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Abstract

Background: External pilot or feasibility studies can be used to estimate key unknown parameters to inform the

design of the definitive randomised controlled trial (RCT). However, there is little consensus on how large pilot

studies need to be, and some suggest inflating estimates to adjust for the lack of precision when planning the

definitive RCT.

Methods: We use a simulation approach to illustrate the sampling distribution of the standard deviation for

continuous outcomes and the event rate for binary outcomes. We present the impact of increasing the pilot

sample size on the precision and bias of these estimates, and predicted power under three realistic scenarios. We

also illustrate the consequences of using a confidence interval argument to inflate estimates so the required power

is achieved with a pre-specified level of confidence. We limit our attention to external pilot and feasibility studies

prior to a two-parallel-balanced-group superiority RCT.

Results: For normally distributed outcomes, the relative gain in precision of the pooled standard deviation (SDp)

is less than 10% (for each five subjects added per group) once the total sample size is 70. For true proportions

between 0.1 and 0.5, we find the gain in precision for each five subjects added to the pilot sample is less than 5%

once the sample size is 60. Adjusting the required sample sizes for the imprecision in the pilot study estimates can

result in excessively large definitive RCTs and also requires a pilot sample size of 60 to 90 for the true effect sizes

considered here.

Conclusions: We recommend that an external pilot study has at least 70 measured subjects (35 per group) when

estimating the SDp for a continuous outcome. If the event rate in an intervention group needs to be estimated by

the pilot then a total of 60 to 100 subjects is required. Hence if the primary outcome is binary a total of at least 120

subjects (60 in each group) may be required in the pilot trial. It is very much more efficient to use a larger pilot

study, than to guard against the lack of precision by using inflated estimates.
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Background

In 2012/13, the National Institute for Health Research

(NIHR) funded £208.9 million of research grants across

a broad range of programmes and initiatives to ensure

that patients and the public benefit from the most cost-

effective up-to-date health interventions and treatments

as quickly as possible [1]. A substantial proportion of

these research grants were randomised controlled trials

(RCTs) to assess the clinical effectiveness and cost-

effectiveness of new health technologies. Well-designed

RCTs are widely regarded as the least biased research

design for evaluating new health technologies and decision-

makers, such as the National Institute for Health and Care

Excellence (NICE), are increasingly looking to the results of

RCTs to guide practice and policy.

RCTs aim to provide precise estimates of treatment ef-

fects and therefore need to be well designed to have

good power to answer specific clinically important ques-

tions. Both overpowered and underpowered trials are
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undesirable and each poses different ethical, statistical

and practical problems. Good trial design requires the

magnitude of the clinically important effect size to be

stated in advance. However, some knowledge of the po-

pulation variation of the outcome or the event rate in

the control group is necessary before a robust sample size

calculation can be done. If the outcome is well established,

these key population or control parameters can be esti-

mated from previous studies (RCTs or cohort studies) or

through meta-analyses. However, in some cases finding

robust estimates can pose quite a challenge if reliable data,

for the proposed trial population under investigation, do

not already exist.

A systematic review of published RCTs with continuous

outcomes found evidence that the population variation

was underestimated (in 80% of reported endpoints) in the

sample size calculations compared to the variation ob-

served when the trial was completed [2]. This study also

found that 25% of studies were vastly underpowered and

would have needed five times the sample size if the vari-

ation observed in the trial had been used in the sample

size calculation. A more recent review of trials with both

binary and continuous outcomes [3] found that there was

a 50% chance of underestimating key parameters. How-

ever, they too found large differences between the esti-

mates used in the sample size calculation compared to the

estimates derived from the definitive trial. This suggests

that many RCTs are indeed substantially underpowered or

overpowered. A systematic review of RCT proposals rea-

ching research ethics committees [4] found more than half

of the studies included did not report the basis for the as-

sumed values of the population parameters. So the values

assumed for the key population parameters may be the

weakest part of the RCT design.

A frequently reported problem with publicly funded

RCTs is that the recruitment of participants is often slo-

wer or more difficult than expected, with many trials

failing to reach their planned sample size within the ori-

ginally envisaged trial timescale and trial-funding enve-

lope. A review of a cohort of 122 trials funded by the

United Kingdom (UK) Medical Research Council and

the NIHR Health Technology Assessment programme

found that less than a third (31%) of the trials achieved

their original patient recruitment target, 55/122 (45.1%)

achieved less than 80% of their original target and half

(53%) were awarded an extension [5]. Similar findings

were reported in a recently updated review [6]. Thus,

many trials appear to have unrealistic recruitment rates.

Trials that do not recruit to the target sample size within

the time frame allowed will have reduced power to de-

tect the pre-specified target effect size.

Thus the success of definitive RCTs is mainly dependent

on the availability of robust information to inform the de-

sign. A well-designed, conducted and analysed pilot or

feasibility trial can help inform the design of the definitive

trial and increase the likelihood of the definitive trial

achieving its aims and objectives. There is some confusion

about terminology and what is a feasibility study and what

is a pilot study. UK public funding bodies within the

NIHR portfolio have agreed definitions for pilot and feasi-

bility studies [7]. Other authors have argued against the

use of the term ‘feasibility’ and distinguish three types of

preclinical trial work [8].

Distinguishing features of pilot and feasibility studies

NIHR guidance states:

Feasibility studies are pieces of research done before a

main study in order to answer the question ‘Can this

study be done?’. In this context they can be used to esti-

mate important parameters that are needed to design

the main study [9]. For instance:

i) standard deviation of the outcome measure, which is

needed in some cases to estimate sample size;

ii) willingness of participants to be randomised;

iii) willingness of clinicians to recruit participants;

iv) number of eligible patients over a specific time

frame;

v) characteristics of the proposed outcome measure and

in some cases feasibility studies might involve

designing a suitable outcome measure;

vi) follow-up rates, response rates to questionnaires,

adherence/compliance rates, intracluster correlation

coefficients in cluster trials, etc.

Feasibility studies for randomised controlled trials may

themselves not be randomised. Crucially, feasibility stud-

ies do not evaluate the outcome of interest; that is left to

the main study.

If a feasibility study is a small RCT, it need not have

a primary outcome and the usual sort of power calcu-

lation is not normally undertaken. Instead the sample

size should be adequate to estimate the critical para-

meters (e.g. recruitment rate) to the necessary degree of

precision.

Pilot trials are a version of the main study that is run

in miniature to test whether the components of the main

study can all work together [9]. It will therefore resemble

the main study in many respects, including an assess-

ment of the primary outcome. In some cases this will be

the first phase of the substantive study and data from

the pilot phase may contribute to the final analysis; re-

ferred to as an internal pilot. Or at the end of the pilot

study the data may be analysed and set aside, a so-

called external pilot [10].

For the purposes of this paper we will use the term

pilot study to refer to the pilot work conducted to esti-

mate key parameters for the design of the definitive trial.
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There is extensive but separate literature on two-stage

RCT designs using an internal pilot study [11-14].

There is disagreement over what sample size should

be used for pilot trials to inform the design of definitive

RCTs [15-18]. Some recommendations have been devel-

oped although there is no consensus on the matter. Fur-

thermore, the majority of the recommendations focus

on estimating the variability of a continuous outcome

and relatively little attention is paid to binary outcomes.

The disagreement stems from two competing pressures.

Small studies can be imprecise and biased (as defined

here by comparing the median of the sampling distribu-

tion to the true population value), so larger sample sizes

are required to reduce both the magnitude of the bias

and the imprecision. However, in general participants

measured in an external pilot or feasibility trial do not

contribute to the estimation of the treatment effect in

the final trial, so our aim should be to maintain adequate

power while keeping the total number of subjects stu-

died to a minimum. Recently some authors have pro-

moted the practice of taking account of the imprecision

in the estimate of the variance for a continuous out-

come. Several suggest the use of a one-sided confidence

interval approach to guarantee that power is at least

what is required more than 50% of the time [15,18,19].

This paper aims to provide recommendations and

guidelines with respect to two considerations. Firstly,

what is the number of subjects required in an external

pilot RCT to estimate the uncertain critical parameters

(SD for continuous outcomes; and consent rates, event

rates and attrition rates for binary outcomes) needed to

inform the design of the definitive RCT with a reasonable

degree of precision? Secondly, how should these estimates

from the pilot study be used to inform the sample size

(and design) for the definitive RCT? We shall assume that

the pilot study (and the definitive RCT) is a two-parallel-

balanced-group superiority trial of a new treatment versus

control.

For the purposes of this work we assume that the sam-

ple size of the definitive RCT is calculated using a level

of significance and power argument. This is the ap-

proach that is currently commonly employed in RCTs;

however, alternative methods to calculate sample size

have been proposed, such as using the width of confi-

dence intervals [20] and Bayesian approaches to allow

for uncertainty [21-23].

Methods

Our aim is to demonstrate the variation in estimates of

population parameters taken from small studies. Though

the sampling distributions of these parameters are well

understood from statistical theory, we have chosen to

present the behaviours of the distributions through simu-

lation rather than through the theoretical arguments as

the visual representation of the resulting distributions

makes the results accessible to a wider audience.

Randomisation is not a necessary condition for esti-

mating all parameters of interest. However, it should be

noted that some parameters of interest during the feasi-

bility phase are related to the randomisation procedure

itself, such as the rate of willingness to be randomised,

and the rate of retention or dropout in each randomised

arm. In addition, randomisation ensures the equal distri-

bution of known and unknown covariates on average

across the randomised groups. This ensures that we can

estimate parameters within arms without the need to

worry about confounding factors. In this work we there-

fore decided to allow for the randomisation of partici-

pants to mimic the general setting for estimating all

parameters, although it is acknowledged that some pa-

rameters are independent of randomisation.

We first consider a normally distributed outcome mea-

sured in two groups of equal size. We considered study

groups of from 10 to 80 subjects using increments of five

per group. For each pilot study size, 10,000 simulations

were performed. Without loss of generality, we assumed

the true population mean of the outcome is 0 and the true

population variance is 1 (and that these are the same in

the intervention and control groups). We then use the es-

timate of the SD, along with other information, such as

the minimum clinically important difference in outcomes

between groups, and Type I and Type II errors levels, to

calculate the required sample size (using the significance

thresholds approach) for the definitive RCT.

The target difference or effect size that is regarded as

the minimum clinically important difference is usually

the difference in the means when comparing continuous

outcomes for the intervention with those of the control

group. This difference is then converted to a standardised

effect size by dividing by the population SD. More details

of the statistical hypothesis testing framework in RCTs

can be found in the literature [24,25].

For a two-group pilot RCT we can use the SD estimate

from the new treatment group or the control/usual care

group or combine the two SD estimates from the two

groups and use a pooled standard deviation (SDp) esti-

mated from the two-group specific sample SDs. For

sample size calculations, we generally assume the var-

iability of the outcome is the same or equal in both

groups, although this assumption can be relaxed and

methods are available for calculating sample sizes as-

suming unequal SDs in each group [26,27]. This is

analogous to using the standard t-test with two in-

dependent samples (or multiple linear regression), which

assumes equal variances, to analyse the outcome data

compared with using versions of the t-test that do not

assume equal variances (e.g. Satterthwaite’s or Welch’s

correction).
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We assume binary outcomes are binomially distribu-

ted and consider a number of different true population

proportions as the variation of proportion estimator is a

function of the true proportion. When estimating an

event rate, it may not always be appropriate to pool the

two arms of the study so we study the impact of estimat-

ing a proportion from a single arm where the study size

increases in steps of five subjects. We considered true

proportions in the range 0.1 to 0.5 in increments of 0.05.

For each scenario and sample size, we simulated the

feasibility study at least 10,000 times depending on the

assumed true proportion. For the binary outcomes,

the number of simulations was determined by requiring

the proportion to be estimated within a standard error

of 0.001. Hence, the largest number of simulations re-

quired was 250,000 when the true proportion was equal

to 0.5. Simulations were performed in Stata version 12.1

[28] and R version 13.2 [29].

Normally distributed outcomes

For each simulation, sample variances were calculated

for each group (s21 and s22) and the pooled SD was calcu-

lated as follows:

SDp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21 þ s22ð Þ

2

� �

s

: ð1Þ

We also computed the standard error of the sample

pooled SD which is

se SDp

� �

¼
SDp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n−1ð Þ
p ⋅ ð2Þ

To quantify the relative change in precision, we com-

pared the average width of the 95% confidence intervals

(WCI2n) for the SDp for study sizes of 2n with the aver-

age width when the study size was increased to 2(n + 5).

We use the width of the confidence interval as this pro-

vides a measure of the precision of the estimate.

Given the sampling distribution of the SD, its lower

and upper 95% confidence limits are given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n−1ð Þ

χ0:025;2 n−1ð Þ

s

SDp and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n−1ð Þ

χ0:975;2 n−1ð Þ

s

SDp

 !

; ð3Þ

and the relative percentage gain in precision is quanti-

fied as the reduction in 95% confidence interval width if

the sample size is increased by five per group:

WCI2n− WCI2 nþ5ð Þ

WCI2n

� �

� 100: ð4Þ

Bias is assessed by subtracting the true value from

each estimate and taking the mean of these differences.

We also consider the impact of adjusting the SD esti-

mate from the pilot as suggested originally by Browne in

1995 [15]. Here a one-sided confidence limit is proposed

to give a corrected value. If we used the 50% one-sided

confidence limit, this would adjust for the bias in the es-

timate, and this correction has also been proposed when

using small pilots [17]. If we specify 50% confidence

then our power will be as required 50% of the time. Sim

and Lewis [18] suggest that it is reasonable to require

that the sample size calculation guarantees the desired

power with a specified level of confidence greater than

50%. For the sake of illustration, we will consider an 80%

confidence level for the inflation factor. So we require

the confidence interval limit associated with 80% confi-

dence above that value. Hence the inflation factor to

apply to the SDp from the pilot is:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n−1ð Þ

χ0:8;2 n−1ð Þ

⋅

s

ð5Þ

To consider the impact on power and planned sample

size, we need to state reasonable specific alternative hy-

potheses. In trials, it is uncommon to see large dif-

ferences between treatments so we considered small to

medium standardised effect sizes (differences between

the group means) of 0.2, 0.35 and 0.5 [30]. For each true

effect size of 0.2, 0.35 or 0.5, we divide by the SDp esti-

mate for each replicate, and use this value to calculate

the required sample size. For each simulated pilot study,

we calculate the planned sample size for the RCT assum-

ing either the unadjusted or adjusted SDp estimated

from the pilot. Using this planned sample size (where

the SDp has been estimated) we then calculate the true

power of the planned study assuming that we know that

the true population SDp is in fact 1.

Binary outcomes

We consider that the binary outcome will be measured

for one homogeneous group only. The following is re-

peated for each true population success probability. We

examined nine true success probabilities from 0.1 to 0.5

in intervals of 0.05. We considered 41 different pilot

study sizes ranging from 10 to 200 consisting of multi-

ples of five subjects. The subscripts i and j are used to

denote the true proportion and the pilot study size,

respectively. For each simulated pilot study of size nj,

the number of successes (Yij~ Bin(nj, θi)) in the simu-

lation nj are counted. First, the observed proportions, θ̂ i ,

for each of the nine true success probabilities were calcu-

lated by:

θ̂ i ¼
Y ij

nj
: ð6Þ
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The associated 95% confidence interval was calculated

using Wilson’s score [21] given by:

θ̂ i þ
z2
α=2

2nj
� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ̂ i 1−θ̂ ið Þþ
z2
α=2
4nj

nj

s0

B

@

1

C

A

1þ
z2
α=2

nj

� � ð7Þ

Second, this process was repeated for Ns (the number

of simulations needed to estimate the true success prob-

ability to within 0.1% of its standard error) and the aver-

age observed success probability for each of the nine

true success probabilities (θ) for a given fixed pilot size

were calculated as follows:

�θ i ¼
1

N s

XN s

k¼1
θ̂ ik ; ð8Þ

where θ̂ ik is θ̂ i for the kth simulated pilot study. Third,

due to the relatively small sample size of the pilot trials,

we computed the mean width of the 95% confidence

interval of the true success probability averaged over Ns

simulations using the Wilson’s score method [31] for a

fixed sample size, which is given by:

1

N s

XN s

k¼1

2za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ̂ ik 1−θ̂ ikð Þ þ
z2
a=2
4nj

nj

s0

B

@

1

C

A

1þ
z2
a=2

nj

� � : ð9Þ

The relative percentage gain in precision around the

true binomial proportion per increase of five study par-

ticipants is defined as before:

WCInj− WCInjþ5

WCI
nj

 !

� 100: ð10Þ

As for the continuous outcomes, bias is assessed by

subtracting the true population value from each estimate

and taking the signed mean of these. We also report the

95% coverage probability [32].

Results and discussion

Normally distributed outcomes

Figure 1 is a multiple box and whisker plot of the result-

ing distributions of the sample SDp. Under our simula-

tions the true SD is equal to 1. Figure 1 clearly shows

that the spread of the estimates reduces as the pooled

sample size increases and the distribution of the esti-

mated SDp also becomes more symmetric as the pooled

sample size increases. So the bias and skew is more

marked for smaller sample sizes. The direction of the

bias means that the SD tends to be underestimated.

Once the total sample size is above 50 the average bias

becomes negligible and is less than 0.005 below the true

value. However, what is more noticeable is the large

variation in the sampling distribution for the smaller

sample sizes and considerable sampling variation re-

mains even with a large sample size.

Figure 2 shows the percentage gain in precision (the

width of the confidence interval for the SDp) when add-

ing ten more participants to the sample (five to each

Figure 1 Multiple box and whisker plot of SDp estimates by pooled sample size of the pilot study. The vertical axis shows the value of

the SDp estimate for 10,000 simulations per pilot study size. The horizontal axis is graduated by the pooled pilot study size.
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group). Precision increases with sample size, however,

the relative gain in precision (while always positive) de-

creases with increasing sample size. With a total sample

size of 70, there is a less than 10% gain in precision

when adding further participants to the study size. So in

terms of good precision and minimal bias (for a continu-

ous outcome) a total sample size of 70 seems desirable

for a pilot study.

Figure 3 shows the distribution of true power for the

planned sample sizes for the specific alternative effect

size of 0.2, assuming we require 90% power at the 5%

two-sided significance level. The true power distribution

for the other effects sizes is very similar (it can be shown

that conditional on the estimated SD from the pilot, the

distributions should be the same but rounding up to in-

tegers causes slight changes at small sample sizes). As

anticipated, this figure shows a large variation in power

for the smaller sample sizes. However, even with the

relatively small pilot sample size of 20, the planned stud-

ies do have at least 80% power to detect the target effect

Figure 2 Percentage gain in precision of SDp on increasing the pooled sample size. This shows the relative reduction in the average width

of the confidence interval when an additional five subjects are added to a group.

Figure 3 Distribution of planned RCT study power when using the SDp estimate derived from the pilot study. The planned study size is

used to calculate the true power if SD = 1 is assumed. The graph shown is for a true effect size of 0.2. The vertical axis is true power. The x-axis

shows the size of the two-arm pilot study.
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Figure 4 (See legend on next page.)
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size (when we have stated we desire 90% power) more

than 75% of the time. Figure 3 also shows that the true

power frequently exceeds 90% but the cost of this higher

power in terms of total participants cannot be quantified

from this figure. By contrast Figure 4 is able to show the

‘cost’ of the higher power translated into the sample size

scale.

Figure 4 shows the distribution of the planned sample

size when using the estimated SDp from the pilot (with

and without inflation of the SDp). It can be seen that the

overall shape of these plots is similar for all three effects

sizes, but the planned sample sizes are proportionately

higher as the effect size reduces. Figure 4a shows the

sample size (for a true difference between the means of

0.2) using the unadjusted SDp (upper plot) and the in-

flated SDp (lower plot). Using the inflated SDp means we

have specified that we want our planned study to have

90% power with 80% confidence or certainty. By com-

paring these two plots and superimposing the sample

size of 1,052, which is what we would actually need to

detect an effect size of 0.2 with 90% power and 5% two-

sided significance when the true SD is known to be

equal to 1, you can readily see the effect of the infla-

tion factor. Figures 4b,c present the same contrasts as

Figure 4a but for a true difference between the means of

0.35 and 0.5, respectively. The main impact of the infla-

tion factor is to guarantee that 80% of the planned stu-

dies are in fact larger than they need to be, and for the

smaller pilots this can be up to 50% larger than neces-

sary. If only the unadjusted crude estimates from the

pilot are used to plan the future study, though we aim

for at least 50% of studies to be powered at 90%, inspec-

tion of the percentiles shows that that the planned sam-

ple size delivers at least 80% power with 90% confidence,

when a pilot study of at least 70 is used. Researchers

need to consider carefully the minimum level of power

they are prepared to tolerate for a worst-case scenario

when the population variance is overestimated.

Figure 5 adds the size of the pilot study to the planned

study size so the distribution of the overall number of

subjects required can be seen. The impact of the infla-

tion factor now depends on the true effect size. If we are

planning to use the inflation factor then when the effect

size is 0.5 a pilot study of around 30 is optimal. How-

ever, the same average number of subjects would result

using unadjusted estimates from a pilot study of size 70,

and this would result in a smaller variation in planned

study size. For the effect size of 0.2 then the optimal

pilot study size if applying the inflation factor is around

90, but this optimal size still results in larger overall

sample sizes than just using unadjusted estimates from

pilot studies of size 150.

Binary outcomes

The sampling distribution when estimating a proportion

is a function of the true population proportion so it

seems unwise to estimate this from a pooled group un-

less it is a measure independent of treatment group and

there is a strong assumption of equality between groups.

We have explored the sampling distributions of the pro-

portions in increments of five rather than ten as we

allow the possibility that this may be estimated from one

arm. As statistical theory predicts the sampling variation

is largest when the true proportion is 0.5 and reduces as

the true proportion becomes more different from 0.5,

we show the results for the two most extreme propor-

tions considered, i.e. 0.1 and 0.5 (Figure 6). When the true

proportion is 0.1 the sampling distribution is slightly

skewed with a tendency to underestimate the true value

even when uneven pilot arm sizes are used. However,

when the true proportion is 0.5 there is no systematic bias

in under- or overestimating the parameters from the pilot.

Most of the fluctuation is due to deriving estimates from a

sample size where the true proportion is not a possible

outcome (e.g., if the true proportion is 0.5 but the sample

size is 25, then the closest you can observe to the true

value is 12/25 or 13/25). Once the pilot sample size is 60

or more then these fluctuations settle down. The relative

percentage gain in the precision of estimates is formally

presented in Figure 7, where the average width of the 95%

confidence intervals for the proportion are compared with

the average confidence interval width if another five sub-

jects were added to the sample. This relative percentage

gain in precision is shown for true proportions 0.1 and

0.5. For the continuous outcomes we suggested a cut-off

of 10% as a threshold. For the binary outcomes we use the

5% threshold as we are moving in steps of five rather than

ten. The relative percentage gain in the precision graph

crosses the 5% threshold when the sample size is 55 to 60

and crosses the 3% threshold when the sample size is 100.

Figure 8 shows the coverage probability for five of the true

proportions as sample size increases. This shows how

frequently the 95% confidence interval contains the true

value. This graph shows considerable fluctuations. Once

(See figure on previous page.)

Figure 4 Distribution of planned sample sizes using crude SDp estimates and adjusting for a specified level of confidence. (a) Effect

size = 0.2. (b) Effect size = 0.35. (c) Effect size = 0.5. The upper part of each graph shows the distribution of planned sample sizes by pilot study

size. The lower part shows the same but using the inflation adjustment to guarantee the specified power with 80% confidence. The x-axis shows

the planned sample size and the vertical axis shows the pilot study size. The dashed vertical line shows the sample size associated with a true

power of 90% and the dotted line for 80%.
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Figure 5 (See legend on next page.)
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the sample size is 100 there is very little perceptible im-

provement in the coverage probability for the true propor-

tions considered here.

Conclusions

Our simulated data visually demonstrate the large sam-

pling variation that is the main weakness when estimating

key parameters from small sample sizes. Small samples

sizes do lead to biased estimates, but the bias is negligible

compared to the sampling variation. When we examine

the relative percentage gain in precision by adding more

subjects to the sample, our data suggest that a total of at

least 70 may be necessary for estimating the standard

deviation of a normally distributed variable with good

precision, and 60 to 100 subjects in a single group for

estimating an event rate seems reasonable. Treatment-

(See figure on previous page.)

Figure 5 Distribution of total sample size required when using pilot sample derived SDp estimated with and without inflation. (a)

Effect size = 0.2. (b) Effect size = 0.35. (c) Effect size = 0.5. This figure is similar to Figure 4; however, now the total sample size includes the pilot

study size. The dashed and dotted vertical lines represent the sample size required for 90% and 80% power, respectively, if the true SD were

known and the pilot study were not necessary.

Figure 6 Distribution of estimated event rates on increasing sample size. Distributions for a true event rate of 0.1 (a) and a true event

rate of 0.5 (b).
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independent parameters may be estimated by pooling the

two groups, so in many cases our recommended sample

size will be the total sample size. On average when the de-

finitive RCT is planned using an estimate from a pilot

study there will be a tendency for the planned study to be

underpowered. However, if the definitive RCT is planned

for a continuous outcome requiring a power of 90% then

the true power will be 80% with at least 76% assurance

provided the estimates come from a pilot with at least 20

subjects. We considered three realistic effect sizes of 0.2,

0.35 and 0.5 of a standard deviation to evaluate the impact

of adjusting for the anticipated uncertainty in the estimate

from the pilot when calculating the sample size for the

planned RCT as was recently suggested [18]. For all of the

effect sizes considered, it is not efficient to use small pilots

and apply the inflation adjustment, as this will result in

larger sample sizes (pilot plus main study) in total. Further,

we only considered sample sizes planned when requiring

90% power, and examine the conditional power assuming

we know the true alternative. On average using imprecise

estimates but requiring high power will result in ac-

ceptable power with much less ‘cost’ as measured by total

Figure 7 Distribution of relative gain in precision for binary outcomes as pilot study size increases. This graph compares the width of the

confidence intervals for n + 5 subjects and n subjects. This is scaled by the width of the interval when there are n subjects.

Figure 8 Distribution of mean coverage probability by true proportion and pilot sample size.
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sample size. Hence, it is actually more efficient to use a

large external pilot study to reduce the variation around

the target power for the definitive RCT.

The implication of using estimates of key parameters

from small pilot studies is the risk of both over- and

underpowered studies. While overpowered studies may

not seem such an acute problem, they are potentially a

costly mistake and may result in a study being judged as

prohibitively large. This would seem to be an argument

in favour of utilising internal pilot studies, but an in-

ternal pilot requires the key design features of the trial

to be fixed, so any change in measurement of the treat-

ment effect following an internal pilot will lead to ana-

lysis difficulties.

A major and well-documented problem with published

trials is under recruitment, where there is a tendency to

recruit fewer subjects than targeted. One reason for un-

der recruitment may well be that event rates such as re-

cruitment and willingness to be randomised cannot be

accurately estimated from small pilots, and in fact in-

creasing the pilot size to between 60 and 100 per group

may give much more reliable data on the critical recruit-

ment parameters.

In reality, when designing external pilot trials, there is

a need to balance two competing issues: maximising the

precision (of the critical parameters you wish to esti-

mate) and minimising the size of the external pilot trial,

which impacts on resources, time and costs. Thus there

is a trade-off between the precision (of the estimates of

the critical parameters) and size (number of subjects) of

the pilot study. When designing external pilot trials, re-

searchers need to understand that they are trading off

the precision of the estimates against the total sample

size of the definitive study when they decide to have an

external pilot study with a small sample size.
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