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Abstract. This paper applies the theory of probably approximately correct (PAC) 
le-g to multiplcmtput feedfomard t b h o l d  networks. It is & o m  that the 
sample size for reliable learning can be bounded above by a quantity independent of 
the number of outputs of the network. 

1. Introduction 

This paper is inspired by the results of Baum and Haussler 131 bounding the sam- 
ple sizes required for reliable generalization of a single-output feedforward threshold 
network. They prove their result using the theory of probably approximately correct 
(PAC) learning introduced by Valiant [12]. They show that for 0 5 c 5 1/8, if a 
sample of size m 2 m, = O((W/c) log,(N/c)) is loaded into a feedforward network 
of linear threshold units with N nodes and IV weights, so that a fraction 1 - c/2 of 
the examples are correctly classified, then with confidence approaching certainty the 
network will correctly classify a fraction 1 - z of future examples drawn according to 
the same distribution. 

More generally the theory of PAC learning is concerned with learning from exam- 
ples. In order to have predictive power there must be a relation between the training 
and testing examples. In PAC learning this relation is taken to be an underlying 
probability distribution which governs how both the training and testing examples 
are drawn. The strength of the results is that they are independent of the particular 
distribution which occurs in practice. 

In this context PAC learning requires that there is a sample size depending only on 
a given accuracy parameter c and confidence parameter 6, such that if a hypothesis can 
be found which agrees with the target on a training sample of at least this size, then 
with probability 1 - 6 the hypothesis found will correctly classify fntnre test examples 
with probability 1 - e .  The sample size is required to be polynomially dependent on 
l / c  and 116. 

Standard PAC theory applies only to learning Boolean-valued functions or classifi- 
cations of the input space. Hence the set of hypotheses can be viewed simply as subsets 
of the input space, being the sets of inputs which give output 1. In many practical 
applications, however, researchers are interested in training threshold networks with 
multiple outputs. These might be classifications of inputs under different criteria, or 
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simply the representation of a mapping from one multidimensional space to  another. 
The theory of PAC learning does not, however, readily generalize to functions mapping 
to ranges other than the Boolean domain. 

Recent results by Haussler [8] have shown how the theory can be generalized to 
neural networks with sigmoid activation functions. This very powerful work gives 
sample size bounds in these cases, but does not apply to threshold networks as the 
results rely on Lipschitz hounds for the activation functions. If naively translated for 
the case which we study in this paper, they also give bounds which are a factor t 
larger, where t is the number of output units. This factor arises from the fact that 
the measure of error used by Haussler is the L,  norm, while we are interested in 
completely accurate outputs, and so use the discrete metric. In order to guarantee 
complete agreement on all components of the output we must choose an error bound 
a factor f smaller in the L ,  norm. This increases the sample size bound by a factor 
o f t .  

A parallel study to that of generalization of multilayer perceptrons is into their 
capabilities. Recently Baum [2] has obtained a result indicating that the Vapnik- 
Chervonenkis dimension of a multilayer perceptron with d input units and one hidden 
layer of r N / d ]  units is at least N, since any set of N inputs in general position can he 
arbitrarily partitioned by a suitable choice of weights. This indicates that the Vapnik- 
Chervonenkis dimension is n(W) where W is the number of weights in the network. A 
paper by Mitchison and Durbin [9] investigates the capability or capacity of multiple- 
output feedforward networks, extending ideas and results of Cover [5]. Their definition 
of capacity is the number of inputs at which only half of all the posaible functions on 
those inputs can be implemented by the network. They show that for a network with 
n inputs, a single layer of h hidden units and an output layer of 8 units, 8 5 h 5 n, the 
capacity m satisfies 2n 5 m 5 nl log,t, where t = 1 + h/s .  When s = 1 this simplies 
to a similar bound m = O(W log, N), where W is the number of variable weights and 
N the number of computational nodes. In the case of multiple outputs (s > 1) the 
hound indicates that a network will only be able to implement a small fraction of the 
very large number of possible functions when the value of s is of the same order as 
the number of hidden units. This, however, does not indicate how large a training set 
is required to give good generalization with high probability. It is this question which 
the current paper addresses. The difference between the answers obtained to these 
two questions in the case of multiple-output networks seems to indicate that  the close 
relationship, between the number of samples that a single hidden-layer network can 
always claasify (subject to general position conditions) and the number required for 
reliable training, does not carry over from the single-output to the multiple-output 

Our first expectation for the sample size required in the multiple-output cave might 
be that, since each input/output pair is giving t times as much information in a t -  
output network (as compared with a singleoutput network), the sample size would 
be reduced by a factor of 1: 
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CaSe. 

ior a network with W variabie weights and N computationai nodes. However, by 
analogy this would be the sample size to guarantee an individual output i is correct 
with probability 1 - d. Hence the probability that all outputs are correct (i.e. that 
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the multipleoutput is correct in the discrete metric) is 

(1 - €')* 2 1 - c't. 

To ensure this is greater than 1 - c ,  we must choose c' so that 1 - c't 2 1 - c or 

€I 5 € i t .  

This implies a sample size of 

The main result of this paper will show that in fact 

is sufficient. 
The paper is organized as follows. Section 2 introduces PAC learning and quotes 

results of Vapnik and Blumer et al relating the Vapnik-Chervonenkis dimension to 
the sample sizes required for PAC learning, while section 3 discusses the generalization 
of PAC learning to functions with a finite range. In section 4 we turn to multilayer 
networks and compute the relevant growth function in this case. This allows us to 
bound the sample sizes required for reliably training a multiple-output network. In a 
final section we discuss conclusions and open questions. 

2. PAC learning 

The theory of Valiant's probably aproximately correct (PAC) learning is concerned 
with learning from examples of a target function (or concept),  by choosing from a 
set of functions (the hypothesis space) a function meant to be a good approximation 
to the target. In this framework, we are given a set of inputs and a hypothesis 
space of functions from the inputs to {0,1). There is assumed to be a (usually fixed 
but unknown) probability distribution on the inputs, and the aim is to find a good 
approximation to a particular target concept from the hypothesis space, given only 
a random sample of training examples and the value of the target concept on these 
examples. 

Formally, the input space is a probability space (X, C, p )  and the hypothesis space 
H is a set of measurable functions from X to (0 , l ) .  The target concept c is assumed 
to  be one of the functions from H. In the simplest form of the standard framework, it 
is shown that  if H has finite Vapnik-Chervonenkis dimension, then there is a sample 
size, independent of both p and c such that any hypothesis from H consistent with c 
on that many examples is likely to  be a good approximation to e. 

To state this result, we first define the VapniCCheruoncnkis dimension of a hy- 
pothesis space. Let S be any set, and let C be any collection of subsets of S. For 
s = (sl,. . . ,sm) E Sm, let I(s) denote the set {si : 1 5 i 5 m}. The integer AC(s) is 
defined to he the number of distinct sets of the form An I(a) as A runs through all 
members of C ,  and AJm) is defined to be the maximum of Ac(a) over all s E S". 
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Clearly, for any m, A,(m) 5 2"'. We say that the collection C of sets has finite 
Vapnik-Chervonenkis dimension (VC dimension) d if 
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A,(d) = 2d but Ac(d+ 1) < 2dt' 

and that it has infinite VC dimension if it does not have finite VC dimension. When C 
has finite VC dimension d,  a result of Sauer (111 shows that, for all m > d ,  

The VC dimension of a hypothesis space H of {0, 1)-valued functions is defined to be 
the VC dimension of the collection S of supports of the functions in H. In this case, 
given z = (zt, . . . ,zm) E X"', As(.) equals the number of distinct vectors of the 
form (h(zl). . . . ,h(zm)), as h runs through H. 

Given the pdxbi!ity me;lrcre 9 on X, and ?he target concept c, we define ~ c ! w !  
e m r  of a hypothesis h from H to be the probability that h and c disagree on a 
randomly chosen input from X. That is, we define er,(h) to be p { z  E X : h(z) # 
c(z)). Recent results have linked sample sizes required for learning to the VC dimension 
of the hypothesis space [1,4]. For example, in the standard learning model, where the 
approximating hypothesis is assumed to be consistent with the target on the training 
sample, we have the following samplesize bound. 

Theoem 2.1. If a hypothesis space H has finite VC dimension d > 1, then there is 
mo = mo(f,6) such that if m > m, then 

pm{(cl, ..., z , , , )€X"':  fo ra l lhEH,h (z i )=c (z i )  ( l s ; < m ) * e r M ( h ) < f )  
> I - &  

A suitable value of mo is 

m -  O - ((1 - J;) [In ( d'(:- ") + 2d In (:)I . 

In any real learning situation, where there is a learning algoriihm for producing 
the hypothesis supposed to approximate the target, it is unrealistic to assume that the 
hypothesis produced is consistent with the target on all of the training sample. It. is 
more reasonable to assume only that the hypothesis is consistent with the target on a 
large proportion of the training sample. To account for this, and to allow the possibility 
of classification errors during training, the theory has been extended 141 to discuss not 
the learnability of functions from X to {O, 1) with an underlying distribution p, but 
instead probability distributions on the set S = X x {0, l } ,  We remark that any 
function c from X to {O, I} together with an underlying distribution p can be realized 
as a probability measure Y on S. We make the following definitions. 

Suppose that U is some probability measure on S = X x {0,1}. We define the 
acfual ermr (with respect to Y) of h E H to be 

er,(h) = .{(.,a) : a  f h(z ) } .  
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For a subset F of H, we define the haziness o f F  with respect to Y by 

h=,(F) = sup{er,(f) : f E F). 

A sample of length m of U is a sequence 2 of m points of S, randomly drawn 
according to the distribution Y .  For h E ff, the observed cpmr of h on sample 
2 = ( ( ~ ~ , a , ) , . . - , ( z ~ , a ~ ) )  is 

1 
m 

er,(h) = -I(; : h(z i )  # a i } l .  

The problem is to determine whether, given c, 6 > 0 and 0 < 7 5 1, there is a sufficient 
sample size ma = ma(7, e, a), independent of U, such that for all m > ma, the following 
holds: if a hypothesis h from H has observed error less than (1 - 7)c on a randomly 
chosen m-sample, from X then, with probability at least 1 - 6, h has actual error at 
most e. If such a sample-size bound can be guaranteed then we say that H is PAC 
learnable, or learnable, extending the standard definition of PAC learnability. 

We have the following theorem, a slight modification of a result from [4]. 

Theorem 2.2. [4] Let H be a hypothesis space of {O,l}-valued functions defined on 
an input space X. Let Y be any probability measure on S = X x {0,1), let 0 < c < 1 
and let 0 < y 5 1. Then the probability (with respect to the product measure U") 
that, for z E S", there is some hypothesis from H such that 

er,(h) > c and er,(h) .< (1 - 7)er,(h) 

is at most 

4 AH(2m)exp(-:yZcm). 

This leads to the following learnability result, 

Proposilion 2.1. Let 0 < c , 6  < 1 and 0 < 7 5 1 and let U be any distribution on 
S = X x {O, 1). If H has finite VC dimension d, then there is mo = ma(c,6,7) such 
that if m > ma then, for z E S", with probability at least 1 - 6 (with respect to the 
product measure Y"),  

er,(h) .< (1 - 7)c ==+ er,(h) 5 c. 

A suitable value of ma is 

Proof. The proof uses Sauer's inequality mentioned above, and the fact that for any 
0 a, z > 0, In z 5 (- In 01 - 1) + uz. We omit the details. 
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3. PAC learning with larger range 

Instead of considering just (0, I)-valued functions, we should like to consider functions 
taking values in some finite or countably infinite set. The same sorts of upper bounds 
on sufficient sample size io terms of a parameter (which we continue to call the vc 
dimension) that quantifies in some sense the 'expressibility' of the space of functions 
can be obtained. For consistency, we want the notion of VC dimension for a space of 
functions to reduce to the straightforward definition of VC dimension when the range 
space has only two elements. Various definitions have been proposed. 

We adopt a definition of Haussier i7j, defining the VC dimension of a space of 
functions from a set X to a countable set Y to be the VC dimension of the collection 
of graphs of the functions. For any h E H ,  the graph G(h) of h is 
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G(h) = { ( z ,h ( z ) )  : z E X )  

-..A +I.- "-....I. "^""" .d U :- ,?/U\ - r l l l h I .  h r U >  TI.".. 11- %in A:--..-:-.. U :- 
a11u D I X C  y'up. Y p L C  "1 11 10 Y[U,  - ,Y[,., . I' c ' 1 ,  . >.1511 "I1S "U U,,I,.ZIIDI"LI "I 11 10 

defined to be the vc dimension of the space G ( H ) .  
We can describe this in another way. For 

(0, IIm be defined by 
= (yl,. . . , y,) E Ym, let I ,  : Ym + 

Z,((zl ,... ,z,,,)) =(a lr...,am) where ui = 1 yi = zi. 

For z = (z,, . . . ,zm) E X'" and h E H ,  define z'(h) = (h(z , ) ,  . . . ,/t(z,,,)). This 
defines a mapping z* from H to Ym.  For each y E Ym, the composition I ,  o z* is a 
mapping from H to the finite set {O, 1)'". We define n,(z) to be the maximum, as 
y ranges over Ym, of IZ, o z * ( H ) I ,  the cardinality of the image of H under Z, o 2.. 

Further, we let II,(m) be the maximum of II,(z) over all z E Xm. Then lI,(m) = 
Ag(H), and therefore the VC dimension of H (is either infinite, or) is the largest integer 
d such that II,(d) = 2d. Notice that for finite Y 

n,(z) 5 /z'(H)I 5  AH(^) 

where A,(m) is the maximum over all z E Xm of Iz '(H)I.  
It is easy to see that if Y = {0, l}, this notion of VC dimension coincides with the 

standard one. With the above definition of VC dimension, we can apply the previous 
learnability results. We note that, as earlier, we consider probability distributions on 
the set X x Y and not functions from X to Y with underlying probability distributions 
on X .  However, every pair ( c , p )  where c E H and p is a probability measure on X 
can be realized by a probability measure w = v(c,p) on the product a-algebra E x 2 y .  

Our strategy is to now apply the standard theory of PAC learning of Bootean 
&ne?ians tn !eerning the gephs of Fxnctions with ?he 4eriv-4 dist:ibuti~n v instead 
of learning the functions themselves with the distribution on X. There are, however, 
implications of this approach which we should consider before proceeding. 

PAC learning requires that  one trains and tests using the same distribution. In 
the case at hand the distribution is only over positive examples; it is, however, the 
same distribution in both training and testing. The theorems therefore assure that 
the hypothesis function produced will (with high probability) correctly classify further 
examples from this distribution as positive, which of course corresponds to producing 
a hypothesis such that h(z)  = c(z). 
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We now present two results giving sample sizes required for learning in the coune 
able output case. 

Theorem 9.1. If a hypothesis space H of functions from an input space X to a 
countable set Y has finite VC dimension d > 1, then there is an m, = mo(r,6) such 
that if m > m, then 

$'"(zl,. . . ,zm) E Xm : for all h E H,h(zi) = c ( z i )  (1 5 i 5 m) er,(h) < c)  
> 1 - 6 .  

A suitable value of m, is 

For the c m  when we allow our hypothesis to incorrectly compute the function on 
a small fraction of the training sample, we have the following result. Note that we 
are still considering the discrete metric and so in the case where we are considering 
multiple-output feedforward networks asingle output in error would count as an overall 
error. 

Theorem 3.2. Let 0 < c < 1 and 0 < 7 5 1. Suppose H is a hypothesis space of 
functions from an input space X to a countable set Y, and let Y be any probability 
measure on S = X x Y and c E H any target concept. Then the probability (with 
respect to Y") that ,  for z E S", there is some h E H such that 

er,(h) > c and er,(h) 5 (1 - y)er,(h) 

is at most 

4. Sample sizes for mul t ip le -output  ne tworks  

In artificial neural network research one of the key problems is that of training a 
network to compute a particular function and to generalize from examples. In this 
section, we describe a family of such networks, and apply the preceeding theory to 
extend the results of Baum and Haussler [3] to multiple-output networks. 

A feedforward neural network is an ordered pair N = (G,F) ,  where C = (V, E) is 
a directed acyclic graph, and 3 is a finite set of actiuationfunclions. V is the disjoint 
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union of a set I of input nodes and a set C of computafion nodes, and 0 E C is a 
set of output nodes. Further, there is a bias node no E I. The number of input nodes 
will be denoted s + 1 and the number of output nodes t. The underlying graph G is 
such that all computation nodes are connected to the bias node, and the input nodes 
have zero in-degree; that is, E C_ (C U I) x C and {no} x C C_ E. The computation 
nodes are labelled with the integers 1 to n = IC1 in such a way that if ( i ,  j )  E E then 
j > i .  This can be accomplished since G is acyclic. We denote by d ( j )  the in-degree 
of computation node j .  

Associated with computation node j is the set of states 62, = RdG). We let 
denote the product n(') = 62, x . . . x n,, and denote n(") simply by 0 (this is the 
set of all states of the network). Any w E $2 can be decomposed as w = w l w l . .  . w,,. 
Given such a decomposition, we denote by wk the vector w l w z .  ..wt. 
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Each computation node j haa associated with it an acfiualion function 

f' : n. x 'Rd(') - { O ,  1) f 

and F is the set of n activation functions. Writing w = w j ,  the function h i  from Rd(') 
to {O, 1) is given by h&(z) = f'(w,t) .  Hi denotes the set of functions hi  where w 
runs through Cl, and we denote AH,(m) by Aj(m). 

An input t E 'R' to the network consists of an assignment of a real number to 
each non-bias input node. Further, each node has an output value of 0 or 1. The 
output of a node is defined recursively in terms of the outputs of the previous nodes. 
The output of a non-bias input node is defined to be the input on that node, and the 
output of no is always 1. The input vector to computation node j depends on the 
input t and on and we write it as Z j ( d - l , t )  E ado'). The output of node j is 
then computed as 

The function computed by the network when in state w E R is the function F, 
from 'R' to { O , l ) t  whose value is the (0,l)-vector of outputs of the output nodes, 
0. The se6 of all F, as w ranges through Q is denoted F ,  and we call F the set of 
functions computable by N. 

The output function of the network, which describes precisely the output of each 
computation node, is the function 

U : n x x -). { O ,  1)". 

Entry i of U(W,E)  is 1 if and only if, when the net is in state w and receives input E ,  

node i has output 1. For a sequence z = (z,, . . . , tm) of inputs, we define S(z)  to be 
the number of distinct vectors of the form 

ZJ,. . , , 4 w , t m ) )  

where w runs through all the states in n, and we define S(m) to be the maximum 
over all z E Xm of S(z). Clearly 

W m )  5 A d 4  5 S(m). 
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We bound S(m) in the following lemma, obtaining the same bound as was obtained 
in [31 for the case of one output (indeed, the proof makes essentially the same over- 
estimates as were made there). 

Lemma 4.1. With the above notation, for any positive integer m, 

ProoJ For any i between 1 and n, ket N; be the subnetwork induced by the input 
nodes and nodes 1 to i ,  and let 

U; : n(') x x -4 {O, 1)' 

L. &L. r .:__ I I  _...L._ n.l c I-\ L. J.C-.J 0.. .L- -.. .I :- .L_ ue b',C uubyub IU'ISLIUU U, ,"'. ruT*IIer, ,Cb J'(",, uc "e,,',eu ,U' Ulci ',eh I"' 111 u1c IraI'LC 

way as S(m) was defined for N. We claim that for any i between 1 and n, 

i 

S i ( 4  I I T A j b )  
j - 1  

from which the resuit wiii ioiiow. F e  prove the ciaim by induction. 

in this case is exactly the output of node 1. 

Observe that, writing w E n(') as w = W ~ - ~ W ~ ,  where wk-l E Q('-l) and wt E Oh,  

The base case is easily seen to be true; Sl(m) = Al(m), since the output function 

Assume that the claim holds for i = k- 1 (k 2 2) and consider now the case i = k. 

u k ( w k :  2) = u : ( W t - - l W k , t )  = ( u ~ - ~ ~ w ~ - l ~ z ! ~ ~ ~ ( ~ k ! r ~ ( w k - l ! z ) ~ .  

(~L(WL-lWLt,Zl)r...r~L(WC-lWLrZm,) 

Thus, for any z = (q,. . . , zm) E X"', the number of vectors of the form 

as w = wk-'wk ranges through Si'(') is at most A,(m)S,-,(m), and hence 

L-1 k 

Sdm) I Adm)SL-l(m) 5 A d 4  J-J A j W  = I-JAj(4. U 
j=1  j = 1  

We say that N is a feedforward linear threshold network in the case when each 
actimiion function f E F computes ihe inner product oi wj with ij($=!, z) and 
outputs 1 if this is positive and 0 otherwise. In this caw,  H j  has Vc dimension d ( j ) ,  
and, as in [3], we have: 

Corollary 4.2. Let H be the space of functions computable by a feedforward linear 
threshold neural network N with W variable weight, n computational nodes and 
p,sib!y mere t h s  one outp"t zede. Then 

vc dim(H) 5 2Wlog,(en). 
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In particular, the VC dimension of the network can be bounded independently of 
the number of output nodes. 

Natarajan [IO] has  shown that for (not necessarily feedforward) linear threshold 
nets with n nodes (including inputs), the VC dimension ia at most of the order of 
n31nn. The above result shows that it is in fact at most n’lnn for the case of 
feedforward linear threshold nets with n computation nodes. What is more Natarajan 
only considers the networks as functions of Boolean vector inputs, a restriction which 
we do not require. 

The result, together with theorems 3.1 and 3.2, provides upper bounds on the 
size of a training sample required for the network to give valid generalization, in the 
cases when the training performance is required to be exact and in the case when an 
allowance for error is made on the training set. 

Comllary 4.3. Given an accuracy parameter c and a confidence parameter 6, for 
a feedforward network with W variable weights and n computational nodes, with 
probability greater than 1 - 6 the network will give correct output with probability 
greater than I-r  on inputs drawn according to some distribution, provided it correctly 
computes the function on a sample (drawn from the same distribution) of size at least 

Corollary 4.4, Given an accuracy parameter c and a confidence parameter 6, for 
a feedforward network with W variable weights and n computational nodes, with 
probability greater than 1 - 6 the network will give correct output with probability 
greater than 1-c on inputs drawn according to some distribution, provided it correctly 
computes the function on a fraction oi 1 - ii - yj, oi a sampie (drawn irom the same 
distribution) of size at least 

5. Conclusions 

This paper has considered the problem of estimating sample sizes required for PAC 
learning of functions with countable ranges. This is of particular interest in the case 
of feedforward networks, where samplesize estimates are only available for the single- 
output case. The results show that the same sample size is sufficient as was required 
in the single-output case. It appears that the extra information contained in each 
sample is cancelled out by the more stringent training we are effectively requiring by 
using the discrete metric. 

The bounds we have obtained are, however, only upper bounds as in the case of 
the single-output networks. As mentioned in the introduction Baum [Z] has shown 
that the VC dimension of a multilayer perceptron with d inputs and one hidden layer of 
r N / d ]  units is at least N. Using general lower bounds on sample sizes for learning [6] 
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in hypothesis spaces with given VC d'imension, we can conclude that we need samples 
of size at least 

which is n(W/e).  It is not known whether the two log factors, log,(en) and ln(l/c), 
are real in the single- or multiple-output cases. 
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