townsend Peterson,

2002). An important justification for predictive geomorpho-

logical mapping (Luoto and Hjort, 2005) is that area-wide

field mapping is time-consuming, difficult in remote or inac-

cessible areas, and may suffer from subjectivity (van Asselen

and Seijmonsbergen, 2006; Hjort and Marmion, 2008). How-

ever, in contrast to the examples from political and ecolog-

ical science, many if not most variables in predictive geo-

morphological mapping are easily derived from digital ele-

vation models and remote sensing data; both are available

globally, with ever-increasing accuracy and resolution. This

does not change the effort required for mapping the target

phenomenon (“events”), but the motivation for limiting sam-

ple size of non-events appears to be quite different, as it does

not so much refer to the effort of data acquisition (quantity

and quality). In order to limit the sample size and to mitigate

the rare-events issue (see below), the literature suggests dif-

ferent ratios of event : non-event sample sizes, mostly with-

out justifying the particular choice of this ratio. Instead of

merely adopting one of these suggestions (which generally

range from 1 : 1 to 1 : 10), our paper aims at an empirical

analysis of sample dependence and performance of the sus-

ceptibility model as a function of sample size.

Other reasons for restricting sample size are overparame-

terisation and overfitting of the model (Hjort and Marmion,

2008, and references therein). Increasing sample sizes causes

standard errors and confidence intervals in parameter esti-

mation to decrease. In a significance-based stepwise model

selection, very large samples are expected to facilitate the

inclusion of more and more variables (risk of overparam-

eterisation). Such inclusion of more information does not

necessarily lead to better model performance; Stockwell and

Townsend Peterson (2002) describes “plateaus” wherein new

data add little to model performance. In some cases, inclu-

sion of more data even causes worse performance, because a

model fit to a very specific set of information may perform

poorly on new data (risk of overfitting; see Stockwell and

Townsend Peterson, 2002, and references therein). Brenning

(2005), however, states that overfitting is “not a serious prob-

lem for logistic regression”, contrary to machine-learning

methods (cf. Petschko et al., 2014, and references therein).

The most serious reason for limiting the sample size is

spatial autocorrelation. Logistic regression generally requires

few assumptions to be met; the most important are (i) the

independence of observations and (ii) uncorrelated indepen-

dent variables. While violations of the second assumption

can be avoided by testing for multicollinearity and exclud-

ing variables (see Sect. 3.2.1), the first assumption proves to

be critical when dealing with spatial data. Geofactors tend to

have very similar values in a close neighbourhood, a property

called spatial autocorrelation. If several observations from

nearby sites are included in a model, the independence as-

sumption will not hold. In the case of the generalised lin-

ear modelling approach adopted in this study, the maximum

likelihood method that is used to estimate the model pa-

rameters strictly requires the observations to be independent

(e.g. Hosmer and Lemeshow, 2000). Atkinson and Massari

(2011) explain that (spatial) autocorrelation of the geofac-

tors causes the model residuals to be spatially autocorre-

lated (which is not acceptable as model residuals have to
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be uncorrelated), and that this may lead to “incoherent sig-

nificance estimates for the parameters” (see also Brenning,

2005). Consequently, such incoherent estimates compromise

both significance-based model selection and the assessment

of parameter importance that is based on the latter.

In previous studies applying logistic regression to land-

slide susceptibility analysis, the problem of stochastically

dependent samples has frequently been ignored (e.g. by us-

ing all available data instead of a sample; see above). In

some instances, the risk of autocorrelation is dealt with for

events only, as geofactors tend to be homogeneous (and

consequently strongly autocorrelated) on landslide terrain

(Atkinson and Massari, 2011). However, the independence

assumption refers to all observations of the dependent vari-

able (Hosmer and Lemeshow, 2000; Van Den Eeckhaut et al.,

2006), in our case to the occurrence and non-occurrence of

debris flow initiation. As the geofactors used as independent

variables are supposed to be associated with the dependent

variable, we argue that the degree of autocorrelation of these

geofactors should be accounted for in the sampling proce-

dure. In order to mitigate the issue of spatial autocorrela-

tion, some authors choose one raster cell for each landslide

source area on a systematic basis. Atkinson et al. (1998) and

Van Den Eeckhaut et al. (2006), for example, use the cen-

tre of each landslide source area. Similarly, Vanwalleghem

et al. (2008) use the centre of each topographic depression,

and the centre of each gully in their study predicting the

spatial distribution of closed depressions and gullies under

forest. Different authors draw samples of source areas on

different grounds; besides spatial autocorrelation, Atkinson

et al. (1998) explain their approach with the aim of prevent-

ing model bias towards larger landslides – in a full sample of

events, more data would enter the model from larger source

areas than from smaller ones. Beguería and Lorente (2003)

use one raster cell for each debris flow initiation zone be-

cause the raster size (10 m) of the data in their study cor-

responds to the size of a typical debris flow scar. All ap-

proaches have in common that they prevent a contiguous (and

hence potentially strongly spatially autocorrelated) sample

of hundreds of landslide initiation cells from entering the

model. Spatial autocorrelation has also been accounted for

in model validation (Brenning, 2005). However, as Atkinson

and Massari (2011) point out, autocorrelation in the geofac-

tors is frequently not adequately accounted for in the regres-

sion model. While the latter study proposes an autologistic

model (see also Brenning, 2005), we will try to warrant inde-

pendence of observations through the choice of an adequate

sampling size (see Sect. 3.3.2): as the number of sampled

raster cells in a finite study area increases, the average dis-

tance between those cells will decrease, and finally the in-

dependence assumption will no longer hold given the spatial

autocorrelation of the geofactors.

Normally, a logistic regression model is fit to a sam-

ple where the ratio of event : non-event cases is approxi-

mately 1 : 1. Then, the so-called cutoff, i.e. the value of

the model result that discriminates between event and non-

event, equals 0.5. King and Zeng (2001) explain that the

number of non-events should be typically 2–5 times higher

than that of events. In this case, the cutoff needed to trans-

late the model result to a classification (event or non-event)

would need to be adjusted accordingly. Because the ratio

of event : non-event spatial units (not only raster cells but

also lumped spatial units; Beguería and Lorente, 2003) usu-

ally is by far smaller, a bias towards small probabilities

arises.1 This problem has been addressed by the develop-

ment of “rare events logistic regression” (King and Zeng,

2001). Besides endogenous stratified sampling (a sampling

strategy that includes all events plus a random sample of

non-events), these authors propose corrections for the inter-

cept and for the estimated probabilities. Rare-events logistic

regression was applied in landslide susceptibility modelling

by Van Den Eeckhaut et al. (2006) and Guns and Vanacker

(2012). In many studies, endogenous stratified sampling has

been adopted, and the authors chose event : non-event ratios

of 1 : 1 (e.g. Brenning, 2005; Meusburger and Alewell, 2009;

Van Den Eeckhaut et al., 2010), 1 : 2 (Wang and Sassa, 2005),

1 : 5 (Van Den Eeckhaut et al., 2006), or 1 : 10 (Beguería and

Lorente, 2003; Beguería, 2006; Guns and Vanacker, 2012).

Finally, Atkinson et al. (1998), who use only the central cell

of each landslide as the event sample, sample as many non-

event cells as required in order to attain the ratio of landslide

to non-landslide area.

In our study, we adopt stratified random sampling by a ran-

dom sample of one cell for each debris flow initiation zone,

and a random sample of non-event cells. The size of the latter

is then varied in order to explore the effect on stepwise model

selection; hence, we do not pre-select an event : non-event ra-

tio. Rare-event correction according to King and Zeng (2001)

is not applied.

1.3 Uncertainty: model selection, parameters, spatial

patterns

The result of the investigations motivated in the previous sub-

sections is a suitable sample size reaching a compromise be-

tween sample sizes too small and too large. The aims of this

procedure can be summarised as follows: first, a stable model

selection that is a low diversity of geofactors remaining in the

repeat stepwise selection; second, the independence of the

sample (i.e. avoiding spatial autocorrelation). Even with an

optimised sample size in that respect, the selection of predic-

tor variables will still depend on the specific sample. As dif-

ferent predictor variables, with their distinct spatial structure,

will be part of the model when the procedure is repeated with

a different sample, the spatial pattern of the resulting suscep-

tibility map will also differ from time to time; the predictive

power of the model might be different as well.

1In our study areas, the ratio of release area cells to the total

study area is 1 : 200 and 1 : 500, respectively.
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Fig. 1. Overview of the study areas.

The second main goal of this study is to elucidate three

aspects of this uncertainty: (i) geofactors and how often they

are included after stepwise selection, (ii) the range of model

parameters estimated for the replications, and (iii) the spa-

tial distribution of differences in the estimated susceptibil-

ity. This is important because, in the majority of studies

employing sampling for model calculation, only one sam-

ple is taken, and no account is given of uncertainty beyond

the standard errors of the parameters. On the other hand,

most studies involving repeat sampling (e.g. Brenning et al.,

2005; Beguería, 2006; Van Den Eeckhaut et al., 2010; Guns

and Vanacker, 2012) concentrate on the set of geofactors,

the parameters and the predictive ability of the models, and

do not investigate how this affects the spatial distribution

of susceptibility. Only rarely has the spatial distribution of

model uncertainty been addressed using multiple replication

approaches (e.g. Guzzetti et al., 2006b; Luoto et al., 2010;

Petschko et al., 2014).

2 Study area

This study has been conducted in two adjacent subcatch-

ments of the Horlachtal, a tributary of the Oetztal, located

in the Austrian Central Alps (Stubai Alps). The two val-

leys, the Zwieselbachtal (ZBT, ca. 19 km2) and the Larstigtal

(LT, ca. 7 km2), strike approximately S–N and have a typical

trough cross-section. Due to their adjacency, they are simi-

lar in their natural characteristics. Figure 1 shows the loca-

tion and an overview of the catchments. The most important

properties of the study areas are listed in Table 1; the Hor-

lachtal and its subcatchments are described in more detail by

Rieger (1999) and Geitner (1999).

The lithology of both valleys is dominated by gneiss and

mica schist; metamorphic granites can also be found. Pleis-

tocene glaciations have shaped the valleys and are evidenced

by glacial landforms (e.g. moraines, cirques, roches mou-

tonnées). Glacial cirques are concentrated on the east-facing

www.nat-hazards-earth-syst-sci.net/14/259/2014/ Nat. Hazards Earth Syst. Sci., 14, 259–278, 2014



264 T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model

Table 1. Selected properties of the study areas.

Property LT ZBT

Area [km2] 7.04 18.77

Elevation [m a.s.l.] 1770–3287 1903–3188

Slope, mean ± std.dev. [◦] 35.6 ± 14.31 31.6 ± 13.78

Slope, range [◦] 0.01–82.05 0.01–83.12

Roughness, mean ± std. dev. 0.13 ± 0.12 0.11 ± 0.11

Roughness, range 0–0.90 0–0.86

Inventory [no. of events] 64 81

Mapped release area [m2] 33 400 37 875

Land cover [%]
Glacier 5.8 2.4

Bedrock 46.6 29.1

Unvegetated scree 25.6 38.3

Patchy vegetation 10.9 5.9

Alpine meadows 1.9 14.1

Dwarf shrub heath 5.6 9.9

Dwarf mountain pine (Pinus mugo) – 0.2

Woodland 3.6 0.1

valley sides, whereas the west-facing valley sides are marked

by extensive scree slopes. Currently, the two catchments are

formed primarily by fluvial and gravitational processes such

as rock falls and debris flows. Sediment transfer through

the catchments is limited as the valleys consist of largely

disconnected subsystems (at least with respect to the trans-

port of coarse sediment; see Heckmann and Schwanghart,

2013) separated by alluvial reaches of the Zwieselbach and

Larstig creeks, respectively. These reaches are located im-

mediately upstream of the terminal moraines of the Little Ice

Age and of the particularly well-preserved terminal moraines

of the Egesen stadial (corresponding to the Younger Dryas,

ca. 11 to 12 ka BP, recent datings for the European Alps are

listed by Ivy-Ochs et al., 2008).

Debris flows in both study areas can be termed slope-

type debris flows of type 2 according to Zimmermann et al.

(1997). Events of this type initiate on scree slopes follow-

ing failure that is caused by positive pore water pressure in

the course of intense rainfall, and by progressive erosion.

This is often the case at the base of rock walls where debris

flow formation is triggered by the so-called “firehose effect”

(Johnson and Rodine, 1984) which describes concentrated

flux of water out of the rock face onto the talus. Slope-type

debris flows can be regarded as a transport-limited process;

thus their frequency is primarily controlled by hydroclimatic

events (Bovis and Jakob, 1999). In the study area, rain in-

tensities of around 20 mm within half an hour have been re-

ported to trigger debris flows (Becht, 1995; Rieger, 1999),

while Zimmermann et al. (1997) suggest regional intensity-

duration thresholds of about 11 mm per hour. The threshold is

comparatively low, which has been attributed to the low mean

annual precipitation (Hagg and Becht, 2000) of ca. 1000 mm

(Becht, 1995).

Vegetation primarily consists of dwarf shrub heath, alpine

meadows and pioneer vegetation. At elevations of > 2300–

2500 m, bedrock and scree are predominant. In general, more

than 60 % of the study area are completely lacking vegetation

cover.

3 Data and methods

3.1 Data and data preparation

3.1.1 Debris flow inventory

Like every statistical approach, logistic regression requires

an inventory of targets (here: a map of debris flow initiation

areas) for the dependent variable, and maps of (potentially)

influencing factors as independent variables, hereafter re-

ferred to as geofactors. The dependent variable (here: debris

flow initiation) is observed as a binary variable (1: presence;

0: absence). The debris flows inventory of the Zwieselbach-

tal and Larstigtal catchment was compiled using orthophoto

and field maps (Thiel, 2013), updating an earlier inventory

for which debris flows had been surveyed using a total sta-

tion (Rieger, 1999). It contains 81 events within the Zwiesel-

bachtal and 64 events within the Larstigtal. Debris flows ar-

eas are represented by polygon features (which had to be

converted to raster format for the pixel-based approach of

this study), and divided into three zones related to geomor-

phic activity: erosion (indicated by incision), transition (in-

dicated by a channelised reach accompanied by levées) and

the depositional lobe(s). Conceptually, as the susceptibility

map specifically aims at predicting potential initiation zones,

the event samples for the regression models should be taken

from the erosional zones, preferably from the uppermost part

as the latter represents the area where events typically started

(and probably will also initiate in the future). The strategy of

using only the detachment zone of a mass movement for sus-

ceptibility modelling has been advocated by several workers

(see for example Van Den Eeckhaut et al., 2006; Heckmann

and Becht, 2009); Magliulo et al. (2008), however, report that

this restriction does not automatically lead to better results.

The initial idea of manually setting one raster cell for each

debris flow initiation zone was discarded, because placing

this raster cell in the channelised part would introduce a bias

towards larger catchment areas and concave plan curvature.

Therefore, a GIS procedure was used to select, for each de-

bris flow erosional zone, the area that is higher than the P75

percentile of elevation, i.e. the uppermost 25 %. The raster

cells belonging to the initiation zone of each debris flows are

coded with an ID, allowing for a stratified random sampling

of one cell per debris flow event for each regression model.

Guzzetti et al. (2012) discuss the importance of landslide

inventory maps and report on advantages, limitations and

new methodological developments. With respect to suscep-

tibility mapping, the quality of the underlying inventory is a
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limiting factor for the reliability of predictive models (e.g.

Ardizzone et al., 2002). While fresh landslides are read-

ily detected, post-event modifications such as human impact

(e.g. ploughing), land cover change, erosion and landslide

reactivation etc. can hamper the identification of landslides

and thus jeopardise the completeness of the inventory (Bell

et al., 2012, e.g., analyse persistence and change of land-

slide morphology depending on age). For debris flows in our

study area, however, we argue that the risk of false nega-

tives, i.e. the risk of an incomplete inventory due to over-

looked debris flow scars, is small: the activity of debris flows

tends to persist once it has started, because an incision en-

hances and sustains the convergence of surface runoff. Due

to the transport-limited conditions of debris flow initiation in

our study area, this is supposed to hold for a long time, un-

til either sediment storage is depleted or slope gradient has

become too low. Conversely, debris flow deposits are fre-

quently modified by renewed activity, and less pronounced

depositional lobes can lose contrast on aerial photos due to

progressive weathering (see e.g. Heckmann et al., 2008). Hu-

man activities that could potentially modify the appearance

of debris flow scars are completely absent in the relevant re-

gions of our study area.

3.1.2 Digital terrain model

Before model selection (see Sect. 3.2.2), geofactors concep-

tually related to debris flow initiation have been pre-selected.

Debris flow initiation is related to (i) the availability of mo-

bile debris, (ii) steep slopes, and (iii) large amounts of wa-

ter, typically provided by intense rainfall. Not all influenc-

ing factors in these three groups (material, relief, water) can

be directly measured or calculated; many of them, however,

can be derived from a DEM, either directly or as proxies.

Although geological and land cover maps were available,

we tried to use only geofactors that can be derived from

high-quality digital elevation models (DEMs) in order to test

the feasibility of DEM-based modelling. Such high-quality

DEMs are increasingly available for large parts of the world.

For the derivation of several topographical parameters

used as geofactors for the regression models, we used a raster

DEM with a resolution of 1 m that was interpolated from

an airborne lidar survey in the year 2006. For most applica-

tions, and for the modelling itself, the original DEM (DEM1)

was resampled to a raster resolution of 5 m (DEM5). Apart

from saving memory and computing time, the resampling

smoothes the DEM so that very fine scale topography is no

longer contained in the resulting DEM5. This effect is de-

sired, as debris flow initiation is not expected to result from

microscale topography.

Information on available sediment is usually provided by

land cover and/or geological maps. The former mainly con-

tain information on vegetation that might in some cases sta-

bilise soils and sediments. The latter focus on different types

of bedrock. In this study, the “available sediment” group is

represented by one single geofactor (roughness class). This

geofactor is derived from a cluster analysis of slope (DEM5;

see below) and roughness. Roughness was calculated as the

“vector ruggedness measure” (Sappington et al., 2007) on

the DEM1 within a moving window of radius 5 m, and the

result was resampled to the same resolution and extent as

the DEM5 using the nearest-neighbour approach. The com-

paratively small radius was chosen to capture the rough-

ness of surfaces rather than the roughness induced by land-

forms, e.g. by gullies. The cluster analysis yields two clus-

ters closely representing (i) bedrock and (ii) areas covered by

sediments. For the Zwieselbachtal, this unsupervised classi-

fication could be validated with a very detailed land cover

map created from orthophoto imagery; the φ coefficient of

the mapped vs. the DEM-based classification was 0.78. The

reason for the satisfactory fit is the characteristic fine-scale

roughness 2 of bedrock areas that can easily be discerned on

a shaded relief map, together with the existence of a sharp

threshold of slope (resembling the angle of internal friction)

above which an area cannot be covered by unconsolidated

scree. Leaving out the information on land cover/vegetation

is not expected to be decisive in our case study, because the

study areas are only sparsely covered with vegetation, mostly

grass, and forest is widely missing, at least in the areas rele-

vant for debris flow genesis.

Relief parameters were derived from the DEM5 using the

algorithm of Zevenbergen and Thorne (1987) implemented

in SAGA GIS (www.saga-gis.org). As slope stability, espe-

cially for scree, is a function of slope, this parameter is ex-

pected to be very important for debris flow initiation. As both

valley axes have a north to south orientation (resulting in

a strong bias towards east- and west-facing slopes), and as

the physical role of aspect cannot be described unambigu-

ously, it was not included in the analysis. Plan and profile

curvatures were derived with the same algorithm as slope,

but from a DEM5 smoothed with a moving window mean

filter with a radius of 10 m. This was deemed necessary be-

cause of the extremely noisy character of fine-scale curva-

ture. Medium-scale curvature based on a DEM that retains

details on the typical spatial scale of channels within the rock

faces and talus cones (that are both prone to and indicative of

debris flow activity) is expected to be a better proxy variable

for convergent flow of water (plan curvature) and changes in

flow velocity (profile curvature).

Relief parameters related to the local catchment area are

derived from the DEM5 as proxies for the availability of

water for debris flow initiation. We calculated the specific

catchment area (SCA) as the local flow accumulation per

unit contour length using a multiple-flow-direction algorithm

(Freeman, 1991). Heavy rainfall on steep bedrock slopes

is expected to be converted almost entirely to Hortonian

2as the roughness is derived from the DEM1, the cluster analysis

can make use of sub-grid-scale roughness for the classification of

DEM5 raster cells
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overland flow; on talus slopes bordering steep rock faces,

this runoff can cause the initiation of debris flows, especially

where it enters the talus in a channelised manner (“firehose

effect”; see e.g. Johnson and Rodine, 1984; Coe et al., 2008).

However, if the sediment is coarse grained, large amounts of

water are expected to infiltrate; this leads to a decrease of

hydrological connectivity, and at least to an attenuation of

the increase of runoff with increasing catchment size. There-

fore, we re-calculated the catchment area, accumulating only

bedrock cells in the roughness class map instead of every

DEM5 raster cell. The modified SCA map hence refers to

the size of the bedrock catchment draining into each raster

cell.

3.2 The susceptibility model

Multivariate logistic regression (Hosmer and Lemeshow,

2000) forms part of the family of generalised linear models

(GLMs); in contrast to ordinary linear models, a function of

the expected value of a response variable is modelled by a

linear combination of continuous or discrete predictor vari-

ables. In logistic regression, the response variable is binary

(Bernoulli distribution); here, it takes the values 0 (no debris

flow initiation) and 1 (debris flow initiation). The response

function is the logit transform of the probability p ∈ ]0, 1[
that the response variable takes the value 1:

f (p) = logit(p) = ln
p

(1 − p)
. (1)

Since the logit is within the interval ] −∞, ∞[, it can

be modelled as a linear combination of predictor variables

X1 . . . Xn:

f (p) = β0 + β1 x1 + β2 x2 + . . . + βn xn, (2)

where β0 is the intercept and β1 . . . βn are the model pa-

rameters. These are estimated using a maximum likelihood

approach.

The spatial data are generated and managed in SAGA GIS,

including the derivation of relief parameters (Sect. 3.1.2);

for the statistical analysis, they can be directly read from

the SAGA native data format using the RSAGA package

(Brenning, 2013) for the statistical software R (R Devel-

opment Core Team, 2012). Logistic regression is then per-

formed using the glm and stepAIC functions of the MASS

package (Venables and Ripley, 2002). For reasons explained

in the Introduction, we estimate the model parameters for

a sample (the size of which we will try to optimise in this

study) of event (debris flow initiation) and non-event cells;

sampling is also performed in R. The resulting susceptibility

maps are written back to SAGA data format for visualisation

and further spatial analysis. They contain the probability that

the dependent variable takes the value 1, i.e. that debris flow

initiation will take or has taken place.

3.2.1 Multicollinearity analysis

Besides sample independence, an important prerequisite for

the application of GLM is the absence of multicollinearity,

i.e. that the predictor variables are not correlated with each

other. In order to test for multicollinearity, we applied the

vif function of the car package (Weisberg and Fox, 2010)

to a full model (i.e. including all geofactors described in

Sect. 3.1), yielding the variance inflation factors (VIF) of

each geofactor. Although no binding rules exist for their in-

terpretation, several authors who conduct a multicollinearity

analysis apply a very strict threshold of 2, above which vari-

ables are considered multicollinear and are excluded from

the model (e.g. Van Den Eeckhaut et al., 2006, 2010; Guns

and Vanacker, 2012). However, the most common rule of

thumb is reported to be the “rule of 10” (using VIF = 10 as

a threshold for severe multicollinearity), and the use of strict

thresholds of VIF appears to be questionable (O’brien, 2007).

The analysis of VIFs yields values of 1.18 and 1.47 for the

two curvature variables, and 1.77 for SCA. Roughness and

slope have VIFs of 2.06 and 2.76, respectively, which is only

slightly above the threshold used in other studies, so we de-

cided to keep all candidate variables.

3.2.2 Stepwise selection of predictor variables

An important task in susceptibility modelling is model build-

ing, i.e. the selection of the independent variables (geofac-

tors). In Sect. 3.1, several candidate variables are described

that conceptually explain the spatial distribution of debris

flow initiation. Model building is achieved in this study

through an automatic stepwise variable selection (function

stepAIC; Venables and Ripley, 2002). Starting from a full

model, i.e. a model including all variables, variables are re-

moved (or re-included) in order to minimise the Akaike in-

formation criterion (AIC; Akaike, 1973) which is calculated

from the likelihood function of the model and the number

of predictor variables. The AIC penalises for the number of

predictor variables; i.e. it increases with the number of vari-

ables, and it decreases with a larger likelihood function indi-

cating a better model. Hence, although there is no theoretical

justification of the AIC (Sachs and Hedderich, 2006), this

procedure is suitable in practice for selecting a parsimonious

model, i.e. a best-fit model using as few variables as possible

(Brenning, 2005). The results of stepwise logistic regression

have often been used to rank the controlling factors by im-

portance (e.g. Van Den Eeckhaut et al., 2006). While we as-

sume that the methodological framework of our study would

also be suitable for the assessment of sample size effects in

such investigations (Guns and Vanacker, 2012, e.g., suggest

a “robust detection of controlling factors” based on repeated

sampling and stepwise model selection), the latter are not the

aim of our present study.

Stepwise procedures can be applied as a backward selec-

tion, as in this study (and e.g. in Brenning, 2005; Ruette

Nat. Hazards Earth Syst. Sci., 14, 259–278, 2014 www.nat-hazards-earth-syst-sci.net/14/259/2014/



T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model 267

et al., 2011), but also as a forward selection (Beguería,

2006; Meusburger and Alewell, 2009; Atkinson and Massari,

2011). Menard (2002) explains that backward selection is in

some cases superior to the forward procedure. Note that the

stepwise procedure used here and in Brenning (2005) differs

from other studies where the decision of keeping or drop-

ping predictor variables is based on the significance of model

improvement (e.g. Beguería, 2006; Meusburger and Alewell,

2009; Guns and Vanacker, 2012), not on an information cri-

terion. Recently, alternative approaches for model selection

have been proposed (e.g. Calcagno and Mazancourt, 2010);

they will be tested in future research.

3.2.3 Model validation

It has been stressed that a modelling study without proper

validation is useless (Chung and Fabbri, 2003). Many stud-

ies in susceptibility modelling use spatial or temporal cross-

validation (space or time partition; cf. Chung and Fabbri,

2003) within the same study area; i.e. the data are split ei-

ther systematically or randomly into training and test data

sets according to their location or time of occurrence (Chung

and Fabbri, 2003; Beguería, 2006). Here, we estimate model

parameters based on samples drawn from the Zwieselbachtal

catchment, and apply the resulting models to the neighbour-

ing Larstigtal catchment. Hence, training and test areas are

completely independent. For each model run, the predictive

ability is evaluated using receiver operating curves (ROCs) or

prediction-rate curves sensu Chung and Fabbri (2003), plot-

ting true-positive against false-positive rates. The advantage

of ROCs is that they yield a threshold-independent measure

of predictive ability; in our case, we do not have to define a

threshold of modelled landslide probability below which we

do not recognise susceptibility. Additionally, as a single mea-

sure of predictive ability, the AUC is calculated (Hosmer and

Lemeshow, 2000; Beguería, 2006); this parameter falls in the

range [0.5, 1], where 0.5 is equivalent to random prediction

and 1 to a perfect prediction.

3.3 Exploring the effect of sample size

In the Introduction, we have argued why the sample size

should be neither too small nor too large. Here, we describe

(i) how the effect of sample size on the diversity of models is

explored, and (ii) how we constrain the upper limit of sample

size.

3.3.1 Sample size and model diversity

For small sample sizes, the geofactor composition of the

resulting model depends extremely on the random sample,

because small samples cannot sufficiently cover the diver-

sity of geofactors within the study area. We hypothesise that

with increasing sample size the diversity of relevant models

(selected by the stepwise procedure) first decreases towards

a plateau that can be explained with the overall variability

of geofactors in the study area; when the sample size ap-

proaches the size of the study area, the variability of models

will eventually decrease to zero. Such a behaviour is similar

to the dependence on sample size of the predictive power of

predictive geomorphological models that has been explored

by Hjort and Marmion (2008).

We analyse model diversity by repeating the stepwise

model selection with 1000 independent samples of a given

sample size. Such a high number of replications is novel

compared to existing studies that employ multiple sam-

ples; we chose the number of 1000 because we noticed in

first experiments that the model diversity assessment was

too unstable with a lower number of replications (e.g. be-

tween 25 and 50 in the studies of Brenning, 2005; Beguería,

2006; Guns and Vanacker, 2012). Sample size varies between

n = 50 and n = 5000 non-event raster cells; together with the

sample of n = 81 initiation areas in the ZBT area, the sam-

ples cover between 0.02 and 0.68 % of the study area (ZBT).

Specifically, a stratified sampling scheme has been adopted;

one single raster cell is randomly selected from each debris

flow initiation zone, and the sample size of non-event cells

(from the area outside of the mapped initiation zones) is var-

ied. The choice of non-event sample sizes in relation to event

sample size ranges from ca. 1 : 1.6 to ca. 60 : 1, thus including

the recommendations of King and Zeng (2001) and the al-

ternatives chosen in landslide susceptibility studies, e.g. 5 : 1

(Van Den Eeckhaut et al., 2006) or 10 : 1 (Beguería, 2006;

Guns and Vanacker, 2012).

For each of the 1000 samples, the geofactors that remain

in the “best” model (with respect to the AIC) after stepwise

selection are saved in a table. Each geofactor is evaluated by

the percentage of models which it was part of (cf. Guns and

Vanacker, 2012). The set of selected geofactors for one sam-

ple defines a “model species” (if, for example, the geofac-

tors A, B and D are selected from the candidate geofactors A,

B, . . . E, the species of the resulting model is ABD). The

term model species was used in order to highlight the simi-

larity of the proposed method for model diversity assessment

with investigations of biodiversity in ecology. Theoretically,

kmax = 2g − 1 different model species can exist if g candidate

geofactors are available for model selection, and if the result-

ing model has to contain at least one geofactor. The diversity

of the 1000 replicate models calculated for each sample size

is evaluated using three measures: (i) the number k of dif-

ferent model species (“species richness”); (ii) the Shannon

diversity index H , also known as Shannon information en-

tropy; and (iii) the Simpson index D.

The Shannon index was developed in information theory

(Shannon, 1948) and has been widely applied in ecology as

an index measure of biodiversity (e.g. Magurran, 2004). In

geomorphology, it has been used to assess the uncertainty

of drainage routing and watershed delineation (Schwanghart

and Heckmann, 2012). In our study, it is calculated as
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H = −
k∑

i=1

pi · ln(pi) , (3)

where i = 1 . . . k represents the ith of k different model

species, and pi is the probability of occurrence of the ith

species, estimated by ni/N , the proportion of the ith model

species found in N individual stepwise modelling runs.

The log-transformed Simpson index (Simpson, 1949) has

been developed for measuring biodiversity; it is consid-

ered superior to the H as it is independent of sample size

(Magurran, 2004). It is calculated as

D = − ln

k∑

i=1

ni · (ni − 1)

N · (N − 1)
, (4)

where ni is the absolute frequency of the ith model species

and N is the number of individual models (here: 1000).

H and D combine the number of different model species

(species richness) and their relative frequency (relative

“abundance”) in one single number: a large diversity asso-

ciated with a high species richness (k different terms have

to be summed up for H and D, respectively) and/or an even

distribution of model species across the 1000 samples. Con-

versely, diversity is low when there is only a small number

of different species, and/or one or few species strongly dom-

inate. Shannon’s entropy has been interpreted in terms of the

“average surprise a probability distribution will evoke” (see

e.g. Thomas, 1981, p. 7). The result of a stepwise selection

with a sample size for which low diversity (low H ) has been

measured is not expected to be surprising, because one or

few species have a very high probability of occurrence. We

hypothesise that the diversity of model species, and the de-

gree of surprise with which we see one particular outcome

of the selection given the results of 1000 models, will re-

flect the sample dependence of the stepwise selection. There-

fore, we propose the “model diversity” as a measure of model

quality in terms of reproducibility; similarly, Petschko et al.

(2014) recently proposed a “thematic consistency” index that

assesses variable-selection frequencies in model replications

and is based on the Gini impurity index.

3.3.2 Sample size and spatial autocorrelation

In our study, the spatial autocorrelation of a data set is ex-

plored with the empirical semivariogram, which is typically

used for geostatistical interpolation techniques such as Krig-

ing (Webster and Oliver, 2007). It is derived from point mea-

surements by evaluating the semivariance of values of a vari-

able (geofactor) for pairs of points separated by a specific

distance. One important property of the semivariogram is the

range; points separated by a distance below this range are au-

tocorrelated. Brenning (2005) uses the range of the empirical

correlogram of the residuals of a logistic regression model

(180 m in his study) to constrain the minimum distance be-

tween training and test data points in spatial cross-validation.

Similarly, we estimate the range parameter of the variogram

of each geofactor to constrain the sample size: we argue that

the average distance between raster cells in the (non-event)

sample should not fall within the autocorrelation range(s) of

the geofactors included in the model in order to keep the non-

event sample as uncorrelated or independent as possible. As

the average distance implies that some points in the sample

will be closer neighbours, we concede that this strategy min-

imises spatial autocorrelation rather than preventing it.

Assuming a set of randomly distributed points (here: raster

cells), the average distance d̂ to the nearest neighbour can be

estimated by Eq. (5):

d̂ = 1

2 · √
ρ

, (5)

(Clark and Evans, 1954) where ρ is the density of the sam-

ple, i.e. the sample size n divided by the study area (here:

the number of raster cells within the study area multiplied

by 25 m2, the area of each cell). For each study area, d̂ is

calculated as a function of n and used to estimate the upper

boundary for the “suitable sample size”. Instead of using the

highest autocorrelation range (i.e. that of the geofactor with

the most far-reaching spatial autocorrelation) as a crisp, ab-

solute upper limit of sample size, we take into account d̂(n)

as it progressively falls below the autocorrelation range of

more and more geofactors, and we regard the corresponding

n as progressively less acceptable. An upper limit is finally

reached when the smallest autocorrelation range from the set

of geofactors is undercut.

Figure 2 shows the empirical geofactor semivariograms

and the practical range parameter (i.e. the range where 95 %

of the sill is reached) of the fitted variogram models. Depend-

ing on the geofactor, spherical and exponential models were

used. It is obvious that some geofactors, e.g. slope, are auto-

correlated on multiple scales. In these cases, the lower range

is used; however, it appears that a sample which is indepen-

dent with respect to all geofactors is not possible.

3.4 Variability of model results

The investigations described in the previous sections have the

aim of quantifying and reducing the dependence of the re-

sults on the sample while maintaining sample independence.

Once a suitable sample size is estimated, we investigate the

variability of model results – both quantitatively and with re-

spect to its spatial distribution. In order to do so, we repeat

100 times the sampling, model selection, fitting and applica-

tion for the Zwieselbachtal area, creating a stack of 100 grid-

ded susceptibility maps of the whole study area. The median

of 100 probabilities in each raster cell is taken as a consen-

sus model (Marmion et al., 2009) and the final susceptibility

map. The interquantile range IQR90 = p0.95 − p0.05, which

encompasses 90 % of the modelled susceptibility values as

a non-parametric measure of dispersion, quantifies the un-

certainty caused by sampling and stepwise model selection.
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⑤Fig. 2. Empirical variograms of geofactors used in this study. Note

that slope is autocorrelated at different spatial scales.

As this measure is calculated for each raster cell, the respec-

tive map can be used to visualise the spatial distribution of

model uncertainty (not with respect to the true probability,

but with respect to model variability). In addition, the distri-

bution of the parameter coefficients of the 100 models, and

their predictive power (ROCs and AUC; see Sect. 3.2.3) can

be displayed and analysed.

4 Results and discussion

4.1 Investigation of sample size effects

Before we approach the question of an optimal range of

sample sizes, we take a look at the results of model se-

lection as a function of sample size. Specifically, Fig. 3

shows, for each geofactor, the number of models that retained

this geofactor after the AIC-based selection procedure. The

six geofactors that were eligible for model selection were

slope, SCA, the interaction of the previous two factors (de-

noted “slope*SCA” in Fig. 3), the roughness category which
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Fig. 3. Overview of the six geofactors and their contribution to

1000 models of different sample sizes. The y axis denotes the

number of models for which the respective geofactor was selected.

“slope*SCA” signifies the interaction term of the two variables

slope and specific catchment area.

distinguishes bedrock from debris-mantled slopes, and the

two curvature variables. While roughness and profile curva-

ture gradually increase their membership with larger sample

sizes (roughness starting from only ca. 15 % of the replica-

tions), the interaction term slope*SCA quickly attains 100 %

(i.e. all of the 1000 samples lead to models containing this

variable) even with small samples. Here, it is important to

mention that interaction terms may only be part of a model

if their marginals (here: slope and SCA) are also contained.

This is the case, as the given variables are contained in all

models, irrespective of sample size. The proportion of mod-

els containing the geofactor plan curvature is very low, start-

ing with about 20 % and only slightly increasing in larger

samples.

If the “success” of a geofactor in the model selection pro-

cedure is a measure of its importance, then the most impor-

tant variables are slope, SCA, the interaction of slope and

SCA, and profile curvature. The importance of roughness and

plan curvature is low, but the number of models containing

roughness surpasses that of models containing plan curvature

even at sample sizes below 1000. These findings are consis-

tent with previous work on (slope-type) debris flow suscep-

tibility: Heckmann and Becht (2009) and Wichmann et al.

(2009), for example, use slope, land cover, and a variable

called the CIT index (Montgomery and Foufoula-Georgiou,

1993). The latter is calculated as the specific catchment area

times the squared tangent of slope. The interaction term

slope*SCA used in our study can be interpreted physically

(mathematically, it is the product of the two geofactors) as
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the compound topographic index indicating stream power

(Moore et al., 1991); in this index, catchment area and slope

serve as proxies for the abundance and energy of surface

runoff. In comparing several models (discriminant analy-

sis and logistic regression) Carrara et al. (2008) observed

that factors relating to slope gradient, land cover, availabil-

ity of detrital material, and active erosional processes best

described debris flow initiation. The most frequent model

species in our study include geofactors that represent these

categories.

Figure 4 evaluates the diversity of models selected by the

AIC-based procedure as a function of sample size. The diver-

sity is expressed as the number of model species (i.e. models

defined by a given combination of geofactors) in 1000 sam-

ples (centre panel), and is quantified using the Shannon and

Simpson diversity measures (bottom panel). The number of

model species declines exponentially to reach a stable min-

imum of 8 species at a sample size of n = 1000. Even for

the largest sample size in our analysis (n = 5000), differences

between the 1000 samples result in as many as 8 different

model species. The diversity measures show a local mini-

mum at n = 300 and n = 350, respectively; for these sample

sizes (nrel = 0.05 %), the number of model species is higher,

but the distribution of the 1000 models across this number of

species is more uneven – i.e. few species make up the lion’s

share of the selections – and the rest is represented only by

a few cases. For larger sample sizes, model diversity slightly

increases again and reaches a more or less stable value. Sam-

ple sizes much larger than 5000 (nrel > 0.68 %, not shown)

lead to a decrease of the diversity indices; when the sample

size approaches the size of the population (i.e. the complete

study area), the stepwise procedure of course yields only one

model species, and the diversity indices attain their absolute

minimum (0). The plateau of the diversity measures is also

reflected in the model composition shown in Fig. 3 where

all geofactors (except roughness) exhibit only slight changes

with sample sizes larger than ca. 1000 (nrel = 0.15 %).

We interpret the minimum of the diversity indices as a

minimum of the dependence of model selection on the sam-

ple and therefore the corresponding sample size (300–350)

as a data-based recommendation for our case study. Such a

strategy is, in our opinion, better than the adoption of arbi-

trary recommendations with respect to event : non-event ra-

tios, absolute, or relative sample sizes. The sample size of

300–350 non-event cells corresponds to a ratio of event : non-

event of 1 : 3.7 to 1 : 4.3, which is approximately consistent

with the 1 : 5 ratio used by Van Den Eeckhaut et al. (2006)

and with the recommendation (1 : 2–1 : 5) given by King and

Zeng (2001). It is also in the range of the ratio of event

to non-event cells in our study areas (about 1 : 500 in ZBT,

1 : 200 in LT), a ratio that has been used by Atkinson et al.

(1998). Considering Green’s rule of thumb (Green, 1991) re-

ported in the Introduction (Sect. 1.1), the six candidate geo-

factors in our case study would require a minimum sample

size of ca. 100. Hjort and Marmion (2008), who investigate
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Fig. 4. Mean distance between neighbouring sample points (top

panel), number of model species in 1000 samples (center panel),

and two model diversity measures (bottom panel) as a function of

sample size. Shades of grey denote the degree to which the raster

cells in a sample of size n lie, on average, within the autocorrela-

tion range of geofactors. Red arrows indicate the sample sizes for

which the Shannon and Simpson indices reach a local minimum,

respectively.

the predictive power of different models estimated with dif-

ferent sample sizes, state that a “level of robust predictions”

is attained, with all statistical techniques, at a sample size of

n = 200.

The local minima do not appear to be always present, de-

pending on the choice of geofactors and the study area used

for model selection (not shown). However, there is always

at least a conspicuous knickpoint in the empirical diversity

diagram where an increase in sample size does not lead to

a significant reduction of model diversity. The analysis of

the LT data, for example, shows a plateau, not a local min-

imum, of model diversity, and this is only reached between

n = 1000 and n = 2000 (nrel = 0.38 and 0.74 %), a sample size

which is already becoming problematic with respect to spa-

tial autocorrelation (see next paragraph). The LT is smaller

than the ZBT and has a smaller number of debris flows but

a higher debris flow density (events per square kilometre);

hence there does not appear any conspicuous relationship of

the existence and location of plateaus or local minima, ab-

solute or relative sample size, and the aforementioned study

area properties. The investigation of these problems is left
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Fig. 5. Distributions of model coefficients estimated from 100 random samples (n = 350 non-event cells) in the ZBT area. The percentages

below the parameter name refer to the proportion of the 100 models that contain the respective geofactor.

open to future research, employing a systematic analysis of

multiple study areas with different sizes, characteristics, and

debris flow densities.

In Sect. 3.3.2, we proposed the mean distance between

sampled locations in relation to ranges of spatial autocorre-

lation as an upper constraint of sample size. Figure 4 (top

panel) shows the expected mean distance between nearest

neighbours as a function of sample size (see Sect.3.3.2). Ad-

ditionally, the horizontal dashed lines indicate the autocorre-

lation ranges of the geofactors mentioned above (cf. Fig. 2).

As the red curve intersects the autocorrelation ranges of more

and more geofactors, the sample of the corresponding size is

more and more likely to violate the independence assump-

tion. The decreasing suitability of larger samples to this end

is visualised across the whole Fig. 4 through darker shades of

grey. The optimal sample sizes indicated by the red arrows in

the bottom part of the diagram belong to a range of sample

sizes that are within the autocorrelation range of one single

geofactor only. In this case, it is the “large-scale” range of

slope (ca. 800 m, slope is autocorrelated also at smaller spa-

tial scales with a range of ca. 200 m; see Fig. 2). We consider

this only a minor violation of the independence assumption,

so that the sample size recommended above remains optimal

also with respect to the spatial autocorrelation issue that has

been raised in Sect. 1.2.

While the typical scale of application of landslide suscep-

tibility models is in the order of (many) tens to thousands of

square kilometres, our study took place in a comparatively

small study area. Considering the small size and the associ-

ated homogeneity of our study area with respect to the sta-

tistical and spatial distribution of geofactors, we add a note

of caution to the interpretation of our findings. First, we ex-

pect the necessary sample size to be larger in more hetero-

geneous areas, and we expect a larger variability of model

selection and model coefficients. One possibility of dealing

with large, heterogeneous study areas has recently been pro-

posed by Petschko et al. (2014), who partition their study

area in sub-areas based on lithological properties that are

related to landslide activity. Second, the assessment of spatial

autocorrelation from variograms of the geofactors is much

less straightforward in larger, heterogeneous areas. For ex-

ample, different ranges of autocorrelation could exist for the

same geofactor in different (sub-)regions of the study area,

which calls into question the existence of a single sample size

(and the associated average distance between sample points)

below which the autocorrelation issue is mitigated. However,

we are confident that our observation of a local minimum

or plateau in model diversity will apply also at larger spa-

tial scales (see, for example, Hjort and Marmion, 2008; Guns

and Vanacker, 2012). Moreover, we uphold the general rec-

ommendation to investigate, through repeated sampling with

different sample sizes, the behaviour of parameter selection

in order to explore a suitable (small) sample size that both

minimises sample dependence and facilitates a robust param-

eter selection.

4.2 Model results

4.2.1 Model parameters

In this section, the results of the procedure described in

Sect. 3.4 are evaluated. Figure 5 shows the distribution of

the estimated coefficients for each of the geofactors. Addi-

tionally, the percentage below the parameter name gives the

proportion of models that contained the respective geofac-

tor after stepwise selection. The coefficients were estimated

using 100 independent random samples of n = 81 + 350

(event + non-event sample) in the ZBT area. The geofactors

slope, SCA, and their interaction are part of every model,

followed in decreasing order by profile curvature, plan cur-

vature, and roughness class. The spread of the coefficients is

low for most of the geofactors, with the exception of the two

curvature parameters. The coefficient for plan curvature has

the largest range, and it takes positive and negative values,

which makes the interpretation very difficult; this is proba-

bly caused by the fact that the random sampling of event cells
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from the upper erosional zones in the debris flow inventory

will select locations not only in the centre of channelised de-

bris flow paths (with highly concave plan curvature) but also

at the boundary of these areas, which are highly (plan) con-

vex. Conversely, the profile curvature coefficient is strictly

negative, which means that a concavity in the long profile

increases the probability of debris flow initiation. The ex-

planation for this finding is a morphological one: the typi-

cal locations of debris flow initiation (facilitated by the fire-

hose effect; see Fig. 1) at the contact of steep rock faces and

the corresponding talus cones are marked by large negative

(i.e. concave) profile curvatures.

The mostly negative coefficients for slope and SCA are

difficult to interpret, as one would expect that the proba-

bility of debris flow initiation would increase with steeper

slopes and with larger catchment areas. However, this prob-

lem appears to be only a mathematical one, as the interac-

tion term of slope and SCA is present in the model. There-

fore, the coefficient of slope (alone) models the effect of

slope where SCA is zero (and vice versa); the coefficient

for the interaction term is positive, indicating higher proba-

bilities with steep slopes and large catchment areas, which

is conceptually correct. The interaction term plays an im-

portant role in the model: without it, the positive relation-

ship of SCA with debris flow release causes the modelled

susceptibility to increase even in the comparatively flat val-

ley bottoms. Under these conditions, slope-type debris flows

cannot occur; Rickenmann and Zimmermann (1993) report

starting zone slopes for type 2 debris flows (that type which

occurs in our study areas) between 26.5 and 38◦, with catch-

ment sizes of up to 1 km2; Takahashi (1981) gives a lower

threshold for debris flow initiation of 15◦. Generally, there

appears to be a trend that the minimum slope angle required

for debris flow release decreases with larger catchment ar-

eas (Rickenmann and Zimmermann, 1993; Heinimann et al.,

1998; Horton et al., 2008), so there is, besides the stream

power index (cf. Sect. 4.1), one more theoretical justification

for including the interaction of slope and SCA.

4.2.2 Susceptibility maps

The previous analyses have shown the dependence of mod-

els found through AIC-based model selection on the respec-

tive sample and its size. The spatial pattern of a model re-

sult (here: the susceptibility map containing the debris flow

initiation probability) depends on the spatial pattern of the

geofactors that form part of the model. Figure 6 shows a sec-

tion of the susceptibility map that can be seen as a consensus

model (see Marmion et al., 2009) as every raster cell con-

tains the median of 100 model predictions, the coefficients of

which have been summarised in the previous section (Fig. 5).

Susceptibility in both valleys has been predicted using the

model estimated with ZBT data only. The whole map is part

of the supplementary material of this paper. On the map, de-

bris cones are highlighted by yellowish to reddish colours

Fig. 6. Part of the susceptibility map (for full extent, see Supple-

ment) of the ZBT and LT areas. The susceptibility values represent

a model ensemble, specifically the median value of 100 models es-

timated from 100 random samples (n = 350 non-event cells) in the

ZBT area. Insets A and B refer to map sections in Fig. 7.

indicating medium to high probability of debris flow release.

The distal parts of the cones are characterised by lower (if

any) susceptibility, while their apices and channel-like por-

tions of the upslope area show the highest values. Most of

the valley floor and most steep parts of the rockwalls have

very low to zero susceptibility. This can be seen in detail in

the upper row of Fig. 7; virtually all mapped debris flows (in-

cluding not only the depositional lobes, but the whole process

area) have high to very high susceptibility values in their up-

per part, and it can be stated that the spatial pattern of debris

flow occurrence appears to be reproduced well by the model.

This visual validation also reveals problems. The zones

of highest susceptibility, indicated by violet colours, ex-

tend very far upslope along very steep channel-like features

within the rockwalls. Many of these locations appear to be

too steep for debris to accumulate (one of the preconditions

for debris flow generation); for this problem, we offer two

explanations: first, an analysis of slope values within the

mapped starting zones (see Sect. 3.1.1) reveals that ca. 75 %

of slope values within the initiation areas are within a physi-

cally meaningful range (below ca. 40◦), while the remaining

values clearly speak against the accumulation of debris in

these locations. This can be attributed in part to mapping er-

rors (Ardizzone et al., 2002) where the upper portion of a de-

bris flow area is spuriously extended into very steep bedrock

channels that are in part poorly identifiable on aerial imagery.

Another source of this error, probably to a lesser degree, is

a mismatch in the exact location of the rockwall–talus con-

tact between the DEM (which is decisive for the model) and
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Fig. 7. Map sections (for full extent, see Supplement) from the ZBT (B) and LT (A) areas. The maps show the susceptibility map (see Fig. 6)

and a map of the IQR90 calculated from the model ensemble. The latter map represents the uncertainty of the susceptibility map that is due

to the sampling process.

the aerial photo. Second, a linear modelling approach is not

capable of modelling complex non-linear relationships such

as the one of slope and debris flow release: conceptually,

susceptibility should increase, starting from some minimum

slope, up to a maximum and then decrease again. The sus-

ceptibility then reaches zero at slope gradients that are pro-

hibitive for the formation and persistence of sediment stor-

age that is needed for debris flow generation. The GLM ap-

proach, however, only handles monotonic relationships be-

tween independent and dependent variables, e.g. an increase

of susceptibility with slope. Problems of this kind could be

solved by using other approaches, for example the weights

of evidence, certainty factor, or generalised additive models

(GAM; see e.g. Hjort and Luoto, 2011).

A novel output of our model replication exercise is the

quantification of the variation in model results and the as-

sessment of its spatial distribution. The model uncertainty

addressed here is due to the sampling and model selection

procedure only. For each raster cell of the susceptibility map,

we computed not only the median but also the interquan-

tile range (IQR90) between the p0.95 and p0.05 quantiles; the

corresponding map can be seen in the supplementary ma-

terial and in Fig. 7, bottom row. In the whole study area,

the IQR90 has a highly positively skewed distribution that

ranges from 0.0 to 0.98. It has a mean of 0.081; i.e. debris

flow release probability predicted by the 100 models varies

by 8 percentage points, on average. In the ZBT area (that

was used to estimate the models) this value equals 0.073,

while in the LT area it is slightly higher (0.103). For sam-

ples taken according to the “1 : 1 event to non-event” rule

(n = 81 non-event cells, nrel = 0.022 %), the average IQR90

is 0.190 (ZBT), 0.230 (LT) and 0.200 (total study area). The

expected variability is consistently higher for smaller sam-

ples, and when a model is applied to a different area. The lat-

ter can be explained with the effect of extrapolation beyond

the range of geofactors in the respective training area.

Generally, the lowest uncertainty is found for both the low-

est and the highest susceptibility values, an observation also

reported by Guzzetti et al. (2006b). On the uncertainty maps,

the largest standard deviations occupy spatially coherent ar-

eas along the zones of high susceptibility, and additionally in

considerable portions of the valley bottom where the slope

gradient is low. In some places, the spatial pattern of un-

certainty is consistent with the fact that profile curvature is

included in only about 60 % of the models; here, zones of

high curvature (both concave and convex) are characterised

by high IQR90 values. Such zones of high uncertainty may

generally occur where a high (or low) predicted susceptibil-

ity relies on one parameter only that is not part of all models.

In our opinion, the map adds information to the susceptibility

map that can be useful for its interpretation.
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4.2.3 Validation

The variability of model parameters and predictions is also

reflected in the validation. A first qualitative validation is

done by visually inspecting the susceptibility map (here: the

median of 100 models, Figs. 6 and 7). Each model is quan-

titatively validated by means of a ROC (see Sect. 3.2.3) us-

ing data from the Larstigtal (LT) only; hence, the data used

to estimate the model parameters (from the ZBT area) and

the validation data are completely independent, and the cor-

responding diagram represents a “prediction curve” (Chung

and Fabbri, 2003). Split-sample validation approaches such

as cross-validation, spatial and temporal partitions (Chung

and Fabbri, 2003) do not warrant such independence when,

for example, subsets of the same inventory are used to esti-

mate model parameters and to validate the resulting model in

one study area.

Figure 8 (top panels) shows the prediction curves for the

100 models, and the distribution of the corresponding area

under the curve (AUC). The 100 curves are located quite

close to each other, and there are no conspicuous extreme

outliers. The AUC reaches 0.83, on average; the predictive

ability of a model calculated in the LT area and applied to

the ZBT (not shown) is even higher, with AUC = 0.9. In total,

the observed AUCs are within the range of many published

studies (e.g. 0.69–0.8: Ruette et al., 2011; 0.84: Ayalew and

Yamagishi, 2005; 0.89–0.93: Van Den Eeckhaut et al., 2010)

and can be regarded as satisfying. The different performance

of the ZBT model in the LT area and vice versa is an interest-

ing fact. This could be caused by different characteristics of

the study areas, related to a different range, and different spa-

tial and statistical distributions of the geofactor values. The

two neighbouring areas, however, are regarded as very sim-

ilar and homogeneous. Heckmann and Becht (2009) investi-

gated the transferability of a debris flow susceptibility model

among different study areas and reported that the predictive

power of models is largely independent of the degree of sim-

ilarity of training and test area; their model approach (cer-

tainty factor), however, strongly differs from logistic regres-

sion. Besides computational and conceptual differences, con-

tinuous geofactors such as slope are classified using the same

scheme in all study areas. Conversely, in our study, a differ-

ent range of geofactors in training and test areas could lead to

different coefficients and different model performance due to

extrapolation. Another reason for the different performance

could be the different debris flow density. In order to deter-

mine the controls of model performance, future research will

have to use a larger number of different study areas with dif-

ferent debris flow densities. The methodological framework

for the assessment of model variability and performance pro-

posed here is considered useful for such investigations.

Interestingly, the sample size did not influence the predic-

tive ability of the model ensemble – both n = 81 and n = 350

have very similar mean AUC values. However, the smaller

sample size leads to a much larger spread of the different

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

Fig. 8. Evaluation of the predictive ability of 100 models (top pan-

els: n = 350 non-event cells, bottom panels: n = 81 non-event cells)

by means of the area under the curve. As the model training (ZBT)

and validation area (LT) are independent, the diagrams on the left

represent prediction curves (Chung and Fabbri, 2003).

prediction curves and consequently also of the AUC values.

In our case, a single sample of events and non-events at a ra-

tio of 1 : 1 (see, for example, Brenning, 2005; Meusburger

and Alewell, 2009) could have resulted in a good model

(AUC 0.84) but also in a comparatively poor one (AUC 0.75),

although the expected AUC is approximately the same. We

deduce from our results a recommendation to create sus-

ceptibility maps from model ensembles, because they are

supposed to yield a more reliable result on the one hand

and give an estimation of (sample-induced) uncertainty on

the other. Similarly, Marmion et al. (2009) propose “con-

sensus models”; in their study, results from different predic-

tive modelling approaches are combined using several meth-

ods, among them the median that was used in our study to

combine the results of 100 models generated with the same

method, but from independent random samples.

5 Conclusions

In this paper, we investigated the effect of sample size on

a logistic regression model with a parameter selection proce-

dure that is based on an information criterion (AIC). The case

study aims at predicting the spatial distribution of slope-type

debris flow release zones in the Larstigtal (LT) and Zwiesel-

bachtal (ZBT) catchments in the Austrian Central Alps.

The procedure of random sampling and model selection

was replicated 1000 times for different samples between

n = 50 and n = 5000 non-event raster cells. For each candi-

date geofactor, the number of models it was part of after step-

wise model selection was recorded. The diversity of models

as a function of sample size was determined using the num-

ber of different models and two diversity indices (Shannon
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Entropy and Simpson diversity index). In our case study,

model diversity decreased with increasing sample size and

reached a local minimum at n = 300–350, before it slightly

increased again to a stable level. In some cases, no local

minima were detected, but model diversity always reached

a plateau on which even much larger samples could not im-

prove (= decrease) model diversity. While we were unable to

discern a dependence of local minima or plateaus on proper-

ties of the debris flow inventories and/or study areas, we rec-

ommend exploring the behaviour of model selection and di-

versity dependent on sample size in order to determine an op-

timised sample size. The latter is constrained by the range of

spatial autocorrelation found in variogram analyses for each

geofactor.

Most importantly, our results show that, even with large

sample sizes (that will progressively violate the indepen-

dence assumption), there will still be a variety of differ-

ent models and, hence, also diverse model results depend-

ing on the sample. We argue that single-sample studies run

the risk of accidentally yielding a poor model, and therefore

strongly advocate the calculation of multiple models based

on independent random samples; the results of these models

are used (i) to construct a consensus susceptibility map (in

our case study, we used the median of 100 models on each

raster cell) and (ii) to investigate, both statistically and spa-

tially, the variation in model results caused by the sampling

and model selection procedure. In our study, the median of

100 models was used as the consensus model, and variation

was quantified using the IQR90 interquantile range as a non-

parametric dispersion measure. The latter was clearly influ-

enced by sample size (less variation for larger samples) and

study area (more variation in LT if the ZBT model was ap-

plied). Predictive power of the models was measured using

receiver operating curves (area under the curve); all models

yielded satisfying results that are in the range of other pub-

lished landslide susceptibility models. Sample size did ap-

parently not influence the average predictive power of the

model ensemble, but smaller samples increased the range of

AUC and hence also the proportion of comparatively poor

models.

Supplementary material related to this article is

available online at

http://www.nat-hazards-earth-syst-sci.net/14/259/2014/

nhess-14-259-2014-supplement.pdf.
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