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Abstract

The power stage of the PWM DC-DC converter is modeled and analyzed using the sampled-
data approach. The work addresses continuous and discontinuous conduction mode under volt-
age mode control, and continuous conduction mode under current mode control. For each
configuration, nonlinear and linearized sampled-data models, and control-to-output transfer
function are derived. Using this approach, both current mode control and discontinuous con-
duction mode can be handled systematically in a unified framework, making the modeling for
these cases simpler than with the use of averaging. The results of this paper are similar to
results of Tymerski, but they are presented in a simpler manner tailored to facilitate imme-
diate application to specific circuits. It is shown how sampling the output at certain instants
improves the obtained phase response. Frequency responses obtained from the sampled-data
model are more accurate than those obtained from various averaged models. In addition, a new
(“lifted”) continuous-time switching frequency-dependent model of the power stage is derived
from the sampled-data model. Detailed examples illustrate the modeling tools presented here,
and also provide a means of comparing results obtained from the sampled-data approach with
those obtained from averaging.

1 Introduction

Recently there has been intensive research on modeling and analysis of the power stages of the

PWM DC-DC converter [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], especially in special configurations such

as under current mode control [13, 14, 15, 16, 17, 18, 11] and in discontinuous conduction mode

[19, 20, 21, 22]. The better the power stage is modeled, the better closed-loop performance can be

achieved as expected. Among different modeling approach, averaging method is the most popular

one. However, the important work by Tymerski in [7, 8], which uses time-varying system theory to

derive power stage dynamics, did not get much attention.
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In this paper, the power stage is modeled and analyzed using the sampled-data approach [23,

24, 25, 26, 27, 28]. This work complements the authors’ work [27, 29] which develops sampled-data

models and analysis for the closed-loop PWM DC-DC converter. The work addresses continuous

and discontinuous conduction mode under voltage mode control, and continuous conduction mode

under current mode control. For each configuration, analytical nonlinear and linearized sampled-

data models, and the control-to-output transfer function are derived. Using this approach, both

current mode control and discontinuous conduction mode can be handled systematically in a unified

framework, making the modeling for these cases simpler than with the use of averaging. The results

of this paper are similar to the work by Tymerski [7, 8], but they are presented in a simpler manner

tailored to facilitate immediate application to specific circuits. It is shown how sampling the

output at certain instants improves the obtained phase response. Frequency responses obtained

from the sampled-data model are more accurate than those obtained from various averaged models.

In addition, a new (“lifted”) continuous-time switching frequency-dependent model of the power

stage is derived from the sampled-data model. Examples illustrate the increased accuracy of controls

designed using the new power stage models.

In this work, the orbital nature of operating condition is emphasized. This differs from the

averaging method, which averages the periodic steady state of a PWM converter to an equilibrium.

The periodic steady state in high switching operation has small amplitude (ripple), and averaging

is therefore a reasonable approach. However, close to the onset of instability, the periodic nature of

the steady state operating condition needs to be considered in order to obtain accurate results. The

inherent dynamics for a periodic solution and an equilibrium are different. This issue is generally

neglected in most power electronics literature. It has been reported that the averaged models do

not accurately predict subharmonic instability [2], chaotic phenomena [30, 31, 32, 33], and steady-

state DC offset [10]. Moreover, it has been found that the directly obtained averaged models

are inaccurate for converters operated under current mode control or in discontinuous-conduction

mode. This has necessitated efforts to obtain more accurate averaged models for such cases. In

contrast, sampled-data modeling can be applied systematically to converters operated both under
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current mode control or in discontinuous-conduction mode and gives more accurate description

about the operations of PWM DC-DC converters.

The organization of the paper is as follows. In Section 2, the power stage in continuous conduc-

tion mode (CCM) under voltage mode control is studied. The steps of sampled-data approach in

[29] are followed in details. In Section 3 and 4, the power stages in discontinuous conduction mode

(DCM) under voltage mode control, and CCM under current mode control, respectively, are stud-

ied. In Section 5, a new approach to derive linear continuous-time models of PWM converter power

stage from sampled-data models is proposed. In Section 6, four illustrative examples are given. It

is shown that the sampled-data models give a superior prediction of closed-loop performance as

compared to the averaging method.

2 Continuous Conduction Mode (CCM) under

Voltage Mode Control

2.1 Block Diagram Model

Consider the cycle t ∈ [nT, (n+1)T ]. A block diagram model of the power stage of a PWM converter

operated in CCM under voltage mode control is shown in Fig. 1, where dn ∈ R is the switching

instant within the cycle and is used as the control variable, A1, A2 ∈ RN×N , B1, B2 ∈ RN×1,

E1, E2 ∈ R1×N , are constant matrices, T is the constant switching period (inverse of switching

frequency fs), and vs, vo ∈ R are the source and output voltages, respectively.

2.2 Nonlinear Sampled-Data Model

Generally in the PWM converter, the switching frequency is sufficiently high that the variations

in vs in a cycle can be neglected. Take vs to be constant within the cycle and denote it as vsn.

The notation vsn, instead of vs,n, is used for brevity. This notation applies to other variables. Let

xn = x(nT ) and von = vo(nT ). The two matrices E1 and E2 need not be the same. For example,

they can differ if the equivalent series resistance (ESR) Rc 6= 0. When they differ, the output
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S1 :

{
ẋ = A1x+B1vs
vo = E1x

S2 :

{
ẋ = A2x+B2vs
vo = E2x

?

Switching Decision:
Switch to S1 at t = nT
Switch to S2 at t = nT + dn

-dn

- vo-vs

Figure 1: Power stage of PWM converter in CCM under voltage mode control

voltage is discontinuous. An example of a discontinuous output voltage waveform is shown in

Fig. 2. In most applications, the output voltage of interest is the maximum, minimum, or average

voltage. So in the following, E is used to denote either E1, E2, or (E1 +E2)/2.

O
ut

pu
t v

ol
ta

ge

t

E  x(nT)1

E  x(nT)2
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    2

x(nT)

nT (n+1)T

Figure 2: A discontinuous output voltage waveform

From the operation in Fig. 1, the sampled-data dynamics of the power stage is

xn+1 = f(xn, vsn, dn)

= eA2(T−dn)(eA1dnxn +

∫ dn

0
eA1σdσB1vsn) +

∫ T−dn

0
eA2σdσB2vsn (1)

von = Exn (2)
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2.3 Steady State Analysis

A T -periodic solution x0(t) for the system in Fig. 1 corresponds to a fixed point x0(0) of the

sampled-data model. The fixed point (xn, vsn, dn) = (x0(0), Vs, d), if it exists, must satisfy

x0(0) = f(x0(0), Vs, d)

= eA2(T−d)(eA1dx0(0) +

∫ d

0
eA1σdσB1Vs) +

∫ T−d

0
eA2σdσB2Vs (3)

Let the nominal (set-point) output voltage be VSET. Assume there is little variation in x0(t)

for t ∈ [0, T ]. Then

Ex0(0) = VSET (4)

The N +1 equations ((3) and (4)) in N +1 unknowns (x0(0) and d) can be solved by Newton’s

method [23]. Given d, the nominal duty cycle (also called duty ratio) Dc is d/T . After obtaining

x0(0) and d, a periodic solution x0(t) is obtained:

x0(t) =


eA1tx0(0) +

∫ t
0 e

A1(t−σ)dσB1u for t ∈ [0, d)

eA2(t−d)x0(d) +
∫ t
d e

A2(t−σ)dσB2u for t ∈ [d, T )
x0(t mod T ) for t ≥ T

(5)

A typical periodic solution x0(t) is shown Fig. 3, where ẋ0(d−) = A1x
0(d) + B1u and ẋ0(d+) =

A2x
0(d) +B2u denote the time derivative of x0(t) at t = d− and d+, respectively.

x(d  )+0

x(d  )-0

0x(d)x(0)0

Figure 3: A typical periodic solution x0(t) of a PWM converter in state space
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2.4 Existence of Periodic Solutions

In this subsection, the existence of periodic solutions in the power stage of Fig. 1 or equivalently the

existence of fixed points in the sampled-data dynamics is studied. Assuming all of the eigenvalues of

A1 and A2 are in the open left half of the complex plane, it follows that the matrices I−eA2(T−d)eA1d

and I − eA1deA2(T−d) are invertible [26]. From Eq. (3), x0(0) can be expressed as a function of d,

denoted as X(d):

X(d) := (I − eA2(T−d)eA1d)−1(eA2(T−d)
∫ d

0
eA1σdσB1Vs +

∫ T−d

0
eA2σdσB2Vs) (6)

So the N + 1 equations, (3) and (4), reduce to one equation in one unknown d:

EX(d) = VSET (7)

Next, a sufficient condition is given for the existence of a periodic solution achieving the nominal

output voltage VSET.

Theorem 1 Let the nominal output voltage be VSET. Assume that all of the eigenvalues of A1 and

A2 are in the open left half of the complex plane. If

(EA−1
2 B2Vs + VSET)(EA−1

1 B1Vs + VSET) < 0 (8)

Then there exists a periodic solution x0(t) in the power stage of Fig. 1 with Ex0(0) = VSET.

Proof: From Eq. (6),

X(0) = −A−1
2 B2Vs (9)

X(T ) = −A−1
1 B1Vs (10)

From Eq. (7), if

(EX(0) − VSET)(EX(T ) − VSET)

= (EA−1
2 B2Vs + VSET)(EA−1

1 B1Vs + VSET)

< 0
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then by the Intermediate Value Theorem, there exists a solution d satisfying Eq. (7). Hence there

exists a periodic solution x0(t). 2

2.5 Linearized Sampled-Data Dynamics

When there exists a periodic solution x0(t), or equivalently a fixed point (x0(0), Vs, d), the system

can be linearized at this fixed point (similar analysis has been done in [34] for the case in which A1

and A2 are invertible):

x̂n+1 ≈ Φox̂n + Γvv̂sn + Γdd̂n (11)

v̂on = Ex̂n (12)

where

Φo =
∂f

∂xn

∣∣∣∣
�

= eA2(T−d)eA1d (13)

Γv =
∂f

∂vsn

∣∣∣∣
�

= eA2(T−d)
∫ d

0
eA1σdσB1 +

∫ T−d

0
eA2σdσB2 (14)

Γd =
∂f

∂dn

∣∣∣∣
�

= eA2(T−d)((A1 −A2)x
0(d) + (B1 −B2)Vs)

= eA2(T−d)(ẋ0(d−)− ẋ0(d+)) (15)

(the notation � denotes evaluation at (xn, vsn, dn) = (x0(0), Vs, d))

This linearized model is useful for discrete-time feedback control designs. Many different

discrete-time control schemes for PWM converters have been proposed and illustrated in [26, 35].

2.6 Open-Loop Stability

The relevant stability notion is asymptotic orbital stability, not asymptotic stability of an equilib-

rium point as depicted in the averaging method. The local open-loop asymptotic orbital stability

of the periodic solution x0(t) is determined by the eigenvalues of Φo. They are also open-loop poles

and denoted by σ[Φ]. The next result follows from Eq. (13).
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Theorem 2 Assume that all of the eigenvalues of at least one of A1 and A2 are in the open left

half of the complex plane, and that neither matrix has any eigenvalue in the open right half of

the complex plane. Then the periodic solution x0(t) of the power stage of Fig. 1 is asymptotically

orbitally stable.

Proof: Under the stated assumptions, the eigenvalues of Φ are inside the unit circle of the complex

plane. See [26] for a detailed proof. 2

2.7 A New Control-to-Output Transfer Function

Discrete-time controllers can be designed by using the linearized dynamics in (11) and (12) directly.

Analog feedback control designs are generally based on the control-to-output transfer function (fre-

quency response). From Fig. 1, control dn is a discrete-time variable and output vo is a continuous-

time variable. One has to be careful on choosing the right time for dn in order to correspond to

the same time with vo.

Previous works using the sampled-data modeling [36, for example] generally use the following

as the control-to-output transfer function (derived from Eqs. (11) and (12))

v̂o(z)

d̂(z)
= E(zI − Φo)

−1Γd (16)

In this approach, the control (switching) exerted at t = nT + dn occurs after the sampling of the

output at t = nT . This renders the model noncausal. This error in the time domain will cause an

error in the phase response.

To circumvent this problem, the output vo(nT + dn) (instead of vo(nT )) is used, because the

output around t = nT +dn determines the switching action. The output equation (2) now becomes

von = Ex(nT + dn) = E(eA1dnxn +

∫ dn

0
eA1σdσB1vsn) (17)

with linearized dynamics

v̂on ≈ E(eA1dx̂n + ẋ0(d−)d̂n +

∫ d

0
eA1σdσB1v̂sn) (18)
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From the linearized dynamics (11) and (18), the control-to-output transfer function is

Toc(z) =
v̂o(z)

d̂(z)
= EeA1d(zI − Φo)

−1Γd +Eẋ0(d−) (19)

Given a transfer function in z domain, say T (z), its effective frequency response [37, p. 93] is

T (ejωT ), which is valid in the frequency range |ω| < π
T . In the case when vo is discontinuous

because E1 6= E2, Toc(z) depends on which value of E is chosen.

Compared with Eq. (16), this transfer function has an extra term Eẋ0(d−). The transfer

functions (16) and (19) have the same poles but different zeros. The pronounced difference between

them is the phase because the output voltages are sampled at different instants. For later reference,

this new approach is called the SP method and the approach which uses the sampled output at

t = nT is called the S method.

2.8 Open-Loop Audio-Susceptibility and Output Impedance

The effects of disturbances at the source and load on the output voltage in the closed-loop system are

related to open-loop audio-susceptibility and output impedance [11]. Therefore, knowledge about

the open-loop audio-susceptibility and output impedance is useful. Generally in both of them, the

magnitude (but not phase) is of interest. Therefore the output equation (12) can still be used.

From Eqs. (11) and (12), the open-loop audio-susceptibility is

Tos(z) =
v̂o(z)

v̂s(z)
= E(zI − Φo)

−1Γv (20)

To calculate the open-loop output impedance, add a fictitious current source, io (as perturba-

tion), in parallel with the load. Let

S1 : ẋ = A1x+B1vs +Bi1io (21)

S2 : ẋ = A1x+B2vs +Bi2io (22)

where Bi1, Bi2 ∈ RN×1.
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Similar to the open-loop audio-susceptibility, the open-loop output impedance is

Too(z) =
v̂o(z)

îo(z)
= E(zI − Φo)

−1Γi (23)

where

Γi = eA2(T−d)
∫ d

0
eA1σdσBi1 +

∫ T−d

0
eA2σdσBi2 (24)

3 Discontinuous Conduction Mode (DCM) under Voltage Mode

Control

The modeling and analysis steps taken in Section 2 are now applied to the DCM case. For brevity,

the discussion of open-loop stability and the derivation of the open-loop audio-susceptibility and

output impedance are omitted.

3.1 Block Diagram Model

A general model of the power stage of a PWM converter operating in DCM under voltage mode

control is shown in Fig. 4. Similar to CCM, the switching instant from S1 to S2 within the cycle

is used as the control variable and denoted as d1n. The notation d1n, instead of d1,n, is used for

brevity. The matrix F ∈ R1×N is chosen such that Fx = iL. The remaining notation is as in

Fig. 1.

Consider the cycle t ∈ [nT, (n+ 1)T ). In DCM, there are three stages in the cycle:

S1 : ẋ = A1x+B1vs for t ∈ [nT, nT + d1n) (25)

S2 : ẋ = A2x+B2vs for t ∈ [nT + d1n, nT + d2n) (26)

S3 : ẋ = A3x+B3vs for t ∈ [nT + d2n, (n+ 1)T ) (27)

Switching from S1 to S2 occurs at nT + d1n, where d1n is a control variable. Switching from S2

to S3 occurs at nT + d2n, where d2n is determined by the inductor current when its value reaches

zero, i.e., iL(nT + d2n) = Fx(nT + d2n) = 0.
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S1 :

{
ẋ = A1x+B1vs
vo = E1x

S2 :

{
ẋ = A2x+B2vs
vo = E2x

S3 :

{
ẋ = A3x+B3vs
vo = E3x

6

iL = Fx

Switching Decision:
Switch to S1 at t = nT
Switch to S2 at t = nT + d1n

Switch to S3 (at t = nT + d2n) when iL(t) = 0

-d1n

?

- vo-vs

Figure 4: Power stage of PWM converter in DCM under voltage mode control

3.2 Nonlinear Sampled-Data Model

From the operation in Fig. 4, the sampled-data dynamics of the power stage is

xn+1 = f(xn, vsn, d1n, d2n)

= eA3(T−d2n)(eA2(d2n−d1n)(eA1d1nxn +

∫ d1n

0
eA1(d1n−σ)dσB1vsn)

+

∫ d2n

d1n

eA2(d2n−σ)dσB2vsn) +

∫ T

d2n

eA3(T−σ)dσB3vsn (28)

v̂on = Ex̂n (29)

g(xn, vsn, d1n, d2n) = Fx(nT + d2n)

= F (eA2(d2n−d1n)(eA1d1nxn +

∫ d1n

0
eA1σdσB1vsn)

∫ d2n−d1n

0
eA2σdσB2vsn)

= 0 (30)

The variable d2n is not a free variable but is constrained by Eq. (30). Another explicit constraint

is Fxn = iLn = 0, because the inductor current always starts from 0 at the beginning of a cycle.
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Since iLn = 0 for any n, iL is not a dynamic variable. Therefore, the dynamics is (N−1)-dimensional

instead of N -dimensional.

3.3 Steady State Analysis

Let the nominal (set-point) output voltage be VSET. The fixed point (xn, vsn, d1n, d2n) = (x0(0), Vs, d1, d2)

of the sampled-data dynamics (28)-(30) should satisfy

x0(0) = f(x0(0), Vs, d1, d2) (31)

VSET = Ex0(0) (32)

g(x0(0), Vs, d1, d2) = 0 (33)

Given the nominal (set-point) output voltage VSET and vsn = Vs, Newton’s method can be used

to solve these (N + 2) equations in (N + 2) unknowns (a fixed point:(x0(0), d1, d2)).

3.4 Linearized Sampled-Data Dynamics

The system (28)-(30) can be linearized at the fixed point (x0(0), Vs, d1, d2). Using the notation �

to denote evaluation at this fixed point,

x̂n+1 ≈ Φox̂n + Γvv̂sn + Γdd̂1n

v̂on = Ex̂n
(34)

where

Φo =
∂f

∂xn
−

∂f

∂d2n
(
∂g

∂d2n
)−1 ∂g

∂xn

∣∣∣∣
�

= eA3(T−d2)(I −
(ẋ0(d−2 )− ẋ0(d+

2 ))F

Fẋ0(d−2 )
)eA2(d2−d1)eA1d1 (35)

Γv =
∂f

∂vsn
−

∂f

∂d2n
(
∂g

∂d2n
)−1 ∂g

∂vsn

∣∣∣∣
�

= eA3(T−d2)(eA2(d2−d1)
∫ d1

0
eA1σdσB1 +

∫ d2−d1

0
eA2σdσB2) +

∫ T−d2

0
eA3σdσB3
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−
ẋ0(d−2 )− ẋ0(d+

2 )

Fẋ0(d−2 )
F (eA2(d2−d1)

∫ d1

0
eA1σdσB1 +

∫ d2−d1

0
eA2σdσB2) (36)

Γd =
∂f

∂d1n
−

∂f

∂d2n
(
∂g

∂d2n
)−1 ∂g

∂d1n

∣∣∣∣
�

= eA3(T−d2)(I −
(ẋ0(d−2 )− ẋ0(d+

2 ))F

Fẋ0(d−2 )
)eA2(d2−d1)(ẋ0(d−1 )− ẋ0(d+

1 )) (37)

Since the dynamics is (N − 1)-dimensional, the determinant of Φo is expected to be 0 (and

hence a open-loop pole at 0). Indeed, from Eq. (35), one has

det[Φo] = det[eA2(d2−d1)eA1d1eA3(T−d2)](1−
F (ẋ0(d−2 )− ẋ0(d+

2 ))

Fẋ0(d−2 )
) = 0

because the inductor current is zero in the stage S3 and hence Fẋ0(d+
2 ) = d

dti
0
L(d+

2 ) = 0.

3.5 A New Control-to-Output Transfer Function

Similar to Eq. (19) for CCM, the control-to-output transfer function in DCM is

Toc(z) =
v̂o(z)

d̂1(z)
= EeA1d1(zI − Φo)

−1Γd +Eẋ0(d−1 ) (38)

4 Continuous Conduction Mode under Current Mode Control

The idea of using the sampled-data method to model current mode control has been proposed in

[15, 36]. Here this approach is illustrated more explicitly and systematically.

4.1 Block Diagram Model

In current mode control, the control variable is a command signal vc which sets the peak inductor

current in a cycle. Consider the cycle t ∈ [nT, (n+ 1)T ]. When the switching frequency is high, vc

can be set constant in a cycle, denoted as vcn in the cycle. Denote by h(t) = Vl+(Vh−Vl)(
t
T mod 1)

the slope-compensating ramp. The switch is turned on when a clock pulse occurs, and turned off
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when the inductor current iL reaches vcn − h(t). Denote by nT + dn the switching instant in the

cycle when iL = vcn − h(t), thus iL(nT + dn) = vcn − h(nT + dn).

A general model of the power stage of a PWM converter operated in CCM under current mode

control is shown in Fig. 5, where the matrix F ∈ R1×N is chosen such that Fx = iL. The remaining

notation is the same as in Fig. 1.

S1 :

{
ẋ = A1x+B1vs
vo = E1x

S2 :

{
ẋ = A2x+B2vs
vo = E2x

iL = Fx

�

� h(t)

� clock

?

Switching Decision:
Switch to S1 at t = nT
Switch to S2 (at t = nT + dn) when iL(t) = vcn − h(t)

-vcn

- vo-vs

Figure 5: Power stage of PWM converter in CCM under current mode control

4.2 Nonlinear Sampled-Data Model

From Fig. 5 and the discussion above, the sampled-data dynamics of the power stage in CCM under

current mode control is

xn+1 = f(xn, vsn, dn)

= eA2(T−dn)(eA1dnxn +
∫ dn
0 eA1σdσB1vsn) +

∫ T−dn
0 eA2σdσB2vsn

von = Exn
g(xn, vsn, dn, vcn) = iL(nT + dn)− (vcn − h(nT + dn))

= F (eA1dnxn +
∫ dn
0 eA1σdσB1vsn)− vcn + h(dn)

= 0

(39)

Given the nominal (set-point) output voltage VSET and vsn = Vs, steady state analysis involves

solving the set of (N + 2) equations (Eq. (39)) with (N + 2) unknowns (a fixed point (x0(0), d,
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Vc)).

4.3 Linearized Sampled-Data Dynamics

Assume there exists a fixed point (xn, vsn, dn, vcn) = (x0(0), Vs, d, Vc). Using the notation � to

denote evaluation at this fixed point,

x̂n+1 ≈ Φox̂n + Γvv̂sn + Γcv̂cn (40)

v̂on = Ex̂n (41)

where

Φo =
∂f

∂xn
−

∂f

∂dn
(
∂g

∂dn
)−1 ∂g

∂xn

∣∣∣∣
�

= eA2(T−d)(I −
(ẋ0(d−)− ẋ0(d+))F

Fẋ0(d−) + ḣ(d)
)eA1d (42)

Γv =
∂f

∂vsn
−

∂f

∂dn
(
∂g

∂dn
)−1 ∂g

∂vsn

∣∣∣∣
�

= eA2(T−d)(I −
(ẋ0(d−)− ẋ0(d+))F

Fẋ0(d−) + ḣ(d)
)

∫ d

0
eA1σdσB1 +

∫ T−d

0
eA2σdσB2 (43)

Γc = −
∂f

∂dn
(
∂g

∂dn
)−1 ∂g

∂vcn

∣∣∣∣
�

=
eA2(T−d)(ẋ0(d−)− ẋ0(d+))

Fẋ0(d−) + ḣ(d)
(44)

The following result is related to a well-known stability criterion.

Theorem 3 If the periodic solution x0(t) is open-loop asymptotically orbitally stable, then the

following inequality holds:

∣∣∣∣∣Fẋ0(d+) + ḣ(d)

Fẋ0(d−) + ḣ(d)

∣∣∣∣∣ ≤ etr[A2−A1]d−tr[A2]T (45)

Proof: Suppose the periodic solution x0(t) is open-loop asymptotically orbitally stable. Then

all the eigenvalues of Φ have magnitude less than or equal than 1. Since det[Φ] is the product of
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the eigenvalues of Φ, we have that

|det[Φ]| =

∣∣∣∣∣det[eA1deA2(T−d)] det[I −
(ẋ0(d−)− ẋ0(d+))F

Fẋ0(d−) + ḣ(d)
]

∣∣∣∣∣
=

∣∣∣∣∣det[eA1deA2(T−d)] det[1−
F (ẋ0(d−)− ẋ0(d+))

Fẋ0(d−) + ḣ(d)
]

∣∣∣∣∣
= e−tr[A2−A1]d+tr[A2]T

∣∣∣∣∣Fẋ0(d+) + ḣ(d)

Fẋ0(d−) + ḣ(d)

∣∣∣∣∣
≤ 1

Then Eq. (45) follows. 2

Remark: Generally the switching period is so small that the right side of (45) can be approximated

as 1, resulting in a condition that resembles a well-known stability criterion in current mode control

[11, for example]: ∣∣∣∣−m2 +mc

m1 +mc

∣∣∣∣ < 1 (46)

where m1 is the (positive) slope of the inductor current trajectory during the on stage and −m2 is

the (negative) slope during the off stage using a linear approximation [1]; and −mc is the (negative)

slope of the compensating ramp. The stability criterion (46) differs from Theorem 3, in which the

instantaneous slope is used. Also, Theorem 3 applies to the open-loop system.

4.4 Control-to-Output Transfer Function

From the linearized dynamics (40) and (41), the control-to-output transfer function is

Toc(z) =
v̂o(z)

v̂c(z)
= E(zI − Φo)

−1Γc (47)
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5 A New “Lifted” Continuous-Time Power Stage Model Obtained

from Sampled-Data Model

Two sampled-data dynamic models of the power stage have been derived, using the S (which uses

sampled output vo(nT )) and SP methods (which uses sampled output vo(nT + dn)). The sampled-

data dynamics using the S method is useful for discrete-time controller design. The sampled-data

dynamics using the SP method has better control-to-output frequency response, which is useful for

analog controller design. Frequency response information suffices for the practical controller design.

In some cases, continuous-time dynamical equations of the power stage are needed. For instance,

such a model facilitates analog feedback control design for PWM converters. In this section, a new

continuous-time model of the power stage will be derived for which the control-to-output frequency

response is close to that of the sampled-data model. This continuous-time model differs from the

traditional averaged model, which is independent of the switching frequency.

In obtaining the approximate continuous-time model from the sampled-data linearized model,

it should be recognized that some of the benefits of sampled-data modeling are compromised. Most

importantly, the duty cycle, which is best viewed as a function that changes in discrete steps from

cycle to cycle, is viewed as a smooth function in continuous-time. The averaging method also uses

such an approximate description of the duty cycle.

Given a linear sampled-data model, there are many ways to derive a continuous-time model

with a similar frequency response [38]. Here one approach is proposed. Without loss of generality,

such a continuous-time model will be obtained for the circuit operation in CCM under voltage

mode control. The linearized sampled-data dynamics of the power stage using SP method is (11)

with (18). Transforming (“lifting”) the sampled-data pair (Φo, [Γv,Γd]) to the continuous-time pair

(Φc
o, [Γ

c
v,Γ

c
d]) by the technique in Appendix A, the following continuous-time model of the power

stage is proposed:

˙̂x = Φc
ox̂+ Γcvv̂s + Γcdd̂

v̂o = EeA1dx̂+Eẋ0(d−)d̂
(48)
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The control-to-output transfer function in the lifted dynamics (48) is

T coc(s) = EeA1d(sI − Φc
o)
−1Γcd +Eẋ0(d−) (49)

6 Illustrative Examples

As mentioned in the Introduction, the main motivation for careful modeling of the power stage

is to facilitate controller design. To verify the validity of power stage models, there are many

approaches. One common approach involves using a dynamic analyzer to determine which model

gives a frequency response most in agreement with experimental data. Here, another approach

is used. Since exact closed-loop stability can be determined as shown in [29, 27], the exact gain

margin can also be determined. Therefore, gain margin will be used to verify the validity of power

stage models.

Generally the controller for a PWM converter uses dynamic feedback, with an integrator en-

closed. For simplicity, static feedback is used. Accuracy of the sampled-data models will be

illustrated by examples taken from the literature.

Example 1 (Prediction of source voltage range for stable operation in a buck converter in

CCM under voltage mode control with leading edge modulation, [31]) Consider the buck converter

under voltage mode control shown in Fig. 6. Let T = 400µs, L = 20mH, C = 47µF , R = 22Ω,

Vr = 11.3V , g1 = 8.4, Vl = 3.8V , Vh = 8.2V , and h(t) = Vl + (Vh − Vl)[
t
T mod 1]. Note that in the

leading edge modulation, S1 is the off stage and S2 is the on stage. The system has been shown to

be unstable for Vs > 24.527 in [31] by computer simulation and in [39, 26] by closed-loop analysis.

However the system is predicted to be stable for 15 < Vs < 40 if the averaging method is used

[40].

In the following, the sampled-data method is used. It will be shown that the sampled-data

model has better prediction of stability than the averaged model. Let the state x = (iL, vC)′, the
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state matrices in Fig. 1 are

A1 = A2 =

[
0 −1

L
1
C

−1
RC

]

B1 =

[
0
0

]
B2 =

[
1
L

0

]
E1 = E2 =

[
0 1

]

Take Vs = 20 for example. The duty cycle Dc can be estimated from the switching condition,

y(DcT ) = h(DcT ), or equivalently,

g1(VsDc − Vr) = (1−Dc)(Vh − Vl) + Vl

Solving this equation gives Dc = 0.598. Then d = (1 − Dc)T = 1.6074 × 10−6. From Eq. (19),

the duty-ratio-to-output transfer function is (−T )Toc(z), where the negative sign is because of the

leading edge modulation. The corresponding frequency response is shown in Fig. 7. The gain

margin is 7.2 dB. The error amplifier and PWM modulator contribute a gain g1/(Vh−Vl) = 5.6165

dB. Thus the gain which Vs can increase by 1 without causing instability is 7.2 − 5.6165 = 1.5835

dB (1.20). This means that the system will be unstable for Vs > 20 × 1.20 = 24.0. Therefore,

sampled-data approach in this example has better prediction of closed-loop instability than the

averaged method.

Example 2 (Prediction of gain margin of a boost converter in DCM under voltage mode

control, [33]) The power stage of a boost converter is shown in Fig. 8, where the system parameters

are fs = 3kHz, Vs = 16V , R = 12.5Ω, L = 208µH, C = 222µF , Rc = 0 and VSET = 25V . The

converter has been shown to be unstable for the feedback gain greater than 0.08 by simulation [33].

Let the state x = (iL, vC)′, the state matrices in Fig. 4 are

A1 = A3 =

[
0 0
0 −1

RC

]
A2 =

[
0 −1

L
1
C

−1
RC

]

B1 = B2 =

[
1
L

0

]
B3 =

[
0
0

]
E1 = E2 = E3 =

[
0 1

]
F =

[
1 0

] (50)

1It can be seen from Eqs. (6) and (19) that Vs contributes linearly to the open-loop gain.
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Figure 6: System diagram for Example 1
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Figure 7: Duty-ratio-to-output frequency response for Example 1
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Solving Eqs. (31)-(33) by Newton’s method gives d1 = 0.0001 (hence Dc = d1fs = 0.3) and

d2 = 0.00027.

From Eq. (38), the duty-ratio-to-output transfer function is Toc(z)T . The corresponding fre-

quency response is shown in Fig. 9. The gain margin is -22.66 dB (0.0736). So a feedback gain

greater than 0.0736 is predicted to be destabilizing, which is close to the result of [33] noted above.
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Figure 8: Boost converter with source voltage and resistive load
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Figure 9: Duty-ratio-to-output frequency response for Example 2

Example 3 (Prediction of gain margin of a boost converter in DCM under voltage mode control,

[11, p.389]) The power stage of a boost converter is shown in Fig. 8, where the system parameters

are fs = 100kHz, Vs = 24V , R = 12Ω, L = 5µH, C = 470µF , Rc = 0 and VSET = 36V .

In [11], two averaged models are used to study this circuit. One model is 1-dimensional, and

its duty-ratio-to-output frequency response has infinite gain margin. The second model (based on

[20]) has gain margin of 33 dB.
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Next, consider the sampled-data model of this circuit. The state matrices in Fig. 4 are the

same as in Eq. (50). Solving Eqs. (31)-(33) by Newton’s method gives d1 = 2.5 × 10−6 (hence

Dc = 0.25), d2 = 7.4978 × 10−6 and x0(d1) = (i0L(d1), v
0
C(d1))

′ = (12, 35.98)′ . From Eq. (38), the

duty-ratio-to-output transfer function is Toc(z)T . The corresponding frequency response is shown

in Fig. 10, from which the gain margin is found to be 9.91 dB.

To ascertain which of these models gives the best result, a feedback loop (Fig. 11) is added

to the power stage. As the gain g varies, the nominal periodic solution x0(t) also varies. To

keep the nominal periodic solution the same, the reference voltage is varied according to Vr =

h(d1)
g + v0

C(d1) = 0.25
g + 35.98, a value close to 35.98 for different values of g. Using the exact

closed-loop analysis in [29], the system is found to become unstable for gains g > 3.13 (9.91 dB).

Thus the sampled-data model has given accurate prediction of the gain margin.
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Figure 10: Duty-ratio-to-output frequency response for Example 3
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Figure 11: Simple static feedback for PWM converter under voltage mode control
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Example 4 (Prediction of gain margin of a boost converter in CCM under current mode control,

[18]) The power stage of a boost converter is shown in Fig. 8, where the system parameters are

fs = 100kHz, Vs = 5V , R = 15Ω, L = 40µH, C = 200µF , Rc = 0 Vh = 1 and Vc = 3.

In [18], three averaged models are compared. The duty-ratio-to-output frequency response for

each one has gain margin 29.7 dB, 29.7 dB and 29.6 dB, respectively.

Next the sampled-data model is applied. The matrices in Fig. 5 are the same as in Eq. (50).

Calculating the fixed point in Eq. (39) gives x0(0) = (1.661, 12.3599)′ and x0(d) = (2.4049, 12.3354)′ .

From Eq. (47), the duty-ratio-to-output transfer function is Toc(z)T . The corresponding frequency

response is shown in Fig. 12. The gain margin is 28.2 dB (25.70).
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Figure 12: Duty-ratio-to-output frequency response for Example 4

A feedback loop (Fig. 13) is set up. As the gain g varies, the nominal periodic solution x0(t) also

varies. To keep the nominal periodic solution the same, the reference voltage is varied according

to Vr =
h(d)+i0L(d)

g + v0
C(d) = 3

g + 12.3354. Using the exact closed-loop analysis in [29], the system

is unstable for gains g > 25.6803 (28.192 dB). When g = 25.6803, the closed-loop eigenvalues are

0.3203 ± 0.9474i (on the unit circle). Thus a Neimark-Sacker bifurcation [41, 26] occurs. It is

surprising to see such a bifurcation occurring in a converter under current mode control.

From this example, the sampled-data model of the power stage predicts closed-loop instability

23



more accurately than any of the three averaged models in [18].
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Figure 13: Simple static feedback for PWM converter under current mode control

7 Concluding Remarks

Sampled-data models and associated analysis were developed for the power stage of the PWM

DC-DC converter. Several configurations were considered, including DCM or CCM under voltage

mode control, and CCM under current mode control. Compared with the derivations of averaged

models in DCM or under current mode control, the sampled-data approach is more systematic. For

each configuration, nonlinear and linearized sampled-data models, and control-to-output transfer

function were derived. The frequency response obtained using the sampled-data models of this

paper were found to be superior to those obtained using averaging. Insights were given on improv-

ing the accuracy of the computed phase response. In addition, a new (“lifted”) continuous-time

switching frequency-dependent model of the power stage was derived from the sampled-data model.

Examples were used to illustrate the increased accuracy of controls designed using the new power

stage models.
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Appendix A Discretizing a Continuous-Time System Through a
Zero-Order-Hold

Consider a linear continuous-time system

ẋ = Ax+Bu

y = Ex
(51)

where A ∈ RN×N , B ∈ RN×1, E ∈ R1×N , x ∈ RN , and y, u ∈ R.
To obtain a discrete-time model from this continuous-time system, a zero-order-hold is inserted

before the input signal, and the output is sampled using a sampling interval T equal to the duration
of the zero-order-hold; see Fig. 14. This involves an assumption that the input varies slowly enough
to be considered constant within intervals of length T .

Zero−Order−Hold
u

u n
x=Ax+Bu
y=Ex ny

y

Figure 14: Discretizing a continuous-time system through a zero-order-hold

The discrete-time system has the dynamics

xn+1 = Φxn + Γun
yn = Exn

(52)

where

Φ = eAT (53)

Γ =

∫ T

0
eAσdσB (54)
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The following fact facilitates converting back to the the continuous-time pair (A,B) from knowl-
edge of the discrete-time pair (Φ,Γ) and T . This process of converting back may be thought of as
“lifting” the discrete-time dynamics to obtain a consistent continuous-time system.

Fact 1 [
Φ Γ
0 1

]
= exp(

[
A B

0 0

]
T )

The input-to-output transfer function in the continuous-time domain is

E(sI −A)−1B (55)

The input-to-output transfer function in the discrete-time domain is

E(zI − Φ)−1Γ (56)

Given the discrete-time dynamics (52) and the value of T , the continuous-time transfer function
(55) can be obtained by using Fact 1.
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