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Merck, Sharp, and Dohme Research Laboratories 

West Point, PA 19486 Rahway, NJ 07065-914 
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ABSTRACT 

Monitoring clinical trials in nonfatal diseases where ethical 

considerations do not dictate early termination upon demonstration of 

efficacy often requires examining the interim findings t o  assure that the 

protocol-specified sample size will provide sufficient power against the null 

hypothesis when the alternative hypothesis is true. The sample size may be 

increased, if necessary to  assure adequate power. This paper presents a new 

method for carrying out such interim power evaluations for observations 

from normal distributions without unbIinding the treatment assignments or 

discernably affecting the Type 1 error rate. Simulation studies confirm the 

expected performance of the method. 

Copyright O 1992 by Marcel Dekker, Inc. 
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1. INTRODUCTION 

GOULD AND SHIH 

As a rule, group sequential methods (e.g., Pocock, 1977, 1982; O'Brien 

and Fleming, 1979; Gould and Pecore, 1982; Lan and DeMets, 1983, Geller 

and Pocock, 1987), allow early rejection (or, sometimes, acceptance) of the 

null hypothesis if warranted by the interim findings. These methods often 

are used in clinical trials in cancer, heart disease, and other life-threatening 

conditions where ethical considerations require terminating the trial if there 

is compelling early evidence of efficacy. 

Double-blinded trials should remain so until completion if the null 

hypothesis will not be accepted or rejected at an interim stage, to prevent 

conscious or unconscious bias. However, the ability to check the assump- 

tions made in determining the sample size without unblinding would be use- 

ful, to assure that the trial has adequate power. Gould (1992) described a 

means for doing so when the outcomes were binomially distributed. Nor- 

mally distributed outcomes with unknown within-group variances require a 

different approach because estimating the within-group variances requires 

group mean information unneeded for binomially distributed outcomes. 

Sample size readjustment for normally distributed data has been 

studied previously, most recently by Lohr (1988) and by Wittes and Brittain 

(1990). Lohr obtained the asymptotic properties of estimates of the mean 

and covariance matrix of a multivariate normal distribution when the sam- 

ple size can be adjusted on the basis of one or two interim analyses of the 

data. Lohr's method is based on the usual corrected cross-product estimator 

of the sample covariance matrix, and so would require knowing the 
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SAMPLE SIZE RE-ESTIMATION 2835 

individual group means in the hypothesis-testing situation considered here. 

Wittes and Brittain studied by simulation a procedure for adjusting the 

sample size in finite samples that also requires knowing the individual group 

means at the interim examination. The approach considered here does not 

require knowing the group means at the interim examination, and applies 

for finite samples from univariate normal distributions. 

Section 2 below describes the method and how it affects the Type 1 

error rate in finite samples. Section 3 discusses estimating u2, the common 

within-group variance. Section 4 provides the findings from a series of simu- 

lation studies that confirm the anticipated performance of the method. 

Section 6 addresses briefly several issues arising in its application. 

2. METHOD 

2.1 Description The method is analogous to Stein's (1945) method for 

obtaining a sample large enough to provide a specified-width confidence 

interval, but differs in (a) not requiring identification of the treatment 

assignments, and (b) using all of the information in the combined sample. 

2 Suppose that N observations are to be drawn, 8N from a H(pl, u ) distribu- 

2 tion and (1-Q)N from a N(p2, u ) distribution, n2 unknown, 0 < (3 < 1. 

For simplicity, assume 8 = 0.5, although this is not essential. The null 

hypothesis Ho: p1=p2 ordinaily would be tested against the alternative HI: 

p1 # p2 using a Student t test. Given Type 1 and Type 2 error rates a and 

p, respectively, the total sample size would be determined from 
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2836 GOULD AND SHIH 

where pl - p2 is determined by a specific alternative hypothesis HI: p1 - p2 

2 = A (a  known value), a is an assumed value $r u2, and z, is the value at  

which the standard normal cdf equals 7. If a 2  underestimates u2, the actual 

likelihood of rejecting Ho when H1 is true will be less than the power 

specified for the trial. 

Now suppose that the sample size will be reconsidered after n (c N) 

observations (e.g., n t N/2) without knowing the treatment assignments. 

With a rearonable estimate, i2, of the within-group variance, u2, one can 

determine via (1) the actual sample size 

needed to provide 100(1-p)% power for rejecting the null hypothesis. If N' 

is "sufficiently larger" than N, additional patients would be obtained to 

bring the final sample size up to N'; otherwise, the trial would be completed 

as planned. For example, requiring N'IN > 1.25 means that the sample will 

be increased only if the "correct" sample size is more than 25% larger than 

the original sample size. To keep the final sample size within reasonable 

limits, N' might be limited to no more than some multiple of N (e.g., N' 5 

2N). The options when N' > UN are discussed in Section 6 .  

2.2 Effect on Type 1 Error Rate Let the random LL. able Z1 

denote the difference between the means of the initial samples based on a 

total of nl observations, and let the random variable Z2 denote the differ- 

ence between the subsequent sample means, based on a total of n2 observa- 

tions. z1 and z2 both estimate 6 = p1 - p2; neither Z1 nor Z2 actually 

would be observed in practice because the group membership of the data 
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SAMPLE SIZE RE-ESTIMATION 2837 

remains blinded. Suppose for simplicity that equal numbers of observations 

are drawn from each distribution. Combining the two samples yields 

N = nl + n2, m = ml + m2, 2 = (n l i l  + n2Z2)/N, 

and 2 2 2 s = (mlsl + m2s2)/m 

2 2 where si denotes an estimator of a based on mi degrees of freedom from 

2 2 the initial (i = 1) or subsequent (i = 2) sample. Assume that misi / u  has a 

chi-square distribution with mi degrees of freedom, at least approximately. 

2 2 Values for sl and s2 are required in practice. The hypothesis Ho: 6 = 0 will 

be tested using the statistic t = Z/s. 

The probability of wrongly rejecting Ho when n2 does not depend on 

2 s1 is provided by the integral of a central t density with m degrees of free- 

dom over the set of values It1 > tc, an appropriate critical value. The 

2 probability cannot be computed in this way when n2 depends on sl. 

The joint density of the mean and sample variance from the initial 

sample is essentially the product 0f.a normal and a chi-square density. Con- 

2 ditional on sl, the same is true of the joint density of the mean and sample 

variance from the second sample. Consequently, the joint density of the 

statistics from both samples is the product of these densities. The joint 

density of Z and the sample variances can be written as 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
r
t
h
 
C
a
r
o
l
i
n
a
 
C
h
a
p
e
l
 
H
i
l
l
]
 
A
t
:
 
1
5
:
2
3
 
1
6
 
D
e
c
e
m
b
e
r
 
2
0
0
8



2838 GOULD AND SHIH 

2 Since nl and a are fixed quantities, this expression can be simplified with 

no loss of generality by the transforms vi = misZ/u2, i = 1, 2. With the 

additional transformation Z -+ t =m Z/s, the density becomes 

The probability of rejecting Ho is the integral of (3): 

The quantity t,-(vl) depends on vl because the distribution of t and v2 

2 depends on n2, which is determined by sl and, therefore, by vl. Consequent- 

ly, the order of integration in (4) cannot be interchanged, as the usual 

derivation of the Student t density would require. 

To illustrate the effect of the dependence, suppose that n2 depends 

on v1 in the following way: vl 6 v! , n2 = n 2 ~ ;  v1 > v i  n2 = n22. 

With the transformation vl, v2 -. v ( = v + v2), w (= vl/v), (4) can be 1 
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SAMPLE SIZE RE-ESTIMATION 2839 

where I x ( . , . )  denotes the usual incomplete Beta function, f 2(.: m) denotes 
X . . 

a central chi-square density with m degrees of freedom, a(,) denotes the 

standard normal cdf, ti1) denotes the critical value for a central t distribu- 

tion with m(') = ml + m21 degrees of freedom, m21 = n21 - 2, etc. The 

first integral in (5) is a, the nominal Type 1 error rate. The remaining 

terms of (5) represent the perturbation of the Type 1 error rate due to the 

sequential sampling scheme. These latter two terms cancel if n21 = n22. 

The magnitude of the perturbation can be calculated easily. Thus, 

suppose that nl = 20, so that ml = 18. This is not a large initial sample. 

At the interim stage, decide to obtain n2 = 20 more observations (10 from 

2 2 each group) if sl < 1.5, or n2 = 40 more observations if sl > 1.5. Suppose 

that the test is to be at a nominal 5% level, so that the critical t value 

would be tc = 2.03 (n2 = 20) or 2.00 (n2 = 40). Assume that u = 1. Then 

the lower integration limit in (5) is v i  = rnlsf/02 = 18 x 1.5/1 = 27. 

Figure 1 plots the values of the algebraic sum of the second and third terms 

of (5). The net value of this sum is -0.0002, which represents the negligible 

difference between the true and nominal Type 1 error rates in this example. 

The simulation findings presented below also support the assertion that this 

approach has a negligible effect on the Type 1 error rate. 

The sample size re-estimation approach described here does not rule 

out the possibility that the interim estimate of u2 might be small enough so 

that no further observations would be required to assure the desired power, 
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GOULD AND SHIH 

Deviation From True Type 1 E r r o r  Rate :  
Values of Differences Between I n t e g r a n d s  

0.05, 

Figure 1. Deviation from True Type 1 Error Rate: Values of Differences 
Between Integrands 

0.04 

0.03 
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i.e., that n2 = 0. Essentially the same argument used to  obtain (5) 

establishes the following result: 

- !'-\ nl = 20, n2 = 0 or  20 
- 1 \,/ Integrated diff. = -0.0103 
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1 

- 1 
l 

- I 
8 I 

- ; I 1 n ,  = 20, n2 = 20 or 40 

- I I Integrated d i f f .  = -0.0002 
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SAMPLE SIZE RE-ESTIMATION 2841 

Here, tL1) refers to the critical value for a t distribution with rnl = 9 - 2  

degrees of freedom and ti2) refers to a t distribution with rn = ml+m2 d.f. 

To illustrate the effect of possible early termination on the Type 1 

error rate, suppose that nl = 20. At the interim stage, obtain n2 = 20 more 

2 2 observations if sl 2 0.5, or call the trial complete if sl < 0.5. For a nominal 

5% level test, the critical t value would be tc = 2.10 (n2 = 0) or 2.03 (n2 = 

20). If v = 1 then the lower integration limit in (6) is V; = mlsi2/a2 = 18 . 

x 0.511 = 9. Figure 1 also displays the results of the calculations for this 

case. Even with the small sample size (10 or 20 observations per group), the 

RHS of (6) is -0.01, a small and conservative effect on the Type 1 error rate. 

3. ESTIMATING a 2 

If the treatment assignments were known, e2 could be computed by 

pooling the within-group sample variances. Since the assignments are 

2 unknown, a must be estimated some other way. We consider two ways to 

estimate a2  : a simple adjustment of the pooled sample variance based on 

the difference between the means presumed by HI; and the EM algorithm, 

which does not depend on HI. 

3.1 Simple adjustment Suppose the interim sample contains en obser- 

vations from group 1 and (l-0)n observations from group 2; n is known, e is 

unknown. Let x.. denote the j-th observation from group i. The overall 
1J 

estimate of a2  based on the pooled sample can be computed without 

unblinding and written formally as 
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GOULD AND SHIH 

2 2 where $ denotes the unknown within-group estimate of a . Since the inter- 

im sample is blinded, 6 and the group sample means jZ1, x -2 will be un- 

known, as will both terms of this last expression. However, if the alternative 

hypothesis HI: p l -p2  = A is t rue  and if n is large enough so that - X 2  is 

reasonably close to A, then 

2 nqi -e)  (i, - r212 e o(l-e)(n - I ) A  , 

so that if O = 0.5, 

2 2 k2 = (s - A 14). n-2 (7) 

When a blocked randomization scheme is used to assign subjects to treat- 

ments, 0 will be very nearly known and very close to @. This will be true 

especially if the block size is l x  or 2 x  the number of treatments. The effect 

will be to improve the approximation immediately preceding (7). 

3.2 EM Algorithm Since the treatment identifications are unknown, 

any of the interim observations xi, i = 1, ..., n could be in either treatment 

group, so that the treatment assignments are "missing at  random" (Rubin, 

1976). Let ri denote the treatment group membership indicator: 

7. = 1 (0) if sample member i is in treatment group 1 (group 2) 
1 

71, . . ., rn  are independent random variables with T(ri = 1) = e. Given ril 

x. (i = 1, ..., n) has a normal distribution with density 
1 
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SAMPLE SIZE RE-ESTIMATION 2843 

TABLE 1 

Accuracy of EM algorithm estimate of sigma (100 iterations per case) 

25 obs/gp [True Mean Difference1 / True a 

0 0.5 1 2 
True a I Mean S. D. Mean S. D. Mean S.D. Mean S.D. 

Notes: (1) Each recursive computation of 8 continued until conver- 

gence (successive estimates differing by 0.01 or less) or until 50 

cycles had been reached, whichever came first. 

50 obs/gp )True Mean Difference) / True. o 

0 0.5 1 2 

(2) The tabulated quantities are the estimated values of a 

and the corresponding standard deviations among the 100 

repetitions of each case. 

True o 

0.5 

The expression for the conditional probability (or expectation) of si given xi 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

0.481 0.035 0.494 0.038 0.511 0.041 0.576 0.091 

therefore is 
?(ri  = I I xi) = B(ri I xi) D
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2844 GOULD AND SHi. 

The log likelihood of the interim observations follows from (8), 

The EM algorithm (Dempster, Laird, and Rubin, 1977) for estimating a 

proceeds as follows. Assume 0 = 8. The "E" step consists of substituting 

"current" estimates of pl, p2, and u into (9) to obtain provisional values for 

the expectations of the ri. The "M" consists of obtaining maximum likeli- 

2 hood estimates of pl, p2, and o after replacing the ri in (10) with their pro- 

visional expectations. The "E" and "Mu steps are repeated until the value 

2 of u stabilizes; the resulting value is the estimate, &: of u required in (2). 

Table 1 provides the results of a small simulation study investigating the 

performance of this algorithm. Although u2 was estimated accurately, - 

p2)/a was not estimated well. The averages over the iterations of the values 

of (bl-ji2)/8, based on maximum likelihood estimators, ranged from 0.3 to 

0.5 in 29 of the 32 cases shown in Table 1, in no particular pattern; the 

exceptional values were 0.6, 0.7, and 0.8. This is consistent with Fowlkes's 

(1979) assertion that the accuracy of the estimates of pl and p2 cannot be 

assured due to their sensitivity to the starting values (Fowlkes, 1979). 

3.3 Initial values for EM algorithm We adapt a suggestion of 

Fowlkes (1979) for finding initial parameter estimates for the EM 

algorithm. Let z ( ~ )  < z ( ~ )  < ... < z ( ~ )  denote the ordered data at the 

interim evaluation. Let p. = (i - 0.5)/n for i=l ,  ..., n and calculate qi 
1 

= where 0-I  denotes the inverse of the standard normal 

distribution function. Fit a simple linear regression by least squares to 

the points {(qi, z . ), i=l,  ..., n); let b denote the slope of the fitted 
(1) 
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SAMPLE SIZE RE-ESTIMATION 

line, and let a denote its intercept: 

The initial values of a ,  p,, and p2 then are 

where c is some chosen constant. The choice of c influences the 

estimation of the means, but not the variance. Ideally, we would like c 

= 2 ~ / ( ~ ~ - p ~ ) ;  however, although b estimates u ,  there is no good 

estimate of (p2-p1). We get around this problem in the following way. 

In most clinical trials that use a normal approximation for estimating 

the sample size, the inverse of the coefficient of variation A = (pl-p2)/a 

usually ranges between 0.20 and 0.50 (which correspond to about 430 

and 70 patients per group, respectively, for power = .90, one-sided a = 

0.05). We suggest taking the middle value in this range, 0.35, and 

converting it to  c = 2 x ( 110.35) = 5.71. 

4. SIMULATION STUDIES 

4.1 Design Simulation studies explored the behavior of the proce- 

dure over a range of parameter values likely to occur in practice. The 

values of sigma assumed by the design ( 8 )  and the true value of sigma 

(a)  were set at 0.707, 1, 1.414, 2, 2.828, and 4. All combinations of a 

and 8 values were considered. The design always assumed A = 1, and 

the sample size was selected to provide 90% power for rejecting the null 
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2846 GOULD AND SHIH 

hypothesis when the alternative was true. Equal samples were taken 

from each distribution (O = 0.5). For the simulation, the true mean 

differences were set at 0 (null hypothesis true), 0.5, 1, and 2. The 

effects of evaluating the sample size after obtaining 25% and 50% of the 

initially planned data were considered, as were the effects of two rules 

for deciding to increase the sample size (increase if N1/N > 1.33 or 

1.05). In all cases, N' < 2N, reflecting a practical limitation on 

increasing the size of ongoing studies. The effect of the algorithm used 

to estimate a (simple or EM) also was evaluated. In all, 864 cases (36 

combinations of a and 8 ,  3 nonzero true mean difference values, 2 

examination time values, 2 values of sample size increase rule, 2 algo- 

rithms) were run. Each case included a test with a zero mean 

difference and a nonzero true mean difference, so there were 864 tests of 

the null hypothesis when it was true. Each case was replicated 1000 

times, and statistics were collected about the number of rejections of 

the null hypothesis when it was true and when it was false, and the 

distributions of the final sample size under either hypothesis. 

4.2 Results The probability of rejecting Ho when it was true 

did not depend materially on any of the factors defining the cases, 

because none of the coefficients differed significantly from 0 in a logistic 

regression relating the probability of wrongly rejecting Ho to these fac- 

tors for each algorithm. Therefore, the 864 rejection frequency values 

should be distributed like Binomial variates with n = 1000 and p = 

0.05. Figure 2 displays the distributions of the rejection frequencies for 

the two algorithms. The results agree closely with expectation. 
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SAMPLE SIZE RE-ESTIMATION 

Observed  and E x p e c t e d  CDF of R e j e c t i o n s  
of Ho in 1000 Runs (432 c a s e s )  

1 0 Observed CDF (EM a l g o r i t h m )  

- Expec ted  C D F  if p = 0 . 0 5  

30 35 40 45 50 55 60 65 70 75 80 

Rejections of Ho  

Figure 2. Observed and Expected CDF of Rejections of Ho in 1000 Runs 

(432 cases for each way of estimating u2) 

Figure 3 displays the effects of correctly and incorrectly 

specifying the true mean difference and the true variance on the 

likelihood of rejecting Ho when A # 0. The two algorithms for 

estimating o behaved essentially identically. This probably reflects the 

range of A / U  values used in the simulations (which covers most of the 

situations in c1inica.l trials that use a normal approximation for sample 

size calculations). Overspecifying the true mean difference or 

underspecifying the true variance caused a loss in power, as expected. 

However, when the true mean difference and variance were correctly , 
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Percent of 1000 R u n s  Rejecting Ho as a Function of 
the  True Mean Difference ( T M D )  and odes/utrue 

TMD = 2 6 
A7 

0 . 0 

0 
. 

0 
. . . . ... T M D  = 0.5 

/ 
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0 Design assumptions 

_ - - - v  
4' ' - T M D  = 1 

/ Power = 90% 
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0 O d e s  = V t r u e  
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Figure 3. Percent of 1000 Runs Rejecting Ho as a Function of the True 

Mean Difference (TMD) and udes/urrue 

specified, the power was very close to the assumed value of 90%, 

usually exceeding it slightly. Since the EM procedure does not depend 

on &, the value assumed for u in calculating the sample size, the loss of 

power when 6 (= odes in Fig. 1) is less than utrue actually was due to 

requiring that N' 5 2N. 

5 .  EXAMPLE 

Suppose that a difference A = 0.30 is to be detected with 90% 

power using a 1-sided 5% level test (a = -05). A design taking e = 1.5 
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SAMPLE SIZE RE-ESTIMATION 2849 

would require 430 patients per group; a design with B = 0.80 would 

require 120 patients in each group. If the (unknown) true value of u 

actually were 1, then the trial should contain 190 patients per group. 

In practice an interim examination might be carried out after observing 

100 patients, 50 from each group, and might suggest that the final 

sample should contain 200 patients in each group. If the trial had been 

designed with 5 = 0.80, this would mean that 160 more patients than 

planned needed to be entered into the trial and assigned at random to 

the two groups. If the trial had been designed with B = 1.5, no further 

patients beyond those planned would need to be recruited for the trial. 

6. DISCUSSION 

The method described here does not estimate reliably the true 

difference between the treatment means (Fowlkes, 1979), and so does 

not provide a way to ascertain the actual magnitude of pl-p2. The 

average and median "mean differenceJu" values estimated from the 100 

repetitions of each case summarized in Table 1 did not depend materi- 

ally on the true "mean difference/an values. 

The statistical power specified at the planning stage and checked 

at the interim stage corresponds to a fixed alternative hypothesis that 

the true mean difference equals A, a quantity specified by the 

researcher. In the context of a clinical trial, A would be the least 

clinically meaningful difference worth detecting, identified a priori. 

The method provides a given level of assurance for detecting a specified 
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GOULD AND SHIH 

difference if it is present. It is not designed to enhance the likelihood of 

detecting the difference that appears to be present (which cannot be 

estimated). 

The method ordinarily needs to applied only once, when enough 

2 data are available to provide a reasonably reliable estimate of u . 
Table 1 suggests that as few as 25 observations per group should suffice. 

From (2), N' is a random variable with a heavy tail to the right; when 

the assumed and true a values happen to be close, then overly large N' 

values become disproportionately more likely with smaller values of N. 

Thus, an interim look with fewer than 25 observations per group may 

lead to too large a final sample size. The procedure does not have to be 

repeated after obtaining a reliable estimate of u2 because the estimate 

and, therefore, the sample size, will not change materially with further 

looks. Moreover, adding new patients to a multicenter clinical trial 

brings up many administrative issues, e.g., changes in contracts, 

funding, perhaps number of centers, etc. The fewer of these that have 

to be made, and the earlier, the better. 

When N' > wN, there are two options. The trial may be 

terminated immediately and its results summarized without testing the 

hypotheses. Such a trial would be regarded as uninformative about the 

hypotheses, and reexamination of the assumptions about the variability 

of the responses or the relevance of the target population would be 

appropriate. Alternatively, the trial could be continued to completion 

with the additional observations, accepting the possibility that the 
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SAMPLE SIZE RE-ESTIMATION 285 1 

actual power may be less than desired. Less power does not mean zero 

power, so rejection of the null hypothesis still could occur on comple- 

tion of the trial. 

The reestimated sample size could turn out to be much smaller 

than the planned size (e.g., 180 vs. 430 patients per group as in Section 

5 ) ,  suggesting that the trial could be terminated after obtaining the 

initial observations. This is unlikely to affect the Type 1 error rate 

materially, as shown in section 2.2. However, unless ethical considera- 

tions dictate otherwise, the trial should not be terminated because 

demonstrating efficacy with respect to a single variable seldom is the 

only objective of a trial. 

The EM algorithm always reasonably estimates a, regardless of 

the true and assumed values of A and a. This certainly is useful for 

designing additional trials in the same indication before completing the 

current trial. More importantly, however, the value of N' provided by 

(2) is the value likely to provide the required power for rejecting KO in 

favor of the  specified alternative. This is not necessarily true for the 

simple method. The simple estimate of a assumes a value for A and, 

from (7), may understate or overstate the true value of a depending on 

whether this assumed value overestimates or underestimates the true 

value. Overestimating the true value of A causes underestimation of u,  

so N' is insufficient to provide the required power against Ho in favor of 

the specified alternative. This guards against an inflated sample size 

when Ho is true, but the power loss may be excessive when the true 
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2852 GOULD AND SHIH 

value of A is only a little less than the vaiue set by HI. The converse is 

true when the assumed value of A exceeds the true value, so that the 

simple method has the undesirable property of moving the sample size 

away from clinical reality (Spiegelhalter, Freeman, and Blackburn, 

1986). 
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