
The coefficient of variation is a dimensionless number 
that quantifies the degree of variability relative to the mean. 
The population coefficient of variation is defined as

 , (1)

where  is the population standard deviation and μ is the pop-
ulation mean. The typical sample estimate of  is given as

 k s
M

,  (2)

where s is the sample standard deviation, the square root 
of the unbiased estimate of the variance, and M is the sam-
ple mean. Equations 1 and 2 are sometimes multiplied by 
100 so that the ratio of the standard deviation to the mean 
is expressed in terms of a percentage.

The coefficient of variation has long been a widely 
used descriptive and inferential quantity in various areas 
of the biological and medical sciences. Compared with 
several other effect size measures, the coefficient of varia-
tion has not historically been widely used in behavioral, 
educational, or social sciences. However, some research 
questions within the behavioral, educational, and social 
sciences lend themselves to being addressed with the co-
efficient of variation. At least in part due to the current 
emphasis in many parts of the literature on the interaction 
of biological and psychological systems as explanatory 
factors of behavior (e.g., Frith & Frith, 2001; Kosslyn 
et al., 2002; Salmon & Hall, 1997; etc.), use of the coef-
ficient of variation will likely continue to increase.1

An example of where the coefficient of variation is 
often used is for assays, which are procedures that mea-
sure certain designated properties of biological compo-
nents. The results of repeated trials of such assays are 
many times reported in terms of the coefficient of varia-
tion, because the standard deviations of assays generally 
increase (or decrease) proportional to the mean increase 
(or decrease; Reed, Lynn, & Meade, 2002). Coefficients 
of variation are generally based on a single measurement 
from different individuals (i.e., an interindividual coeffi-
cient of variation). However, intraindividual coefficients 
of variation, where repeated measures for the same indi-
vidual are obtained, are also possible. One place where an 
intraindividual coefficient of variation is of interest is be-
fore and after a treatment to evaluate the effectiveness of 
the treatment (Reed et al., 2002). In a psychiatry setting, 
Volkow et al. (2002) used the coefficient of variation to 
compare patterns of homogeneity/heterogeneity in brain 
metabolism for Alzheimer’s disease patients with those in 
a control group without Alzheimer’s. It was shown that the 
coefficient of variation was larger across the entire cor-
tex, but that there were smaller coefficients of variation in 
temporal and parietal cortices for Alzheimer’s disease pa-
tients. As more researchers move to a biology– psychology 
model of behavior, assays will likely become more preva-
lent in the behavioral sciences.

Of course, the coefficient of variation need not be re-
stricted to biological systems. In a classic experimental 
psychology setting, Babkoff, Kelly, and Naitoh (2001) 
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related to the variance of the estimator and bias is the 
systematic discrepancy of an estimator and the param-
eter it estimates (Rozeboom, 1966). As the confidence 
interval width decreases, holding constant the confidence 
interval coverage, the estimate is contained within a nar-
rower set of plausible parameter values and the expected 
accuracy of the estimate improves (i.e., the root mean 
square error is be reduced). Thus—provided the confi-
dence interval procedure is exact—when the width of the 
(1  )100% confidence interval decreases, the expected 
accuracy of the estimate necessarily increases. The goal 
of this approach is to plan the necessary sample size so 
that the estimated coefficient of variation accurately re-
flects the corresponding population value by achieving a 
sufficiently narrow confidence interval. This approach to 
sample size estimation has been termed accuracy in pa-
rameter estimation (AIPE), because when the width of the 
(1  )100% confidence interval decreases, the expected 
accuracy of the estimate increases (Kelley & Maxwell, 
2003, in press; Kelley, Maxwell, & Rausch, 2003; Kelley 
& Rausch, 2006).

Probabilistically, holding everything else constant, the 
narrower a confidence interval, the higher the degree of 
expected accuracy of the obtained parameter estimate. 
The use of the term “accuracy” in this context follows 
the usage of the term given by Neyman (1937) when he 
discussed the “accuracy of estimates” in his seminal work 
on the theory of confidence intervals. He stated that “the 
accuracy of estimation corresponding to a fixed value of 
1   may be measured by the length of the confidence in-
terval” (Neyman, 1937, p. 358; notation changed to reflect 
current usage). The problem that the present article solves 
is planning sample size so that the confidence interval for 
the coefficient of variation is sufficiently narrow, and thus 
that the obtained estimate has a sufficient degree of ex-
pected accuracy. The overarching goal of AIPE is thus to 
avoid obtaining confidence intervals that are “embarrass-
ingly large” (Cohen, 1994, p. 1002) and of limited useful-
ness. Note that the general goal of AIPE has nothing to 
do with rejecting a null hypothesis, which is the stated 
goal of power analysis (e.g., Cohen, 1988; Kraemer & 
Thiemann, 1987; Lipsey, 1990; Murphy & Myors, 1998). 
The goal of planning sample size so that the confidence 
interval is sufficiently narrow (i.e., the AIPE approach) is 
a fundamentally different process from the power analytic 
approach—that is, planning sample size so that the confi-
dence interval does not contain the null value.

The first sample size planning method developed deter-
mines the necessary sample size so that the expected width 
of the confidence interval for the coefficient of variation 
is sufficiently narrow. A modified sample size procedure 
is then developed so that there is some specified level of 
assurance (i.e., a probabilistic statement) that the obtained 
confidence interval will be sufficiently narrow (e.g., 85% 
assurance that the 95% confidence interval for  will be 
no wider than 0.10 units). General methods are developed 
and algorithms given so that the necessary sample size 
can be determined in any particular situation. A series of 
tables for necessary sample size are provided for a variety 
of scenarios that may help researchers planning studies in 

reported the effects of sleep deprivation on a four-choice 
reaction time (RT) experiment to assess performance 
stability over time between a placebo and two treatment 
groups that received stimulants. The coefficient of varia-
tion was used for a subset of the analyses because mean 
performance level is postulated to be less affected by sleep 
deprivation than is the trial-to-trial variance (Babkoff et al., 
2001; Dinges & Kribbs, 1991). Babkoff et al. went on to 
model the coefficient of variation (the measure of perfor-
mance stability) over time as a function of group member-
ship. Similarly, Hayashi (2000) examined the coefficient 
of variation for choice RT when participants were using 
benzodiazepine in an effort to manipulate their cognitive 
states. In an educational setting, Monchar (1981) used the 
coefficient of variation to quantify educational inequality 
in the context of political instability in 39 countries at vari-
ous times from the late 1950s until the early 1970s. The idea 
was that countries with greater political instability would 
have more educational inequities (larger coefficients of 
variation), using the rate of enrollment for reporting re-
gions within the country, than would more-stable coun-
tries.2 The coefficient of variation is also used for quan-
tifying risk sensitivity, which is especially helpful when 
comparing diverse populations (Weber, Shafir, & Blais, 
2004). With two experiments, Weber et al. (2004, p. 430; 
see also Shafir, 2000) show that risk sensitivity of human 
beings, as with other types of animals, becomes strongly 
proportional to the coefficient of variation when they learn 
about choice alternatives. Finally, a comprehensive review 
of the demography and diversity literature shows that the 
coefficient of variation is one of the most widely used ways 
of assessing group-based demographic differences (Wil-
liams & O’Reilly, 1998). As can be seen, the coefficient of 
variation has been used in a wide variety of contexts.

Even though the estimated coefficient of variation can 
be a useful measure, perhaps the greatest use of it as a 
point estimate (like most point estimates) is to construct 
a confidence interval for the population quantity.3 A con-
fidence interval provides much more information about 
the population value of the quantity of interest than does 
a point estimate (e.g., Cohen, 1994; Hunter & Schmidt, 
2004; Kirk, 2001; Meehl, 1997; Schmidt, 1996; Smith-
son, 2001; Steiger, 2004; Task Force on Reporting of Re-
search Methods in AERA Publications, 2006; Thompson, 
2002; Wilkinson & the American Psychological Associa-
tion Task Force on Statistical Inference, 1999). The more 
accurate the estimated quantity, the more information is 
known about the population quantity. Because the goal of 
most research is to implicitly or explicitly learn as much 
as possible about the parameter of interest, obtaining an 
accurate parameter estimate should generally be of utmost 
concern in applied research.4

The purpose of the present article is to offer an ap-
proach to sample size planning for the coefficient of 
variation, where the goal is to obtain a sufficiently nar-
row confidence interval that illustrates the expected ac-
curacy with which the parameter has been estimated. In 
the context of parameter estimation, accuracy is defined 
as the square root of the mean square error, which is a 
function of both precision and bias. Precision is inversely 
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where ˆ is the estimated noncentrality parameter. Given the 
estimated noncentrality parameter, a (1  )100% confi-
dence interval can be formed for the population noncen-
trality parameter by making use of the confidence interval 
transformation principle and the inversion confidence in-
terval principle. These two principles are nicely delineated 
in Steiger and Fouladi (1997) and in Steiger (2004).6

To illustrate the inversion confidence interval princi-
ple, let 1   be the confidence interval coverage with 

L  U  , where L is the proportion of times that 
 will be less than the lower confidence limit and U the 

proportion of times that  will be greater than the upper 
confidence limit in the confidence interval procedure. In 
most cases L  U  /2, but that need not be the case 
(e.g., when L  0 and U  .05, or vice versa, for one-
sided confidence intervals). The confidence bounds for 
 are determined by finding the noncentrality parameter 

whose 1  L quantile is ˆ (for the lower bound of the 
confidence interval) and by finding the noncentrality pa-
rameter whose U quantile is ˆ (for the upper bound of 
the confidence interval). Stated another way, the lower 
confidence bound for  is the noncentrality parameter that 
leads to t(1 L, , L)  ˆ and the upper confidence bound for 
 is the noncentrality parameter that leads to t( U, , U)  ˆ, 

where t(1 L, , L) is the value of the noncentral t distribu-
tion at the 1  L quantile with noncentrality parameter 

L and t( U, , U) is the value of the noncentral t distribu-
tion at the U quantile with noncentrality parameter U, 
respectively.

The confidence interval transformation principle 
 becomes useful, because a confidence interval for the 
population noncentrality parameter is not generally of in-
terest in and of itself. However, since there is a one-to-one 
monotonic relation between  and , a confidence interval 
for  can be transformed into a confidence interval for . 
If one rearranges Equation 5, it can be seen that

 N .  (7)

Therefore, transforming the limits of the confidence inter-
val for , by dividing the limits by N and then taking the 
inverse, confidence limits for  can be obtained:

 p
N N
U L

1 1

1 ,  (8)

where p represents probability. Notice that the lower con-
fidence limit for  is obtained by dividing the upper confi-
dence limit for  by N and that the upper confidence limit 
for  is obtained by dividing the lower confidence limit for 
 by N. The reversal of limits is a necessary part of the 

transformation procedure in the present context.
As an example of forming a confidence interval for , 

an example is given for a situation that deals with Alz-
heimer’s disease patients. Volkow et al. (2002) studied the 
reduction of glucose metabolism in the brains of Alzheim-
er’s disease patients (as part of a larger study). The coef-
ficient of variation across the entire cortex for the glucose 
metabolism of segmented cortical regions in the brains of 

which the coefficient of variation is of interest to achieve 
a sufficiently narrow confidence interval.5

Estimation and Confidence Interval 
Formation for 

Sokal and Braumann (1980, p. 51) derive the expected 
value of k for normally distributed data given  and N as

 

E[ |( , )]
( ) ( )

k N
N N N

1 1
4 1

1 1
2 1

2
2

kk N( , ) ,  (3)

where N is the sample size. Equation 3 will become useful 
momentarily when developing the sample size planning 
procedure. Although Equation 2 is the estimate typically 
reported for the coefficient of variation, as can be seen 
from Equation 3, k is a (negatively) biased quantity. A 
“nearly unbiased estimate” (Haldane, 1955, p. 484; Sokal 
& Braumann, 1980) of  can be obtained with a simple 
correction to k,

 k
N

ku 1 1
4

,  (4)

where ku is the nearly unbiased estimate of . When report-
ing point estimates of , ku is the recommended quantity. 
However, as will be discussed, k is used in the formation 
of confidence intervals for .

Although ku provides a nearly unbiased estimate of , a 
point estimate in and of itself does not convey any infor-
mation regarding the uncertainty with which the param-
eter has been estimated. As previously discussed, the use 
of confidence intervals is especially helpful for conveying 
information about the uncertainty with which an estimator 
estimates the population parameter of interest. Although 

 will almost never be known exactly, a range of plausible 
values can be obtained by forming a confidence interval 
for . Until recently, confidence intervals for  were pro-
hibitively difficult to obtain. However, as a result of recent 
advances in statistical software, such intervals can be eas-
ily found with several software titles that have noncentral 
t distribution routines. The remainder of this section dis-
cusses how a confidence interval can be formed for the 
coefficient of variation.

It can be shown that the coefficient of variation follows 
a noncentral t distribution, when the parent population 
of the scores is normally distributed, with noncentrality 
parameter

 
N N  (5)

with  degrees of freedom, where   N  1 (Johnson 
& Welch, 1940; McKay, 1932). An estimate of the non-
centrality parameter can be obtained by substituting the 
typical estimate of  (i.e., k) for the population value in 
Equation 5:

 ˆ ,N
k

 (6)
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sired degree of statistical power is chosen a priori when 
one is planning necessary sample size in a power analytic 
context (e.g., Cohen, 1988; Kraemer & Thiemann, 1987; 
Lipsey, 1990; Murphy & Myors, 1998).

As is true with essentially all sample size planning pro-
cedures (e.g., power analysis), in order to plan sample size 
under the goals of AIPE,  must be known or its value 
estimated. This complication is the same as almost all 
sample size planning procedures (e.g., power analysis). 
Conceptually, the way in which sample size is determined 
so that the expected width of the confidence interval for  
is sufficiently narrow is to substitute  for k and system-
atically evaluate different sample sizes until the expected 
width of the confidence interval is no wider than desired 
(i.e., E[w]  ). Actually, since k systematically under-
estimates  (recall Equation 3), basing the sample size 
planning procedure on  instead of on E[k] would lead 
to sample size estimates larger than necessary. For this 
reason, ̃k( ,N) from Equation 3 is substituted for  when de-
termining the necessary sample size so that the expected 
width is no larger than . Note that since k̃( ,N) is in part a 
function of N, k̃( ,N) will be updated for each iteration of 
the sample size procedure, as each iteration is based on 
a different sample size. This method of planning sample 
size is consistent with other sample size planning meth-
ods so that the expected width is sufficiently narrow (e.g., 
Guenther, 1981; Hahn & Meeker, 1991; Kelley & Max-
well, 2003; Kelley et al., 2003; Kelley & Rausch, 2006; 
Kupper & Hafner, 1989).

Although the overarching approach to sample size 
planning from an AIPE approach is not new (e.g., Mace, 
1964), it has not been discussed much in the behavioral, 
educational, and social sciences. Furthermore, it has only 
recently been discussed for effect sizes that follow non-
central distributions (e.g., Kelley, 2007b; Kelley & Max-
well, in press; Kelley & Rausch, 2006; see also Algina 
& Olejnik, 2000, for a similar goal in a related context). 
Given the importance placed on effect sizes and confi-
dence intervals in the literature, sample size planning 
from an AIPE approach will almost certainly increase in 
importance and frequency of usage.

Operationally, an algorithm that guarantees finding 
the appropriate sample size is to start at some minimal 
sample size, say N0, and determine E[k | ( , N0)] so that 
E[w | k̃( ,N0)] can be determined. If the width is greater than 
desired, the sample size should be increased by one, and 
the confidence interval width determined again. This it-
erative process of increasing sample size and recalculating 
the expected confidence interval width should continue 
until E[w | k̃( ,Ni)] is equal to or less than , where i repre-
sents the particular iteration number.

One issue that might not be obvious is that the method 
for planning sample size just discussed plans the neces-
sary sample size so that the expected width of the con-
fidence interval is sufficiently narrow; however, it does 
not guarantee that for any particular confidence interval 
the observed width will be sufficiently narrow. The con-
fidence interval width, w, is a random variable that will 
fluctuate from sample to sample. The fact that sample size 
is determined so that E[w] is no larger than  implies that 

the 35 Alzheimer’s patients was .271. Using Equation 6, 
the estimated noncentrality parameter (ˆ) in this situation 
is 21.831 (i.e., (35)/.271). A 95% confidence interval for 
the noncentrality parameter is given as

CI.95  [16.282    27.331],

where CI.95 represents a 95% confidence interval. Con-
verting the confidence limits for  to  by way of Equa-
tion 8 leads to the following confidence interval for :

CI.95  [.216    .363].

Note that the confidence interval is not symmetric about 
k, where the lower confidence interval width is .055 
(.271  .216) and the upper confidence interval width 
is .092 (.363  .271). In general, noncentral distribu-
tions are not symmetric, and confidence intervals based 
on noncentral distributions, even when L  U, tend to 
have different lower and upper confidence interval widths. 
Thus, confidence intervals for , which are based on the 
transformed confidence limits for the noncentral param-
eter, tend not to be symmetric about k.

AIPE for the Coefficient of Variation
When planning sample size, in order for the expected 

width of the obtained confidence interval to be sufficiently 
narrow for the population coefficient of variation, it is 
necessary to use an iterative process.7 Because the con-
fidence interval width for  is not symmetric (due to the 
nature of the noncentral t distribution), the desired width 
can pertain to the full confidence interval width, the lower 
width, or the upper width. Let L(X) be defined as the 
random lower confidence limit for  and U(X) be defined 
as the random upper confidence limit for  at the speci-
fied confidence level, where X represents the observed 
data matrix on which the confidence interval is based. For 
notational ease, the lower and upper random confidence 
interval limits will be written as L and U, respectively, 
with the understanding that they are random because they 
are based on the observed data. The full width of the ob-
tained confidence interval is thus given as

 w  U  L, (9)

the lower width of the obtained confidence interval is 
given as

 wL  k  L, (10)

and the upper width of the obtained confidence interval 
is given as

 wU  U  k. (11)

The goals of the research study will dictate for which con-
fidence interval width sample size should be determined. 
In general, w will be the width of interest. Although the 
methods discussed are directly applicable to determining 
sample size for the lower or the upper confidence interval 
width (i.e., wL or wU), the focus of the present work is 
on the full confidence interval width (i.e., w). Let  be 
defined as the desired confidence interval width, which 
is specified a priori by the researcher, much as the de-
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Meeker, 1991; Kelley & Maxwell, 2003; Kelley et al., 
2003; Kelley & Rausch, 2006; Kupper & Hafner, 1989).

Tables of Necessary Sample Size
Although the Appendix provides information on imple-

menting the methods proposed and discussed in order to 
obtain sufficiently narrow confidence intervals for any 
combination of , , , and  using the Methods for the 
Behavioral, Educational, and Social Sciences (MBESS; 
Kelley, 2007b, 2007c) R package (R Development Core 
Team, 2007), tables of selected conditions are provided. 
The tables are not meant to include all potentially inter-
esting conditions; rather, they are intended to provide re-
searchers (1) a convenient way to plan sample size when 
the situation of interest is approximately that included in 
the table, and (2) a way to illustrate the relation between 

, , , , and necessary sample size. The tabled values 
are based on  values thought to be useful for areas of the 
behavioral, educational, and social sciences.

Sample size is tabled for  values of 0.05 to 0.50 by 
0.05,  values of .01, .025 to .20 by .025, a subtable where 
the expected value of w equals , along with subtables 
with  values of .80 and .99, each for confidence interval 
coverages of .90 (Table 1), .95 (Table 2), and .99 (Table 3). 
Each of the conditions is crossed with all other conditions 
in a factorial manner, and thus there are a total of 810 sit-
uations (10  9  3  3) for planning an appropriate 
sample size.10

Any time a necessarily positive quantity follows a normal 
distribution, it is unlikely that k values larger than 1⁄3 can be 
obtained. Values of k larger than 1⁄3 imply that the standard 
deviation is more than three times larger than the mean, 
which would further imply that the lower end of the distri-
bution would be expected to contain some proportion less 
than zero. For example, if μ  30 and   10 from a nor-
mal distribution, and thus   1⁄3, .135% of the distribution 
would fall below zero. This small proportion of expected 
negative scores, when the normally distributed quantity is 
necessarily positive, may be ignorable in this situation; but 
as  increases arbitrarily large, the proportion of expected 
negative scores increases arbitrarily close to 50% of the dis-
tribution. The same discussion applies to quantities that are 
necessarily negative and that follow a normal distribution. 
Thus, for necessarily positive quantities k values tend to be 
less than 1⁄3. Values of k greater than 1⁄3 tend to arise when the 
distribution consists of both negative and positive values, or 
when the distribution consists only of positive or negative 
values but is not normally distributed.

Suppose a researcher is interested in estimating a coef-
ficient of variation that has a corresponding confidence 
for  that is sufficiently narrow. After a literature review of 
studies that examined a similar phenomenon under similar 
conditions, it was hypothesized that the population coef-
ficient of variation was .25. With the desire to obtain a 
99% confidence interval that excludes 0.20 and 0.30, the 
researcher sets  to 0.10.11 Application of the methods 
leads to a necessary sample size of N  99. This sample 
size is contained in the first subtable of Table 3, specifi-
cally (from the top left) five cells down (the   0.10 row) 
and five cells over (the   0.25 column).

roughly 50% of the sampling distribution of ws will be less 
than .8 A modified sample size procedure, discussed in 
the next section, can be implemented so that one can have 
a desired degree of assurance that the obtained w will be 
no larger than ; that is, a probabilistic statement can be 
incorporated into the sample size planning procedure that 
guarantees the obtainment of a sufficiently narrow confi-
dence interval with some desired degree of assurance.

Ensuring a Confidence Interval No Wider Than 
Desired With a Specified Degree of Assurance

One property of the method for forming confidence in-
tervals using the noncentral t distribution for  is that as k 
increases, so does the width of the confidence interval for 

. This implies that when k is larger than the  on which 
the standard sample size procedure is based, w will be 
larger than . In order to avoid obtaining a k larger than 
the value the sample size procedure is based on with some 
specified degree of assurance, denoted , and thus a w 
wider than , a modified sample size procedure can be 
used that substitutes for  from the standard procedure , 
where k will not exceed  100% of the time. That is,  is 
the value at the th quantile from the particular sampling 
distribution of k. Thus, given the specified degree of as-
surance,  is the largest plausible value of k expected to 
be obtained with probability  for a particular sample size 
and  value. The value 1   thus represents the probabil-
ity that k will be greater than , which implies that w will 
be greater than  for the particular sample size.

When  is found based on the necessary sample size 
from the standard procedure,  can be substituted for  
in the standard procedure and sample size determined in 
the same manner as before.  is obtained by transform-
ing the th quantile from a noncentral t distribution with 
noncentrality parameter  and  degrees of freedom. The 
value  is the value of the particular noncentral t distribu-
tion that satisfies

 f t dt( ; ) ,  (12)

where f(t( ; )) represents the noncentral t distribution prob-
ability function, and  is based on the sample size from the 
standard procedure.

The rationale for replacing  from the standard sample 
size procedure with  is so that w will exceed  no more 
than (1  )100% of the time. Since

 p(k  )  , (13)

no more than (1  )100% percent of the time will w be 
greater than :

 p(w  )  1  . (14)

Thus, the modified sample size procedure ensures that 
the observed confidence interval will not be wider than  
with probability no less than .9 The method of determin-
ing the modified sample size is consistent in theory with 
other methods of sample size planning in order to attach 
a probabilistic statement to the confidence interval width 
being sufficiently narrow (e.g., Guenther, 1981; Hahn & 
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val will be sufficiently narrow (e.g., 99% certain compared 
with 80% certain) also requires a larger sample size, because 
increasing the probabilistic component implies that it will be 
more difficult to achieve the goal satisfactorily. Similarly, as 
the confidence interval coverage increases (i.e., a decrease 
in ), for a desired confidence interval width the sample size 
also increases. The reverse is also true: (1) a decrease in  
(e.g., by reducing variability in the sample), (2) an increase 
in , (3) smaller values of , and (4) smaller confidence 
interval coverages all lead to smaller sample sizes.

Sensitivity Analyses
In almost all situations,  will be unknown; yet  must 

be specified in order to plan the appropriate sample size. 
This is the conundrum for most sample size planning pro-
cedures. One question that arises is “What are the effects 
on the width of the confidence interval if the value of  
specified is not equal to the population value?” This is an 
analogous problem when planning sample size in a power 
analytic context, where sensitivity analyses are often sug-
gested. Such sensitivity analyses are also recommended in 
the context of AIPE.

The idea of a sensitivity analysis in the present context 
is to assess the effects of misspecifying the population 

Realizing that an N of 99 will lead a sufficiently nar-
row confidence interval only about half of the time, the 
researcher incorporates an assurance (i.e., ) of .99. A  of 
.99 implies that the width of the 99% confidence interval 
will be greater than desired (i.e., 0.10) no more than 1% 
of the time. From the third subtable of Table 3 (again five 
cells down and five cells over from the top left), it can be 
seen that the modified sample size procedure yields a nec-
essary sample size of 141. Using a sample size of 141 will 
thus provide 99% assurance that the obtained confidence 
interval for  will be no wider than 0.10 units.

A summary of the results contained in the table is pro-
vided. As can be seen, holding all other factors constant, 
(1) larger values of , (2) smaller values of , (3) larger val-
ues of , and (4) larger values of the confidence interval cov-
erage (i.e., 1  ) all lead to larger necessary sample sizes. 
These findings are intuitively reasonable, in that a quantity 
in a population with more variability is estimated as  in-
creases, implying larger standard deviations relative to the 
mean (or smaller means relative to the standard deviation). 
Smaller values of  imply that a larger sample size is neces-
sary in order to reduce the standard error and increase the 
degrees of freedom, so that the confidence interval becomes 
narrower. Having more assurance that the confidence inter-

Table 1 
Necessary Sample Size for 90% Confidence Intervals  
for the Coefficient of Variation in Selected Situations

 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50

E[w]

.010 141 557 1,277 2,342 3,810 5,752 8,258 11,434 15,401 20,298

.025  26  93 208 379 614 925 1,326 1,834 2,469 3,253

.050   9  27 56 98 157 235 335 463 622 818

.075   6  14 26 45 71 106 151 207 278 365

.100   5   9 17 27 42 62 87 119 159 209

.125 –   7 12 19 29 41 57 78 104 136

.150 –   6 10 14 21 30 41 56 74 96

.175 –   5 8 12 17 23 32 42 56 72

.200 –   5 7 10 14 19 25 33 44 56

  .80

.010 154 585 1,322 2,406 3,896 5,865 8,402 11,616 15,627 20,576

.025  31 104 226 404 648 970 1,384 1,907 2,560 3,365

.050  11  32 64 111 174 257 364 499 668 874

.075   7  16 31 53 82 121 170 232 309 404

.100   6  11 20 33 50 73 102 138 182 237

.125 –   9 15 23 35 50 69 127 122 159

.150 –   7 12 18 26 37 51 68 89 115

.175 –   6 10 14 21 29 40 53 69 89

.200 –   6 8 12 17 24 32 43 55 71

  .99

.010 180 638 1,405 2,523 4,053 6,070 8,664 11,945 16,036 21,077

.025  42 126 261 453 714 1,055 1,493 2,044 2,730 3,573

.050  16  43 82 137 209 303 423 573 758 985

.075  10  25 45 72 108 154 212 285 374 483

.100   8  18 31 49 71 100 136 180 235 301

.125 –  14 23 36 52 73 98 129 167 213

.150 –  11 19 29 41 57 77 100 129 164

.175 –  10 16 24 34 47 63 82 105 133

.200 –   9 14 21 29 40 54 70 89 113

Note—  is the population coefficient of variation,  is the desired degree of assurance of achieving 
a confidence interval for  no wider than desired,  is the desired full confidence interval width, and 
E[w] is the expected confidence interval width (i.e., when  is not specified).
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to be known before a statement about the effects of the 
misspecification of  can be known. In general, properties 
of misspecification are not known analytically; hence the 
need for a Monte Carlo simulation study. The Appendix 
provides information on how a sensitivity analysis can be 
implemented in the AIPE context for the coefficient of 
variation using MBESS.

Discussion
If a point estimate is of interest, the confidence limits 

that bracket the population quantity also should be. Re-
gardless of the value of a point estimate, the population 
quantity will almost certainly differ. Since it is the popu-
lation value, not a sample estimate, that is ultimately of 
interest, the limits of the confidence interval are arguably 
more important than is the point estimate itself. The limits 
of the confidence interval bracket what can be considered 
plausible values of the population parameter with some 
specified level of confidence. As the width of the interval 
narrows, holding constant the level of confidence, more 
and more values are excluded and thus are no longer con-
sidered plausible. The width of the confidence interval 
is therefore a way through which the accuracy of the pa-
rameter estimate can be operationalized (e.g., Neyman, 

value of  directly (or indirectly by misspecifying μ and/
or ) on the typical confidence interval width and the pro-
portion of sufficiently narrow confidence intervals. For 
example, suppose  is specified to be 0.20 for purposes 
of the sample size planning procedure, yet in actuality the 
value of  is 0.30. The question that a sensitivity analysis 
addresses in this situation concerns the properties of the 
confidence interval width for k when using the sample 
size necessary when  is based on 0.20, when in fact the 
true value of  is 0.30.

The way in which a sensitivity analysis can be imple-
mented is by performing a Monte Carlo simulation study 
in a population where the value of  is set to be the true 
value but the sample size used is based on the misspeci-
fied  value. Data is generated when all assumptions hold 
(i.e., normality and independence of observations) and 
a confidence interval is calculated for each of the large 
number of generated data sets (e.g., 10,000). As the simu-
lation study progresses, information of interest is recorded 
for subsequent analysis (e.g., mean confidence interval 
width, proportion of confidence intervals less than the 
desired width, etc.). In some cases, the effect of misspeci-
fying  a minimal amount is trivial, whereas other times 
it can be quite large. The combination of all factors needs 

Table 2 
Necessary Sample Size for 95% Confidence Intervals  
for the Coefficient of Variation in Selected Situations

 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50

E[w]

.010 199 790 1,812 3,325 5,408 8,166 11,724 16,233 21,866 28,819

.025  37 131 295 537 871 1,312 1,882 2,603 3,505 4,618

.050  13  37 78 139 222 333 475 656 882 1,160

.075   8  18 36 63 100 149 213 296 396 520

.100   6  12 22 38 59 87 123 168 225 294

.125   5   9 16 26 40 58 81 110 146 191

.150   5   8 13 20 29 42 58 78 104 135

.175 –   7 10 16 23 32 44 59 78 101

.200 –   6 9 13 18 26 35 47 61 79

  .80

.010 215 823 1,866 3,401 5,511 8,300 11,896 16,450 22,136 29,150

.025  42 144 316 567 911 1,366 1,950 2,690 3,613 4,751

.050  16  43 88 153 242 360 510 700 936 1,227

.075   9  22 43 73 113 167 238 325 433 565

.100   7  14 27 45 69 100 140 190 253 328

.125   6  11 19 31 47 68 94 127 169 219

.150   5   9 15 24 35 50 69 93 122 158

.175 –   8 12 19 28 39 54 72 94 121

.200 –   7 11 16 23 32 43 57 75 97

  .99

.010 246 886 1,964 3,540 5,698 8,544 12,207 16,841 22,621 29,745

.025  55 170 357 625 989 1,466 2,079 2,852 3,814 4,996

.050  22  57 110 184 283 413 578 785 1,042 1,357

.075  13  31 58 94 142 205 286 385 507 656

.100   9  22 39 62 92 131 179 239 311 401

.125   8  17 30 46 67 93 127 168 219 281

.150   7  14 23 36 52 72 98 129 167 212

.175 –  12 20 30 43 59 79 104 134 170

.200 –  10 17 26 37 50 67 87 112 142

Note—  is the population coefficient of variation,  is the desired degree of assurance of achieving a 
confidence interval for  no wider than desired,  is the desired full confidence interval width, and E[w] 
is the expected confidence interval width (i.e., when  is not specified).
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analytic and the AIPE approach to sample size planning 
have fundamentally different goals. Necessary sample 
size to achieve a statistically significant estimate (i.e., 
power analysis) may be much different than necessary 
sample size to achieve a narrow confidence interval (i.e., 
AIPE). Depending on the particular situation, the power 
analytic approach or the AIPE approach could require a 
larger sample size (see Kelley & Maxwell, 2003; Kelley 
et al., 2003; Kelley & Rausch, 2006, for comparisons of 
necessary sample sizes for the power analytic and AIPE 
approach in difference situations).

From the outset, this article has made the assumption 
that the coefficient of variation can be an important and 
helpful quantity when trying to understand relative vari-
ability. If the coefficient of variation is indeed of interest, 
the confidence interval for the population coefficient of 
variation also should be. Since from a probabilistic per-
spective a wide confidence interval illustrates an estimate 
with a low degree of expected accuracy—an obviously un-
desirable situation—an effort should be made to obtain an 
estimate with a high degree of expected accuracy when-
ever possible. When planning studies and selecting an ap-
propriate sample size in situations where the coefficient 
of variation is of interest, it is hoped that researchers take 

1937). Since the value of interest is the population value, 
designing a study to obtain an accurate estimate should be 
a top concern for researchers.

At present, it is not clear to what extent violations of the 
assumption of normality and independent observations 
will have on the confidence interval coverage and/or the 
necessary sample size from the procedure developed. Be-
cause the sample size planning procedure is based on the 
parametric confidence interval procedure, in situations in 
which the confidence interval procedure fails to provide 
appropriate coverage (i.e., when the assumptions of the 
procedure are violated), the sample size obtained from 
the procedure will probably not be optimal. Thus, in order 
for the sample size from the procedure to be appropri-
ate, the assumptions need to be satisfied. At present, the 
robustness of the confidence interval procedure and the 
sample size planning method are unknown. Issues of ro-
bustness, and appropriateness of sample size in violations 
of assumptions, are certainly areas that could benefit from 
additional research.

Generally, when the term “sample size planning” is 
used, it is taken to mean power analysis, where the goal 
of the procedure is to be able to reject the null hypoth-
esis with some specified probability. Note that the power 

Table 3 
Necessary Sample Size for 99% Confidence Intervals  
for the Coefficient of Variation in Selected Situations

 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50

E[w]

.010 342 1,362 3,129 5,742 9,340 14,102 20,248 28,037 37,766 49,774

.025  62 225 508 926 1,502 2,265 3,248 4,495 6,052 7,974

.050  21 63 134 238 383 573 820 1,132 1,522 2,003

.075  11 30 64 111 175 260 370 509 683 897

.100   9 19 37 63 99 147 209 287 389 510

.125   7 14 26 43 66 97 136 187 250 327

.150   6 12 20 32 49 70 98 134 177 232

.175   6 10 16 25 38 54 74 100 133 173

.200   5 9 14 21 30 43 59 79 104 135

  .80

.010 363 1,407 3,199 5,842 9,475 14,279 28,321 50,209 38,120 82,817

.025  69 242 536 966 1,556 2,335 3,339 4,609 6,194 8,149

.050  25 71 147 258 409 609 865 1,189 1,593 2,090

.075  13 35 73 123 193 283 400 547 730 956

.100  10 23 43 72 112 164 231 320 425 554

.125   8 17 30 50 76 110 154 210 279 363

.150   7 14 23 38 57 82 113 153 202 262

.175   6 11 19 30 44 63 87 117 154 199

.200   6 10 16 25 36 51 70 93 122 157

  .99

.010 404 1,489 3,327 6,023 9,719 14,597 20,881 28,832 38,753 50,986

.025  86 276 589 1,041 1,656 2,466 3,506 4,819 6,454 8,467

.050  32 88 174 297 461 677 952 1,298 1,728 2,256

.075  19 49 91 150 229 331 460 623 824 1,071

.100  13 31 58 93 141 201 279 379 498 644

.125  11 24 43 68 100 142 195 260 341 439

.150   9 19 34 53 77 109 148 196 255 327

.175   8 17 28 44 63 87 118 156 202 257

.200   8 15 24 37 53 73 98 128 166 211

Note—  is the population coefficient of variation,  is the desired degree of assurance of achieving a 
confidence interval for  no wider than desired,  is the desired full confidence interval width, and E[w] 
is the expected confidence interval width (i.e., when  is not specified).
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NOTES

1. In fact, “many parts of the literature” can be identified with specific 
journals, where the overarching goal of the journals combines various 
aspects of biological systems and processes with psychological systems 
and processes (e.g., Behavioral Ecology; Behavioural Brain Research; 
Behavioural Pharmacology; Biological Psychology; Brain Research; 
Developmental Psychobiology; European Neuropsychopharmacology; 
Genes, Brain & Behavior; Hormones & Behavior; International Jour-
nal of Psychophysiology; Journal of Behavioral Medicine; Journal of 
Clinical & Experimental Neuropsychology; Neurobiology of Learning 
& Memory; Physiology & Behavior; Pharmacology Biochemistry & Be-
havior; and Psychoneuroendocrinology, to list a nonexhaustive set of 
peer reviewed journals).

2. Using the work of Monchar (1981) as partial motivation, and im-
proving the quantitative measure of inequities as another, Sheret (1984) 
discussed using a weighted coefficient of variation when the number of 
observations within groups differed across a set of groups for which the 
coefficient of variation was to be calculated.

3. It should be noted that there is some debate as to whether or not the 
coefficient of variation should be computed only for nonnegative ratio 
scaled data (e.g., Bedeian & Mossholder, 2000). Although there is a con-
siderable literature on the subject of what should and should not be done 
to a set of numbers (i.e., the measurement scale debate; e.g., Velleman & 
Wilkinson, 1993, for a review), the coefficient of variation can certainly 
be computed whenever the mean and standard deviation are available. 
Of course, whether or not the coefficient of variation is a meaningful 
quantity depends on the particular situation and the question of interest. 
Regardless of which side of the measurement scales debate one comes 
down on, the methods discussed in the article can be used whenever there 
is an interest in the coefficient of variation.

4. Assuming that the assumptions of the model are met, the correct 
model is fit, and observations are randomly sampled, (1  ) is the 
probability that any given confidence interval from a collection of confi-
dence intervals calculated under the same circumstances will contain the 
population parameter of interest. However, it is not true that a specific 
confidence interval is correct with (1  ) probability, since a computed 
confidence interval either does or does not contain the value of the pa-
rameter. The confidence interval procedure refers to the infinite number 
of confidence intervals that could theoretically be constructed, and the 
(1  )100% of those confidence intervals that correctly bracket the 
population parameter of interest (see Hahn & Meeker, 1991, for a techni-
cal review of confidence interval formation and interpretation). Although 
the meaning of confidence intervals has been given from a frequentist 
perspective, the methods discussed in the article are equally applicable 
under the Bayesian perspective of confidence interval interpretation.

5. Methods for the Behavioral, Educational, and Social Sciences 
(MBESS; Kelley, 2007a; Kelley, in press) is an R package (R Develop-
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APPENDIX 
Using MBESS to Implement the Methods

All of the methods and procedures discussed and the algorithms presented can easily be implemented in 
the Methods for the Behavioral, Educational, and Social Sciences (Kelley, 2007a, 2007b, 2007c) R package  
(R Development Core Team, 2007). This appendix provides a brief overview of the way in which the necessary 
MBESS functions can be used when the coefficient of variation is of interest. Those not familiar with R will 
see that R is a command driven language. The commands (which are case sensitive) are input directly into the 
R console. Unlike some programming languages, R executes code line by line sequentially. R code that is directly 
executable in this appendix is proceeded with R , where R  is used to illustrate the R command prompt where 
commands are input and then executed (by entering the command). Both R and MBESS are Open Source and thus 
freely available. R and the MBESS package are available at the following Internet address for all commonly used 
operating systems: cran.r-project.org. The specific Internet address for MBESS is cran.r-project.org/src/contrib/
Descriptions/MBESS.html. Because MBESS is an optional package, it must be loaded with each new R session 
where its routines will be used. Packages in R are loaded with the library() command, which is illustrated 
with MBESS as follows:

R> library(MBESS).

Confidence Intervals for a Noncentral t Parameter
For constructing confidence intervals for the noncentrality parameter from a noncentral t distribution, the 

conf.limits.nct() function can be used. The lower and upper critical values from the noncentral t distri-
bution are returned by specifying the following arguments in the conf.limits.nct() function:

R> conf.limits.nct(ncp = ˆ, df= , conf.level= 1  ),

where ncp is the estimated noncentrality parameter, df is the degrees of freedom for the particular situation, 
and conf.level is the desired level of confidence (i.e., 1  ). For the Volkow et al. (2002) example dis-
cussed previously, the function would be implemented as

R> conf.limits.nct(ncp=21.831, df=34, conf.level=.95).

Confidence Intervals for the Coefficient of Variation
Given the one-to-one relation between  and , and the confidence interval transformation principle previ-

ously discussed, the confidence limits for  can be found by transforming the confidence limits for  given the 
relation specified in Equation 7 and replacing what was the upper limit with what was the lower limit (and vice 
versa). Alternatively and simpler, the ci.cv() function can be used directly to determine the confidence limits 
for . The lower and upper critical value from Volkow et al. (2002) discussed previously are returned using the 
following specifications

R> ci.cv(cv=.271, n=35, conf.level=.95),

where cv is the observed coefficient of variation (i.e., k), n is the sample size, and conf.level is the desired 
level of confidence (i.e., 1  ).

Planning Sample Size for the Coefficient of Variation
Using the example provided in the Tables of Necessary Sample Size section, where  was set to .25 and  

set to .10 for a 99% confidence interval, the ss.aipe.cv() function can be used. The way in which the 
ss.aipe.cv() can be used so that the expected width is sufficiently narrow is given as

R> ss.aipe.cv(C.of.V=.25, width=.10, conf.level=.99),

where C.of.V is the population coefficient of variation (i.e., ), width is the desired confidence interval 
width, and conf.level is the confidence level (i.e., 1  ). Implementation of this function yields a neces-
sary sample size of 99 (as reported in the text and in Table 3).

The way in which the desired degree of assurance can be used in the function is by specification of assurance, 
which is an optional argument in the ss.aipe.cv() function. The function would thus be specified as

R> ss.aipe.cv(C.of.V=.25, width=.10, conf.level=.99, assurance=.99),

which returns necessary sample size of 141 (as reported in the text and in Table 3).

Sensitivity Analysis for the Coefficient of Variation Given the Goals of AIPE
Sensitivity analysis to assess the effect of misspecifying  on the width of the confidence interval can be per-

formed with the ss.aipe.cv.sensitivity() function. The function ss.aipe.cv.sensitivity() 
allows one to specify the true population  and an estimated but incorrect  value, so that the effect of misspeci-
fying  on the width of the obtained confidence intervals can be empirically determined. The function performs 
a simulation where the empirical findings regarding the width of the confidence interval can be determined. 
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The results of the simulation within ss.aipe.cv.sensitivity() can be very helpful for determining 
how discrepant an incorrectly specified value of  can be from  itself in order to still have an acceptably narrow 
confidence interval for . The ss.aipe.cv.sensitivity() function can be specified as

R> ss.aipe.cv.sensitivity(True.C.of.V, Estimated.C.of.V, width,  
conf.level, G),

where True.C.of.V and Estimated.C.of.V are the true and the estimated  values, width is the de-
sired confidence interval width, assurance is the desired degree of assurance, conf.level is the desired 
confidence level (i.e., 1  ), and G is the number of replications that take place within the simulation study 
(e.g., G  10,000). Instead of specifying Estimated.C.of.V, a particular sample size can be specified using 
Specified.N, so that the properties of the confidence interval can be readily determined for a particular  
value at a specific sample size. A value of  can also be specified with the addition of the optional assurance 
argument. The output of the function provides a thorough summary of the results, optionally with the full set 
of results from the Monte Carlo simulation study for the other analyses not implemented in the function can be 
performed on the results (e.g., visualization techniques).
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