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Abstract: 

A simple method is described for estimating the sample size per group required for specified power to detect a 

linear contrast among J group means. This allows comparison of sample sizes to detect main effects with those 

needed to detect several realistic kinds of interaction in 2 × 2 and 2 × 2 × 2 designs with a fixed-effects model. 

For example, when 2 factors are multiplicative, the sample size required to detect the presence of nonadditivity 

is 7 to 9 times as large as that needed to detect main effects with the same degree of power. In certain other 

situations, effect sizes for the main effects and interaction may be identical, in which case power and necessary 

sample sizes to detect the effects will be the same. The method can also be used to find sample size for a 

complex contrast in a nonfactorial design. 

 

Article: 

The power of the analysis of variance ( ANOVA) to detect statistical interaction in a factorial experiment is 

substantially less than the power to detect main effects in many situations (Neyman, 1935; Rodger, 1974; 

Traxler, 1976; Wahlsten, 1990). For example, with a 2 × 2 design, power to detect the multiplicative type of 

interaction is 16% when power to detect a main effect is 87% (Wahlsten, 1990); hence the ANOVA will fre-

quently point to additivity of effects when in fact they are multiplicative. 

 

This is not a universal property of the ANOVA method, however. As shown in this article, the degree of the 

discrepancy in power depends strongly on the specific kind of interaction that is present in the data. The power 

function depends on the size of an effect and the degrees of freedom. If two effects have the same size and 

degrees of freedom, power must necessarily be the same. 

 

If the presence or absence of interaction is important for a theory it is imperative that the test of interaction have 

a power of 80% or, preferably, 90%. This sometimes requires larger samples than are customarily used to detect 

main effects with ANOVA. But how much larger must they be? Relative sample sizes may give a better 

impression of the insensitivity of ANOVA to interaction than do relative power values. The power to detect a 

particular kind of interaction may be half the power to detect a main effect in that circumstance, yet the sample 

size needed to detect the interaction may be far more than double the sample size needed to detect the main 

effect with the same degree of power. This larger sample size provides a direct indicator of the additional 

research subjects, technician time, and grant funds required for the desired sensitivity of the statistical test. 

 

This article presents a convenient way to determine appropriate sample sizes for factorial designs in which there 

are two levels of each factor. The method can be adapted to many other designs, provided the investigator has a 

good idea about the specific kind of interaction effect of theoretical interest. The basic idea is that any 

completely randomized design with fixed effects can be considered a one-way design with J groups and then 

analyzed with a series of orthogonal contrasts. In a 2 × 2 or 2 × 2 × 2 design, for example, the contrasts for main 

effects and interactions have identical degrees of freedom in both numerator and denominator; only the sizes of 

the effects themselves differ. Planned contrasts offer many advantages over omnibus tests in designs with more 

than two levels per factor (e.g., Rosnow & Rosenthal, 1989). 
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Finding the Sample Size for a Linear Contrast 

In the next sections, it is assumed that observations in each population are normally distributed and that samples 

of equal size are drawn randomly. Consider first a simple comparison of two groups with true means μ1 and μ2 

having standard deviations equal to σ, which yields a population effect size δ = |μ1 – μ2|/σ. If the probability of a 

Type I error is set at α and the desired power of the test is 1 — β, then the exact solution for the necessary 

sample size (n) per group is 

n = 
           

 

  
              (1) 

when one uses a one-tailed z test of the hypothesis that δ = 0 and the standard deviations are known and equal. 

Some variation of this formula is presented in almost every introductory text on statistical inference. Generally, 

σ is unknown and is estimated from the data. Then a t test having n1 + n2 — 2 degrees of freedom is used, and 

Formula 1 is approximate. Because a linear contrast among J group means will also have a t distribution when 

the normal assumptions hold, it should be possible to generalize Equation 1. 

 

For J groups with means μ1, μ2 ··· μJ a linear contrast among the means is given by 

 
where Σcj = 0, and effect size δc = Ψc/σ. If each group has variance σ

2
 and samples of n observations are taken 

from each population, the variance of the sample contrast   c is (Hays, 1988) 

 
Combining the ideas in Equations 1 and 3, the sample size per group to detect the contrast when σ is known is 

exactly 

 
If σ

2
 is estimated from the sample variance within groups (degrees of freedom Jn — J), this equation is an 

approximation. It is essentially the equation presented by Levin (1975) and applied by Lachenbruch (1988 ) to 

determine sample size to detect an interaction in a 2 × 2 design. 

 

However, empirical testing (demonstrated below) reveals that adding 2 to Equation 4 is appropriate when σ is 

estimated from the data. I propose here that a more satisfactory approximation for a contrast of J means is 

 
It might be helpful also to specify the relation in terms of a proportion of variance attributable to the particular 

effect or contrast, ηc
2
 or ηj

2
, which is a partial correlation ratio (Maxwell, Camp, & Arvey,1981; see also Glass 

& Hakstian, 1969). When Σcj
2
 =1 for a particular contrast, the partial correlation ratio is 

 
How good is the approximation proposed here? Kraemer and Thiemann (1987) prepared a master table that is 

based on a central t approximation to the noncentral t distribution that is very convenient for determining 

sample size for a comparison of two groups. The table is entered with the critical effect size A, which is 

equivalent to    , and the result is degrees of freedom v for the two groups combined. In light of Equation 7, it 

is possible to generalize their approach to a linear contrast Ψc. When Σcj
2
 = 1, the critical effect size is 

Δc= δc / (δc
2
 + J)

1/2
,  (9) 



where Δc equals ηc. The total sample for the J groups is then N= v +J where v is obtained from Kraemer and 

Thiemann's master table, and sample size per group is n = (v + J)/J. One point of caution is necessary here. 

Converting the effect size Δc to the equivalent δc for insertion in Equation 6 uses Equation 9, which assumes 

Σcj
2
 = 1. For two groups, this equivalent δc is not the familiar δc = |μ1 – μ2|/σ given in Kraemer and Thiemann 

(1987) because that expression yields Σcj
2
 = 2. The cj values must be ±1 /    when Equations 6 and 9 are used. 

Otherwise, Equation 9 should entail J
2
 rather than J in the denominator if ci values are ±1. 

 
Suppose one wishes to compare four groups with a contrast using α = .05 with a nondirectional test of the null 

hypothesis δc = 0, and the desired degree of power is 90%. For effect sizes ranging from 0.10 to 0.60, the 

required n from Kraemer and Thiemann (1987) is no more than 0.2 unit higher than the result from Equation 6, 

and the values of n are identical when rounded upwards. Table 1 compares results from the master table with 

those of Equation 6 for different numbers of groups. Equation 6 yields a slight underestimate of n when there 

are J= 2 groups and a slight overestimate for more than 6 groups. 

 

Results from Equation 6 or 8 can also be compared with those from Cohen's (1988) sample size tables. For J > 

2, a linear contrast translates into a partial ηc by means of Cohen's Equation 8.2.19. For a contrast effect in a 2 × 

2 design with α = .05 (two-tailed) and power of 90%, when Cohen's Table 8.4.4 and Equation 8.4.4 yield n = 

43.0, Equation 8 requires n = 44.0. Only when J = 2 groups can the methods of Cohen (1988), Kraemer and 

Thiemann (1987) and Equation 5 be compared directly. Equation 5 was not derived with a two-group t test in 

mind, but a contrast between two means amounts to the same thing. Cohen's tables for sample size use Effect 

Size f or d, whereas the Kraemer and Thiemann master table uses Δ. A tabled value in one can be compared 

with the equivalent index of the other using interpolation, which introduces small errors. However, Equation 5 

can be used with any value of δ. Table 2 compares n to achieve 90% power, first for Equation 5 versus the 

master table and then for Equation 5 versus Cohen's (1988) Tables 8.4.1, 8.4.4, and 8.4.7. All noninteger results 

are rounded up. Equation 5 consistently calls for one or two more observations than do Cohen's tables and one 

or two fewer than does the master table when J = 2. 

 

 



The principal advantages of Equation 5 over the methods of Kraemer and Thiemann (1987) and Cohen (1988) 

are that (a) no tables are needed apart from the ubiquitous cumulative normal table whose critical values can be 

memorized, ( b ) any magnitude of effect size may be used without interpolation, and (c) power for complex 

contrasts that do not fit into the standard factorial ANOVA scheme may be readily evaluated. If n is found for 

each of a series of contrasts in the same data set, it would be wise to use the largest value of n required to test 

effects of particular interest. Several recent textbooks on statistical analysis in the behavioral sciences ( Hays, 

1988; Marascuilo & Serlin, 1988; Maxwell & Delaney 1990) emphasize the testing of linear contrasts in one-

way designs. The preceding equations should be helpful to researchers who intend to apply their methods of 

analysis. It would be pointless to plan a clever experiment and analyze results with sophisticated instruments yet 

adopt a sample size that renders the tests insensitive to all but the crudest effects. 

 

Sample size for experiments with many groups can be found quickly with the method of Cohen (1988) if the 

design is factorial, but complex experiments do not always lend themselves to this approach. For example, 

reciprocal crossbreeding of animals can be used to demonstrate maternal environment effects on rate of 

development (Wainwright, 1980 ), behavior (Bauer & Sokolowski, 1988) or brain size (Wahlsten,1983), and 

they may also reveal the importance of the cell cytoplasm for individual differences in brain structure (Wimer & 

Wimer, 1989). One logical method of analyzing such data is a series of orthogonal contrasts. The experimental 

design entails 16 groups, consisting of 2 parent strains, 2 reciprocal F1 hybrids, 8 reciprocal backcrosses of an 

F1 hybrid to one parent, and 4 reciprocal F2 hybrids. Table 3 contains an experimental design and hypothesized 

means for the number of granule cells (in thousands) in the dentate gyrus of the hippocampus of male mice, 

basing the parent strain means (high and low) and standard deviation within groups (σ = 45.0) on data reported 

by Wimer and Wimer (1989). The model asserts that the midparent mean of 425 is augmented to varying 

degrees by high-strain autosomes, Y chromosome, cytoplasm, and maternal environment and is decremented by 

similar amounts by the low-strain counterparts. As is evident from the table, small samples would be quite 

adequate to detect the large parent-strain difference, but much larger samples would be required to detect the 

small Y chromosome effect. The prudent decision would be to choose a sample size that would allow one to 

detect the smallest effect that is of major importance for the research program. Different sample sizes might be 

contemplated for different groups, but this would violate the orthogonality of certain comparisons. 

Alternatively, the groups involved in a comparison of particular interest but with small effect size could be 

tested with large sample sizes, and then those groups could be analyzed with a separate oneway ANOVA. 

 

Relative Sample Sizes for Specific Cases 

For any particular test, Equation 5 or 6 gives the results, once δc = Ψc/σ  is specified. This can be done 

separately for main effects and interaction, but an expression can be derived for the ratio of sample sizes needed 

to detect an interaction and a main effect. If nA is the sample size needed to detect contrast ΨA with power 1 — 

β, and nA×B is the sample size required to detect contrast ΨA×B, also with power 1 — β, then from Equation 5 it 

follows that 
       

     
 = 

  
 

    
  = 

  
 

    
 .                         (10) 

 

The ratio of sample sizes is unrelated to the chosen values of α or β and is determined primarily by the specific 

kind of interaction present in the data. The principle embodied in Equation l0 applies to any two contrasts in 

which the Σcj
2
 values are the same. When both values of n are reasonably large, the constants can safely be 

omitted, and relative sample sizes are inversely proportional to relative squared effect sizes. 

 

Let us examine several situations that commonly occur in psychological research to find out the relative 

magnitudes of interaction and main effects. Suppose one conducts a 2 × 2 experiment in which Factor A has 

levels A1 and A2 and Factor B has levels B1 and B2. Arranging the four groups in the order A1B1, A1B2, A2B1, 

and A2B2 and using coefficients (cj) of l or -1, the coefficients are (-1, -1,1,1), (-1,1, -1,1), and (-1,1, 1, -1) for 

the A main effect, B main effect, and A × B interaction, respectively. 



Patterns of results are portrayed in Figure 1. Many others might be imagined, of course. The scales for the 

measures Y are arbitrary and can be adapted to any comparable circumstance by linear transformation. The 

cases may be summarized as follows. The first six cases all have μ21 — μ11 = 1, and the last three have μ21= μ11. 

 

Case 1. A and B effects are equal and additive. 

 

Case 2. A and B are multiplicative, so that the effect of B is twice as large for A2 as for A1. 

 

Case 3. There is no effect of B on A1, but there is a clear effect of B on A2. 

 

Case 4. There are opposite effects of B on A1 and A2. 

 

Case 5. There is no effect of B on Al but a large effect on A2, resulting in reversal of ranks. 

 

Case 6. There are opposite effects of B on Al and A2 but no main effects at all. 

 

Case 7. There is no effect of A at B1, and there is a greater effect of B on A2 than Al. 

 

Case 8. There is no effect of A at B1, and there is no B effect on Al. 

 

Case 9. There is no effect of A at B1, and there are opposite effects of B on Al and A2. 

 
 

The values of Ψc for each contrast are shown in Table 4. These make it possible to compare sample sizes for the 

three effects within a particular case, but the arbitrary scales of measurement in the graphs make comparisons 

between cases difficult. Suppose that in each case the four group means and the variance within groups are such 

that η
2
 = 20 or Cohen's f = .50. According to Table 8.3.14 of Cohen (1988), to have a power of 90% when α = 

.05 for the overall F test of significance, there should be n = 15 observations in each of the four groups. 

 

 



Knowing the value of η
2
 for the entire experiment and the relative values of Ψc for all J — 1 contrasts, sample 

size can be ascertained without specifying the actual group means or standard deviation within groups. This 

makes it convenient to calculate and comprehend the relative sizes of all three effects and the sample sizes 

needed to detect them. A simple way to compute ηc
2
 or ηj

2
 for each contrast is needed. It can be shown that 

 
  

     
 =    

     
   

2
 / (1 – ηj

2
).   (11) 

The sum of squares between the J groups must equal the total SSc for the J-1 contrasts if they are orthogonal 

(Hays, 1988). Provided Σcj
2
 has the same value for each contrast, the proportion of the SS between groups 

attributable to a contrast effect is 

Pj = 
  
 

   
      

   

 = 
   

         
.               (12)  

From Equations 11 and 12, 

  
  = 

  

   
        

  

   (13) 

When η
2
 = .20, ηc

2
 = Pc/Pc+ 4). Consider Case 1. The sum of squared contrasts is 4 + 4 = 8, and for the A main 

effect, Pc = 4/8 = 0.5. Therefore, ηc
2
 = .11, and from Equation 8, 23 observations are needed to detect either 

main effect with power of 90% when α = .05 and a two-tailed test is used. In Case 2 for the multiplicative A × B 

interaction, Pc = 1/19, ηc
2
 = .013, and n should be 199.5, which is nearly nine times as large as the n needed for 

the main effects! Table 4 reveals that multiplicative interaction in a 2 × 2 design will be particularly difficult to 

detect, as will the patterns in Cases 3 and 7. Even in Case 4, in which the lines diverge, the interaction is 

substantially smaller than the A main effect. Case 8 is interesting because all three effects are equal. 

 

 
Several caveats are necessary: 

 

1. Certain of the cases in Figure 1 involve a complete absence of one or more effects. Because these null 

hypotheses are presumed to be true, it would make no sense to do a power or sample size calculation for a 

nonexistent contrast. However, Equations 11 and 13 hold even when one or two of the contrast effects are zero. 

 



2. Several interesting cases in which interaction effects exceed main effects are not shown in Figure 1. The 

general conditions when this will occur are derived in the next section. 

 

3. It may seem counterintuitive that n = 15 is sufficient for the overall F test, yet n must be considerably 

greater to detect many of the one degree-of-freedom contrasts, such as the A or B main effect in Case 1 in 

which additivity obtains. Yet, when the effect size that is equivalent to ηc
2
 = 0.111 for the A main effect is 

inserted into Equation 5, the n needed for a t test comparing two group means is approximately twice the n 

needed for an equivalent contrast among J= 4 groups. That is the total number of observations required is about 

the same in both situations. if a single contrast does account for a large proportion of the total SSbetween, then 

indeed the n will be less than the 15 required for the global F test. 

 
 

This approach can be extended to a 2 × 2 × 2 design or any higher order design with only two levels per factor. 

Figure 2 illustrates several possible outcomes for a three-way design, and Table 5 describes the sample sizes to 

detect main effects and interactions. Eight cases are considered, although other interesting patterns are certainly 

possible. As with the 2 × 2 design, suppose the difference among the eight group means is such that η
2
 = .20. 

According to Tables 8.3.15 and 8.3.16 of Cohen (1988 ), n must be about 10 to yield power of 90% when α = 

.05. The value of ηc
2
 for each contrast is computed according to Equation 13. Table 5 shows that the n to detect 

a specific contrast is considerably greater than 10 unless that contrast accounts for a large proportion of the total 

variance between groups. Indeed, only the A main effects in Cases 15 and 16 require fewer than 10 

observations. Equal sample sizes are sufficient for the A × B × C interaction and A main effect in Cases 14 and 

17, but for Cases 11, 12, and 13 the samples needed to detect the interactions are rather large. It is somewhat 

disturbing to learn that it will be most unlikely to find a multiplicative second-order interaction (Case 11) with a 

reasonable degree of power, given the research budgets of most psychologists. 

 

The 2 × 2 in General 

The conditions under which the necessary sample sizes for main effects and interaction in a 2 × 2 design are 

generally the same or different can be determined by supposing that membership in Group A1 or A2 determines 

the parameters of a linear equation and that Treatment B determines the value of X, as shown in Fig. 3. It is 

assumed that X2 always exceeds X1. To simplify presentation of results, let the differences in values be 

symbolized as Dx = X2
 
-  X1, Da = a2 — al, and Db= b2

 
- b1. The contrasts then have the expected values ΨA = 2 

Da + (X1 + X2)Db, ΨB = Dx(b1 + b2), and ΨA×B = -DxDb. 

 

Sample size to detect a main effect, as compared with that needed for the interaction, can be evaluated by the 

difference in squared effect sizes. A ratio could also be used, but it is cumbersome for this purpose. Comparing 

the A main effect to interaction, 

  
  -     

  = 4 ( Da + DbX1 )(Da + DbX2). ( 14 ) 

Whether the effect for A and interaction are the same or different depends on the choice of treatments B1and B2. 

Several other generalizations are possible. The A and interaction effect sizes can be the same if and only if 



either X1 or X2 = — (a2 – a1)/(b2 – b1). When the intercepts are the same (a1 = a2), either X1 or X2 must be zero if 

the A and interaction effects are to be the same. That is, if the lines meet at the origin but do not cross, the effect 

sizes will be the same, no matter what the slopes of the two lines. Because adding a constant to all X values and 

another constant to all Y values merely shifts the axes and will not affect the results of an ANOVA, it follows 

that the A main effect will always (a) exceed the interaction effect if the lines do not touch, (b) equal the 

interaction effect if the lines meet at either X1 or X2, and (c) be less than the interaction effect if the lines cross 

between X1 and X2. Note that these conclusions in no way depend on the range from X1 to X2. The difference X2 

— X1 will, of course, determine the degree to which effect sizes differ but not the sign of the difference. 

 
 

Comparing the B main effect with interaction, 

 

  
  -     

  =   
 4b1b2. ( 15 ) 

 

 



Four conclusions follow from this expression: (a) If either slope b1 or b2 is zero, the effect sizes and sample 

sizes are always equal for the B main effect and interaction. (b) If the signs of the slopes b1 and b2 are the same, 

the B main effect is always larger than the interaction. (c) If the signs of slopes b1 and b2 are opposite, the 

interaction effect is always larger than the B main effect. (d) None of these conclusions depend on the location 

or range of X values, although the degree of difference in sample sizes will depend on Dx, as shown in Equation 

l 5. The conclusion that the interaction effect will always exceed the main effect when the lines cross applies to 

the A main effect but not to the B main effect. Likewise, the conclusion that the interaction effect will always 

exceed the main effect when slopes have opposite signs applies to the B but not the A main effect. 

 

Limitations 

Equation 5 is a normal approximation, but Tables 1 and 2 indicate that it is a reasonably good approximation. 

When two observations are added to the usual n from the exact expression for a normal distribution, the result is 

very close indeed to a more elaborate calculation that is based on a central t approximation to the noncentral t 

distribution (Kraemer & Thiernann, 1987). Several approximations of the noncentral t distribution have been 

devised (Tiku, 1966), and a simple normal approximation is respectable in this company. The excellence of the 

approximation to several decimal places is not a major issue for sample size and power calculations, because n 

is always rounded upwards to an integer and power is of interest only to the nearest 5%. When sample size is 

calculated to yield desired power, the investigator typically tests a few more subjects than dictated by the 

algebra, just in case there is a subject misbehavior, apparatus failure, or other unexpected loss of data. 

 
 

Computers can facilitate certain kinds of power and sample size calculations. For example, the program by 

Borenstein and Cohen (1988) can determine n for a one-way design with J groups, given either group means 

and standard deviations or effect size, but it cannot do this for a contrast among J means, nor can it compute 

power or n for interaction in a two-way or three-way design using group means. The expert system by Brent, 

Scott, and Spencer (1988) can determine n for four levels of power and three effect sizes with a one-way design 

but not a factorial design, and it cannot work with contrasts. The SAS program can determine power, given 

degrees of freedom and the noncentrality parameter for the noncentral χ
2
, F, or t distributions (Hewitt & 

Heath,1988), and the noncentrality parameter can be determined from effect size as indicated in Wahlsten 

(1990). Of course, it would be simple to implement Equations 2, 5, and 8 in a program. 

 

Throughout this article, I have assumed that the model involves fixed effects rather than random effects. Power 

and sample size can be readily determined for a random-effects ANOVA model ( Koele, 1982 ), if this is 

appropriate for the data in question, but the normal approximation in Equation 5 would not be suitable. 

 

The method advocated in this article appears to give good results even when sample sizes are relatively small. 

Of course, these calculations will be credible only when the distributions of observations within each group are 



normal or nearly so. The consequences of departures from normality for power and sample size related to tests 

of interaction and complex contrasts remain to be explored. A Monte Carlo approach (e.g., Soper, Cicchetti, 

Satz, Light, & Orsini, 1988) might be useful for this purpose. Tests that are based on the normal distribution 

generally have slightly greater power than the so-called "nonparametric" tests only when the normal 

assumptions hold. Recent investigations demonstrate that relative power of alternative tests depends strongly on 

the shape of the distribution ( Blair & Higgins, 1985). Bootstrap methods have been advocated for computing 

confidence intervals when the shapes of the underlying distributions are unknown (Efron, 1988; see also 

Rasmussen, 1988; Strube, 1988 ). However, the bootstrap, which is applied to the facts observed, provides no 

direct aid when sample size must be chosen before data collection. 

 

When many tests of significance are done in the course of a large study it would be wise to use a Bonferroni 

adjustment for the criterion for a Type I error. Equation 5 can still be used to estimate sample size, although n 

will be larger when α is reduced. The ratio of sample sizes in Equation 10, however, will not be changed. 

 

If the t or F test is good enough for the data collected, then choice of sample size using Equation 5 should be 

reasonable. I hope that the simplicity of this approach will encourage more investigators to embark on a quest 

for interaction or other interesting contrast effects with sufficient power provided by an adequate sample. 

Despite well-established principles of sample size determination and the availability of works making these 

comprehensible to the users of statistical analysis, Rosnow and Rosenthal (1989) as well as Cohen (1990) 

observed recently that many psychologists continue to ignore the question of power. 
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