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ABSTRACT

The high-frequency capabilities of two switching regu-
lator modeling technigues, stale-space averaging and
discrete modeling, are compared. A new linear, small-
signal modeling technigque, which combines the continu-
ous form of state-space averaging with the accuracy of
discrete modeling, is then developed. This new method,
called sampled-data modeling, succeeds, where siate-
space averaging fails, in predicting the subharmonic
instability in curreni-programmed regulators, and 1is
shown to be of significant usefulness in the design of
high-performance switching regulators.

1. INTRODUCTION

-

Switching converters and regulators do not fall into
the class of linear, time-invariant circuits to which accu-
rate and straightforward analysis tools, such as the
Laplace transform and the Nyquist plot, can be applied.
A major goal in the study of these systems, therefore,
has been the development of modeling techniques for
these circuits. The efforts invested in this area have gen-
erally been fruitful, and several new analytical tools are
now in use. Two of these methods are the state-space
averaging technique of Cuk [1] and the discrete model-
ing technique of Packard [2]. Both result in small-signal,
linear models, and both make it possible to analyze and
design switching converters and regulators. However,
each of these methods has a drawback. State-space
averaging, while possessing a very convenient continu-
ous, time-invariant form, and having been successful in
many applications, is inaccurate when the frequencies of
interest approach one-half the fundamental switching
frequency of the converter. On the other hand, the
discrete modeling technique, while very accurate,
requires the abandonment of the usual continuous time
model in favor of difference equations, which are unfami-
liar to the circuit designer and do not reflect the con-
tinuous nature of the converter waveforms.
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under support of the Research and Technology Director-
ate, Naval Electronic Systems Command, Washington DC;
by the International Business Machines Corporation,
Kingston NY; and by the Office of Naval Research, Wash-
ington DC, under Contract NO0014-78-C-0757.
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The purpose of this paper is to compare these existing
models, and to introduce a new small-signal, linear
modeling technique which incorporates both the con-
tinuous form of the state-space averaged model and the
high-frequency accuracy of the discrete model. Called
the sampled-data modeling technique, this new method
also serves as a bridge between the two previously
developed methods, allowing the differences between
them to be uncovered and appraised. In this capacity,
the sampled-data model can serve to indicate when the
accuracy of state-space averaging is sufficient for the
purposes of a design task, and when its own greater
power at high frequencies is required. A block diagram
of this new model is shown in Fig. 1.
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Figure 1. Block diagram of the sampled-data model.
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The development of this new method begins with a
careful second look at the developments of state-space
averaging and the discrete modeling technique. In Sec-
tion 2, a common foundation for these models is
developed via a series of manipulations of the state
equations of a switching converter. The result is a linear
equation describing converter operation. Significantly,
the only requirement for the validity of this equation is
that any converter perturbations be small. While too
complicated to be directly useful, this result can be used
as a common starting point for the derivations of state-
space averaging and discrete modeling.

Building on this base, Section 3 proceeds to develop
the state-space averaging method, noting with care all
assumptions used. Both converter and regulator
analysis are treated. It is found that two modifications
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must be made in order to achieve the state-space aver-
aged form. The first, an averaging of time-varying
coefficients, is shown to be related to the well-known
straight-line approzrimation, which is valid when the
converter's natural frequencies are much lower than its
switching frequency, and which is therefore well satisfied
for switching converters. The second change requires
that the duty ratio modulation function, originally a
string of pulses, be smoothed into a continuous function,
and is less easily justified. Specifically, thkis step
effectively eliminates a sampler, and hence may be
expected to affect the accuracy of state-space averaging
at frequencies approaching one-half the switching fre-
quency, a region hereafter known as the "high-frequency”
regime. In spite of this defect, however, the literature
shows that state-space averaging has a long and success-
ful record in the modeling and design of switching regu-
lator systems.

-

In comparison, Section 4 treats the development of
the discrete modeling technique. It is found that this
method can be derived from the result of Section 2 with
no further approximations. Thus, it is expected that this
model may be more accurate than state-space averaging
in the high-frequency region. ’

These expectations are fulfilled in Section 5, in which
a form of converter regulation known as current-
programming is introduced as a test of modeling
methods. This feedback scheme, which has recently
become very popular, possesses a potential instability,
consisting of a limit cycle at one-half the switching fre-
quency, which occurs when the duty ratio of the con-
trolled converter attempts to exceed one-half. This
well-defined instability makes current-programming a
natural choice for a comparison of the high-frequency
capabilities of the modeling techniques discussed in pre-
vious sections. It is found that state-space averaging
fails to predict this instability while discrete modeling
accurately records it, thus confirming the expectations
of the two methods' relative capabilities in the high-fre-
quency region. A more general discussion shows that
this kind of difference in prediction exists for a broad
class of regulator systems.

The stage is now set for the development of a new
modeling technique. In Section 8, sampled-data model-
ing, so named because its form is that of a sampled-data
systern, is introduced. While the develcpment here is
similar to that of state-space averaging, it aveids the
unjustified approximation used in the derivaticn of that
rnodel, and so results in 2 more accurate, yet still con-
tinuous and linear, model. The increased accuracy is
seen in the ability of the sampled-data technique to
predict correctly the occurrence of instability in
current-programmed regulators.

In Section 7, a detailed discussion of the sampled-
data method is presented, emphasizing its similarities
and differences with both stale-space averaging and the
discrete modeling technique, and displaying some gen-
eral properties of its loop gain. Sampled-data modeling
and discrete modeling are seen to be essentially
equivalent representations of the same process,
although in any given case vne representation may be
more convenient to use than the other. On the other
hand, the sampled-data and state-space averaged models
are seen to differ solely in the presence of a sampler in
the new model. Physical and mathematical relationships
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are developed which show that the two methods agree at
low frequencies, state-space averaging being a limiting
case of the more powerful sampled-data technique. Con-
sideration of the sampled-data loop gain reveals several
properties of this function, characteristics which make
its plotted form quite striking and which provide insight
into the design process. Finally, conclusions are
presented in Section 8.

2. FUNDAMENTALS OF SWITCHING CONVERTER ANALYSIS

In this section, a linear equation describing the
small-signal behavior of switching converters is
developed. Adapted from Packard [2], this development
invokes only a small-signal assumption, and hence
should be accurate in all frequency ranges.

The analysis in this paper, while easily extended to
other configurations, will be carried out for constant fre-
quency switching regulators operating in the "continuous
conduction’ mode, in which no constraints on state vari-
ables are effective. Generally, in this operating mode,
two different circuit topologies appear in the course of a
complete switching cycle. Let z(t) be the state vector,
v,(t) the (nominally dc) source voltage, and T, the
switching period. Then such a converter is characterized
by two state equations during a switching cycle.

T =A1x + b1y . nT<t<(n+dy)T, (1a)
Z =Aax +bayy . (ntdy)Ts<t< (n+1)T, {1b)
n=..-10+1,...

Here Ay and A2 are square matrices which describe the
two circuit topologies, and b; and by are vectors that
determine the effects of the source v,. The duty ratio is
represented by the fractional quantity d,, 0 < dn < 1.

These two matrix equations can be combined into one
by the definition of two switching functions, shown in
Fig. 2.

dit)

ol (n+d, )T, (e T,

Figure 2. Definitions of switching functions d(t) and
d'(t).

1 ifnTy < £ < (n+d,)Ts
0 if(n +dp)Ts <t < (n+1)T,

d'(t)= 1-d(t}

d(t) o (2&)

(2b)

With use of these functions, a single state equation
suffices to describe the converter.



z =[d(t)A, +d(t)Azlz + [d(t)by + d'(t)be]y, (3)

As a brief aside, consider the character of this equa-
tion. If d, is a constant for all n, that is, if the converter
is operated at constant duty ratio, without control, then
Eg. {3) is a linear equation with periodic coefficients. If,
on the other hand, control is exercised, that is, d, is a
function of the state vector z, and possibly v, as well,
then the equation becomes nonlinear.

Since control must be utilized in the design of a regu-
lator, small-signal analysis must be used to obtain a
linear equation. For this purpose, assume that the
source consists of a de quantity and a perturbation.

. v(t) = Vp +0,(¢) (4)

The notation used throughout this paper is that dc or
average values are represented by capital letters, and
that perturbations are indicated by carets. Similarly,

suppose that the duty ratio consists of a constant plus a
perturbation.

d, = D +d, (5)

Then the switching functions consist of a steady-state,
time-varying part and a perturbation. In the notation
used here, functions’ steady-state forms, which may be
time-varying, are denoted by bars.

d(t) = d(t) +d(t) (6a)
d'{(ty= 1-d(t) (6b)

- 1 ifnT. < t < {(n + D)7,

d(t) = Y0 if(n +D)T, < t < (n+1)Ts (8c)
- sgn(dn = D) if te[(n+D)Ts, (n+dy)Ts]
d(t) = 0 otherwise (64)

+1  ify>0
sgn(y)= {0 if y =0 {Be)
-1 ify<0

These functions are illustrated in Fig. 3.

As a result of these perturbations, the state vector
z(t) will also consist of a steady-state, time-varying part
(the state vector in the absence of perturbations) and a
perturbation.

z(t) = z(t) +z(t) (7

These expansions are then substituted into the state
equation, Eg. (3).
T+z=[@+ DA+ (@ - DALz + 2] ®
+[(d +d)by + (3 - d)b2llVy +v,]

After collection of terms, the steady-state portion can be
separated from the perturbation’s influence.

T+z=[dA,+dA)T +[db, + 200V,
+[dAay + d'Ag)z + [dby + d'bolu, (9)
+ [(A1-A42)(T+2)+(b1=b2)(V, +u,)]d
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Figure 3. L_7_eﬁn-it1'.on§; of steady-state switching functions
d{t) and d'(t), and of the perturbation d(t).

If there are no perturbations (d(t) =0, ;,(t) = 0), the
steady-state equation is obtained.

Z(t) = [T +3(0)A )T (£)+[T(2)b,+T(E)02)V, (10)

The subtraction of Eq. {(10) from Eg.(9) results in an
equation for the perturbation.

2(¢) = [T(e)4, + T()A12(E)
+ [d()by + d(t)bolu,(t)
+[(41=42)z(t) + (by-bp)V,1d(t)
+ [(A1-AR)z (t) + (b1-bg)v,g()1d(2)

(11)

This equation is then linearized by the assumption that
the perturbations are sufficiently small that the pro-
ducts of perturbations in the final term make this
quantity’s effects negligible compared to the eflects of
the other terms.

2(t) = [A(t)A, + T(t)A)2(t)
+[d(8)by + d(t)balu,(t) (12)
+[(41 - A)T(t) + (by = b)V,1d (¢)

Because of the small-signal restriction, the function a(t)
now consists of a series of narrow pulses at the times
(n + D)T,, of height +1 if d, > 0 and -1 if d,, < 0. This
function is approximated very well by a string of delta
functions of appropriate areas, as shown in Fig. 4.

Ay mp@) = T AT, ot - (n4D)T,] (132)
=u(t)T, Y 6t — (n+D)T,] (13b)

n=-o

Here u{t) is any continuous time function which
matches d, at the appropriate instants.
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Figure 4. Replacement of a(t) by the string of delta
functions p(t).

wl(n + D)T,] = dn (14)

While this function u({£) is not uniquely defined, its
existence proves to be useful in the modeling of control-
lers, where continuous converter waveforms are used to
generate the duty ratio modulation. Note the resem-
blance of Eq. (13) to a sampling operation. This resem-
blance is exploited heavily in Section 5, in which a new
modeling technique is developed.

The string of delta functions p(£) can now be substi-
tuted for d(t) in the small-signal Eg. (12).

Z(t) = [d(e)A, + T(£)42]7 ()
+[d(t)by + d'(t)b2lu,(t) (15)
+ [(A1=42)T[(n+D)Ts1+(b1~b2)V, 1p (¢)

The delta functions pick out only the value of
z[(n+D)T,] from z(¢) in the final term. Because of the
small-signal approximation, this equation is linear. How-
ever, it is definitely not time-invariant. Furthermore, it
is driven by a string of delta functions. To obtain a use-
ful result, further modifications are necessary. In the
following sections, various means of simplification will
result in the state-space averaging and discrete analysis
techniques, as well as the new sampled-data modeling
method.

3. REVIEW OF STATE-SPACE AVERAGING

In this section, the state-space averaging modeling
technique, originated by Cuk, is examined, with an
emphasis on the method’s accuracy at high frequenme;.
The method of development is not the same as that ori-
ginally employed [1}; the intent here is to use a common
method for several different modeling techniques, in
order to better understand their similarities and
differences. The section is divided into two subsections,
which treat state-space averaging converter modeling
and regulator modeling, respectively.
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3.1 Converter modeling

The starting point in this development of state-space
averaging is the set of results from the previous section,
Egs. (13-15). The only approximation used in the deriva-
tion of these results was to assume that the perturba-
tions in the switching function d(t) and input v, (¢ ) were
small, so that nonlinear terms could be neglected and
the finite-width pulses of d(¢) could be replaced by the
string of delta functions p(¢).

Clearly, an existing modeling technique cannot be
reproduced without prior knowledge of its form. State-
space averaging represents the small-signal behavior of
switching converters in terms of a linear time-invariant
state equation, driven by a continuous duty ratio modu-
lation function. Now Eq. (15) is linear, but it is definitely
not time-invariant, and the driving term consists of a
string of delta functions. To arrive at a state-space

averaging type of result, some further manipulation is
necessary.

Each of the terms of the differential equation .in
Eq. (15) must be modified in order to obtain a time-
invariant result. The first two terms have time-varying
coefficients, while the third, driving, term actually sam-
ples the continuous signal u(t). The simplest way to
remedy the situation is to replace the offensive time-
varying quantities by their average values. However, this
change will certainly result in a loss of accuracy. The

following analysis attempts to determine the degree of
error introduced.

Suppose first that no duty ratio modulation is
present, that is, p{¢)=0. Suppose further that v,(t)
consists solely of components which vary slowly with
respect to the switching frequency, so that it may be
considered constant over a switching period. Then
Eq. (15) can easily be solved for the state at time
(n+1)T, in terms of the state at time nT,, via a two-step
integration over the intervals [nT, (n+D)T;] and
[((n+D)T,, (n+1)Ts ). '

2[(n+D)T.] = e* P2 [nT,] (16m)
(n+D)T, 16a
A (n+D) =1}, =~
+ f CbwedT
Lo o
4,DT,~
= s T,
€ x[: ;T] R (18b)
+ATH T = Tby
2[n+1)T] = AP TP 20T, ]
+ et Toa 1 AP oo, (17a)
(n+1)7, -
eAg[(ﬂ#l)T’—'r]bav’dT
(n+D)T,
= AT A 1DT'.;:\[‘n.Ts]
+edPToa 1 A yon,  (17b)

+ 451 (T - ooy,

Although this result appears complex, it can be reduced
to a simple form by an invocation of the extremely use-
ful straight-line approzimation. This approximation
states that, as a result of the requirement that the



switching ripple on the states of a converter be small,
the exponential matrices describing the evolution of
these states can be accurately represented, in their
intervals of validity, by the first two terms of their Taylor
series expansions, with all higher order terms neglected.
The use of this approximation, together with the neglect
of all terms of order greater than T, gives a simple yet
accurate approximation of Eq. (17). .

z[(n+1)T] = [I + (DA +D'A)T,)z[nTs]

- (18)
+ (Db, +D'b) T 7,

However, this result is precisely the straight-line approx-
imation to the solution of another, more elementary,
differential equation.

T(t) = AZ(t) + bu,y(t)
A=DA{+D4; , b = Dby + Dby

(19a)
(19b)

This equation is both linear and time-invariant, as
desired for state-space averaging. In fact, it is the result
of the averaging of the time-varying coefficients in the
original equation, as suggested earlier. Hence, with littie
loss in accuracy, Eq. (19) can replace Eg.(15) for the
case p(t)=0, and the original equation has been partly
reduced to the state-space averaging form.

The third term of Eq. (15), given explicitly in Eq. (13).
remains to be examined. This driving term, which
inserts the effects of duty ratio modulation, consists of a
string of delta functions, effectively sampling the con-
tinuous function w (¢).

Kp@) =K (T, 3 ot - (n+D)TBult)  (20)

nE—o

As stated earlier, the state-space averaged model
employs a continuous duty ratio modulation function.
Hence, it is natural to interpret the function u(t) as this
input, and to treat the bracketed factor in Eq. (20) as an
unwanted (for state-space averaging) time-dependent
coefficient. As before, a simple way to remove this
offending quantity is to take its time average.

(k+1)T,

R T, 3 o[t - (n+D)TJdt =1 (21)
Ts kT, n=—o

This step effectively replaces the pulsed duty ratio modu-
lation function p(¢) in the differential equation by the
continuous function u(t). Of course, as with the previ-
ous modifications of Eq.(15). this change introduces
errors into the model, principally in allowing u{¢) to
affect the model at all times, rather than only at a single
instant in each switching cycle, as in the original equa-
tion. Because of this qualitative change in the nature of
the driving term, this modification, in contrast to the
previous manipulations, is not easily justified. It may be
expected that the effects of this change will become
most noticeable for perturbation frequencies approach-
ing one-half the switching frequency of the converter,
since this region is where the difference betwecen the
pulsed and smoothed duty ratio modulation functions
will appear most pronounced.

With these changes, Eq. (15) appears in quite different
form.
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T(t) = AZ(8) + b g(t) + Ku(t) (22a)

A =DA,+DAy , b =Db; + Dby {22b)

K = (A1 —A2)z[(n+D)T] + (b1 = b2)V,  (22¢)
dn = u[(n+D)T,] (224)

Except for the appearance of z[(n+D)T,] instead of the
average steady-state vector X, this equation is just the
state-space averaging model. Indeed, since the ripple on
a state waveform is usually much less than the average
value of that waveform, the average state X can usually
be substituted in Eq. (22) for z[{(n+D)Ts]. A block
diagram of the state-space averaged model is shown in
Fig. 5.

<>
o
»
;

Figure 5. Block diagram of state-space averaged con-
verter model.

The fact that the converter model is only valid for
small perturbations means that the controller equation
need only be a small-signal model. Hence, nonlineayi/tlies
can be neglected in the usual fashion, and dl;bf ratio
modulation can be described, in the Laplacetransform

L . L b
domain, as a linear combination of possibly processed
state waveforms.

3.2 Controller and regulator modeling

O(sY=-HT X(s) (23)

The effective gain vector H, (the superscript "T” means
transposed) may vary with operating point but is fixed
once an operating point is chosen. It may contain fre-
quency dependent terms representing, for example,
filtering or time delays.

The combination of 'Eq.(23) with the Laplace
transform of the state-space averaging Eq. (22) gives an
equation for the duty ratio modulation.

~HI(sI-4) b

G(s) = ——HeI=4) 0
&) =TT HTGI-A

Vals) (24)

From Eq. (24), a loop gain T(s) can be defined, since by
definition the closed-loop poles s, of a system with loop
gain T(s) satisfy T(sp)=~1.

T(s) = HI(sI —A)'K (25)
The stability criterion is that the system is unstable if

any of the closed-loop poles sp lie in the right-half s-
plane.



The state-space averaging approach has been a very
fruitful one {1,3,4,5,8]. The model it presents provides a
simple yet accurate picture of converter operation,
allowing the confident design of regulator systems. In
addition, the linear, time-invariant form of its state
equation allows an equivalent linear time-invariant cir-
cuit model to be developed, which can then be embedded
as an element in a surrounding circuit system.

However, one step in the development of state-space
averaging does not seem to be entirely justified.
Specifically, the replacement of the pulsed duty ratio
modulation function p(¢) by the continuous function
u(t) seems somewhat questionable. In eflect, this
replacement of pulses by a smooth function amounts to
the elimination of a sampler. For low modulation fre-
quencies compared to the sampling frequency (equal to
the switching frequency), the presence or absence of a
sampler will have little effect, but for systems whose
bandwidths approach half the switching frequency it
seems probable that the eflects of sampling cannot be
safely neglected. Later sections will confirm this expec-
tation.

4. REVIEW OF DISCRETE MODELING

State-space averaging has as its goal the creation of
the simplest possible continuous model for the small-
signal behavior of switching converters, a linear, time-
invariant state equation. In this present chapter a

different analysis technique is reviewed. This alternative"

method, the discrete modeling technique of Packard [2],
seeks to describe the small-signal behavior of the con-
verter at only one instant of time during each switching
cycle, saying nothing about the waveforms between these
points.

The treatment in this chapter parallels that of state-
space averaging in Section 3, although the results are of
course different. Again two subsections are used to dis-
cuss converter and regulator modeling, respectively.

4.1 Converter modeling
The development of the discrete modeling technique
begins, as in the case of state-space averaging, with the
fundamental Egs. (13) and (15), rewritten here as
Eq. (28). .
z(t) = [d(t)a, + d(t)Aa]z (t)
+ [d(2)by + d'(2)b2]u,(¢) (28a)
+[(41 - 42)z[(n+D)Ts] + (b3 = b2)V, Ip ()

p(t) = daT, 3, o[t - (n+D)T,] |

n=—-

(26b)

It is important to remember that the only approxima-
tion used in the derivation of this equation was the
assumption that the perturbations in d(t) and v,(¢)
were small, which made the nonlinear terms small
enough to be neglected, and which also allowed the
replacement of the pulses of d(¢) by the delta functions
of p(t). Note also that the continuous, non-unique func-
tion u (¢} is not introduced in this development. .

The derivation begins with the integration of Eq. (26)
over a switching period. The starting point of the

integration is arbitrary, but if it is chosen based on the
type of controller to be used, the control equation can
be simplified. One controller which has been success-
fully employed [7] uses sample-and-hold techniques: the
fed-back signal is sampled at the instants nT,, and this
value, by comparison with a ramp, is used to determine
the duty ratio d, for the n-th cycle. A second method, in
widespread use, involves natural sampling, in which the
fed-back waveform is compared directly against a ramp
to determine the duty ratio. In this case, it is the values
of the fed-back state at the instants of switching,
(n+D)T,, which determine the duty ratio.

Since, as has been mentioned, discrete modeling gives
predictions only for certain instants of time, it is con-
venient to choose those instants to correspond to those
moments at which the fed-back state determines the
duty ratio. This choice makes the problem of regulator
design simpler. The special instants correspond to the
choice of the initial point for the integration of Eq. (28).
In this paper, it will be assumed that natural sampling is
to be employed, so the integration will begin at the
moment (n+D)7T,.

The first portion of the integration covers the interval
[(n+D)T,, (n+1)T,]. The state equation in this interval
reduces to a simpler form because d(¢)=0 and d'{¢)=1.

T =ApT + bg, + KTod o[t ~(n+D)T,]

(27a)
(n+D)Ts < t < (n+1)T,

K =(Ay - AR)z[(n+D)T,] + (by - ba)V,  (27b)
Note that the delta function at (n+D)T, is included in
the integrand for this period, rather than at the end of
the previous period. The reason for this procedure is
somewhat subtle. In regulator analysis, the duty ratio
modulation at time (n+D)T, is determined by
z{(n+D)T,]. the state vector at that instant. If this
state value were to include the effects of the duty ratio
modulation delta function at time (n+D)T,, the con-
troller would know the results of its actions before they
happened, a clear contradiction. To maintain causality
in the model, the duty ratio modulation at time (n+D)T,
must be assumed to affect the state only at times later
than (n+D)T,. not at (n+D )T, itseif. This consideration
is automatically taken into account by the integration
procedure chosen.

After this digression, the formal integration of
Eq. (27) continues.

z[(n+1)T,] = ' P T2 [(n+D)T,] + AP TokT G,

(n4+1)T, (28)

Af(n+)T, v}, -~
fnaD)T, e bougdT

Note that a problem now arises because of the source
modulation v,;. It is not possible to evaluate this in-
tegral explicitly. However, since the main point of the
discrete modeling technique is to predict stability, not
the effects of input variation, the difficulty is eliminated
by the condition v,=0 , as will be assumed from now on
for this method.

Z[(n+1)7,] = AP T2 [(n+D)T,] + *** TekT,d . (292)
v,(t)=0 (29b)



To complete the integration over the remainder of the
switching period, it is necessary to examine the form of

the differential equation in the interval
[(n+1)T,, (n+14+D)T,].
=47 . (M+D)Te< t < (n+1+D)T,  (30)
This equation is readily solved.
ltn+14D)T] = &* e T2 [(n+D)T.] @31y
+ A PTAP Ty g

This result is one of the principal findings of the discrete
modeling method. It is a difference, as opposed to a
. differential, equation, and is both linear and shift-
invariant, the latter property being the discrete
equivalent of time-invariance in continuous equations.
The shift-invariance of Eq. {31) is a cousequence of its
constant coefficients. An important point to notice is
that no additional assumptions or approximations were
used to derive this result from Eq. (28), in contrast to
the derivation of state-space averaging. Thus, it seems
that, at least in some sense, discrete modeling is a more
natural method for the analysis of switching converters
than state-space averaging.

In another sense, however, discrete modeling is dis-
tinctly unnatural, since it gives up the continuous
methods engineers are accustomed to using, and there-
fore renders the Laplace transform ineflective. For-
tunately, another tool is available for these linear, shift-
invariant difference equations. This technique is the z-
transform [8], which converts sequences of numbers
into analytic functions in a z-plane, much as the Laplace
transform converts continuous functions into analytic
functions in an s-plane. Some properties of the one-
sided z-transform used in this thesis are covered in
Appendix A. Application of one of these to the transfor-
mation of Eq. (31) gives a corresponding equation in the
z-plane. )

£(z) = (21 -M)"'MKT, D (z) + (21 -M )2z (0) (32a)
M = AT AP (32b)

Transformed quantities are represented by upper-case
letters, with the type of the transform, Laplace or 2,
denoted by the functional dependence, s or 2, respec-
tively.

4.2 Controller and regulator modeling

In a formal sense, controller and regulator modeling
in the discrete case are very similar to the correspond-
ing analyses for state-space averaging. Since the con-
verter was analyzed in such a fashion that the instants
at which the states are available are the same as the
instants at which the duty ratio modulation is deter-
mined, a simple expression can be used to account for
many feedback schemes.

dp = -Hlz, (33)
Here subscripts, rather than a specific time, are used
with the state vector because the exact time instant
within a cyecle at which the duty ratio modulation is
determined depends on the controller in question. H, is
a vector of effective gains, which may vary with operating

355

point, but are constants once the operating point is
fixed.

The combination of the z-transform of the controller
equation, Eq. (33), with the converter equation, Eq. (32)
(derived for natural sampling, it should be remembered),
gives an expression for the behavior of the duty ratio in
response to a state disturbance.

~HI(2l ~M )12z (0)
1+ HI(zI —-M Y \MKT,

b(z) = (34)

From this equation a loop gain T,(z) can be defined
according to the definition that the closed-loop poles z,
of a system satisfy Ty(zp)=-1.

T.(z) = HI(zI-M)'MKT, (35)
The stability criterion is that the system is unstable if

any of the closed-loop poles z, lie outside the unit circle
in the z-plane.

The development in this section leads to the expecta-
tion that the discrete model should give very accurate
predictions of switching regulator behavior, and the next
section will confirm this belief. Problems with the use of
discrete modeling remain, however. One is the lack of
insight into the method which generally exists in the
minds of engineers. A second drawback is that the
discrete method does not represent the converter state
vector as the continuous quantity it is. In Section 8, a
new modeling technique which eliminates these prob-
lems will be developed. First, however, in the next sec-
tion, the high~-frequency capabilities of state-space
averaging and discrete modeling will be compared by the
use of both methods to analyze a particular form of
regulator arrangement known as current-programming.

%. COMPARATIVE ANALYSES OF CURRENT-PROGRAMMED REGU-
LATORS

In this section, the state-space averaging and discrete
modeling techniques are applied to the analysis of a type
of feedback arrangement known as current-
programming, which makes a nearly ideal test of the
high-frequency capabilities of modeling methods. After
this specific comparison, a more general inspection of
the relative performances of ihe lechniques is rnade.
Four subsections are contained in this section, contain-
ing, respectively, a review of current-programming, the
state-space averaged analysis of the method, the
corresponding discrete analysis, and the more general
discussion.

5.1 Review of current-programming

Current-programmed regulators have become guite
popular in recent years, and have been the subjects of
extensive research [3,9,10]. The technique is illustrated
in Fig. 8, with a boost converter as an example, although
the method can be applied o any converter. Basically, a
current-programmed circuit uses a controller in which
an inductor current is fed back, and in which no
artificially generated ramp is employed. Thus the only
ramp-like slope is that of the switching ripple on the
fed-back inductor current. Note that, as shown in Fig. 8,
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Figure 6. Current-programming applied to a boost con-
verter.

the current-programmed converter is not, in its elemen-
tary form, a voltage regulator; to achieve regulation of
the output voltage an additional signal derived from the
output is fed back in parallel with the inductor current
signal. Equivalently, and as is usually the case in practi-
cal systems, the output voltage feedback signal can be
added to the reference.

A current-programmed converter has several features
which make it quite attractive to designers. First, since
the current of the turned-on power transistor is just the
fed-back inductor current, a limit on the maximum
value of the current reference automatically limits the
transistor current, providing built-in protection.
Second, several converters can be connected in parallel
without any load-sharing problems by the establishment
of a single, overall voltage feedback loop, with each com-
ponent converter receiving the same current reference
signal. Third, the low-frequency dynamic characteristic
of a current-programmed converter possesses one fewer
pole than the same converter without current-
programming.

These three features have been studied exten-
sively [3], and will not be discussed here in detail
Instead, another, distinctly disadvantageous, feature of
current-programming will be used in this work. This
characteristic is the uniform propensity of constant-
frequency current-programmed converters to oscillate
at one-half the switching frequency when the duty ratio
of the power transistor attempts to exceed one-half [3].
Though this phenomenon has been discussed, its nature
has seemed somehow different from other converter
dynamic behavior, probably because the frequency of
oscillation is so high. Usually the analysis of the insta-
bility is carried out separately, with different techniques,
from low-frequency dynamic analysis [3].

An instability is an instability, however, and whether
at low or high frequency, its consequences are usually
disastrous. Hence, an accurate modeling technique
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should provide predictions of both high-and-low-fre-
quency dynamic behavior, including instabilities. The
well-defined nature of the current-programming oscilla-
tion {occurring in all the basic converters for duty ratios
greater than one-half, at one-half the switching fre-
quency) makes it a natural choice to serve as a test of
the high-frequency capabilities of various modeling tech-
nigues. ’

5.2 State-space averaged analysis of current-programming
Consider the current-programming modulator

waveforms shown in Fig. 7. From Fig. 7b, the form of the
controller equation is easily seen.

iL“

reference

nT,

{n+d,)T, {n+D)T,

{(b) expanded view of (a)

steady-state

— s e oerturbed

Figure 7. Current-programming modulator waveforms.

- L[(n+D)Ts] - i
d, e = - ———= - —_—
nis t u T, (36)

Here r, is the slope of the steady-state rising current
waveform, and 7, is the magnitude of the steady-state
falling current slope.

The loop gain, as given by Eq. (25) in Section 3, will
now be evaluated for a current-programmed regulator.
Consider a two-state circuit, the two states being an
inductor current i; and a capacitor voltage v¢.

i

~

Ve

z (37)

Now, because the converter is a low-pass system, the
dynamics of the state matrix 4 are low-fregquency in
nature. In a discussion of a high-frequency phenomenon



such as the subharmonic oscillation of current-
programming, these low-frequency effects can be ignored
by the substitution A =0. This step also generalizes the
analysis by making it applicable to any two-state con-
verter, and 1is in contrast to previous current-
programming analysis [38], which concentrated on low-
frequency effects and neglected high-frequency terms.
From Egq. (23) of Section 3 the eflective gain vector H,
can be determined.

1
TlTs

H, = o (38)

It remains to determine the vector X. Examination of
the expression for K in Eg. {22) and the original state
equations for the converter, Eq. (1), shows that the com-
ponents of K are just the differences between the steady-
state rates of change of each state variable just before
and just after the time (n+D)7Ts. For the inductor
current these slopes are 7, and -7 respectively. The
other component of K will prove to be irrelevant.

Ty + 72
K=[ _ :! (39)

Substitution of these two equations into the loop gain
formula, Eq. (25), with 4 =0, gives an explicit expression
for this particular loop gain.

T1+ 72 1
Tt STS

T(s) = (40)

Since the closed-loop pole s, satisfies T'(sp)=~1, its loca-
tion can be easily found.

1 Ty +7g
Ts Tt

Sp =

(41)

This high-frequency pole is the one which appeared to
vanish in previous analysis [3], where the order of the
system was apparently reduced by one. This disappear-
ance occurred because high-frequency effects were pur-
posely neglected in that study. Conversely, because of
the substitution 4=0 , this analysis neglects low-fre-
quency effects, and hence does not uncover the low-fre-
quency pole and zero previously found {3].

The crucial aspect of the pole s, in Eq. (41) is that it
always lies in the left-half s-plane. This position implies
a stable system. Hence, state-space averaging has failed
to predict the known instability in this feedback tech-
nique.

5.3 Discrete analysis of current-programming

The discrete analysis of current-programmed regula-
tors parallels that of state-space averaging exactly,
although the resuits do not. Again, only converters with
two state variables are considered, and the state vector
is chosen to be the same as before. Examination of the
waveforms in Fig. 7 reveals the control law in the
discrete modeling format.

. _ i [(n+D)T,]

= 42
dn — (42)
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Note that the converter model developed in Section 4
gives the states at exactly the instants required by the
control law, as desired. The effective feedback gain vec-
tor H, is seen to be identical to the corresponding vector
in the state-space averaged analysis.

1
71T
H, = (43)
0

Similarly, the vector K is the same as in the state-space

averaged case.
T1+T2
(44)

As before, only one component is significant for this cal-
culation. Finally, because the dynamics represented by
the M matrix in Eq.(32) are much slower than the
sought-after high-frequency phenomena, this matrix is
approximated by the unit matrix.

K =

U = APTe 40Ty

I (45)
This step is equivalent to the substitution 4A=0 in the
state-space averaged analysis. The loop gain T,(z) can
now be easily found. ’

T+ T2 1

L) = = 7=%

(46)
The rates of change r, and r, may be replaced by the

duty ratio by means of a relationship which can be
derived from Fig. 7. )

Dry = D'ry (473)

T2 . D

" D (47p)
AIm:z

z-plone lzl=1

Figure 8. Root locus of discrete
programming pole.

modeling current-



Substitution of this relation into Eq. (48) gives a simple
result.
11

() = Dz-~1

(48)

The closed-loop pole z, satisfles T,{z,)=~1, and is easily
evaluated.

-2
D

zZp = (49)
The locus of this pole as a function of duty ratio is shown
in Fig. 8. It is seen that even this approximate discrete
modeling analysis reveals a subharmonic instability
when the duty ratio reaches 0.5, exactly the behavior
seen in actual current-programmmed regulators.

The appearance of only one pole, while the original
system had two states, is a consequence of the choice
M=1, just as the substitution A=0 in the state-space
averaged analysis of current-programming gave only a
single pole. In reality there are two poles, but one is
close to a zero, near z=1, as shown in Fig. 9. The choice
M =] makes this pole cancel exactly with the zero, but
the cancellation is not perfect for a non-unity ¥ . In
addition, a non-unity M may affect the critical duty ratio
at which the converter goes unstable.

dim:

z-plone

X% Re z
Figure 9. Actual pole locations for a current-

programmed regulator.

It has been found that if the ramp formed by the
inductor current is supplemented by an artificial ramp,
the subharmonic instability can be removed [3]. In fact,
a particular choice of artificial ramp slope has been
shown to eliminate any current error in one switching
cycle. This compensation technique can also be analyzed
with use of the discrete modeling technique. Consider
the current-programmed modulator of Fig. 10, to which
an artificial ramp of slope 7 has been added. From this
figure, a new contro! law is easy to determine.

?'L[(n +D)Ta] = "(1‘14"1'3)&,‘7‘5 (505)
~ ;L[(""'D)Tsj
dn = = o), (50b)
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Figure 10. Current-programming waveforms in the pres-
ence of an artificial ramp.

The loop gain for this case can be evaluated by use of
this new control law in place of the old one.

T1+1'g 1
ri+7TR 2 -1

(51)

Ty(zirg) =

The new closed-loop pole location is also easily found.

TR — T2

Zp = (52)

TR+ T

Examination of this equation shows that the choice
TR=r; places the pole exactly at the origin of the z-plane,
corresponding to the elimination of current errors in
one cycle, as illustrated in Appendix A. This result is
exactly that found previously [3].

A few more words on current-programmed systems
are appropriate at this point. By itself, a current-
programmed circuit does not constitute a voltage regu-
iator; the output voltage must be fed back in addition to
the inductor current to achieve output regulation. This
system can be analyzed as a multi-loop feedback prob-
lemn; however, since the current feedback loop is already
determined, another approach is to treat the current-
programmed circuit as a new plant about which voltage
feedback is to be applied, as illustrated in Fig. 11. Here
the gain h; is already chosen via the current-
programming and any artificial ramp used; only hp is to
be determined. The effects of variations in Az on the sys-
tem dynamics can be explored with the use of a root
locus diagram. The '"open-loop” poles of this root locus,
that is, the poles when hg is zero, are just the closed-loop
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Figure 11. Addition of voltage feedback to a current-
programmed regulator.

poles of the current-programmed circuit, since this
closed-loop system is the 'plant"” for the voltage feedback
analysis. The zeros of the voltage feedback loop gain are
determined by the details of the converter in question. A
possible resulting root locus is shown in Fig. 12. In this
example, the high-frequency "open-loop" pole is seen to
lie roughly halfway between the z-plane origin and the
unstable point z=-1, and the loop gain zero is assumed
to lie outside the unit circle. As the gain hj; increases,
the system poles migrate according to the usual root
locus rules. Note in particular that both poles are head-
ed for the unit circle. The point at which one of them
first touches the unit circle marks the onset of instabil-
ity.

4\ Imz

z-plone
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»O— Re z

Figure 12. Possible root locus when voltage feedback is
added to a current-programmed regulator.

An important aspect of this example is that, in the
discrete analysis, the high-frequency pole behaves just
like any other pole. There is nothing magical about it.
In particular, this analysis shows that it is misleading to
think that it is possible to position the high-frequency
pole via current-programming and then, independently,
apply voltage feedback to obtain a regulator; this point
of view neglects the effects of the voltage feedback on
the high-frequency pole, which migrates like any other
pole when feedback is applied. Thus, it is entirely possi-
ble that a current-programmed regulator designed to be
stable in the absence of voltage feedback will develop a
subharmonic instability if excessive voltage feedback is
applied.

Thus far, the emphasis in this section has been placed
on the differences between state-space averaging and
discrete modeling predictions for current-programmed
circuits. However, the qualitative differences in results
given by the two techniques are not limited solely to this
one application. Indeed, it is easy to see that any regula-
tor whose state-space averaged loop gain looks like a sin-
gle pole at high frequencies will-be expected, according
to state-space averaging, to have no high-frequency
instabilities, but that the corresponding discrete model
of the system will predict subharmonic oscillations if the
gain of the loop is made too large. This difference is
illustrated in Fig. 13.

Im s Im2

s-plane z-plone

lzi=t

3¢ > Res -y Re z

a) state-space averaging b) discrete modeling

Figure 13. Comparison of state-space averaged and
discrete roof loci for a single pole system.

The comparisons of this section have demonstrated
that state-space averaging develops inaccuracies at high
frequencies, while discrete modeling remains accurate.
However, the problems with the use of the discrete
method, which were discussed earlier, remain. What is
clearly needed is a modeling technique which possesses
the continuous form of state-space averaging, while
retaining the accuracy of discrete modeling. In the next
section, such a technique is introduced.

8. SAMPLED-DATA MODELING

As stated in the previous section, it is desirable to
have a modeling technique which possesses the continu-
ous form of state-space averaging and the accuracy of
discrete modeling. This section develops such a model
and demonstrates its accuracy by applying it to
current-programmed regulators.
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6.1 Converter modeling

Both the state-space averaging and the discrete
models were developed from the same equations,
Egs. (13) and (15), repeated here as Eq. (53).

z(t) = [A(t)A, + T()A)2(t)

+[d(t)by + d'(t)b2luy(t) (53a)

+[(4,-4)z[(n+D)T] + (bx‘ba)VgE(t)
Ft)= 3 dalsslt-(n+D)T.]

T (53b)

=a(t)T, 3 8[t—(n+D)T,]

n=—xn

The only approximation used in the derivation of this
equation was to assume that all perturbations about the
steady state are small. The discrete modeling technique
made no further approximations in arriving at its final
form, but state-space averaging, it will be recalled,

required some additional modifications. It is not too -

surprising then, that the predictions of the two models
differ.

Two steps were necessary to convert Eq. (53) into the
form of state-space averaging. The first was to retain
only the_ average values of d(t)4;+ d'(¢)Az and
d{t)b, + d'(t)bg, dropping the components at and above
the switching frequency. The second step was to smooth
out the pulsed nature of the driving term p(¢), convert-
ing it into a continuous function. It is natural to ask
whether one of these steps was more responsible than
the other for the degradation of the ability of state-
space averaging to predict the subharmonic oscillations
of current-programmed regulators. This question will be
answered in this section by consideration of a model
which, in a sense, lies between the state-space averaging
and the discrete modeling techniques.

The new model is obtained by use of only one of the
two approximations adopted in the development of
state-space averaging. _Specifically, the time-varying
components of d(¢)A + d'(¢)A and d (¢ )by + d'(t )by are
neglected, but p(t) is not modified. Recall that in Sec-
tion 3, this first step was shown to be related to the
straight-line approximation, a good assumption, while
the modification of p(¢) was less well justified. A new
state equation is thereby obtained.

2(t) = AZ(t) + bu,(t) + Kp(t) (54a)

A =DA,+D4A,, b =Dby+ Dby (54b)

K = (A1-A)z[(n+D)Ts] + (b1=b2)V; (54c)
p(t) = 3 dnTolt~(n+D)Ts]

T (544)

=a(t)Ts 3 o[t—(n+D)T]

n=—m

A simple time translation is now performed so that the
pulses occur at times n7g, a standard form.

Z(t) = AZ(t) + bo,(t) + Kp(t) (55a)

p()= 3 duTeelt-nT:]
~ . (55b)
=u(t)T, Y, o[t-nT,]

n=—m

The time translation is assumed to be understood; the
notation for the functions involved is unchanged, as are
the values of 4, b, and X.

This model is called the sampled-data model because
it has exactly the form of a sampled-data system. In
such an entity, continuous signals flow through a con-
tinuous system, except for one or more points where sig-
nals are applied only at equally spaced time intervals,
with no information being received between the samples.
The equation is linear, but, if u(¢) is considered to be
the input, it is not time-invariant, since a transiation in
1(t) by anything other than a multiple of T will not
result in simply a corresponding shift in the original out-
put. A block diagram of the system is shown in Fig. 14.
Here the definition of sampling a signal u{¢) to obtain a
sampled signal u*(¢) is slightly different from the usual
practice.

>

\7' o—] b —ﬂ%}d—-— A

Figure 14. Block diagram of sampled-data model.

R OEOLI. (A (56)

n=—o

The individual delta functions each has a weight
u(nTy)Ts, not just u(nTy).

Since the sampled-data model results in a continuous
system, the appropriate analysis tool to employ is the
Laplace transform, as it was for state-space averaging.
In the present case, however, some new transform rela-
tions must be developed to deal with the pulse strings
which occur in the driving term p(t). Appendix B
presents some important formulas in this regard. The
symbol V*(s} will denote the Laplace transform of a sam-
pled signal v*(t), whose original, unsampled waveform
was v (¢ ), with Laplace transform V(s).

6.2 Controller and regulator modeling

The block diagram of Fig. 14 suggests that, as for
state-space averaging, a good controller model will con-
struct the function u{¢) as a linear combination of sig-
nals obtained by filtering and other processing of the
states. However, in this case, care must be taken



because of the presence of the delta functions produced
by the sampler. These spikes have an instantaneous
effect ‘at the output of the integrator block of Fig. 14,
and hence their effects can potentially influence their
own creation, much as an incorrect handling of these
pulses in Section 4 could have given an incorrect
discrete model. In fact, if the problem in the sampled-
data model is simply ignored, a non-causal system will
result. To eliminate this defect, a small time delay ¢ is
included in the modulator path; this delay, which is
eventually allowed to go to zero, prevents the instantane-
ous transmission of the delta functions’ influences and
hence restores causality. With this addition, the con-
troller model can be stated.

u(t) = ~HIz(t-¢)
O(s) = -HTe~=X(s)

(57a)
(57b)

The Laplace transform of Eq. (55) provides the plant
description.

X(s)=(sI-4 )"bl7g(s) + (sI~A)"1KT *(s)

- (58)
+ (s -A4)"'z(0)

When combined, Egs. (57) and (58) give an expression for

the duty ratio modulation as a function of input voltage

and initial state perturbation.

T%s) = -HIle =X (s)]* (59a)
= —HIle™(sf-A ) oV ,(s)]"
— HI[e*(sT -4) KU *(s)]" (59b)

-Hl[e=*(sI ~4)']"z(0)

A result stated in Appendix B allows the sampled Laplace
“transform U *(s ) to be removed from any additional sam-

pling, and hence this equation can be solved for 73 (s)
—HI[e™s(sI-4 )"bV,(s)]'

1+ HIe(si-4)'I'K

U%s) = (80)

Here a zero initial state is assumed. From Eq. (80), a
loop gain.T5(s) can be defined.

Ti(s) = Hl[e™*(sI-A)"'T'K (81)
The subscript “s” is necessary to distinguish this loop
gain from the sampled version of the state-space aver-
aged loop gain T(s). The solutions of the equation
1+T_:(s)=0 are the closed-loop poles s, of the system. As
mentioned previously, when a set of calculations involv-
ing these quantities is completed, the artificial delay € is

allowed to go to zero. This limit is understood in Eq. (61)
and in all subsequent expressions.

6.3 Sampled-data analysis of current-programming

The steps involved in a sampled-data analysis of a
current-programmed switching regulator are, as in the
discrete case, completely parallel to those for a state-
space averaged analysis. First, low-frequency effects are
neglected, a step which also makes the analysis applica-
ble to all converters with two state variables.

A=0 (62)
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Next, the effective feedback gain vector and the relevant
part of the forcing vector are calculated.

1
1T
H, = (83a)
0
Ty47T2
K= (83b)

Finally, the sampled-data loop gain is evaluated from

Eq. (61).
T(s) = ?1; (ﬁ) Titre

(64)

s T

From Appendix B, the appropriate sampled Laplace
transform can be found.

L] Ts

= 7T,
s e®

*-1

(65)

Thus, an explicit form of the loop gain can be con-
structed.

7'1+7'z 1

i) = T

(68)

The positions of the closed-loop poles s, can be deter-
mined as the roots of T5(s,)=-1.

epTl=_2

T

D
DI

(87)

Here the last equality makes use of Eq. (47). There are
infinitely many solutions to this equation.
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Figure 15. Current-programming poles from a sampled-
data analysis.



L m(- 7’,’7) =2 ln(%)-#j(n-&%)w, (88)

A plot of these poles in the s-plane appears in Fig. 15.

It is easily verified that for D< D', that is, for duty
ratios less than 0.5, the real parts of these poles are all
negative, indicating a stable systern with all poles in the
left-half s-plane. Conversely, for duty ratios greater
than 0.5, D> D', and the poles lie in the right-half s-
plane, implying an unstable system. This prediction
matches exactly the observed behavior of current-
programmed regulators.

Thus, the goal of a modeling technique with the con-
tinuous form of state-space averaging and the accuracy
of discrete modeling has been realized in the sampled-
data model. In the next section, this new model will be
compared extensively to its precursors, with results that
allow easy transformation from one to another, and per-
mit greater understanding of all.

7. SAMPLED-DATA MODELING AND ITS RELATIONSHIPS WITH
DISCRETE MODELING AND STATE-SPACE AVERAGING

The previous section introduced a new modeling tech-
nique, sampled-data modeling, which possesses a con-
tinuous form like that of state-space averaging, yet
which displays ~ accuracy, at least for current-
programmed regulators, comparable to that of- discrete
modeling. The purpose of the present section is to
explore the relationships between this new technique
and the two previously known methods, displaying thelr
similarities and differences, and showing how to
transform between them. In addition, some general pro-
perties of the sampled-data loop gain will be developed.
In this section, current-programming is no longer given
special treatment; the results achieved here are applica-
ble to many kinds of switching regulator systemns.

7.1 Sampled-data modeling versus discrete modeling

The comparison between the sampled-data and
discrete methods can be carried out in both the time
and transform domains. Consider first the time domain.
To compare the sampled-data method with the discrete
method, it is necessary to integrate the sampled-data
equation over one switching period. The appropriate
sampled-data equation, obtained from Eq. (54), is stated
here as Eq. (89). The source perturbation v, is taken to
be zero, in accordance with the discrete model’s assump-
tions.

Z =AZ + KdnT,6[t-(n+D)T,] (69)
(n+D)Ts < ¢t < (n+1+D)T, :

The integration is straightforward.
2[(n+14D)T,]1 = A2 [(n+D)T.] + ¢*"*KT,d, (70)

Compare this result with the corresponding expression
for discrete modeling, Eq, (31), repeated here as Eq. (71).

[ +14D)Ts] = e* Pl Tz [(n+D)T,)

+ AT AP Toy Todn

(1)
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The sole difference is the replacemnent of the expression
e? PTegA0 T, by the matrix ¢ *=¢ ! s*742%  This
replacement is justified by the straight-line approxima-
tion, since both expressions have the same first-order
expansions.

e? PTe g% o (144 DT, ) +4.D'T,) (72a)
R I +ADT, +AD'T, (72b)
=1 +AT, (72¢)
r gt - (72d)

Because the straight-line approximation is an excellent
assumption for switching converters, the two methods
are virtually equivalent in the time domain.

Similarly, in the transform domain, a close relation-
ship exists between the sampled-data loop gain Ts(s) and
the discrete loop gain T,{(z). As reviewed in Appendix C,
if these two loop gains truly reFresent the same system,
the change of variables z =e" " should transform one
into the other. The sampled-data loop gain T(s) is given
by Eq. (81), repeated here as Eq. (73).

Ti(s) = HIle™*(sI-4)'1'K (73)

Recall that the delay ¢ is required to preserve causality,
and is eventually aliowed to go to zero. This equation
can be manipulated into a different but equivalent form.
If the numbers v{(nT,) are the sampled values of a func-
tion v(¢), the sampled waveform’'s Laplace transform
can be written as an infinite series involving these
values. This expression is stated in Appendix B, and is
repeated here as Eq. (74). '

Vi(s)Y=Ts i v (nT,)e-mr' (74)
n=)

The time function corresponding to the Laplace
transform (s/-A4)"! in Eq. (73) is easily obtained from
consideration of an appropriate matrix differential equa-
tion.

m =Am ; m{0)=/ (75a)
M(s)=(sI-4)™! {75b)

0 ift< O
m{E)= Y a ez 0 (75¢)

The values of the matrix function m(t) at times nT, are
not precisely the numbers to be inserted in Eq. (74),
however; the delay e~ present in Eq. (73) adds a lag in
the time sequence, causing the first term of the series in
Eq. (74) to vanish.

[e=(sT ~4)"]" = T, 3 &* e

n=t

(78a)
=Te (1 —e"'e-'r')" ehTeg T {78b)

=T, (esr'l - e"‘)"e”’ (78c)



In the last step the delay £ was allowed to go to zero, hav-
ing served its purpose in eliminating the first term of the
series. The loop gain Tg(s) can now be written in this
new form.

To(s)=HT (e'r‘] - e"')“ e”'KT, (77)

This expression can be directly compared with that
for the discrete loop gain T,(z), Eq. (35), repeated here
as Eq. (78).

Te(z) = HI(zl - M) \MKT,
M = gA1PTe AT,

(78a)
(78b)

It is assumed that the two models are defined such that
the effective feedback gain vectors H, are the same.
Then if, as in the time domain discussion, the straight-
line approximation is valid, that is, M~Ne T‘. the two loop
gains are related by the change of variables z=esr', and
are two equivalent representations of the same system.
Hence, their stability predictions will be nearly identical.

Thus, in both the time and transform domains, the
only difference between the sampled-data model and the
discrete model was found to be the straight-line approxi-
mation. This result should not be surprising: while
discrete modeling uses only a small-signal assumption,
the sampled-data method invokes the straight-line
approximation as well. Hence, results like those found
here should be expected.

Another feature is that, in actual calculations with
the discrete modeling technique, the straight-line
approximation is generally used to compute the
matrix M. In such cases, the sampled-data and discrete
representations of the loop gain become completely
equivalent, and cither representation can be used. The
close relationship between the sampled-data model and
state-space averaging. to be discussed in the next sub-
section, provides one example where use of the
sampled-data model is more convenient.

7.2 Sampled-data modeling versus state-space averaging

The relationships between sampled-data modeling and
discrete modeling occur strictly on an abstract, func-
tional level, since the two representations have com-
pletely different forms. However, both the sampled-data
and the state-space averaged models are continuous in
nature, and it may be expected that more physical rela-
tionships exist between these two techniques.

Indeed, a comiparison of the Laplace-transformed
block diagrams of the two in Fig. 18 reveals just such a
relationship. These figures are adapted from Figs. 5
and 14, but include the feedback paths not previously
shown. The only subsiantial difference between the two
block diagrams is the presence of the sampler in the
sampled-data diagram. All of the diferences between
the two models can therefore be ascribed to this ele-
ment. and one model can be transformed into the other
by the addition or removal of this sampler, together with
the addition of the delay e, if necessary, to maintain
causality.

A similar comparison can be made of the time domain
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Figure 18. Comparison of block diagrams of stale-space
averaging and sampled-data modeling.

equations for the two models, adapted from Egs. (22)
and (55), and rewritten here as Eq. (79).

Az + by s + Ku (state-space averaging) (79a)
AT + by, + Ku® (sampled-data modeling) (79b)

T =
xr =

2t =u(t)T, 3 ole-nT]

7 Metn

(79c)

Again the difference between the two models is seen to
lie in the sampled-data equation’'s pulsed driving
waveform, which does not appear in the state-space
averaged resuit.

Finally, a comparison of the two methods in the fre-
quency domain can be undertaken. The loop gains for
the two techniques are given in Eg. (80), adopted from
Eqs. (25) and (61).

Ts)=Hle®=(sI-A)'K
Te(s) = HIle®(sI-A)']'K (sampled-data)

(80a)
(80b)

(state-space)

Here a small delay ¢ has been included in the state-space
averaging result to stress its similarity with the
sampled-data analysis. This addition does not affect the
state-space averaged loop gain as it does the sampled-
data one: there are no delta functions driving the state-
space averaged equation, so infinitely fast signal propa-
gation through the integrator is not a problem and
causality is already firmly established. Thus, when & is
made to go to zero, it will leave no effect on the state-
space averaged loop gain,

With this slight modification, the sampled-data loop
gain is just the sampled version of the state-space aver-
aged loop gain.

Ti(s) = [Ts)) (81)



In Appendix B, a relationship, repeated here as Eq. (82),
between the Laplace transform of a sampled function
and that of its unsampled version is stated.

[T()]' = 3 T(s+inw,) (82)

Nn=—ce

This relationship is illustrated in Fig. 17 for a low-pass
function T(s), like those usually encountered in switch-
ing regulator analyses. As can be seen from the figure,
at frequencies well below one-half the switching fre-
quency the two functions agree almost exactly.
Discrepancies only arise at relatively high frequencies,
where overlap between successive”reflections” of the loop
gain becomes significant. Thus, state-space averaging
can be viewed as a limiting case of the more powerful
sampled-data technique; the state-space averaged
results are valid in situations where the system
bandwidth is well below one-half the switching frequency.

a) unsampled
ITI

Y

b) sampled

i l\\ i ;f
-f, -fgr2 0 fg2  f

Figure 17. Relation between sampled and unsampled
Laplace transforms.

This result demonstrates that it is not always neces-
sary to use the sampled-data model in the design of a
regulator system. In many cases, the system bandwidth
is limited to a value much less than the switching fre-
quency by characteristics of the converter or controller.
One example of such a characteristic is the existence of
a right-half-plane zero in the loop gain. The differences
between the state-space averaged and sampled-data
models are superfluous here: the loop gain must be far
below unity gain well before one-half the switching fre-
quency, but, as was just shown, the sampled-data and
state-space averaged loop gains diverge only at high fre-
quencies.

The usefulness of the sampled-data analysis occurs
when state-space averaging predicts stability even for
system bandwidths very close to one-half the switching
frequency. A common instance of this situation is that
of a state-space averaged loop gain which looks like a
single pole at high frequencies, and which therefore
predicts stability for any value of gain. Consider such a
single-pole loop gain.

(83)
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The corresponding sampled-data loop gain is easily cal-
culated.

2nfe/Ts

T(s) =
s esT, -7

(84)

In Eq. (84), the delay ¢ has already been made to vanish.
The crossover frequency of the state-space averaged loop
gain, the frequency at which [T(s)|=1, is f., and the
switching frequency is fs. These two functions are plot-
ted in Fig. 18 in the form of Bode plots, from which sta-
bility information can be easily obtained. Contrary to
the state-space averaged prediction, the sampled-data
loop gain indicates that instability can indeed occur. In
fact, the case shown is on the verge of instability. The
phase of the sampled loop gain fallis to -180° just as the
magnitude reaches one, at one-half the switching fre-
quency. A condition for the maximum value of f. for
stability can be easily derived from Eq. (84).

fs

fe < o for stability (85)

Of course, for an adequate stability margin, the value of
f. chosen must be considerably below the maximum
allowable.

mag. )

-180°

Lo ¢

Figure 1B. State-space averaged and sampled-data loop
gains for a single-pole system

The relationship between the sampled-data and
state-space averaged loop gains given in Eq. (82) is of
mainly qualitative interest, providing a visualization of
the connection between the two. Another, more quanti-
tative relationship can also be developed, based on the
equivalent representation of the sampled-data loop gain
Ts+(s) given in Eq. (77), repeated here as Eq. (86).

Ts) = HI ("1 — Tyt ek, (86)
The straight-line approximation permits the replace-
ment of the exponential matrix e '* by the first two
terms of its Taylor series expansion. Suppose the expon-

ential form e° * is similarly approximated by the first
two terms of its Taylor series. This step is equivalent to



the assumption that the frequencies of interest are
much less than the switching frequency.

T,
e’ w 1+5sTs .,

sTs << 1 (87)
With these approximations the sampled-data loop gain
T:(s) can be rewritten in an approximate form.

T;(S)l sT,

T(of —AY-1
oTrtas, R Ho(sI-AY Y (I + AT)K (88)
The matrix /+47, acts as a correction to the vector K.
Owing to the straight line approximation, this correction
is often small, and may be assumed negligible with only a
small loss of accuracy.

Ti(s) N HI(sI-A)'K = T(s) (89)

u'r' -+ 14sT,

Thus, with this transformation, eST'—> 1+sTs. the
sampled-data loop gain is transformed, to a good
approximation, into the state-space averaged loop gain.
As a test of this relation, consider the previous example,
which treated the specific case of a state-space averaged
loop gain with a single pole. An application of the
transformation to the sampled-data loop gain of Eq. (84)
should result in the recovery of the state-space averaged
loop gain.

enfe/fs 5 2nf./Ts

esT, -1 STS

_ 2nfe
=~ (90)

Ti(s) =

The last expression matches the state-space averaged
form Eq. (83), and the transformation is verified for this
case.

Thus, the sampled-data and state-space averaged loop
ggins are approximately related by the transformation
e "> 1+sT,. Recall that the sampled-data and discrete
modeling loop gains were similarly related by a transfor-
mation e*'*> 2. There is a difference between these two
cases, however. The relationship between discrete
modeling and sampled-data modeling is valid for all fre-
quencies, reflecting the fact that the accuracies of the
two techniques are comparable. However, the result of a
transformation of a sampled-data loop gain via the sub-
stitution e* *- 1+sTs agrees with the original only at fre-
quencies which are low compared to the switching fre-
quency. Otherwise, the transformation is no more than
a change of variables, with "s” at the end no longer being
the true complex frequency. This restriction refiects the
fact that the two methods only agree at low frequencies,
with state-space averaging losing accuracy at higher fre-
quencies.

The relationships between the sampled-data and
state-space averaged models having been developed, it is
well to conclude this subsection with a review of the ori-
gin of the difference between the two, specifically, the
sampled-data model's increased high-frequency accu-
racy. Both techniques utilize the straight-line approxi-
mation, which allows the time-varying portions of the
converter state matrix and forcing vector to be
neglected, with only their average values being kept.
However, the sampled-data technigue stops at this point,
retaining the pulsed nature of the duty ratio modulation
function, while state-space averaging continues by
replacing this pulse string with a smooth function. Thus,
state-space averaging assumes that feedback can be
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applied continuously, at any frequency, while the
sampled-data technique correctly asserts that control
can be exercised at only one moment in each switching
cycle. This property increases a regulator's tendency to
oscillate at high frequencies, since the controller may
not be able to act quickly enough in response to state
variations to restrain them. The recognition of this ten-
dency in the sampled-data model, and its neglect in
state-space averaging, are the origins of the differences
between the two methods.

7.3 Properties of the sampled-data loop gain

The previous two subsections have emphasized the rela-
tionships between the new sampled-data modeling tech-
nique and the discrete and state-space averaged
methods. In this present section, attention will be
focussed solely on the sampled-data method, and in par-
ticular on the sampled-data loop gain. In many of its
applications, for example, when displayed on Bode or
Nyquist plots, the loop gain is considered to be a func-
ton not of the complex variable s, as it has been so far
in this thesis, but rather of the frequency f. The discus-
sion here will also restrict the loop gain's dependence to
this range.

s =jenf {91)

When considered as a function of frequency, the
sampled-data loop gain possesses certain general pro-
perties which cause its plotted characteristic to be quite
striking. These features are readily discernable from a
particular representation of this function. This form,
derived in Section 7.1, is repeated here as Eq. (92).

T(jenf) = HI (¥ Ty - ATy 1Tk, (92)

One property of the sampled-data loop gain is derived
by the replacement of the frequency f in Eq.(92) by
f+fs. Since e/?"=1, the sampled-data loop gain is
unchanged by this substitution, and is therefore
periodic, with the switching frequency fs as the period.
Recognition of a second characteristic results from
evaluation of Eq.(92) for the cases f=0 and f=f,/2.
Since ¢/"=-1, and the other components are real vectors
and matrices, in these two instances the loop gain T,
becomes purely real. The combination of this charac-
teristic with the periodicity of the function implies that
the sampled-data loop gain is real at each multiple of
one-half the switching frequency.

Finally, consider the substitution f- f,—f in Eq. (92).
Tli2n(f~f)] = HI (e 75" 7op — e*Te)t 64Tk, (93)

This expression also results from the evaluation of the
complex conjugate of the loop gain at the frequency f.

Tilienfl=HI(e 3 Ty - AToy14Tgr (9a)

This step used the fact that the conjugate of a matrix
inverse is the inverse of its conjugate. The resulting
equality reveals two symmetries of the sampled-data
loop gain.

Tli2n(fs—f)1 = Toli2ns] (95)



Consideration of the magnitudes of the two expres-
sions in Eq.(95) shows that the magnitude of the
sampled-data loop gain possesses even symmetry about
one-half the switching frequency. The imaginary com-
ponent of this equation, on the other hand, implies that
the imaginary part of the sampled-data loop gain must
be odd about one-half the switching frequency. Hence,
the phase is odd about its value at one-half the switching
frequency. This particular value of the phase must be a
multiple of 180° since, as was shown earlier, the loop
gain is real at this frequency.

The combination of these three findings with the low-
pass nature of switching converters results in a picture
of the sampled-data loop gain something like that in
Fig. 19. This general figure is quite useful for the deter-
mination of certain design implications of the sampled-
data loop gain. For example, it is evident from this
figure that the highest possible loop gain crossover fre-
quency is one-half the switching frequency: if the cross-
over frequency were any higher, the loop gain would
never fall below unity magnitude, and instability would
be unavoidable. This property is due to the fact that
control is only exercised once in each switching cycle;
the most rapidly varying signal which can be propagated
through this discrete controller has a period of twice the
switching period.

$im

sson”l L
-t 172 ) ) fs

Figure 19. General features of the sampled-data loop
gain.

This section has compared the new sampled-data
modeling technique with the discrete modeling and
state-space averaging methods, and has determined
some general properties of the sampled-data loop gain.
As a result of these exercises, the relationships among
these three techniques have become clearer, and the
position of sampled-data modeling among them has been
made more evident.
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8. CONCLUSIONS

In this paper, the development and high-frequency
predictions of two switching regulator analysis methods,
state-space averaging and discrete modeling, were com-
pared. As a result of this comparison, a new modeling
technique, the sampled-data method, was developed.

In Section 2, an equation describing the small-signal
behavior of switching converters was developed. An
important feature of this equation is that, other than a
small-signal assumption used to obtain a linear equa-
tion, no approximations are required in its derivation.
While too complicated to be directly useful in switching
converter modeling, this equation can serve as a basis
from which various modeling techniques can be
developed.

State-space averaging, a widely used modeling
scheme, was treated in Section 3. Its governing idea is
the modeling of a switching regulator by a linear, time-
invariant, matrix differential equation. Examination of
its derivation revealed that, besides the small-signal
assumption required for linearity, two modifications are
involved. The first is related to the straight-line approxi-
mation, which is known to be an excellent approximation
for. switching converters. The second modification
involves the smoothing of a pulsed driving signal into a
continuous function. No justification is readily apparent
for this step, and this approximation was noted as a
potential limitation on the high-frequency capability of
the state-space averaged technique.

In Section 4, the discrete modeling technique was dis-
cussed. Rather than using a continuous model, it
represents a regulator by a linear, shift-invariant matrix
difference equation. It was seen that only the small-
signal approximation is used in its derivation. Thus, this
modeling technique is expected to maintain cxcellent
accuracy even at high frequencies. However, the
method’'s unusual form makes its application difficult
for someone unaccustomed to discrete systems, and
does not convey the continuous nature of switching con-
verter waveforms.

A feedback arrangement known as current-
programming was introduced in Section 5. This regula-
tion method is known to possess a well-defined high-fre-
quency instability, and is thus a natural choice for a test
of the high-frequency capabilities of state-space averag-
ing and discrete modeling. When applied to this system,
state-space averaging fails to predict the instability, thus
confirming the doubts concerning its high-frequency
capability. On the other hand, discrete modeling
correctly predicts the current-programming instability,
and can also be used successfully to investigate other
aspects of current-programming. A generalization of
this discussion led to the conclusion that the differences
in predictions between these two methods are not lim-
ited to current-programmed regulators, but appear in a
variety of systems. Thus, the stature of discrete model-
ing is enhanced, but its basic problem, an unfamiliar,
inconvenient model representation, remains.

There was thus ample motivation to find a model with
the form of state-space averaging and the accuracy of
discrete modeling. Re-examination of the development
of state-space averaging suggested that while the



straight-line approximation is a good one, the smoothing
of the pulsed driving function is evidently unjustified. By
use of only the straight-line approximation, a new model
was developed in Section 6. The new method is called the
sampled-data technique, because its form is that of a
sampled-data system. The increased accuracy of the
new model compared with state-space averaging was
demonstrated by its ability to predict correctly the
current-programming instability.

In Section 7, various relationships were developed
between the new sampled-data model and the discrete
and state-space averaged methods, and properties of the
sampled-data loop gain were uncovered. The sampled-
data and discrete models were seen to be two represen-
tations of the same system, via the transformation
z=e"'", as long as the straight-line approximation holds.
On the other hand, comparison of the sampled-data and
state-space averaged models showed that the sampled-
data technique differs from state-space averaging only in
the presence of a sampler in the feedback loop. This
recognition led to the interpretation of state-space
averaging as a low-frequency limiting case of the
sampled-data method, approximately related to it by the
transformation e’ "-»1+4+sT,. The increased high-fre-
quency accuracy of the sampled-data technique was
traced directly to the smoothing of the pulsed driving
function in the derivation of state-space averaging.

An examination of the sampled-data loop gain was
then undertaken. It was seen that this loop gain, when
considered to be a function of real frequency, is periodic,
with the switching frequency as period, and that its ima-
ginary part vanishes at each multiple of one-half the
switching frequency. In addition, the magnitude of this
loop gain displays even symmetry about one-half the
switching frequency, while its phase is odd about its
value at that frequency. From these properties, and the
low-pass nature of switching converters, the general
form of the sampled-data loop gain was determined, and
was shown to be useful in the design process.

The findings discussed above are all consistent with
the conclusion that the sampled-data analysis technique
combines the accuracy of the discrete method with the
continuous form of state-space averaging. Thus, this
new technique is ideal for the investigation of many
topics of interest involving switching regulators. Its con-
tinuous form mirrors the continuous nature of actual
switching regulator waveforms, and its predictions can
be relied upon even for frequencies approaching one-half
the switching frequency.

APPENDICES

The three appendices attached to this paper present
background and, in some cases, derivations of important
results which are used in this work. The subjects
addressed in these sections are the properties of the z-
transform, the application of the Laplace transform to
sampled-data systems, and the relation between the z-
transform and the Laplace transform descriptions of a
sampling system.

Appendix A provides a brief presentation of the
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definition and important properties of the one-sided =z-
transform used in this paper. Also, interpretations of
several simple z-transforms are given, in order to pro-
vide some 'feel” for this important tool.

The properties of the Laplace transforms of sampled
functions are reviewed in Appendix B. This appendix
treats two subjects. First, the Laplace transform of a
sampled function is defined and evaluated in three
different but equivalent ways. Second, it is demon-
strated that the sampling operation does not affect the
transform of a previously sampled signal.

Finally, in Appendix C, a connection is made between
the first two appendices. Specifically, for a sampled
function, a transformation is derived which relates the
z-transform of the waveform to the Laplace transform of
the same function.

A. Definition and properties of one-sided z-transforms

For a sequence of numbers z(n) , =...,—1,0, +1,...,
define the one-sided z-transform Z[z(n)].

Z[z(n)] = X(z) = Y z(n)z™ (A.1a)
n=0
= z(0) +z(1)z"t + z(2)z % +... {A.1b)
Linearity is obvious.
Zlaz(n) + by(n)] = aX(z) + bY(z) (A.2a)
Z[z(n)]=X(z) Z[y(n)]=Y(z) (A.2b)

A shift rule for this z-transform is also easily esta-
blished.

Z[z(n+1)] = z(1) +z(2)z"! + z(2)z 2 +...

z{Z[z(n)] - = (0}}

(A.3a)
(A.3b)

An analysis of some simple examples of z-transforms
can aid in the extraction of content from this important
tool.

1 _ z-!
z~-a 1-~z-1g (Ada)

X(z)

z'(1+az"t+a2z72 +.) (A.4b)

The sequence corresponding to this transform can be
written down directly.

z(n) = {0, 1, a, a®,...} (A.5)
Examination of this sequence for various choices of the

pole position a provides an interpretation of the
transform.

Cases
lal < 1 decaying sequence, stable
l[a| > 1 growing sequence, unstable
a=-1 subharmonic oscillation {1,-1,1,-1,...}
a=0 finite sequence (‘finite-settling time')



B. Laplace transforms of sampled signals
Consider a function v{¢) with associated Laplace

transform V(s). Passage of this waveform through a
sampler with period T gives a string of delta functions.

v*(t) = v(t)TsSr,(t)

or,(t) = 3 &(t-nT,)

n=-mw

(B.1a)

(B.1b)

The problem is to evaluate the Laplace transform
V*'(s) = L{v*(t)} associated with #*°(¢). There are several
ways to proceed [8], and three different approaches will
be summarized in this appendix.

The first method works with the time domain
representation of v(¢). The result is an infinite series
which represents the sampled-data Laplace transform
wherever the series converges.

Vi(s) = T, i‘ov(nTs)e-mT' (B.2)

The other two methods use the Laplace transform of
v(t) in their representations. In these techniques, the
complex multiplication theorem for Laplace transforms
(the counterpart of the convolution theorem) is applied
to the defining Eq. (B.1), yielding a line integral in the
complex s-plane. This integral can be evaluated by use
of residue techniques in two ways, depending on whether
the contour path is closed to the right or to the left.
When closed to the right, the sampled Laplace transform
is given as an infinite summation of shifted versions of
the unsampled transform.

Vis) = i V(s +jnag) (B.3)

n=—x

Of course, the sum must converge for this statement to
have meaning. When the integration contour is closed to
the left, the sampled Laplace transform is evaluated as a
sum over the poles of the unsampled Laplace transform,
plus a correction term resulting from the extension of
the contour. Rather than the general result, only a case
of special interest to this paper is presented.
Specifically, suppose that V(s) represents a high-order
integrator, with an additional small delay e.
—&s
V(s)=<— , m=1,23,.. (B.4)

s‘m

Then the sampled Laplace transform is the difference of
two contributions.

. Vv
V'(s) = Tspoés [residue of ?(g_%ﬁ p=s,.] -1 (B.5a)
of V(s;‘
Ts ifm=1
I = —g)m~1 (B.5b)
iy Te ifm>1

Note that for m> 1, the additional term J vanishes for
¢~ 0, but that it does not vanish for m=1. This behavior
is the exact mathematical analog of the physical argu-
ments presented earlier in this paper. Specifically, a
delta function cannot propagate instantaneously
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through an integrator of order greater than one, so the
addition of a small delay in series with the integrator
makes no great difference in the propagated signal. How-
ever, this addition makes a profound difference in the
case of a sirnple integrator, m =1, because instantaneous
transmission of a delta function does occur for this sys-
tem. The sampled Laplace transform for this situation is
used extensively in this paper, and is easily evaluated
from the above equations.

—es
V(is)= _es_ (B.6a)
. __ T
I:I%V’(S) = ?T_‘—l— (B.6b)

Finally, it is shown in the following demonstration
that a sampled Laplace transform can be factored out of
any additional sampling operation, provided the
samplers are synchronous.

[AG)B*(S)]* = 3 A(s+inws)B (s +inws)  (B.7)

ns—o

This first step uses the second form of the sampled
laplace transform found earlier. The second, sampled
transform in this expression is now expanded.

[A(s)BYs)]"= 3 A (s+ina,)

n=—cw

- (B.8)
x 3, B(s+jnwg+jma))

M=o

This expression is readily factored by the substitution
l=m+n.

[4(s)B*(s)]" = jZ_; A(s+jnws)l_z-_: B(s+jlws) (B.92)
=A'(s)B*(s) (B.9b)

This is the desired result. This factorization is used in
the development of the sampled-data model in this
paper.

C. Relationship between z-transform and sampled Laplace
transform

Consider a time function u (¢) with Laplace transform

U(s). Suppose this function is passed through a
sampler with period T, as defined in Appendix B.

u'(t) = u(t)Tsor,(t) = u(nT)Tsér ()  (C.la)

o,(t) = ¥ &t-nT,) (C.1b)

n =
In Appendix B, three expressions for the Laplace

transform U*(s) of this sampled signal were displayed.
The first of those is particularly useful here.

U's)=T, zou(nT,)e_sr'" (C.2)



Now the sampled values T u(nT;) form a sequence of
numbers, so it is possible to define a z-transform for the
sampled function u*(¢).

2] =U() = L TunT)z™  (€3)

Comparison of Egs. (C.2) and (C.3) reveals the relation-
ship between the Laplace transform of a sampled func-
tion and the z-transform of the same function.
T,
U's) = U,(z=e""%) (C.4)
In particular, the poles sp of U'(s) are related to the
poles z, of U,(z) by a simple relation.

s, T,
_ p‘s
Zp—e

(C.5)
This correspondence is used, in Section 7, to investigate

the relationship between sampied-data modeling and
discrete modeling.
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