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Abstract

Continuous-time systems are usually modelled by differential equations arising from physical laws.

However, the use of these models in practice requires discretisation. In this thesis we consider sampled-

data models for linear and nonlinear systems. We study some of the issues involved in the sampling

process, such as the accuracy of the sampled-data models, the artifacts produced by the particular

sampling scheme, and the relations to the underlying continuous-time system. We review, extend and

present new results, making extensive use of the delta operator which allows a clearer connection be-

tween a sampled-data model and the underlying continuous-time system.

In the first part of the thesis we consider sampled-data models for linear systems. In this case exact

discrete-time representations can be obtained. These models depend, not only on the continuous-time

system, but also on the artifacts involved in the sampling process, namely, the sample and hold devices.

In particular, these devices play a key role in determining the sampling zeros of the discrete-time model.

We consider robustness issues associated with the use of discrete-time models for continuous-time

system identification from sampled data. We show that, by using restricted bandwidth frequency domain

maximum likelihood estimation, the identification results are robust to (possible) under-modelling due

to the sampling process.

Sampled-data models provide a powerful tool also for continuous-time optimal control problems,

where the presence of constraints can make the explicit solution impossible to find. We show how this

solution can be arbitrarily approximated by an associated sampled-data problem using fast sampling

rates. We also show that there is a natural convergence of the singular structure of the optimal control

problem from discrete- to continuous-time, as the sampling period goes to zero.

In Part II we consider sampled-data models for nonlinear systems. In this case we can only ob-

tain approximate sampled-data models. These discrete-time models are simple and accurate in a well

defined sense. For deterministic systems, an insightful observation is that the proposed model con-

tains sampling zero dynamics. Moreover, these correspond to the same dynamics associated with the

asymptotic sampling zeros in the linear case.

The topics and results presented in the thesis are believed to give important insights into the use of

sampled-data models to represent linear and nonlinear continuous-time systems.
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Chapter 1

Introduction

1.1 Sampling and sampled-data models

Models for continuous-time dynamical systems often arise from the application of physical laws such

as conservation of mass, momentum, and energy. These models typically take the form of linear or

nonlinear differential equations, where the parameters involved can usually be interpreted in terms of

physical properties of the system. In practice, however, these kinds of models are not appropriate to

interact with digital devices. In any situation where digital controllers have to act on a real system, this

action can be applied (or updated) only at some specific time instants. Similarly, if we are interested in

collecting information from signals of a given system, this data can usually only be recorded (and stored)

at specific instants. This constitutes nowadays an unavoidable paradigm: continuous-time systems in-

teract with actuators and sensors that are accessible only at discrete-time instants. As a consequence,

the sampling process of continuous-time systems is a key problem both for estimation and control pur-

poses (Middleton and Goodwin, 1990; Feuer and Goodwin, 1996; Åström and Wittenmark, 1997). In

this context, the current thesis considers sampled-data models for linear and nonlinear systems. The

focus is on describing, in discrete-time, the relationship between the input signals and the samples of

the continuous-time system outputs. In particular, we study issues such as the accuracy of the sampled-

data models, the artifacts produced by a particular sampling scheme, and the relations to the underlying

continuous-time system.

The sampling process for a continuous-time system is represented schematically in Figure 1.1. In

this figure we see that there are three basic elements involved in the sampling process. All of these

elements play a core role in determining the appropriate discrete-time input-output description:

• The hold device, used to generate the continuous-time input u(t) of the system, based on a dis-

crete time sequence uk defined at specific time instants tk;

• The continuous-time system, defined by a set of linear or nonlinear differential equations, which

generates the continuous-time output y(t) from the input u(t), initial conditions, and/or possible

unmeasured disturbances; and

• The sampling device, which generates an output sequence of samples yk from the continuous-

1
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Hold
uk u(t) System

Continuous-time

y(t)
Sample

yk

Figure 1.1: Scheme of the sampling process of a continuous-time system.

time output y(t), possibly including some form of anti-aliasing filtering prior to instantaneous

sampling.

For linear systems, it is possible to obtain exact sampled-data models from the sampling scheme

shown in Figure 1.1. In particular, given a deterministic continuous-time system, it is possible to obtain

a discrete-time model which replicates the sequence of output samples. In the stochastic case, where the

input of the system is assumed to be a continuous-time white noise process, a sampled-data model can

be obtained such that its output sequence has the same second order properties as the continuous-time

output at the sampling instants.

However, obtaining sampled-data models for nonlinear systems is a much more difficult task. In fact,

these models are, in most cases, either unknown or impossible to compute because of the inherent dif-

ficulties in solving nonlinear differential equations, both in the deterministic and stochastic frameworks

(Nešić et al., 1999; Kloeden and Platen, 1992). As a consequence, only approximate discrete-time

models are possible to obtain. In this case, we will typically be interested in sampled-data models that

are accurate in some well defined sense. The accuracy of these discrete-time descriptions has proven to

be a key issue when trying to apply results based on such models. In the context of control design, for

example, a controller designed to stabilise an approximate sampled plant model may fail to stabilises the

exact discrete-time model, no matter how small the sampling period ∆ is chosen (Nešić and Teel, 2004).

Sampled-data models for continuous-time systems are useful in control, simulation and estimation

of system parameters (system identification). They are, in fact, the required tool needed to fill the gap

between continuous control and the output signals, as seen at the sampling instants. Most of the existing

literature regarding discrete-time (and, thus, sampled data) systems has traditionally expressed these

models in terms of the shift operator q, and the associated Z-transform. However, when using this

kind of models is not easy to relate to the corresponding results applicable to the continuous-time case.

This is true even when the sampling period is chosen arbitrarily small. The inter-relationship between

sampled-data models and their underlying continuous-time counterparts is more easily understood in

the unified framework facilitated by use of the delta operator (Middleton and Goodwin, 1990):

δ =
q − 1

∆
(1.1)

There is a considerable amount of literature showing that the use of this operator gives conceptual

and numerical advantages over the traditional shift operator q (Middleton and Goodwin, 1986; Mid-

dleton and Goodwin, 1990; Goodwin et al., 1992; Li and Gevers, 1993; Neuman, 1993; Gevers and

Li, 1993; Mansour, 1993; Premaratne and Jury, 1994; Feuer and Goodwin, 1996; Premaratne et al.,

2000; Suchomski, 2001; Suchomski, 2002; Lennartson et al., 2004). In particular, sampled-data mod-

els rewritten in terms of the delta operator models explicitly include the sampling period ∆ in such a
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way that, when the sampling rate is increased, the underlying continuous-time system representation

is recovered. In the same fashion, several discrete- and continuous-time results in control, estimation

and system identification can be understood in the same framework when sampled-data models are

expressed in terms of divided differences using (1.1).

Even though the use of delta operator models provides a natural connection between the discrete

and continuous-time domains, one needs to be careful with issues inherent to the sampling process. The

use of discrete-time models to represent continuous-time systems implies that there is loss of informa-

tion. In the time domain, the intersample behaviour of signals is unknown, whereas in the frequency

domain, high frequency signal components will fold back to low frequencies, making them impossible

to distinguish. Thus, for any non-zero sampling period, there will always be a difference between the

sampled-data model and the underlying continuous-time description. For example, it is well known that

discrete-time models will have, in general, more zeros than the original continuous-time system (Åström

et al., 1984; Wahlberg, 1988). These extra zeros, sometimes called sampling zeros, are a result of the

frequency folding effect due to the sampling process. When using delta operator models, these sampling

zeros asymptotically converge to infinity as the sampling period goes to zero. However, they play a key

role, for example, when using Least Squares for parameter estimation (Larsson and Söderström, 2002).

The problems arising from the sampling process can only be mitigated by appropriate assumptions.

Among common assumptions we have the use zero-order hold inputs and bandlimited signals (Pintelon

and Schoukens, 2001). On the other hand, the presence of sampling zeros (and their asymptotic be-

haviour) is determined by the continuous-time system relative degree. However, relative degree may

be an ill-defined characteristic for continuous-time models, easily affected by high frequency modelling

errors, even beyond the sampling frequency. Thus, one needs to be careful when relying on assumptions

that may be inherently non-robust to the effects of sampling.

In this thesis we will repeatedly highlight the issues and assumptions related to the use of sampled-

data models. Examples of these issues are:

• Sampled-data characteristics depend not only on the continuous-time system but also on the sam-

pling process itself. Indeed, for linear systems, the discrete-time poles depend on the continuous-

time poles and the sampling period, but the zeros depend on the choice of the hold and the sam-

pling devices.

• The effects of sampling artifacts, such as sampling zeros, play an important role in describing

accurate sampled-data models, even though they may become negligible as the sampling period

goes to zero. This applies both to linear systems, where discrete-time models can be precisely

characterised, and nonlinear systems, studied in Part II, where they can only be approximately

described.

• Any sampled-data description is based on some kind of model of the true system. However,

under-modelling errors will usually arise at high frequencies due to the presence of unmodelled

poles, zeros, and/or time delays in the continuous-time system (Goodwin et al., 2001). This means

that models usually have to be considered within a bandwidth of validity for the continuous-time

system.
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• For stochastic models, the unknown input is assumed to be a (filtered) continuous-time white

noise process. However, this is known to be a mathematical abstraction that does not usually

correspond to physical reality (Jazwinski, 1970). It can only be approximated to some desired

degree of accuracy by conventional stochastic processes with broad band spectra (Kloeden and

Platen, 1992). This means that stochastic systems need to be treated carefully as the non-ideal

nature of the noise corresponds to a form of high frequency modelling error.

1.2 Problem statement

In the current thesis, we will study sampled-data models for linear and nonlinear systems. We also

explore the use of these models for control and estimation. Our focus throughout is aimed at answering

the following kind of questions:

• When using sampled-data models to represent a continuous-time system, what characteristics are

inherent to the underlying continuous-time system and what are a consequence of the sampling

process itself?

• Is it reasonable to assume that, as the sampling rate is increased, the sampled-data model becomes

indistinguishable from the underlying continuous-time system? How does this convergence oc-

cur?

• What issues are important when using a discrete-time model to represent a system that actually

evolves in continuous-time?

• Can known results on sampling for linear systems be extended, under appropriate conditions, to

nonlinear systems?

1.3 Thesis overview

Following this introduction, the contents of the thesis are presented into six chapters, that have been

organised in two parts: the first part considers linear systems, and the second part deals with extensions

to the nonlinear case. A final chapter presents a summary and conclusions, and two appendices have

been included with supporting material.

In more detail, Part I explores sampled data models for linear systems. A key point here is that the

resultant discrete-time models are exact, i.e., they are able to exactly replicate the sequence of samples

of the system output, in the deterministic case, or its statistical properties, for stochastic systems. We

present various extensions of existing results. More importantly, we cast several known results in a

different light, thus opening the door to the nonlinear case treated in Part II. A more detailed description

of the various chapters follows.

In Chapter 2, sampling of deterministic and stochastic linear systems is reviewed. Here we present

and extend well-known results, in such a way as to introduce the basic building blocks required in

subsequent chapters. Many of the results have been traditionally presented in terms of the q operator

and the associated z-domain. Here, we rewrite and extend these results using the δ-operator and the
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corresponding γ-domain variable. In particular, we obtain a novel representation of the asymptotic

sampling zeros for the linear case. This result will prove very useful in the nonlinear context studied

later.

In Chapter 3 we explore the artifacts produced by the sampling process. It is known that the zeros

of the sampled-data model depend on the hold device (for deterministic models) and the output prefilter

(in the stochastic case). In this chapter, we will show how these devices can be designed so as to asymp-

totically assign the sampling zeros. The design procedure depends only on the continuous-time system

relative degree. However, high frequency modelling errors can affect the relative degree assumption.

Thus, we introduce the concept of bandwidth of validity, within which our design procedure is shown

to be robust.

In a similar fashion, robustness issues in continuous-time system identification from sampled-data

are explored in Chapter 4. In particular, we study robustness problems that may arise when trying to

estimate continuous-time system parameters using sampled-data models. We show that some algorithms

commonly used are inherently sensitive to assumptions about the inter-sample behaviour of the signals

or to the frequency response of the system beyond the sampling frequency. On the other hand, we

propose the use of a maximum likelihood estimation in the frequency domain over a limited bandwidth

of frequencies. We show that this procedure succesfully addresses the robustness issues previously

considered, such as sampling zeros in discrete-time models and the presence of high-frequency under-

modelling in the continuous-time system.

We conclude Part I, in Chapter 5, by exploring how sampled-data models are utilised in Linear-

Quadratic (LQ) constrained optimal control problems. Two results are presented: firstly, it is shown that

the solution to the LQ constrained problem, in continuous-time, can be approximated arbitrarily closely

by solving an associated sampled-data LQ constrained control problem, using a sufficiently small sam-

pling period. Furthermore, the solution is shown to satisfy the continuous-time constraints (i.e., at all

time instants) by appropriately scaling the discrete-time constraints (at the sampling instants). Secondly,

we revisit the operator factorisation approach to LQ problems. We use this approach to formulate an

interesting convergence result: the (finite set of) singular values of a linear operator, associated with the

sampled-data model, are shown to converge to (a subset of) the singular values of the continuous-time

system operator. The latter result can be applied, for example, in suboptimal control strategies for fast

sampling applications, exploiting the singular structure of the system to solve the constrained control

problem.

Part II considers sampled-data models for nonlinear systems. A key departure from the linear case

is that, in the nonlinear case, exact discrete-time models are usually impossible to obtain. Thus, we

present approximate sampled-data models both for deterministic and stochastic systems.

Chapter 6 presents an approximate sampled-data model for deterministic nonlinear systems. The

model is simple to obtain. We show that it provides a more accurate description (as a function of

the sampling period and the nonlinear relative degree) than do models obtained by simply using Euler

integration. An interesting feature of the proposed model is that it includes extra zero dynamics. In fact,

these sampling zero dynamics turn out to be exactly the same as those that arise (asymptotically) in the

linear case. This result gives important new insights into the effect of sampling in nonlinear dynamic

systems. As an illustration, the impact of these nonlinear sampling zeros on models used for system
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identification is explored.

Sampled-data models for stochastic nonlinear systems are studied in Chapter 7. We briefly review

the mathematical background of nonlinear stochastic systems by using stochastic differential equation.

In particular, we present a sampled-data model based on numerical solution of stochastic differential

equations.

Finally, Chapter 8 presents concluding remarks and summarises the topics presented in the thesis.

Some possible future lines of research are also proposed.

We also have included two appendices with supporting material for the contents in the thesis. Ap-

pendix A presents some useful results about matrices, whereas in Appendix B a brief review of linear

operators in Hilbert spaces is presented.

1.4 Thesis contributions

The main contributions of this thesis are believed to be:

Chapter 2. In this chapter we present results on sampled-data models, both in q- and δ-operator frame-

works. In particular, a novel characterisation of the asymptotic sampling zeros in the γ-domain

(i.e., using the δ-operator) is given. This formulation is given in terms of polynomials in the

variable γ which are also shown to satisfy a recursive relationship.

Chapter 3. We analyse the role of sample and hold devices in obtaining sampled-data models. Specif-

ically, it is shown that generalised hold functions (GHF) can be designed to assign the asymptotic

location of sampling zeros for deterministic systems. A dual result is presented, namely, a de-

sign method to design generalised sampling filters (GSF) to assign the asymptotic sampling zeros

of stochastic linear models. Both procedures are shown to depend only on the continuous-time

system relative degree.

Chapter 4. We illustrate issues that may arise when trying to identify continuous-time systems from

sampled data. We propose a maximum likelihood estimation procedure in the frequency domain

restricted to a limited bandwidth, and we show that this procedure is robust to sampling effects.

Chapter 5. We present two asymptotic results regarding the use of sampled-data models in constrained

linear quadratic optimal control problems. Firstly, we show that, as the sampling rate increases,

the solution of an associated sampled-data control problem with (possibly) tighter constraints

converges to the original continuous-time problem. In the second result, we show that the (finite

set of) singular values of the discrete-time system operator converges to a subset of the (infinite

set of) singular values of the continuous-time system operator, as the sampling period goes to

zero.

Chapter 6. We present an approximate sampled-data model for nonlinear deterministic systems. This

model is shown to have very insightful features: firstly, it is based on a more accurate approxi-

mation than simple Euler integration, and, secondly, it includes sampling zero dynamics with no

counterpart in continuous time. Moreover, we show that these sampling zero dynamics are exactly

the same as the sampling zeros that arise in the linear case.
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Chapter 7. We present an approximate sampled-data models for nonlinear stochastic systems. This

discrete-time model is based on numerical solution of stochastic differential equations. We show

that the accuracy of the obtained model can be precisely characterised. We also unveil connections

to the linear case.

1.5 Associated publications

Most of the results presented in this thesis have been published, by the author, in journal and conference

papers. The following list details the relevant publications:

• Journal papers:

1. J.I. Yuz and G.C. Goodwin, On sampled-data models for nonlinear systems. Special Issue of

the IEEE Transactions on Automatic Control on System Identification: Linear v/s Nonlinear,

Vol. 50(10), pages 1477–1489, October 2005.

2. J.I. Yuz, G.C. Goodwin, A. Feuer and J. De Doná, Control of constrained linear systems us-

ing fast sampling rates. Systems and Control Letters, Vol. 54(10), pages 981–990, October

2005.

• Conference papers:

1. J.I Yuz, G.C. Goodwin, A. Feuer and J. De Doná, Singular structure convergence for linear

quadratic problems. European Control Conference (ECC), Cambridge, UK, 2003

2. J.I. Yuz, G.C. Goodwin and H. Garnier. Generalised hold functions for fast sampling rates.

43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas, December 2004.

3. G.C. Goodwin, J.I. Yuz and H. Garnier, Robustness issues in continuous-time system iden-

tification from sampled data. 16th IFAC World Congress. Prague, Czech Republic, July

2005.

4. J.I. Yuz and G.C. Goodwin, Generalised sampling filters and stochastic sampling zeros.

Joint CDC-ECC’05, Seville, Spain, December 2005.

5. J.I. Yuz and G.C. Goodwin, Sampled-data models for stochastic nonlinear systems. To be

presented at the 14th IFAC Symposium on System Identification, SYSID 2006. Newcastle,

Australia, March 2006.

Previous and parallel work published by the author during the Ph.D. studies are detailed as follows:

• Journal papers

– G.C. Goodwin, M.E. Salgado and J.I. Yuz, Performance limitations for linear feedback sys-

tems in the presence of plant uncertainty. IEEE Transactions on Automatic Control, Vol.

48(8), pages 1312–1319, August 2003.

– J.I. Yuz and G.C. Goodwin, Loop performance assessment for decentralised control of stable

linear systems. European Journal of Control, Vol. 9(1), pages 116–130, 2003.
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– J.I. Yuz and M.E. Salgado, From classical to state-feedback-based controllers. IEEE Control

Systems Magazine, vol. 23(4), pages 58–67, August 2003.

• Other publications by the author:

– M.E. Salgado, J.I. Yuz, and R. Rojas, Análisis de Sistemas Lineales (book in Spanish).

Pearson – Prentice Hall, Spain, 2005.

– M.E. Salgado and J.I. Yuz, State space analysis and system properties, Chapter 24 in Hand-

book on Mechatronics, edited by R. Bishop. CRC Press, Florida, USA, 2002.

– J.I. Yuz, M.M. Serón and G.C. Goodwin, Cheap control performance limitations for linear

systems based on the Fröbenius norm. Technical report EE03018, School of Electrical

Engineering, The University of Newcastle, Australia, 2003.
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Linear Systems
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Chapter 2

The sampling process for linear

systems

2.1 Overview

In this chapter we review and extend known results on sampled-data models for linear systems. We

consider both the deterministic and the stochastic case. Most of the existing discrete-time literature is

based on the use of the shift operator q. Here we recast these results using the delta operator, δ. This is

particularly useful in the sampled-data framework, since δ-models explicitly include the sampling period

∆. Indeed, the results presented here can be considered as the key building blocks for the chapters that

follow.

In this first part of the Thesis we consider only the case of linear systems. For this case it is possible

to obtain exact sampled-data models. For deterministic systems, we obtain discrete-time models that

exactly describe the relationship between an input sequence uk and the sampled output yk = y(k∆)

(Section 2.2). In the case of stochastic systems, we obtain a sampled-data model such that its output se-

quence yk has the same second order properties as does the continuous-time output y(t) at the sampling

instants (Section 2.4).

Hold
uk u(t) System

Continuous-time

y(t)
Sample

yk

Figure 2.1: Sampling process

We consider the general sampling scheme represented in Figure 2.1. In this figure, we can distin-

guish three basic elements:

• The hold device, used to generate the continuous-time input u(t) of the system based on a discrete

time sequence uk defined at specific time instants tk.

11
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• The continuous-time system, defined by a set of differential equations evolving in continuous-

time. Here we restrict our attention to the linear case. Thus, we will describe the system generi-

cally as:

y(t) = G(ρ)u(t) + H(ρ)v̇(t) (2.1)

where ρ = d
dt

is the time-derivative operator, and:

– G(ρ) is the deterministic part of a continuous-time system, which takes into account the

effect of the deterministic input u(t); and

– H(ρ) is the stochastic part of the system or noise model, which describes the part of the

output that does not depend on the input u(t). This includes the effect of disturbances and

noise, represented as continuous-time white noise process v̇(t) filtered through the system

H(ρ) (We will give a more mathematically rigorous treatment later).

• The sampling device, which gives an output sequence of samples, yk. This can be obtained taking

samples of y(t) either instantaneously or after some form of anti-aliasing filtering.

We will assume that the input updates and the output samples happen at the same time instants tk,

which are integer multiples of a uniform sampling period ∆, i.e., tk = k∆.

We will focus our attention to single-input single-output (SISO) systems. Nevertheless, several

of the results are expressed using state-space models and, thus, they can be readily extended to the

multivariable case.

In the following sections we consider the sampling process for deterministic and stochastic systems.

For the linear case, considered in this first part of the thesis, the superposition principle holds. Thus, this

apparent separate treatment is well justified. It reflects the fact that the effects of the deterministic and

the stochastic part of (2.1) can be considered indenpendently of each other.

2.2 Sampling of deterministic linear systems

In this section we consider the sampling process for the deterministic part of the system (2.1), i.e., we

are interested in a discrete-time description of the relationship between the known input sequence uk

and the samples of the output, yk. Stochastic systems are considered later in Section 2.4 on page 25.

A strictly proper SISO linear time-invariant system can be represented in state-space form as:

ẋ(t) = Ax(t) + Bu(t) (2.2)

y(t) = Cx(t) (2.3)

where the system state vector is x(t) ∈ R
n, and the matrices are A ∈ R

n×n and B,CT ∈ R
n.

Lemma 2.1 This system can also be represented as:

Y (s) = G(s)U(s) (2.4)

where U(s) and Y (s) Laplace transforms of u(t) and y(t), respectively, and the system transfer func-

tion is:

G(s) = C(sIn − A)−1B (2.5)
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where In ∈ R
n×n is the identity matrix.

The transfer function (2.5) can be represented as a quotient of polynomials:

G(s) =
F (s)

E(s)
(2.6)

The roots of F (s) and E(s) are the zeros and the poles of the system, respectively. If in (2.2)–(2.3)

the pair (A,B) is completely controllable and (C,A) is completely observable then the state-space

model is a minimal realization (Kwakernaak and Sivan, 1972). This implies that there are no zero/pole

cancellations in (2.6), and, thus, the numerator and denominator polynomials are given by:

F (s) = C adj(sIn − A)B (2.7)

E(s) = det(sIn − A) (2.8)

The numerator (2.7) can also be expressed as:

F (s) = det

[

sIn − A −B

C 0

]

(2.9)

(See equation (A.16) in Appendix A.)

2.2.1 The hold device

In Figure 2.1 there is a hold device which generates a continuous-time input to the system, u(t), from

a sequence of values uk, defined at specific time instants tk = k∆. The most commonly used hold

devices are:

Zero-Order Hold (ZOH) , which simply keeps its output constant between sampling instants, i.e.,:

u(t) = uk ; k∆ ≤ t < (k + 1)∆ (2.10)

First-Order Hold (FOH) , which does a linear extrapolation using the current and the previous ele-

ments of the input sequence, i.e.,:

u(t) = uk +
uk − uk−1

∆
(t − k∆) ; k∆ ≤ t < (k + 1)∆ (2.11)

There are, indeed, other and more general options for the hold device, such as, for example, Frac-

tional Order Holds (FROH) (Blachuta, 2001) and Generalised Hold Functions (see Chapter 3). Any

of these can be uniquely characterised by their impulse response h(t), defined as the continuous-time

output (of the hold device) obtained when uk is the Kronecker delta function. Figure 2.2 shows the

impulse responses corresponding to the ZOH, FOH, and a more general hold function (Feuer and Good-

win, 1996).
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0 ∆

1

2∆

t

h(t)

(a) Zero-Order Hold

0 ∆

2∆

t

−1

1

2
h(t)

(b) First-Order Hold

0 ∆

t

2∆

h(t)

(c) Generalised Hold

Figure 2.2: Impulse response of some hold devices.

2.2.2 The sampled-data model

There are different ways to obtain the sampled data model corresponding to the sampling scheme in

Figure 2.1. The model can be derived directly from the transfer function (2.6) or from the state space

model (2.2)–(2.3). The following result allows us to obtain a state-space representation of the sampled-

data model when the continuous-time system input is generated using a ZOH.

Lemma 2.2 If the input of the continuous-time system (2.2)–(2.3) is generated from the input sequence

uk using a ZOH, then a state-space representation of the resulting sampled-data model is given by:

q xk = xk+1 = Aqxk + Bquk (2.12)

yk = Cxk (2.13)

where the sampled output is yk = y(k∆), and the matrices are:

Aq = eA∆ Bq =

∫ ∆

0

eAηBdη (2.14)

Proof. The state evolution starting at t = tk = k∆ is given by (Kwakernaak and Sivan, 1972;

Åström and Wittenmark, 1997):

x(k∆ + τ) = eAτx(k∆) +

∫ k∆+τ

k∆

eA(k∆+τ−η)Bu(η)dη (2.15)

Replacing τ = ∆, and noticing that u(η) = uk, when k∆ ≤ η < k∆ + ∆, we obtain (2.12).

Equation (2.13) is obtained directly from the instantaneous relation (2.3).

¤

The discrete-time transfer function representation of the sampled-data system can be readily ob-

tained from Lemma 2.2 as:

Gq(z) = C(zIn − Aq)
−1Bq (2.16)

The last expression is equivalent to the pulse transfer function obtained directly from the continuous-

time transfer function, as stated in the following lemma
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Lemma 2.3 The sampled-data transfer function (2.16) can be obtained using the inverse Laplace trans-

form of the continuous-time step response, computing its Z-transform, and dividing it by the Z-transform

of a discrete-time step:

Gq(z) = (1 − z−1)Z
{

L−1

{
G(s)

s

}

t=k∆

}

(2.17)

= (1 − z−1)
1

2πj

∫ γ+j∞

γ−j∞

es∆

z − es∆

G(s)

s
ds (2.18)

where ∆ is the sampling period and γ ∈ R is such that all poles of G(s)/s have real part less than γ.

Furthermore, if the integration path in (2.18) is closed by a semicircle to the right, we obtain:

Gq(z) = (1 − z−1)

∞∑

ℓ=−∞

G((log z + 2πjℓ)/∆)

log z + 2πjℓ
(2.19)

Proof. See, for example, Åström and Wittenmark (1997).

¤

Expression (2.19), when considered in the frequency domain replacing z = ejω∆, illustrates the

well-known aliasing effect: the frequency response of the sampled-data system is obtained by folding

of the continuous-time frequency response, i.e.,

Gq(e
jω∆) =

1

∆

∞∑

ℓ=−∞
HZOH

(

jω + j
2π

∆
ℓ

)

G

(

jω + j
2π

∆
ℓ

)

(2.20)

where HZOH(s) is the Laplace transform of the ZOH impulse response in Figure 2.2(a), i.e.,

HZOH(s) =
1 − e−s∆

s
(2.21)

Equation (2.20) can be also derived from (2.16) using the state-space matrices in (2.14) (Feuer and

Goodwin, 1996, Lemma 4.6.1).

The sampled-data model for a given continuous-time system depends on the choice of the hold

device. As a way of illustration, the following lemma establishes the sampled-data model obtained

when, insted of the ZOH considered above, the continuous-time input is generated by a First Order

Hold.

Lemma 2.4 If the continuous-time plant input is generated using a FOH as in (2.11), the corresponding

sampled-data model can be represented in the following state-space form

[

xk+1

uk

]

=

[

Aq B1
q

0 0

][

xk

uk−1

]

+

[

B2
q

1

]

uk (2.22)

yk =
[

C 0
]
[

xk

uk−1

]

(2.23)

where:

Aq = eA∆ B1
q =

∫ ∆

0

(

2 − η

∆

)

eAηB dη B2
q =

∫ ∆

0

( η

∆
− 1

)

eAηB dη (2.24)
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The discrete-time transfer function can be obtained both from the state-space representation as:

Gq(z) =
[

C 0
]
(

zIn+1 −
[

Aq B1
q

0 0

])−1 [

B2
q

1

]

(2.25)

or from the continuous-time transfer function G(s), i.e.,

Gq(z) = (1 − z−1)2Z
{

L−1

{
(1 + ∆s)

∆s2
G(s)

}}

(2.26)

Proof. See, for example, Hagiwara et al. (1993).

¤

Sampled-data models obtained using a more general kind of hold device, such as the generalised

hold with impulse response as shown 2.2(c), will be discussed in Chapter 3. In fact, we will see that it is

possible to arbitrarily assign the discrete-time sampling zeros by designing the generalised hold device.

2.2.3 Poles and Zeros

We next consider the relation between the poles and zeros of the sampled-data model (2.16) and the

poles and zeros of the continuous-time system (2.5).

The discrete-time model (2.16) can be rewritten as a quotient of polynomials as

Gq(z) =
Fq(z)

Eq(z)
(2.27)

where:

Fq(z) = C adj(zIn − Aq)Bq = det

[

zIn − Aq −Bq

C 0

]

(2.28)

Eq(z) = det(zIn − Aq) (2.29)

where the second equality in (2.28) is a consequence of (A.16) in Appendix A.

The relationship between the poles of the pulse transfer function (2.27) and the underlying continuous-

time system can be established from equation (2.14). Indeed, if λi is an eigenvalue of A (i.e., a pole

of G(s)), then eλi∆ is an eigenvalue of Aq = eA∆, and, thus, a pole of Gq(z) (Åström and Witten-

mark, 1997).

On the other hand, the relation between the zeros in discrete- and in continuous-time is much more

involved as we can see in the numerator polynomial Fq(z). Moreover, the discrete-time transfer function

(2.27) will generically have relative degree 1, independent of the relative degree of the continuous-time

system. Thus fact, extra zeros appear in the sampled-data model with no continuous-time counterpart.

These, so called sampling zeros, can be asymptotically characterised as we will study in Section 2.3.

Similar relations between discrete- and continuous-time poles and zeros can be established when

using non-ZOH input. For example, if we consider the sampled-data model obtained in Lemma 2.4 for

the FOH case, we see that the discrete-time poles are given by the eigenvalues of eA∆ (as in the ZOH

case) plus one pole at the origin z = 0. On the other hand, the discrete-time zeros will be generically

different that the ones obtained when using a ZOH.
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2.2.4 Delta operator models

Most of the results and textbooks concerning discrete-time systems usually describe the models us-

ing the shift operator q and and the associated Z-transform, as in Lemma 2.2 (Jury, 1958; Franklin et

al., 1990; Åström and Wittenmark, 1997). The relation between a sampled-data model and the under-

lying continuous-time system can be better expressed by the use of the delta operator (Middleton and

Goodwin, 1990; Premaratne and Jury, 1994; Feuer and Goodwin, 1996; Lennartson et al., 2004), both

in the (discrete) time and complex variable domain:

δ =
q − 1

∆
⇐⇒ γ =

z − 1

∆
(2.30)

The use of the δ-operator corresponds to a reparameterisation of sampled-data models that allows

one to explicitly include the sampling period in the discrete-time description.

Remark 2.5 The operator δ defined in (2.30) is also called (forward) divided difference or (forward)

Euler operator. However, it is important to distinguish between the exact sampled-data models expressed

in terms of this operator (obtained in the same way as exact shift operator models), and those models

obtained by simple Euler integration. The latter are only approximate discrete-time descriptions of the

underlying continuous-time system, where time derivatives have been replaced by divided differences.

The following lemma presents the δ-operator model corresponding to the sampled-data description

obtained in Lemma 2.2.

Lemma 2.6 The discrete-time model (2.12)–(2.13) in Lemma 2.2 can be rewritten using the delta oper-

ator as:

δ xk = Aδxk + Bδuk (2.31)

yk = Cxk (2.32)

where:

Aδ =
eA∆ − In

∆
Bδ =

Bq

∆
(2.33)

Proof. The expressions follow directly using Lemma 2.2 and the definition of the delta operator:

δ xk =
xk+1 − xk

∆
=

Aq − In

∆
xk +

Bq

∆
uk (2.34)

¤

Remark 2.7 One advantage of using the delta operator model in Lemma 2.6 becomes apparent when

considering the case of fast sampling rates. Specifically, as the sampling period go to zero, the matrices

of the shift operator model in Lemma 2.2 do not have a relation with their continuous-time counterpart.

In fact, from (2.14), we have that:

Aq = eA∆ = In + A∆ + . . .
∆→0−−−→ In (2.35)

Bq =

∫ ∆

0

eAηBdη
∆→0−−−→ 0 (2.36)
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On the other hand, the matrices used in the delta operator model (2.31) converge to their continuous-

time counterpart (Middleton and Goodwin, 1990):

Aδ =
eA∆ − In

∆
= A +

∆

2
A2 + . . .

∆→0−−−→ A (2.37)

Bδ =
1

∆

∫ ∆

0

eAηBdη
∆→0−−−→ B (2.38)

¤

Many results in linear system theory can be understood in a unified framework by the use of the

δ-operator. As in the previous remark, the continuous-time case can be readily obtained as the limiting

discrete-time case, when the sampling period tends to zero. Moreover, the use of the delta operator has

been shown to also provide numerical advantages for computational purposes (Goodwin et al., 1992).

Lemma 2.6 provides a state-space sampled-data model in terms of the δ-operator. As a consequence,

we have that the δ-operator transfer function, expressed using the associated complex variable γ in

(2.30), is given by:

Gδ(γ) =
Fδ(γ)

Eδ(γ)
(2.39)

where:

Fδ(γ) = C adj(γIn − Aδ)Bδ = det

[

γIn − Aδ −Bδ

C 0

]

(2.40)

Eδ(γ) = det(γIn − Aδ) (2.41)

The convergence results in (2.37)–(2.38) imply that:

lim
∆→0

Fδ(γ) = F (γ) , lim
∆→0

Eδ(γ) = E(γ) , and, thus, lim
∆→0

Gδ(γ) = G(γ) (2.42)

In this thesis we will typically express sampled-data models using the delta operator format since it

allows one to maintain a strong connection with the underlying continuous-time system. However, shift

operator models will also be used, where appropriate, either to present results traditionally expressed in

this framework, or for the sake of simplicity.

2.3 Asymptotic sampling zeros

As we have already seen in Section 2.2, the poles of a sampled-data model can be readily charac-

terised in terms of the sampling period, ∆, and the continuous-time system poles. However, the relation

between the zeros from discrete- to continuous-time is much more involved. Furthermore, the discrete-

time model will have, in general, relative degree 1, which implies the presence of extra zeros with no

continuous-time counterpart. These are usually called the sampling zeros of the discrete-time model.

In this section, we review results concerning the asymptotic behaviour of the zeros in sampled-data

models, as the sampling period goes to zero. These results follow the seminal work by Åström et al.

(1984), where the asymptotic location of the intrinsic and sampling zeros was first described, for the

ZOH case, using shift operator models.

The next result characterises the sampled-data model (and the sampling zeros) corresponding to an

n-th order integrator in terms of very specific polynomials.
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Lemma 2.8 (Åström et al., 1984, Lemma 1) For a sampling period ∆, the pulse transfer function cor-

responding to the n-th order integrator G(s) = s−n, is given by:

Gq(z) =
∆n

n!

Bn(z)

(z − 1)n
(2.43)

where:

Bn(z) = bn
1 zn−1 + bn

2 zn−2 + . . . + bn
n (2.44)

bn
k =

k∑

ℓ=1

(−1)k−ℓ ℓn

(
n + 1

k − ℓ

)

(2.45)

¤

Remark 2.9 The polynomials defined in (2.44)–(2.45) correspond, in fact, to the Euler-Fröbenius poly-

nomials (also called reciprocal polynomials) and are known to satisfy several properties (Mårtensson,

1982; Weller et al., 2001):

1. Their coefficients can be computed recursively:

bn
1 = bn

n = 1 ; ∀n ≥ 1 (2.46)

bn
k = kbn−1

k + (n − k + 1)bn−1
k−1 ; k = 2, . . . , n − 1 (2.47)

2. Their roots are always negative real numbers.

3. From the symmetry of the coefficients in (2.45), i.e., bn
k = bn

n+1−k, it follows that, if Bn(z0) = 0 ,

then Bn(z−1
0 ) = 0.

4. They satisfy an interlacing property, namely, every root of the polynomial Bn+1(z) lays between

every two adjacent roots of Bn(z), for n ≥ 2.

5. The following recursive relation holds:

Bn+1(z) = z(1 − z)Bn
′(z) + (nz + 1)Bn(z) ; ∀n ≥ 1 (2.48)

where Bn
′ = dBn

dz
.

We next list the first of these polynomials:

B1(z) = 1 (2.49)

B2(z) = z + 1 (2.50)

B3(z) = z2 + 4z + 1 = (z + 2 +
√

3)(z + 2 −
√

3) (2.51)

B4(z) = z3 + 11z2 + 11z + 1 = (z + 1)(z + 5 + 2
√

6)(z + 5 − 2
√

6) (2.52)

These polynomials will also play a role in the characterisation of the asymptotic zeros of the sampled

output spectrum. In particular, in the stochastic case considered in Section 2.5, the following result will

be used.
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Lemma 2.10 The polynomials defined in Lemma 2.8 satisfy the following equation:

∞∑

k=−∞

1

(log z + j2πk)n
=

z Bn−1(z)

(n − 1)!(z − 1)n
, n ≥ 2 (2.53)

Proof. As shown by Wahlberg (1988), this result follows from Lemma 2.8 and expression (2.19).

¤

Remark 2.11 Throughout the current Thesis, we will see that sampled-data models for n-th order inte-

grator play a very important role in obtaining asymptotic results. Indeed, as the sampling rate increases,

a system of relative degree n, behaves as an n-th order integrator. This will be a recurrent and insightful

interpretation for deterministic and stochastic systems, both in the linear and nonlinear frameworks.

As stated at the beginning of this chapter, our aim here is not only to review the existing literature

regarding sampling of linear systems, but to also extend known results by using the δ-operator. In

particular, the next result constitutes one small but novel contribution in this thesis, which recasts Lemma

2.8 in the delta operator framework. This alternative formulation will prove to be particularly useful

when considering sampled-data models for nonlinear systems in Chapter 6.

Lemma 2.12 Given a sampling period ∆, the exact sampled-data model corresponding to the n-th

order integrator G(s) = s−n, n ≥ 1, when using a ZOH input, is given by:

Gδ(γ) =
pn(∆γ)

γn
(2.54)

where the polynomial pn(∆γ) is given by:

pn(∆γ) = detMn (2.55)

and where the matrix Mn is defined by:

Mn =













1 ∆
2! . . . ∆n−2

(n−1)!
∆n−1

n!

−γ 1 . . . ∆n−3

(n−2)!
∆n−2

(n−1)!

...
. . .

. . .
...

...

0 . . . −γ 1 ∆
2!

0 . . . 0 −γ 1













(2.56)

Proof. The n-th order integrator G(s) = s−n can be represented in the state-space form (2.2)–(2.3),

where the matrices take the specific form:

A =










0
... In−1

0

0 0 · · · 0










B =










0
...

0

1










C =
[

1 0 · · · 0
]

(2.57)

The equivalent sampled-data system (2.31)–(2.32) can readily be obtained on noting that, by the

Cayley-Hamilton theorem (Horn and Johnson, 1990), any matrix A satisfies its own characteristic equa-

tion,i.e., An = 0. As a consequence, the corresponding exponential matrix (see Appendix A) is readily

obtained:

eA∆ = I + A∆ + . . . + An−1 ∆n−1

(n−1)! (2.58)
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Substituting into (2.33), we obtain:

Aδ =
eA∆ − I

∆
=













0 1 ∆
2! . . . ∆n−2

(n−1)!

0 0 1 . . . ∆n−3

(n−2)!

...
. . .

. . .
...

0 . . . 0 1

0 0 . . . 0













Bδ =

∫ ∆

0

eAηdηB =












∆n−1

n!
∆n−2

(n−1)!

...
∆
2

1












(2.59)

Note that substituting these matrices into (2.31) and applying the delta transform (Middleton and

Goodwin, 1990), with initial conditions equal to zero, we obtain the following set of equations:












γX1

γX2

...

γXn−1

γXn












=













1 ∆
2! . . . ∆n−2

(n−1)!
∆n−1

n!

0 1 . . . ∆n−3

(n−2)!
∆n−2

(n−1)!

...
. . .

. . .
...

...

0 . . . 0 1 ∆
2!

0 . . . 0 1
























X2

X3

...

Xn

U












(2.60)

This set of algebraic equations can be solved in terms of the first state, X1(γ) = Y (γ):









γY

0
...

0










=










γX1

0
...

0










=










1 ∆
2! . . . ∆n−1

n!

−γ 1 . . . ∆n−2

(n−1)!

...
. . .

. . .
...

0 . . . −γ 1










︸ ︷︷ ︸

Mn










X2

...

Xn

U










(2.61)

Next, using Cramer’s Rule (Strang, 1988), we can solve the system for the input U(γ) in terms of

Y (γ):

U =
det N

det Mn

(2.62)

where Mn is defined as in (2.61) (see also (2.56)), and:

N =













1 ∆
2! . . . ∆n−2

(n−1)! γY

−γ 1 . . . ∆n−3

(n−2)! 0
...

. . .
. . .

...
...

0 . . . −γ 1 0

0 . . . −γ 0













(2.63)

From (2.62), using definition (2.55), and computing the determinant of the matrix N , for example,

along the last column, we obtain the inverse sampled-data system transfer function:

U(γ) =
γn

pn(∆γ)
Y (γ) ⇒ Gδ(γ) =

Y (γ)

U(γ)
=

pn(∆γ)

γn
(2.64)

¤

Remark 2.13 The above result, though formally equivalent to the known shift domain expressions in

Lemma 2.8, describes the results in, what we believe to be, a novel form which differs from the usual

format given in the literature (Middleton and Goodwin, 1990; Feuer and Goodwin, 1996). This will

prove useful later especially in relation to nonlinear systems.
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Remark 2.14 The polynomials pn(∆γ) in Lemma 2.12, when rewritten in terms of the z-variable using

(2.30), correspond to the Euler-Fröbenius polynomials. In fact, the following relation holds:

pn(∆γ)
∣
∣
γ= z−1

∆

= pn(z − 1) =
Bn(z)

n!
(2.65)

The role of these polynomials in describing pulse transfer function zeros for linear systems was first

described by Åström et al. (1984).

The first of the Euler-Fröbenius polynomials in the γ-domain (corresponding to those in (2.49)–

(2.51), on page 19) are given by:

p1(∆γ) = 1 (2.66)

p2(∆γ) = 1 + ∆
2 γ (2.67)

p3(∆γ) = 1 + ∆γ + ∆2

6 γ2 (2.68)

Remark 2.15 Note that, in the γ-domain, the Euler-Fröbenius polynomials are function of the argument

∆γ. This means that their roots, in the complex plane of the variable γ, all go to infinity as ∆ goes to

zero.

An immediate consequence of Lemma 2.12 is a recursive relation for the polynomials pn(∆γ). We

first present the following preliminary result.

Lemma 2.16 For any integer n ≥ 1, consider the matrix Mn defined in (2.56) and (2.61). Then we

have:

(Mn)
−1










γ

0
...

0










=
1

pn(∆γ)










γpn−1(∆γ)

γ2pn−2(∆γ)
...

γn










(2.69)

Proof. The left hand side of equation (2.69) corresponds to solving system (2.61) by inverting the

matrix Mn, and omitting the output variable Y (γ). Thus, in the same way that we solved (2.61) for

U(γ) in the proof of Lemma 2.12, we can use Cramer’s Rule (Strang, 1988) to solve for every state Xℓ,

ℓ = 2, . . . , n. This leads to:

Xℓ =
det Nℓ−1

det Mn

Y ; ℓ = 2, . . . , n (2.70)

where Nℓ−1 is the matrix obtained by replacing the (ℓ − 1)-th column of Mn by the vector on the left

of equation (2.61). Thus:

Nℓ−1 =























1 . . . ∆ℓ−3

(ℓ−2)! γ ∆ℓ−1

ℓ! . . . ∆n−1

n!

−γ
. . . 0 ∆ℓ−2

(ℓ−1)! . . . ∆n−2

(n−1)!

0
. . . 1

...
...

. . .
...

...
. . . −γ 0 ∆

2! . . . ∆n−ℓ+1

(n−ℓ+2)!

0 . . . 0 0 1 . . . ∆n−ℓ

(n−ℓ+1)!

...
. . .

... 0 −γ
. . . ∆n−ℓ−1

(n−ℓ)!

...
. . .

...
...

...
. . .

...

0 . . . 0 0 0 . . . 1























(2.71)
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Then, computing the determinant along the (ℓ − 1)-th column, we have that:

det Nℓ−1 = γ (−1)ℓ(det P )(detMn−ℓ+1) (2.72)

where:

P =











−γ 1 . . . ∆ℓ−4

(ℓ−3)!

0
. . .

. . .
...

... −γ 1

0 . . . 0 −γ











⇒ det P = (−γ)ℓ−2 (2.73)

and, from definition (2.55)–(2.56):

det Mn−ℓ+1 = pn−ℓ+1(∆γ) (2.74)

Substituting (2.73) and (2.74) in (2.72), we obtain:

det Nℓ−1 = γℓ−1pn−ℓ+1(∆γ) (2.75)

It then follows that the solution of (2.61) is:












X2

X3

...

Xn

U












= (Mn)
−1












γ

0
...

0

0












Y =
1

pn(∆γ)












γpn−1(∆γ)

γ2pn−2(∆γ)
...

γn−1p1(∆γ)

γn












Y (2.76)

which is equivalent to equation (2.69).

¤

Using the above result, we next present a second novel result, which establishes a recursive relation

between the Euler-Fröbenious polynomials in the γ-domain. Note that this recursion, together with

(2.48) for the z-domain formulation, may be helpful to compute the polynomial coefficients.

Lemma 2.17 The polynomials pn(∆γ) defined by (2.55)–(2.56) satisfy the recursion:

p0(∆γ) , 1 (2.77)

pn(∆γ) =
n∑

ℓ=1

(∆γ)ℓ−1

ℓ!
pn−ℓ(∆γ) ; n ≥ 1 (2.78)

and:

lim
∆→0

pn(∆γ) = 1 ;∀n ∈ {1, 2, . . .} (2.79)

Proof. From the definition of matrix Mn in (2.56), we have that:

Mn =










1 ∆
2! . . . ∆n−1

n!

−γ
... Mn−1

0










(2.80)
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The determinant of this matrix can be readily computed, using properties of block matrices (see

Appendix A):

det Mn = detMn−1 × det










1 −
[

∆
2! . . . ∆n−1

n!

]

(Mn−1)
−1










−γ

0
...

0



















(2.81)

Using definition (2.55) and the preliminary result in Lemma 2.16, we have that:

pn(∆γ) = pn−1(∆γ)










1 +
[

∆
2! . . . ∆n−1

n!

] 1

pn−1(∆γ)










γ pn−2(∆γ)
...

γn−2 p1(∆γ)

γn−1



















(2.82)

The recursive relation in (2.78) corresponds exactly to (2.82).

Finally, (2.79) readily follows from the recursion (2.78), on noting that:

lim
∆→0

pn(∆γ) = lim
∆→0

pn−1(∆γ) = . . . = lim
∆→0

p1(∆γ) = 1 (2.83)

¤

We next consider the case of a general SISO linear continuous-time system. Again, we are interested

in the corresponding discrete-time model when a ZOH input is applied. The relationship between the

continuous-time poles and those of the discrete-time model can be easily determined. However, the

relationship between the zeros in the continuous and discrete-time domains is much more involved. We

consider the asymptotic case as the sampling rate increases.

Lemma 2.18 (Åström et al., 1984, Theorem 1) Let G(s) be a rational function:

G(s) =
F (s)

E(s)
= K

(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
(2.84)

and Gq(z) the corresponding pulse transfer function. Assume that m < n,i.e., G(s) strictly proper.

Then as the sampling period ∆ goes to 0, m zeros of Gq(z) go to 1 as ezi∆, and the remaining n−m−1

zeros of Gq(z) go to the zeros of the polynomial Bn−m(z) defined in Lemma 2.8, i.e.,

Gq(z)
∆≈0−−−→ K

∆n−m(z − 1)mBn−m(z)

(n − m)!(z − 1)n
(2.85)

¤

The above result was expressed in terms of the shift operator. We can also reexpress the result in the

delta operator framework as in the following lemma.

Lemma 2.19 Consider a SISO linear continuous-time system described by the transfer function (2.84).

Given a sampling period ∆, the discrete-time sampled-data model corresponding to this system, for a

ZOH input, is given by:

Gδ(γ) =
Fδ(γ)

Eδ(γ)
(2.86)
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and, as the sampling period ∆ goes to zero:

Fδ(γ) −→ F (γ)pn−m(∆γ) (2.87)

Eδ(γ) =

n∏

ℓ=1

(

γ − epℓ∆−1
∆

)

−→ E(γ) (2.88)

Proof. See any of the references (Middleton and Goodwin, 1990; Feuer and Goodwin, 1996).

¤

The results presented above consider the case when the continuous-time system input is generated by

a ZOH. Similar results can be obtained when a different hold device is utilised. In particular, in Chapter

3 we will see that the zeros (and thus, the asymptotic sampling zeros) of the discrete-time model depend

on the particular choice of the hold. As an illustration, we present the following result that characterises

the sampling zeros obtained when the continuous-time input to the system is generated using a FOH, in

terms of polynomials closely related to the Euler-Fröbenius polynomials defined in Lemma 2.8.

Lemma 2.20 (Hagiwara et al., 1993, Theorem 2) Consider G(s) a strictly proper transfer function as

in (2.84). When using a FOH to generate the continuous-time input, as in (2.11), the pulse transfer

function (2.26) has, in general, n zeros. Moreover, as the sampling period ∆ goes to 0:

Gq(z)
∆≈0−−−→ K

∆n−m(z − 1)mCn−m(z)

(n − m + 1)!z(z − 1)n
(2.89)

where the sampling zero polynomials, Cℓ(z), are given by:

Cℓ(z) = Bℓ+1(z) + (ℓ + 1)(z − 1)Bℓ(z) (2.90)

¤

2.4 Sampling of stochastic linear systems

In this section we consider the sampling of stochastic linear systems described as:

y(t) = H(ρ)v̇(t) (2.91)

where v̇(t) is a continuous-time white noise input process. This kind of models typically describe

situations where the input of a system cannot be measured or is unknown. They are sometimes also

called, generically, noise models.

We will show how a sampled-data model can be obtained from (2.91) that is exact, in the sense

that the second order properties (i.e., spectrum) of its output sequence are the same as the second order

properties of the output of the continuous-time system at the sampling instants.

We first review the relationship between the spectrum of a continuous-time process and the asso-

ciated discrete-time spectrum of the sequence of samples. We next briefly discuss the difficulties that

may arise when dealing with a white noise process in continuous-time. Then we show how sampled-

data models can be obtained for the system (2.91). Finally, we characterise the asymptotic sampling

zeros that appear in the sampled spectrum, in a similar way that we did for the deterministic case in the

previous section.
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2.4.1 Spectrum of a sampled process

Let us consider a stationary continuous-time stochastic process y(t), with zero mean and covariance

function:

ry(τ) = E{y(t + τ)y(t)} (2.92)

The associated spectral density, or spectrum, of this process is given by the Fourier transform of the

covariance function (2.92), i.e.,

Φy(ω) = F {ry(τ)} =

∫ ∞

−∞
ry(τ)ejωτdτ ; ω ∈ (−∞,∞) (2.93)

If we instantaneously sample the continuous-time signal, with sampling period ∆, we obtain the

sequence yk = y(k∆). The covariance of this sequence, rd
y [ℓ], is equal to the continuous-time signal

covariance at the sampling instants:

rd
y [ℓ] = E{yk+ℓ yk} = E{y(k∆ + ℓ∆) y(k∆)} = ry(ℓ∆) (2.94)

The power spectral density of the sampled signal is given by the Discrete-Time Fourier Transform

(DTFT) of the covariance function, namely:

Φd
y(ω) = ∆

∞∑

k=−∞
rd
y [k]e−jωk∆ ; ω ∈

[−π
∆ , −π

∆

]
(2.95)

Remark 2.21 Note that we have used the DTFT as defined in Feuer and Goodwin (1996), which in-

cludes the sampling period ∆ as a scaling factor. As a consequence, the DTFT defined this way con-

verges to the continuous-time Fourier transform as the sampling period ∆ goes to zero.

Remark 2.22 The continuous and discrete-time spectral densities, in (2.93) and (2.95) respectively, are

real functions of the frequency ω. However, to make the connections to the deterministic case apparent,

we will sometimes express the continuous-time spectrum in terms of the complex variables s = jω, i.e.,

Φy(ω) = Φy(jω) = Φy(s)
∣
∣
s=jω

(CT spectrum) (2.96)

and the discrete-time spectrums in terms of z = ejω∆ or γ = γω = ejω∆−1
∆ , for shift and delta operator

models, respectively, i.e.,

Φd
y(ω) = Φq

y(ejω∆) = Φδ
y(γω) (2.97)

where:

Φq
y(ejω∆) = Φq

y(z)
∣
∣
z=ejω∆ (q-domain DT spectrum) (2.98)

Φδ
y(γω) = Φδ

y(γ)
∣
∣
γ= ejω∆

−1
∆

(δ-domain DT spectrum) (2.99)

The following lemma relates the spectrum of the sampled sequence to the spectrum of the original

continuous-time process.

Lemma 2.23 Let us consider a stochastic process y(t), with spectrum given by (2.93), together with

its sequence of samples yk = y(k∆), with discrete-time spectrum given by (2.95). Then the following

relationship holds:

Φd
y(ω) =

∞∑

ℓ=−∞
Φy

(
ω + 2π

∆ ℓ
)

(2.100)
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Proof. The discrete-time spectrum (2.95) can be rewritten in terms of the inverse (continuous-time)

Fourier transform of the covariance function:

Φd
y(ω) = ∆

∞∑

k=−∞
ry(k∆)e−jωk∆ = ∆

∞∑

k=−∞

[
1

2π

∫ ∞

−∞
Φy(η)ejηk∆dη

]

e−jωk∆ (2.101)

=
∆

2π

∫ ∞

−∞
Φy(η)

[ ∞∑

k=−∞
ej(η−ω)k∆

]

dη (2.102)

The sum of complex exponentials can be rewritten as an infinite sum of Dirac impulses spread every
2π
∆ (Feuer and Goodwin, 1996; Oppenheim and Schafer, 1999), i.e.,

∞∑

k=−∞
ej(η−ω)k∆ =

2π

∆

∞∑

ℓ=−∞
δ
(
η − ω − 2π

∆ ℓ
)

(2.103)

Using (2.103) in (2.102), the result is obtained:

Φd
y(ω) =

∫ ∞

−∞
Φy(η)

∞∑

ℓ=−∞
δ
(
η − ω − 2π

∆ ℓ
)
dη =

∞∑

ℓ=−∞

∫ ∞

−∞
Φy(η)δ

(
η − ω − 2π

∆ ℓ
)
dη

︸ ︷︷ ︸

Φy

“

ω+
2π
∆ ℓ

”

(2.104)

¤

Equation (2.100) reflects the well-known consequence of the sampling process: the aliasing effect.

For deterministic systems, an analogue result was obtained in (2.20). In the stochastic case considered

here, the discrete-time spectrum is obtained by folding high frequency components of the continuous-

time spectrum.

2.4.2 Continuous-time white noise

The input v̇(t) to the system (2.91) is modelled as zero mean white noise process in continuous-time.

This means that it is a stochastic process that satisfies the following two conditions:

1. E{v̇(t)} = 0, for all t; and

2. v̇(t) is independent of v̇(s), i.e., E{v̇(t)v̇(s)} = 0, for all t 6= s.

However, if we look for a stochastic process with continuous paths that satisfies the previous two

conditions, this happens to be equal to zero in the mean square sense, i.e., E{v̇(t)2} = 0, for all t

(Åström, 1970). This points to the source of some difficulties since the process v̇(t) does not exist in a

meaningful sense. Indeed, equation (2.109) (below) should actually be written as a stochastic differential

equation (Øksendal, 2003):

dx = Ax dt + Bdv (2.105)

where dv are independent increments, Gaussian distributed, of a process v(t). This corresponds to a

Wiener process that satisfies the following properties (Kallianpur, 1980):

1. It has zero mean, i.e., E{v(t)} = 0, for all t ;

2. Its increments are independent, i.e., E{(v(t1) − v(t2))(v(s1) − v(s2))} = 0, for all t1 > t2 >

s1 > s2 ≥ 0 ; and
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3. For every s and t, s ≤ t, v(t) − v(s) has a Gaussian distribution with zero mean and variance

E{(v(t) − v(s))2} = σ2
v |t − s|

This process is not differentiable everywhere. However, if we define the continuous-time white noise

process (CTWN) v̇(t) formally as its derivative, then the first two conditions on v(t) correspond to the

previous conditions required for the process v̇(t). Note also that the third condition above implies that

CTWN will have infinite variance:

E{dv dv} = E{(v(t + dt) − v(t))2} = σ2
vdt ⇒ E{v̇2} = ∞ (2.106)

Remark 2.24 Indeed, a continuous-time white noise process is a mathematical abstraction and does

not physically exist (Jazwinski, 1970), but it can be approximated to any desired degree of accuracy by

conventional stochastic processes with broad band spectra (Kloeden and Platen, 1992).

Equation (2.106) suggests that one may consider σ2
v as the incremental variance of the Wiener

process v(t). Moreover, we can think of v̇(t) as a generalised process, introducing a Dirac delta function

to define its covariance structure:

rv̇(t − s) = E{v̇(t) v̇(s)} = σ2
vδ(t − s) (2.107)

In the frequency domain, σ2
v corresponds, in fact, to the power spectral density of v̇(t) (Feuer and

Goodwin, 1996), which is constant for all frequencies:

Φv̇(ω) =

∫ ∞

−∞
rv̇(τ)e−jωτdτ = σ2

v ∀ω ∈ (−∞,∞) (2.108)

2.4.3 A stochastic sampled-data model

In the sequel we will assume that the the process y(t) in (2.91) does not contain any unfiltered white

noise components. In practice, this can be guaranteed by the use of an anti-aliasing filter. As a conse-

quence, we assume that H(ρ) in (2.91) is a strictly proper transfer function that can be represented in

state space form as:

dx(t)

dt
= Ax(t) + Bv̇(t) (2.109)

y(t) = Cx(t) (2.110)

where the system state vector is x(t) ∈ R
n, the matrices are A ∈ R

n×n and B,CT ∈ R
n, and the input

v̇(t) is a CTWN process with (constant) spectral density σ2
v .

In the previous subsection we briefly discussed the characteristics required for the CTWN input to

the stochastic model (2.91). We have seen that a rigorous treatment of the state-space model (2.109)–

(2.110) requires that one represents the system as a (set of) stochastic differential equation (SDE). How-

ever, for linear systems we will obtain the same results if we proceed formally considering the system

as simply driven by the CTWN input (see also Remark 7.4 on page 126).

The following result gives us the sampled-data model when considering instantaneous sampling of

the output (2.110).
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Lemma 2.25 Consider the stochastic system defined in state-space form (2.109)–(2.110), where the in-

put v̇(t) is a CTWN process with (constant) spectral density σ2
v . When the output y(t) is instantaneously

sampled, with sampling period ∆, an equivalent discrete-time model is given by:

δxk = Aδ xk + vk (2.111)

yk = Cxk (2.112)

where Aδ = 1
∆ (eA∆ − In), and the sequence vk is a discrete-time white noise (DTWN) process, with

zero mean and covariance structure given by:

E{vk vT
ℓ } = Ωδ

δK [k − ℓ]

∆
(2.113)

where:

Ωδ =
σ2

v

∆

∫ ∆

0

eAηBBT eAT ηdη (2.114)

Proof. The proof (when using shift operator models) can be found, for example, in (Söderström,

2002). Arguing as in (2.15), we have that:

xk+1 = eA∆xk +

∫ k∆+∆

k∆

eA(k∆+∆−η)Bv̇(η)dη ⇒ δxk =
eA∆ − In

∆
xk + vk (2.115)

where the noise sequence is:

vk =
1

∆

∫ k∆+∆

k∆

eA(k∆+∆−η)Bv̇(η) dη (2.116)

The covariance of vk is now given by:

E{vk vT
ℓ } =

1

∆2
E







(
∫ k∆+∆

k∆

eA(k∆+∆−η)Bv̇(η)dη

) (
∫ ℓ∆+∆

ℓ∆

eA(ℓ∆+∆−ξ)Bv̇(ξ)dξ

)T






(2.117)

=
1

∆2

∫ k∆+∆

k∆

∫ ℓ∆+∆

ℓ∆

eA(k∆+∆−η)B E{v̇(η)v̇(ξ)}
︸ ︷︷ ︸

σ2
vδ(η−ξ)

BT eAT (ℓ∆+∆−ξ)dξdη (2.118)

The double integral above is non-zero only when k = ℓ and η = ξ. Thus, we obtain:

E{vk vT
ℓ } =

σ2
v

∆2

∫ k∆+∆

k∆

eA(k∆+∆−η)BBT eAT (k∆+∆−η)dη δK [k − ℓ] (2.119)

Upon changing variables in the integral, the above expression can be shown to be equivalent to

(2.113)–(2.114).

¤

Remark 2.26 Matrix Ωδ is in fact the (constant) spectral density of the noise vector vk, as can be seen

applying discrete-time Fourier transform to (2.113):

Fd

{

Ωδ

δK [k]

∆

}

= ∆

∞∑

k=−∞
Ωδ

δK [k]

∆
e−jωk∆ = Ωδ ; ω ∈

[
− π

∆ , π
∆

]
(2.120)
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Remark 2.27 Note that the previous result allows us to recover the continuous-time stochastic descrip-

tion (2.109), as the sampling period ∆ goes to zero. In particular, the covariance (2.113) corresponds

(in continuous-time) to the covariance of the vector process Bv̇(t) in (2.109), as it can be readily seen

on noting that:

lim
∆→0

Ωδ = σ2
v BBT = Ωc (2.121)

lim
∆→0

1
∆δK [k − ℓ] = δ(tk − tℓ) (2.122)

Given continuous-time system, Lemma 2.25 provides a sampled-data model expressed in terms of

the δ-operator. A corresponding shift operator model can readily be obtained rewriting (2.111) as:

q xk = xk+1 = Aq xk + ṽk (2.123)

where ṽk = vk ∆ and, as before, Aq = 1 + Aδ∆. Note that, for this model, the covariance structure of

the noise sequence is given by:

E{ṽk ṽT
ℓ } = ∆2E{vk vT

ℓ } = ∆Ωδ δK [k − ℓ] = Ωq δK [k − ℓ] (2.124)

where we have defined Ωq = Ωδ ∆.

Remark 2.28 As noticed by Farrell and Livstone (1996), the matrix Ωq in (2.124) can be computed

solving the discrete-time Lyapunov equation (see Appendix A):

Ωq = P − AqPAT
q (2.125)

or, equivalently, in the δ-domain:

Ωδ = AδP + PAT
δ + ∆AδPAT

δ (2.126)

where P satisfies the continuous-time Lyapunov equation AP + PAT + Ωc = 0, for stable systems, or

AP + PAT − Ωc = 0, for anti-stable systems. For Lemma 2.25 we have, in particular, Ωc = σ2
vBBT .

The sampled-data model (2.111)–(2.112) is driven by a vector white noise process vk. The co-

variance of this process is determined by the matrix Ωδ in (2.114), which will generically be full rank

(Söderström, 2002). We will go further and describe the sampled process yk = y(k∆) as the output

of a sampled-data model driven by a single scalar noise source. This can be achieved by, first, obtain-

ing the discrete-time spectrum of the sampled sequence yk, and then performing spectral factorisation

(Anderson and Moore, 1979).

The output spectrum of the sampled-data model is given in the following result.

Lemma 2.29 The output spectrum Φd
y(ω) of the sampled-data model (2.111)–(2.112) can be obtained

as:

Φδ
y(γω) = C(γωIn − Aδ)

−1Ωδ(γ
∗
ωIn − AT

δ )−1CT (2.127)

where γω = 1
∆ (ejω∆ − 1) and ∗ denote complex conjugation. Using (2.123), this spectrum can be

equivalently obtained as:

Φq
y(ejω∆) = ∆C(ejω∆In − Aq)

−1Ωq(e
−jω∆In − AT

q )−1CT (2.128)
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Proof. The result in the delta domain readily follows considering (2.111)–(2.112). These equations

define a discrete-time linear system with a vector input vk and output yk. The output spectrum is then

given by (Middleton and Goodwin, 1990):

Φd
y(ω) = Hδ(γω)Φd

v(ω)Hδ(γ
∗
ω)T (2.129)

where Hδ(γω) = C(γωIn − Aδ)
−1, and the spectrum of the input noise is Φd

v(ω) = Ωδ (see Remark

2.26). Equation (2.128) follows from the relations γω = ejω∆−1
∆ , Aδ =

Aq−1
∆ , and Ωδ =

Ωq

∆ .

¤

Remark 2.30 The previous lemma allows us to obtain an expression for the discrete-time spectrum of

the sequence of output samples. Additionally, this spectrum can be used to obtain a stochastic sampled-

data model by utilising spectral factorisation.

Next we present examples showing how stochastic sampled-data models can be obtained utilising

the previous results.

Example 2.31 Let us consider the first order continuous-time auto-regressive (CAR) system:

dy(t)

dt
− a0y(t) = b0v̇(t) (2.130)

where a0 < 0 and v̇(t) is a CTWN process of unitary spectral density, i.e., σ2
v = 1. A suitable state-

space model can readily be obtained as:

dx(t)

dt
= a0x(t) + b0v̇(t) (2.131)

y(t) = x(t) (2.132)

A sampled-data model for this system is readily obtained:

q xk = ea0∆xk + ṽk δxk =
(

ea0∆−1
∆

)

xk + vk (2.133)

yk = xk yk = xk (2.134)

where ṽk and vk are DTWN processes with variance Ωq and Ωδ

∆ , respectively. Note that these variances

are not very useful when considering the sampling period ∆ tending to zero. If we compute them, for

example, using Remark 2.28, we can see that they are badly scaled:

Ωq = ∆Ωδ = b2
0

(e2a0∆−1)
2a0

∆→0−−−−→ 0 (2.135)

Ωδ

∆ = b2
0

(e2a0∆ − 1)

2a0∆2

∆→0−−−−→ ∞ (2.136)

On the other hand, as noticed in Remark 2.27, the spectral density Ωδ converges naturally to its

continuous-time counterpart:

Ωδ = b2
0

(e2a0∆ − 1)

2a0∆

∆→0−−−−→ b2
0 (2.137)

¤
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In the previous example, a stochastic sampled-data model was obtained for first order systems in

terms of a single scalar noise source. For higher order systems, Lemma 2.25 gives a sampled-data

model in terms of a vector input vk. However, as described above, we can obtain an equivalent sampled-

data model, with a single scalar noise source as input, using spectral factorisation. The output of this

system has the same second order statistics, i.e., the same discrete-time spectrum (2.128), as the original

sampled-data model.

In the following example, we illustrate how a sampled-data model can be obtained for a second

order system by spectral factorisation of the sampled output spectrum.

Example 2.32 Consider the second order continuous-time auto-regressive (CAR) system:

d2y(t)

dt
+ a1

dy(t)

dt
+ a0y(t) = v̇(t) (2.138)

where v̇(t) is CTWN process of unitary spectral density, i.e., σ2
v = 1.

A state-space model is given by:

dx(t)

dt
=

[

0 1

−a0 −a1

]

x(t) +

[

0

1

]

v̇(t) (2.139)

y(t) =
[

1 0
]

x(t) (2.140)

For this system, even though is possible to compute the corresponding sampled-data model (2.111)–

(2.112) and the spectral density of the noise (2.114), the expressions are more involved than for the first

order case in Example 2.31. Moreover, the sampled-data model obtained would depend on two noise

sources.

Using (2.128), and after some long calculations, we see that the discrete-time output spectrum has

the form:

Φq
y(z) = K

z(b2z
2 + b1z + b0)

(z − eλ1∆)(z − eλ2∆)(1 − eλ1∆z)(1 − eλ2∆z)
(2.141)

where λ1 and λ2 are the continuous-time system poles, and:

b2 = (λ1 − λ2)
[

e(λ1+λ2)∆(λ2e
λ1∆ − λ1e

λ2∆) + λ1e
λ1∆ − λ2e

λ2∆
]

(2.142)

b1 =
[

(λ1 + λ2)(e
2λ1∆ − e2λ2∆) + (λ1 − λ2)(e

2(λ1+λ2)∆ − 1)
]

(2.143)

b0 = b2 (2.144)

K =
∆

2λ1λ2(λ1 − λ2)2(λ1 + λ2)
(2.145)

If we perform spectral factorisation on the sampled spectrum (2.141) we can obtain a sampled-data

model in terms of only one noise source, i.e.,

Φq
y(z) = Hq(z)Hq(z

−1) (2.146)

where:

Hq(z) =

√
K(c1z + c0)

(z − eλ1∆)(z − eλ2∆)
(2.147)

The expression for the numerator coefficients (and, thus, of the only sampling zero) of the latter

discrete-time model are involved. However, it is possible to obtain an asymptotic characterisation of
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this sampled-data model as the sampling period goes to zero, in a similar fashion as was done for the

deterministic case. We will revisit this model in Example 2.39 in Section 2.5.

¤

Lemma 2.25 allows us to obtain a sampled-data model for a stochastic system when its output is

instantaneously sampled. However, if the output y(t) contains a white noise component this approach

becomes impractical because the resulting sequence of samples has infinite variance (Åström, 1970;

Feuer and Goodwin, 1996; Söderström, 2002). To overcome this difficulty, the output of the system has

to be prefiltered before sampling. In particular, the following result presents the sampled-data model

when we use an integrating filter (also called averaging filter) before sampling.

Lemma 2.33 Consider the stochastic system:

dx(t)

dt
= Ax(t) + Bv̇(t) (2.148)

y(t) = Cx(t) + ẇ(t) (2.149)

where v̇(t) and ẇ(t) are CTWN processes such that:

E







[

v̇(t)

ẇ(t)

][

v̇(s)

ẇ(s)

]T





= Ωcδ(t − s) (2.150)

where Ωc ≥ 0. If the output of the system is sampled using the integrating filter:

ȳk = ȳ(k∆) =
1

∆

∫ k∆

k∆−∆

y(τ)dτ (2.151)

then the following sampled-data model is obtained:

δxk = Aδ xk + vk (2.152)

ȳk+1 = CIF xk + wk (2.153)

where:

Aδ =
eA∆ − In

∆
; CIF =

1

∆
C

∫ ∆

0

eAηdη (2.154)

and the DTWN sequences in (2.152)–(2.153) have the following covariance structure:

E







[

vk

wk

][

vℓ

wℓ

]T





=

[

Ωδ Σδ

ΣT
δ Γδ

]

δK [k − ℓ]

∆
(2.155)

[

Ωδ Σδ

ΣT
δ Γδ

]

=
1

∆

∫ ∆

0

eĀηB̄ΩcB̄
T eĀT ηdη (2.156)

where:

Ā =

[

A 0

C 0

]

B̄ =

[

B 0

0 1

]

(2.157)
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Proof. The proof is based on the key observation that, if we rename the output of the system as

y(t) = dz(t)
dt

, then, substituting in (2.151), we obtain:

ȳk+1 =
1

∆

∫ k∆+∆

k∆

dz(τ)

dτ
dτ =

z(k∆ + ∆) − z(k∆)

∆
= δzk (2.158)

If we rewrite the continuous-time system (2.148)–(2.149), using the matrices in (2.157), as:

d

dt

[

x(t)

z(t)

]

= Ā

[

x(t)

z(t)

]

+ B̄

[

v̇(t)

ẇ(t)

]

(2.159)

we can then apply the result in Lemma 2.25. More details of the proof can be found in (Feuer and

Goodwin, 1996, Lemma 6.4.1).

¤

Remark 2.34 The discrete-time model (2.152)–(2.153) can also be expressed, in terms of the shift op-

erator q, as:

xk+1 = Aq xk + ṽk (2.160)

ȳk+1 = CIF xk + wk (2.161)

where Aq = In + Aδ∆, ṽk = vk∆, and:

E







[

ṽk

wk

][

ṽℓ

wℓ

]T





=

[

Ωq Σq

ΣT
q Γq

]

δK [k − ℓ] (2.162)

where:

Ωq = ∆Ωδ ; Σq = Σδ ; Γq =
1

∆
Γδ (2.163)

We can now obtain the discrete-time spectrum corresponding to the sampled output of the integrating

filter scheme. This is similar in spirit to Lemma 2.29 for the instantaneous sampling case.

Lemma 2.35 The output spectrum of the sampled-data model (2.152)–(2.153) is given by:

Φδ
ȳ(γω) =

[

CIF (γωIn − Aδ)
−1 1

]
[

Ωδ Σδ

ΣT
δ Γδ

][

(γ∗
ωIn − AT

δ )−1CT
IF

1

]

(2.164)

where γω = 1
∆ (ejω∆ − 1) and where ∗ denotes complex conjugation. Equivalently, if the shift operator

model (2.160)–(2.161) is utilised, then the output spectrum can be expressed as:

Φq
ȳ(ejω∆) = ∆

[

CIF (ejω∆In − Aq)
−1 1

]
[

Ωq Σq

ΣT
q Γq

][

(e−jω∆In − AT
q )−1CT

IF

1

]

(2.165)

Proof. The proof follows the same lines as that of Lemma 2.29. Equations (2.152)–(2.153) define

a discrete-time linear system with vector inputs vk and wk, and output yk. The output spectrum is then

given by (Middleton and Goodwin, 1990):

Φd
ȳ(ω) = Hδ(γω)

[

Φd
v(ω) Φd

vw(ω)

(Φd
vw(ω))T Φd

w(ω)

]

Hδ(γ
∗
ω)T (2.166)
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where:

Hδ(γω) =

[

CIF (γωIn − Aδ)
−1

1

]

(2.167)

and the spectrum of the input noise are obtained from (2.155), i.e.,
[

Φd
v(ω) Φd

vw(ω)

(Φd
vw(ω))T Φd

w(ω)

]

=

[

Ωδ Σδ

ΣT
δ Γδ

]

(2.168)

Equation (2.165) follows from the relations γω = ejω∆−1
∆ , Aδ =

Aq−1
∆ , and the matrix relations in

(2.163).

¤

In Lemmas 2.29 and 2.35 we have given expressions for the output spectrum corresponding to

discrete-time models when sampling instantaneously and when using an integrating pre-filter, respec-

tively. Sampled-data models can be obtained from these spectra by performing spectral factorisation (as

in Example 2.32). The following classic result shows how this spectral factorisation can be performed

by using Kalman filtering, in order to obtain an innovations model. The single noise source that appears

as input to this model is known as the innovations sequence.

Lemma 2.36 Consider a state-space discrete-time model as in (2.160)–(2.161). Then the following

innovations model is equivalent, in the sense that the outputs of the two models share the same second

order properties:

zk+1 = Aqzk + Kqek (2.169)

ȳk+1 = CIF zk + ek (2.170)

where ek is a discrete-time white noise sequence with covariance matrix:

E{e2
k} = Γq + CIF PCT

IF (2.171)

The Kalman gain Kq is given by:

Kq = (AqPCT
IF + Σq)(Γq + CIF PCT

IF )−1 (2.172)

where P is the state covariance matrix given by the discrete-time algebraic Riccati equation:

AqPAT
q − P − Kq(Γq + CIF PCT

IF )KT
q + Ωq = 0 (2.173)

Proof. See, for example, (Anderson and Moore, 1979).

¤

2.5 Asymptotic sampling zeros of the output spectrum

In the previous section we have seen that the output spectrum of the sampled-data model contains

sampling zeros which have no counterpart in the underlying continuous-time system. Similar to the

deterministic case, these zeros can be asymptotically characterised.

The following two results appear in (Wahlberg, 1988). They characterise the asymptotic sampling

zeros of the output spectrum in the case of instantaneous sampling and when using an integrating pre-

filter.
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Lemma 2.37 (Wahlberg, 1988, Theorem 3.1) Consider the instantaneous sampling of the continuous-

time process (2.91). We then have that:

Φd
y(ω)

∆→0−−−−→ Φy(ω) (2.174)

uniformly in s, on compact subsets. Moreover, let ±zi, i = 1, . . . ,m be the 2m zeros of Φy(s), and

±pi, i = 1, . . . , n its 2n poles. Then:

• 2m zeros of Φd
y(z) will converge to 1 as e±zi∆;

• The remaining 2(n−m)− 1 will converge to the zeros of zB2(n−m)−1(z) as ∆ goes to zero; and

• The 2n poles of Φd
y(z) equal e±pi∆, and will hence go to 1 as ∆ goes to zero.

Proof. The proof follows from the fact that, for large |s|, the continuous-time spectrum Φy(s) can

be approximated by a 2(n − m)-th order integrator. Then the sampled data spectrum can be obtained

from the infinite sum (2.100). Using Lemma 2.10, we then have that:

∞∑

k=−∞

1

(log z + j2πk)2(n−m)
=

z B2(n−m)−1(z)

(2(n − m) − 1)!(z − 1)2(n−m)
(2.175)

The remaining details of the proof can be found in (Wahlberg, 1988) ¤

Lemma 2.38 (Wahlberg, 1988, Theorem 3.2) Consider the averaging sampling of the continuous-time

process (2.91). Then the results of Lemma 2.37 essentially apply save that the remaining 2(n−m) zeros

of Φd
y(z) will converge to the zeros of B2(n−m)(z) as ∆ goes to zero.

Proof. See (Wahlberg, 1988).

¤

Example 2.39 Consider again the second order CAR system in Example 2.32. The discrete-time spec-

trum (2.141) was obtained for the case of instantaneous sampling of the output y(t). Exact expressions

for the sampling zeros of this spectrum are quite involved. However, performing a Taylor series expan-

sion of the numerator we have that:

Kz(b2z
2 + b1z + b0) =

∆4

3!
z(z2 + 4z + 1) + O(∆5) (2.176)

which, asymptotically as ∆ goes to zero, is consistent with Lemma 2.37, noting that B3(z) = z2+4z+1

as in (2.51).

The asymptotic sampled spectrum can be obtained as:

Φq
y(z) =

∆4

6

(z + 4 + z−1)

(z − eλ1∆)(z − eλ2∆)(z−1 − eλ1∆)(z−1 − eλ2∆)

=
∆4

6(2 −
√

3)

(z + 2 −
√

3)

(z − eλ1∆)(z − eλ2∆)

(z−1 + 2 −
√

3)

(z−1 − eλ1∆)(z−1 − eλ2∆)
(2.177)

Then, the spectrum can be written as Φq
y(z) = Hq(z)Hq(z

−1), where:

Hq(z) =
∆2

3 −
√

3

(z + 2 −
√

3)

(z − eλ1∆)(z − eλ2∆)
(2.178)
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The corresponding δ-operator model can be obtained by changing variable z = 1+γ∆. This yields

the following discrete-time model:

Hδ(γ) =
1 + 1

3−
√

3
∆γ

(

γ − eλ1∆−1
∆

) (

γ − eλ2∆−1
∆

) (2.179)

which clearly converges to the underlying continuous-time system (2.138), as the sampling period goes

to zero.

¤

2.6 Summary

In this chapter we have reviewed the fundamental concepts underlying the analysis of sampled-data

models for continuous-time linear systems. Known results have been summarised and extensions using

the δ-operator have been presented.

For deterministic systems, we have presented a sampled-data model which exactly describes the

samples of the system continuous-time output. Also a characterisation of the poles and the zeros of

the discrete-time model has been given. Well-known results regarding the presence and convergence of

sampling zeros have been reviewed and extended. In particular, we have presented two novel results: the

characterisation of the asymptotic sampling zero polynomials in Lemma 2.12, and the recursive relation

for these polynomials, in Lemma 2.17. The given formulation is actually an alternative way of writing

(in the δ domain) the usual characterisation in terms of the Euler-Fröbenius polynomials. The alternative

form will prove to be a key enabling result in the nonlinear case presented in Chapter 6.

Corresponding results have also been given for stochastic systems. Our analysis has concentrated on

the sampled output spectrum, which contains also sampling zeros. These zeros can be asymptotically

characterised as the sampling period goes to zero. Sampled-data models for this kind of systems can

be obtained by spectral factorisation of this discrete-time output spectrum. As a consequence, these

models are exact in the sense that the output has the same second order properties (covariance) as does

the continuous-time system output at the sampling instants.
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Chapter 3

Generalised sample and hold devices

3.1 Overview

In the previous chapter we have shown that sampled-data models are determined, not only by the un-

derlying continuous-time system, but also by the sampling process itself. The poles of the sampled-data

model depend only on the continuous-time poles and the sampling period. However, the zeros also de-

pend on the artifacts of the sampling process, namely, how the continuous-time input is generated and

how the output samples are obtained. In fact, for deterministic system, different models arise when using

a zero- or a first-order hold to generate the continuous-time input (Section 2.2). In a similar fashion, dif-

ferent stochastic sampled-data models are obtained when different filters are used before instantaneous

sampling (Section 2.4).

In this chapter we study the effect of the sample and hold devices in a more general setting. In

particular, we describe any hold or sampling device by its impulse response (Feuer and Goodwin, 1996).

In this framework, ZOH and FOH are particular cases of, so called, generalised hold functions (GHF).

Similarly, instantaneous sampling and averaging (or integrating) sampling can be included as particular

cases of generalised sampling filters (GSF).

For deterministic systems, it is well-known that, given a continuous-time system and a sampling

period ∆, the GHF can be used to shift the zeros of the corresponding sampled-data model (Kabamba,

1987). However, the use of the GHF can give misleading results when essential characteristics of the

continuous-time system, such as non-minimum phase (NMP) behaviour, are artificially removed (Zhang

and Zhang, 1994; Feuer and Goodwin, 1994). The discrete-time sequences in this case may differ

significantly from the underlying continuous-time signals, making the sampled-data model not a good

description of the continuous-time system. Here we propose a hold design that deals only with the

effects of sampling in the discrete-time model. We thus focus in the, so called, sampling zeros.

For the stochastic case, a dual result holds. It is well known that the discrete-time description

of the system depends on the prefilter used prior to sampling (instantaneously) the system output

(Wahlberg, 1988). Indeed, we have shown in Section 2.5 that different sampled-data models, with

different asymptotic sampling zeros, arise when the output samples are obtained using (or not using) an

integrating filter before instantaneous sampling.
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Other duality results between sample and hold devices have previously been highlighted. For ex-

ample, in (Feuer and Goodwin, 1996), an optimal sampled-data control problem, using a ZOH input, is

shown to be dual to an optimal state estimation problem, when using an integrating filter on the system

output.

In this chapter, we consider the use of generalised holds and sampling filters to deal with sampling

zeros only. We begin, in Section 3.2, by reviewing the use of GHF in the sampling process of determin-

istic systems. Then, in Section 3.3, we present a GHF design procedure that places the sampling zeros

asymptotically at the origin, as the sampling period tends to zero. Section 3.4 presents the GSF and ex-

plores its role in the sampling process for stochastic systems. Then, in Section 3.5, we show how a GSF

can be designed to assign the sampling zeros of the output spectrum, and, thus, of the corresponding

stochastic sampled-data model, to the origin as the sampling frequency increases.

The design procedures presented in this chapter are independent of the particular system, both for

the deterministic and stochastic cases, depending only on the system relative degree. Furthermore, the

results obtained are asymptotic, as the sampling period goes to zero. In Section 3.6, we explore the

robustness of these design procedures to, both, non-zero sampling periods and high frequency errors in

the continuous-time system model.

3.2 Generalised hold functions

In this section we study the role of the hold device in obtaining sampled-data models for deterministic

systems. Here we consider a more general settling than in Chapter 2, where only zero- and first-order

holds were studied.

A linear hold device can be completely characterised by its impulse response, hg(t) (Feuer and

Goodwin, 1996). This function is the continuous-time signal generated by the hold device when its

(discrete-time) input is a Kronecker delta function:

uk = δK [k] =







1 k = 0

0 k 6= 0
⇒ u(t) = hg(t) (3.1)

Figure 3.2 schematically represents a GHF and its impulse response. Zero- and first-order holds can

be understood as particular cases of GHFs. Indeed, their impulse responses are shown in Figure 2.2 on

page 14.

Note that, given an input sequence uk, the continuous-time signal generated by the hold is given by:

u(t) =

∞∑

k=−∞
hg(t − k∆)uk (3.2)

Assumption 3.1 For the sake of simplicity, we will restrict our analysis to the class of GHFs whose

impulse response has support on one sampling interval, i.e., hg(t) = 0, for all t /∈ [0,∆).

The previous assumption excludes from our analysis, for example, the FOH in Figure 2.2(b). How-

ever, the next result shows that the class of GHFs considered here provides enough freedom to arbitrarily

assign the zeros of the sampled-data model.
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GHF
uk u(t)

0 ∆

t

2∆

hg(t)

2

δK [k]

41−1 3

k

0

Figure 3.1: Schematic representation of a generalised hold function (GHF).

Lemma 3.2 Consider the continuous-time state-space model (2.2)–(2.3). If we use a GHF with impulse

response hg(t) to generate the input u(t), then the equivalent discrete-time model is given by:

q xk = xk+1 = Aqxk + Bg uk (3.3)

yk = Cxk (3.4)

where Aq = eA∆, and:

Bg =

∫ ∆

0

eA(∆−τ)Bhg(τ)dτ (3.5)

Proof. The proof follows similar lines as in (Feuer and Goodwin, 1996), for δ models. Specifically,

from equation (2.15), we have that:

xk+1 = eA∆xk +

∫ k∆+∆

k∆

eA(k∆+∆−η)Bu(η)dη (3.6)

Assumption 3.1 allows one to simplify the continuous-time input (3.2). Within a single sampling

period, we can write:

u(t) = hg(t − k∆)uk ; k∆ ≤ t < k∆ + ∆ (3.7)

Thus, we obtain:

∫ k∆+∆

k∆

eA(k∆+∆−η)Bu(η)dη =

[
∫ k∆+∆

k∆

eA(k∆+∆−η)Bhg(η − k∆)dη

]

uk (3.8)

where, changing variables or simply considering k = 0, the last integral is shown to be equal to Bg in

(3.5).

¤

Note that the previous results coincide with Lemma 2.2 on page 14, when we restrict to the ZOH

case, as expected. The impulse response of the ZOH appears in Figure 2.2(a) and is defined by:

hg(t) = hZOH(t) =







1 ; t ∈ [0,∆)

0 ; t /∈ [0,∆)
(3.9)

Corollary 3.3 The zeros of the discrete-time system (3.3)–(3.4) are given by the solutions of the equa-

tion:

C adj(zIn − Aq)Bg = 0 (3.10)

where adj(·) denotes the adjoint matrix.
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Proof. This result is a direct consequence of expressing the state-space model (3.3)–(3.4) in transfer

function form:

Gq(z) = C(zIn − Aq)
−1Bg =

C adj(zIn − Aq)Bg

det(zIn − Aq)
(3.11)

¤

Remark 3.4 In this chapter we are interested in designing a hold function such that the asymptotic

sampling zeros are arbitrarily assigned. In (Feuer and Goodwin, 1996) it is shown that (generically)

the controllability of the pair (A,B) is enough to arbitrarily assign the roots of (3.10).

Remark 3.5 Lemma 3.2 highlights the fact that sampled-data model characteristics depend both on the

continuous-time system and the sampling process itself. Indeed, equation (3.11) shows that the poles of

the system depends only on Aq = eA∆, but the zeros are functions of Bg and, thus, of the GHF impulse

response hg(t).

Our focus in this chapter is to propose design methods that allow one to assign the sampled-data

model zeros in (3.10), by choosing an appropriate hold device. Towards this goal, we note that a simpler

expression can be obtained for the matrix Bg in (3.5) if we consider a GHF defined by the piecewise

constant impulse response, shown in Figure 3.2:

hg(t) = fN (t) =







g1 ; 0 ≤ t < ∆
N

g2 ; ∆
N

≤ t < 2∆
N

...

gN ; (N−1)∆
N

≤ t < ∆

(3.12)

t

2∆

N

∆

g2

gN

0

3∆

N

g1

hg(t)

∆

N

Figure 3.2: Impulse response of a piecewise constant GHF.

Substituting (3.12) in (3.5), we obtain an expression for Bg in terms of the weights gℓ, ℓ = 1, . . . , N .

These coefficients will be used later, in Section 3.3, as design parameters to assign the sampling zeros.

We note that the matrix Bg is linearly parameterised:

Bg =

N∑

ℓ=1

gℓ

∫ ℓ∆
N

(ℓ−1)∆
N

eA(∆−τ)B dτ (3.13)

Lemma 3.2 provides a state-space sampled-data model corresponding to a continuous-time system,

also expressed in state-space form. However, the sampled-data model can also be obtained directly
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from the continuous-time transfer function G(s). Specifically, the discrete-time transfer function can

be obtained by computing the Z-transform of the response of the combined GHF and continuous-time

system, when the hold input is a Kronecker delta function. This line of reasoning leads us to:

Gq(z) = Z
{
L−1{Hg(s)G(s)}

∣
∣
t=k∆

}
(3.14)

where G(s) is the transfer function of the continuous-time system, and Hg(s) is the Laplace transform

of the GHF impulse response hg(t). This expression coincides with the result in Chapter 2, for the ZOH

case. In fact, if we replace Hg(s) by the ZOH transfer function (2.21), then (3.14) can be rewritten as

in expression (2.17).

3.3 Asymptotic sampling zeros for generalised holds

In this section, we investigate the asymptotic sampling zeros that arise in sampled-data models when

the continuous-time input is generated by a GHF. For simplicity, we will consider a piecewise constant

GHF with impulse response as in Figure 3.2.

We first introduce the following preliminary result:

Lemma 3.6 Using the polynomials defined in (2.44)–(2.45), and defining B0(z) = z−1, we have:

∞∑

k=1

kpz−k =
zBp(z)

(z − 1)p+1
; ∀p ≥ 0 (3.15)

Proof. We use induction. We first note that for p = 0, the result is straightforward. For p = 1, we

have that: ∞∑

k=1

kz−k = Z {k} = −z
d

dz
Z {1} =

zB1(z)

(z − 1)2
(3.16)

Assuming that (3.15) holds for p, we next prove that it also holds for p + 1. We see that:

∞∑

k=1

kp+1z−k = Z
{
kp+1

}
= −z

d

dz
Z {kp} =

z
[
z(1 − z)Bp

′(z) + (pz + 1)Bp(z)
]

(z − 1)p+2
(3.17)

The result then follows from the recursion (2.48) satisfied by the polynomials Bp(z):

z(1 − z)Bp
′(z) + (pz + 1)Bp(z) = Bp+1(z) (3.18)

for all p ≥ 0.

¤

Using the previous result, we next extend Lemma 2.8 to the GHF case. In particular, we characterise

the sampling zeros of the sampled-data model of an n-order integrator, when the input is generated by a

piecewise constant GHF.

Lemma 3.7 Consider the n-th order integrator G(s) = s−n. If the continuous-time input u(t) is

generated by a piecewise constant GHF, defined as in (3.12), with n different subintervals, then the

corresponding discrete-time transfer function is given by:

Gq(z) =
∆n

n!(z − 1)n

n−1∑

p=0

zBp(z)(z − 1)n−p−1Cn,p (3.19)
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where the polynomials Bp(z) are defined in (2.44)–(2.45), and:

Cn,p =

(
n

p

) (−1

n

)n−p n∑

ℓ=1

gℓ

[
(ℓ − 1)n−p − ℓn−p

]
(3.20)

Proof. The sampled-data model will be obtained from equation (3.14). We first need to obtain the

Laplace transform of the impulse response of the GHF (3.12). The latter is a piecewise constant function

defined in n subintervals. Thus, we obtain:

fn(t) =
n∑

ℓ=1

gℓ

[

µ
(

t − (ℓ−1)∆
n

)

− µ
(
t − ℓ∆

n

)]

(3.21)

Fn(s) =
n∑

ℓ=1

gℓFnℓ(s) (3.22)

where µ(·) is the unitary step function, and:

Fnℓ(s) =
1

s

(

e−s
(ℓ−1)∆

n − e−s ℓ∆
n

)

; ℓ = 1, . . . , n (3.23)

We are interested in the impulse response of the combined continuous-time model:

G(s)Fn(s) =
n∑

ℓ=1

gℓHℓ(s) (3.24)

The inverse Laplace transform of each element in the sum can readily be computed as:

Hℓ(s) = G(s)Fnℓ(s) =
e−s

(ℓ−1)∆
n − e−s ℓ∆

n

sn+1
(3.25)

hℓ(t) =
(t − ℓ−1

n
∆)n

n!
µ

(

t − (ℓ − 1)∆

n

)

− (t − ℓ
n
∆)n

n!
µ

(

t − ℓ∆

n

)

(3.26)

We will consider this signal at the sampling instants hℓ[k] = hℓ(k∆). Note that hℓ[0] = 0 and, for

k ≥ 1, we can use the binomial theorem to obtain:

hℓ[k] =
∆n

n!

n−1∑

p=0

kp

(
n

p

)(−1

n

)n−p
[
(ℓ − 1)n−p − ℓn−p

]
(3.27)

The Z-transform of this signal is then given by:

Hℓ(z) =
∆n

n!

n−1∑

p=0

[(
n

p

)(−1

n

)n−p
[
(ℓ − 1)n−p − ℓn−p

]
∞∑

k=1

kpz−k

]

(3.28)

Hence, applying the result in Lemma 3.6, we have:

Hℓ(z) =
∆n

n!

n−1∑

p=0

[(
n

p

)(−1

n

)n−p
[
(ℓ − 1)n−p − ℓn−p

] z Bp(z)

(z − 1)p+1

]

(3.29)

Finally, the result is obtained by substituting (3.29) into the linear combination obtained from (3.24):

Gq(z) = Z
{
L−1 {G(s)Fn(s)}t=k∆

}
= Z

{
n∑

ℓ=1

gℓhl[k]

}

=
n∑

ℓ=1

gℓHℓ(z) (3.30)

.

¤
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Remark 3.8 Note that (3.19) establishes that the sampled-data model of an n-th order integrator has

its n poles at z = e0·∆ = 1 (as expected). The discrete-time model also has n − 1 sampling zeros. In

fact, the numerator of the corresponding sampled-data model can be rewritten as a polynomial of order

n − 1, i.e.,

Gq(z) =
∆n

n!(z − 1)n

n−1∑

p=0

αpz
p (3.31)

We next consider a more general system. We extend Theorem 2.18 on page 24 to the case when a

piecewise constant GHF is used to generate its input.

Theorem 3.9 Let G(s) be a rational function as in (2.84), with relative degree r = n − m. Let Gq(z)

be the corresponding sampled transfer function obtained using a piecewise constant GHF with r stages.

Assume m < n (or, equivalently, r > 0). Then, as the sampling period ∆ goes to 0, m zeros of

Gq(z) go to 1 as ezi∆, and the remaining r − 1 zeros of Gq(z) (the sampling zeros) go to the roots of

the polynomial:
r−1∑

p=0

zBp(z)(z − 1)r−p−1Cr,p =

r−1∑

p=0

αpz
p (3.32)

Proof. The proof of this result is similar to the proof of Theorem 2.18 that can be found in (Åström

et al., 1984). First we obtain the Laplace transform of the piecewise constant GHF with r subintervals.

Proceeding as in the proof of Lemma 3.7, we have that:

Hg(s) =
1

s

r∑

ℓ=1

gℓ

(

e−s
(ℓ−1)∆

r − e−s ℓ∆
r

)

(3.33)

Using the definition of the Laplace and Z-transform (and their inverse transforms, respectively),

equation (3.14) can be rewritten as:

Gq(z) =
∞∑

k=0

1

2πj

γ+j∞∫

γ−j∞

G(s)Hg(s)e
sk∆ds z−k =

1

2πj

γ+j∞∫

γ−j∞

G(s)Hg(s)

( ∞∑

k=1

esk∆z−k

)

ds

=
1

2πj

γ+j∞∫

γ−j∞

G(s)Hg(s)
es∆

z − es∆
ds (3.34)

where γ is such that G(s)/s has all its poles to the left of ℜ{s} = γ. If we substitute the system transfer

function (2.84) and the GHF (3.33), then the following expression is obtained by changing variables in

the integral, using w = s∆:

lim
∆→0

∆−rGq(z) =
K

2πj

γ∆+j∞∫

γ∆−j∞

ew
∑r

ℓ=1 gℓ

(

e−
(ℓ−1)w

r − e−
ℓw
r

)

wr+1(z − ew)
dw (3.35)

It is readily shown that this expression corresponds to replacing G(s) by an r-th order integrator in

(3.14). Thus, we finally obtain:

lim
∆→0

1

∆r
Gq(z) =

K
∑r−1

p=0 zBp(z)(z − 1)r−p−1Cr,p

r!(z − 1)r
=

K(z − 1)m

r!(z − 1)n

r−1∑

p=0

αpz
p (3.36)
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¤

Based on the previous results, we next present a procedure to design a GHF such that the sampling

zeros of the discrete-time model are asymptotically assigned to the origin, as the sampling period ∆

goes to 0.

Theorem 3.10 The coefficients gℓ, ℓ = 1, . . . , r of the GHF in (3.33) can be chosen in such a way that

the sampling zeros of the discrete-time model (3.32) converge asymptotically to z = 0.

Proof. To assign the sampling zeros to the origin, it follows from (3.32) that the following condition

must hold:

αp = 0 ,∀p = 0, . . . , r − 2 (3.37)

This is equivalent to having r − 1 linear equations in the coefficients Cr,p, and thus for the weights

gℓ. Moreover, the GHF must satisfy an extra condition to ensure unitary gain at zero frequency, i.e.,

1

r

r∑

ℓ=1

gℓ = 1 (3.38)

Equations (3.37) and (3.38) define r conditions on the coefficients gℓ, ℓ = 1, . . . , r, which are

(generically) linearly independent provided (A,B) is controllable (see Remark 3.4).

¤

Remark 3.11 A key observation is that the GHF obtained by solving (3.37)–(3.38) does not depend on

the particular continuous-time system. Theorem 3.9 ensures that the sampling zeros, and, thus, the GHF

design procedure, depend only on the system relative degree (see also Remark 2.11 on page 20).

Remark 3.12 In Theorem 3.10 we have chosen to assign the asymptotic sampling zeros to the origin.

This implies that, by a continuity argument, there exists a ∆ε > 0 such that, for every sampling period

∆ < ∆ε, all the sampling zeros are stable, i.e., they lie inside the unit circle in the complex plane z.

Indeed, for ∆ε small enough, all the sampling zeros will be inside a circle of radius rε ≪ 1.

Theorem 3.10 assigns the asymptotic sampling zeros to the origin to ensure that the sampled-data

model is minimum phase. However, a different set of conditions can be imposed on the weighting

coefficients if one wants to assign the sampling zeros to any other location in the complex plane.

The following example illustrates the GHF design procedure described above for a particular system.

Example 3.13 Consider the third order system:

G(s) =
1

(s + 1)3
(3.39)

By Theorem 2.18, if we use a ZOH to generate the input, then, as the sampling period ∆ tends to

zero, the associated sampled-data transfer function is given by:

Gq(z)
∆≈0−−−−−−→

(ZOH)

∆3(z + 3.732)(z + 0.268)

(z − 1)3
(3.40)

Note that the resulting discrete-time model has a non-minimum phase (NMP) zero, even though the

continuous-time system has no finite zeros.
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On the other hand, using (3.32), (3.37), and (3.38), we obtain a GHF given by the impulse response:

hg(t) =







29/2 ; 0 ≤ t < ∆
3

−17 ; ∆
3 ≤ t < 2∆

3

11/2 ; 2∆
3 ≤ t < ∆

(3.41)

Note that this assigns the limiting sampling zeros asymptotically to the origin, i.e., the combined

hold and plant discrete-time model is, as ∆ goes to 0:

Gq(z)
∆≈0−−−−−−→

(GHF )

∆3 z2

(z − 1)3
(3.42)
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Figure 3.3: Sampling zeros versus sampling period in Example 3.13.

Figure 3.3(a) shows the sampling zeros as a function of ∆ for the ZOH-case. Figure 3.3(b) shows

the magnitude of the (complex) sampling zeros obtained when the GHF (3.41) is used. We see that the

zeros are very close to their asymptotic values if the usual rule of thumb is employed, i.e., if the sampling

frequency is chosen one decade above the fastest system pole (Åström and Wittenmark, 1997).

Furthermore, Figure 3.4 shows the zero and pole locations for the sampled version of the system

using the fixed GHF (3.41), for sampling periods from 1 to 10−4. Note that all of the resulting discrete-

time models are minimum phase.

¤

The proposed sampling strategy avoids the presence of unstable sampling zeros due to the discretisa-

tion process. It therefore gives a better correspondence between continuous- and discrete-time models.

The sampling strategy has several potential applications. For example, it allows one to straightfor-

wardly apply discrete-time control methods, such as model reference adaptive control (Goodwin and

Sin, 1984; Åström, 1995) or Internal Model Control (Goodwin et al., 2001), where the presence of

NMP zeros would impose additional performance limitations. In Liang et al. (2003), the same goal is

achieved by using fractional-order holds in a multivariable context.

The following example illustrates a possible application of the proposed GHF sampling strategy.
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Figure 3.4: Zero (’o’) and pole (’x’) locations for different sampling periods ∆ for GHF in Example

3.13

Example 3.14 In this example we compare control loop performance for the system in Example 3.13,

using a ZOH and the GHF in (3.41). We use an internal model controller based on the Youla parame-

terisation (Goodwin et al., 2001). This control strategy is schematically represented in Figure 3.5. The

parameter Q(z) is designed as an approximate inverse of the plant model. To ensure stability the pa-

rameter Q(z) is restricted to be stable. Thus, one needs to be careful avoiding inverting NMP zeros of

plant.

+

r[k] −

Model

ŷ[k]

−

+

∆

y(t)

do(t)

+

+System

C-Tu(t)Hold

Device

u[k]Q(z)

D-T

Figure 3.5: Control loop using Youla parameterisation (Example 3.14).

We consider a sampling period ∆ = 0.1[s]. From (3.5), the discrete-time poles are epi∆ = e−0.1 =

0.9048. The (sampled) zeros depend on the hold used to generate the continuous-time input. Equations

(3.40) and (3.42) define the zeros for ZOH and GHF cases, respectively. Based on this, we compare the

performance of two control loops, one using ZOH and the controller:

QZOH(z) =
(1 + 0.268)(z − 0.9048)3

(1 − 0.9048)3(z + 0.268)z2
(3.43)

and the other using the GHF defined by (3.41) and the controller:

QGHF (z) =
(z − 0.9048)3

(1 − 0.9048)3z3
(3.44)

Figure 3.6 shows the control signal u(t) and system output y(t) obtained for a unitary step output

disturbance, do(t) = −µ(t). The magnitude of the control signal u(t) is large because the controller

we have chosen tries to achieve near perfect output disturbance rejection. We can see that, even though
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Figure 3.6: Simulation results for Example 3.14.

the response using the GHF gives overshoot, the settling time is smaller than for the ZOH case. Indeed,

the discrete nominal transfer function of the control loop for the GHF case is simply z−1, whereas for

the ZOH case it is 0.211z−1 + 0.789z−2. These discrete responses can be seen in Figure 3.6 at the

sampling instants. If we consider the inter-sample response, this is also improved by the use of the GHF.

The integral of the output y(t) squared is reduced from 0.1088 to 0.0557, when the ZOH and QZOH(z)

are replaced by the GHF (3.41) and QGHF (z).

¤

3.4 Generalised sampling filters

In the previous section we have seen how the input hold device can be designed to assign the asymptotic

sampling zeros of a deterministic system. A dual result holds for stochastic systems, namely, the zeros

of the sampled output spectrum (and, thus, of the corresponding sampled-data model) can be assigned

by choosing the generalised anti-aliasing filter used prior to instantaneous sampling.

In this section we analyse the effect of the anti-aliasing filter on the resultant stochastic sampled-data

model. Later, in Section 3.5, we present a filter design procedure, such that the sampling zeros of the

sampled output spectrum are asymptotically assigned to the origin.

We assume a sampling scheme as shown in Figure 3.7, where a generalised anti-aliasing filter is

used prior to sampling the system output. This filter is chosen as a generalised sampling filter (GSF),

defined by its impulse response, hg(t). Similar to Assumption 3.1 for the GHF case in Section 3.2,

we will consider the class of sampling functions that have support on the interval [0,∆). The output

sequence is obtained by sampling instantaneously the output of the filter:

ȳk = ȳ(k∆) =

∫ k∆

k∆−∆

y(τ)hg(k∆ − τ)dτ (3.45)

GSF
y(t) ȳ(t) ȳk

∆
H(ρ)

v̇(t)

Figure 3.7: Sampling scheme using a Generalised Filter.

Remark 3.15 The definition of a GSF as in (3.45) can be understood as a generalisation of the, so

called, integrating filter (2.151). This is also called averaging filter, and its impulse response is given by
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(Feuer and Goodwin, 1996):

hg(t) =







1/∆ ; 0 ≤ t < ∆

0 ; ∆ > 0
(3.46)

Note also that instantaneous sampling can be included in this framework by considering hg(t) =

δ(t) in (3.45).

The following result allows one to obtain a discrete-time description of the sampling scheme in

Figure 3.7.

Lemma 3.16 Consider the sampling scheme in Figure 3.7, where the continuous-time system H(ρ) can

be expressed in state-space form as in (2.109)–(2.110), and the GSF has an impulse response hg(t).

Then the corresponding discrete-time model is given by:

δxk = Aδxk + vk (3.47)

ȳk+1 = Cgxk + wk (3.48)

where δ = q−1
∆ denotes the delta operator. The matrices in (3.47)–(3.48) are given by:

Aδ =
eA∆ − I

∆
Cg =

∫ ∆

0

hg(τ)CeA(∆−τ)dτ (3.49)

and vk and wk are white noise sequences such that:

E







[

vk

wk

][

vℓ

wℓ

]T





=

[

Ωδ Σδ

ΣT
δ Γδ

]

δK [k − ℓ]

∆
(3.50)

where δK represents the Kronecker delta function, and where:

[

Ωδ Σδ

ΣT
δ Γδ

]

,
σ2

v

∆

∫ ∆

0

Mg(σ)Mg(σ)T dσ (3.51)

Mg(σ) ,





eAσB

∆

∫ σ

0

hg(ξ)CeA(σ−ξ)Bdξ



 (3.52)

Proof. The proof follows the same lines as Lemma 2.33 in (Feuer and Goodwin, 1996). We

first note that (3.47) can readily be obtained as for equation (2.111) in Lemma 2.25. Furthermore, the

noise input vk is given by (2.116). Equation (3.48) can be obtained on noting that, on the interval

[k∆, k∆ + ∆), the system output can be expressed as:

y(t) = CeA(t−k∆)x(k∆) + C

∫ t

k∆

eA(t−η)Bv̇(η)dη (3.53)

Thus, the samples of the filter output can be written as:

ȳk+1 =

∫ k∆+∆

k∆

hg(k∆ + ∆ − τ)y(τ)dτ

=

[
∫ k∆+∆

k∆

hg(k∆ + ∆ − τ)CeA(τ−k∆)dτ

]

xk + wk (3.54)
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Changing variables in the integral inside the brackets, we obtain Cg as in (3.49). The noise term wk

is given by:

wk =

∫ k∆+∆

k∆

hg(k∆ + ∆ − τ)C

∫ τ

k∆

eA(τ−η)Bv̇(η) dη dτ (3.55)

We can use Fubini’s theorem (Apostol, 1974) to change the order of integration in the last integral,

and then, using the expression for vk in (2.116), we obtain:

[

vk

wk

]

=
1

∆

∫ k∆+∆

k∆

[

eA(k∆+∆−η)B

∆
∫ k∆+∆

η
hg(k∆ + ∆ − τ)CeA(τ−η)B dτ

]

v̇(η) dη (3.56)

Equations (3.50)–(3.52) are obtained from this last expression by proceeding as in the proof of

Lemma 2.25. Indeed, the matrix Ωδ in (3.51) is the same as in equation (2.114).

¤

Remark 3.17 The discrete-time model (3.47)–(3.48) can equivalently be rewritten, using the shift op-

erator q, as:

q xk = xk+1 = Aqxk + ṽk (3.57)

ȳk+1 = Cgxk + wk (3.58)

where Aq = I + ∆Aδ = eA∆ and the input noise sequence is ṽk = ∆vk. As a consequence:

E







[

ṽk

wk

][

ṽℓ

wℓ

]T





=

[

Ωq Σq

ΣT
q Γq

]

δK [k − ℓ] (3.59)

where:

Ωq = ∆Ωδ ; Σq = Σδ ; Γq =
1

∆
Γδ (3.60)

¤

Even though Lemma 3.16 provides a sampled-data model for the system in Figure 3.7, this discrete-

time description depends on two noise sequences as inputs. The following lemma allows us to express

ȳk as the output of a system with a single white noise input, i.e., the discrete-time model is expressed in

innovations form (Anderson and Moore, 1979).

Lemma 3.18 The state-space model (3.57)–(3.58) is equivalent to the following innovations model in

the sense that their outputs share the same second order properties:

zk+1 = Aqzk + Kqek (3.61)

ȳk+1 = Cgzk + ek (3.62)

where ek is a white noise sequence with covariance matrix

E{e2
k} = Γq + CgPCT

g (3.63)

The Kalman gain Kq is given by:

Kq = (AqPCT
g + Σq)(Γq + CgPCT

g )−1 (3.64)
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and P is the state covariance matrix given by the discrete-time algebraic Riccati equation:

AqPAT
q − P − Kq(Γq + CgPCT

g )KT
q + Ωq = 0 (3.65)

¤

Using the innovations form in Lemma 3.18, we can describe the sequence of output samples ȳk by

the model:

ȳk+1 = Hq(q)ek (3.66)

where:

Hq(z) = Cg(zIn − Aq)
−1Kq + 1 (3.67)

and where ek is a DTWN with variance (3.63).

Remark 3.19 Equation (3.67) clearly shows that the discrete-time poles depend only on Aq and, hence,

only on the continuous-time system matrix A and the sampling period ∆. However, the zeros of the

model are seen to depend on Cq and Kq , and, thus, on the GSF impulse response hg(t).

Given a GSF, Lemmas 3.16 and 3.18 provide a systematic way of obtaining a sampled-data model

for the system in Figure 3.7. In particular, the zeros of Hq(z) in (3.67) depend on the choice of the GSF.

Indeed, the filter impulse response hg(t) determines the matrices Cg and Kq. However, to obtain Kq

we need to solve the algebraic Riccati equation (3.65). Thus, the way that hg(t) appears in this matrix

equation makes this approach difficult for design purposes. Hence, we explore a more direct method

below based on spectral factorisation ideas. In fact, we see that the role of the impulse response hg(t)

in the output spectrum can be described more easily if one avoids the form described in Lemma 3.18.

Lemma 3.20 Given the discrete-time model (3.57)–(3.59), the discrete-time output spectrum is given

by:

Φq
ȳ(z) = ∆

[

Cg(zIn − Aq)
−1 1

]
[

Ωq Σq

ΣT
q Γq

][

(z−1In − AT
q )−1CT

g

1

]

(3.68)

Proof. This result follows from the model (3.57)–(3.58). The output spectrum of this model can be

obtained in the same way as in the proof of Lemma 2.35, for the integrating filter case.

¤

Remark 3.21 The result in Lemma 3.20 is closely related to Lemma 3.18, noting that the output spec-

trum of the innovations model (3.61)–(3.62) is given by:

Φq
ȳ(z) = Hq(z)Hq(z

−1)Φd
e (3.69)

where the spectral factor Hq(z) is given by (3.67) and Φd
e is the (constant) spectral density of the

innovations sequence.

The previous remark shows that one can directly obtain a stochastic sampled-data model, with a

scalar noise source as input, by spectral factorisation of the spectrum (3.68). In the next section, we

follow this approach to assign the stochastic sampling zeros of Φd
ȳ(z) (and, thus, of the spectral factor

Hq(z)) by choosing an appropriate GSF. Specifically, the function hg(t) will be expressed as a linear

combination of more elemental functions, in such a way as to simplify the expressions for Cg , Σq, and

Γq, in Lemma 3.16.
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3.5 Generalised filters to assign the asymptotic sampling zeros

In this section we turn to the problem of designing a GSF such that the sampling zeros of the discrete-

time spectrum (3.68) converge, as the sampling period goes to zero, to specific locations in the complex

plane. In particular, we are interested in assigning them to the origin, or, equivalently, to obtain an

output spectrum with no stochastic sampling zeros.

The choice of the GSF to assign the sampling zeros is not unique. Thus, we restrict ourselves, to a

class of filters whose impulse response satisfies the following restriction.

Assumption 3.22 Given a system of relative degree r, we consider a GSF such that its impulse response

can be parametrised as:

hg(t) =







1
∆

(
h0 +

∑r
ℓ=1 hℓ φℓ(t)

)
; t ∈ [0,∆)

0 ; t /∈ [0,∆)
(3.70)

where the weighting coefficients h0, . . . , hr ∈ R. The basis functions φℓ(t) in (3.70) (to be specified

later) are required to satisfy the following condition:

∫ ∆

0

φℓ(t)dt = 0 (3.71)

¤

Note that we have introduced the scaling factor 1/∆ in (3.70) to resemble the averaging idea of the

integrating filter (2.151). In fact, the averaging filter corresponds to the choice h0 = 1 and hℓ = 0, for

ℓ = 1 . . . r. We see next that the condition (3.71) simplifies some of the calculations required to obtain

the output spectrum (3.68).

Remark 3.23 Note that Assumption 3.22 guarantees that, once the functions φℓ(t) in (3.70) have been

chosen, then the r+1 coefficients h0, . . . , hr provide enough degrees of freedom to assign the r sampling

zeros and the noise variance, if required.

The design procedure presented in this section is based on the key limiting argument discussed

earlier in Remark 2.11, namely, for fast sampling rates, any system of relative degree r behaves at

high frequencies as if it were an r-order integrator. This interpretation has proven to be the key in

contemporary results regarding asymptotic behaviour of sampling zeros (Åström et al., 1984; Wahlberg,

1988).

We will use this idea in the following subsections. We first consider the case of first and second

order integrators and show how different GSF’s can be designed to assign the corresponding asymptotic

sampling zeros. We then show that similar asymptotic sampling zeros are obtained when using the

resultant GSF on a more general system, having relative degree 1 and 2, respectively.

The examples that follow are aimed at illustrating the general principle, i.e., for a stochastic sys-

tem of relative degree r, a GSF can be designed based on the r-th order integrator case (see also Re-

mark 2.11 on page 20).
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3.5.1 First order integrator

We begin by considering the first order integrator H(ρ) = ρ−1. The matrices of the corresponding

state space representation (2.109)–(2.110) are, in this case, the scalars A = 0, and B = C = 1. In the

sampled-data model (3.57), this implies that Aq = 1 for any sampling period ∆.

Example 3.24 (Integrating filter) This is one of the filters considered in (Wahlberg, 1988), where

asymptotic results are obtained for fast sampling rates. The impulse response, in this case, is defined in

(3.46). For this choice we have:

Cg = 1 and

[

Ωq Σq

ΣT
q Γq

]

=

[

∆ ∆
2

∆
2

∆
3

]

(3.72)

Substituting into (3.68), yields the asymptotic result in Theorem 2.38, namely:

Φq
ȳ(z) =

∆2

3!

(z + 4 + z−1)

(z − 1)(z−1 − 1)
(3.73)

A sampled-data model can be readily obtained by spectral factorisation, as in (3.69):

Hq(z) =
∆

3 −
√

3

(z + 2 −
√

3)

(z − 1)
(3.74)

¤

Example 3.25 (Piecewise constant GSF) This GSF has the same kind of impulse response as the gen-

eralised hold functions considered in Section 3.3. Here, however, we parameterise hg(t) in a slightly

different way:

hg(t) =







1
∆ (h0 + h1) ; 0 ≤ t < ∆

2

1
∆ (h0 − h1) ; ∆

2 ≤ t < ∆

0 ; t /∈ [0,∆)

(3.75)

where h0, h1 ∈ R. For this GSF choice, we obtain:

Cg = h0 and

[

Ωq Σq

ΣT
q Γq

]

=

[

∆ ∆
2

(
h0 + 1

4h1

)

∆
2

(
h0 + 1

4h1

)
∆
3

(
h2

0 + 3
4h0h1 + 1

4h2
1

)

]

(3.76)

which, on substituting into (3.68), gives:

Φq
ȳ(z) = h2

0

∆2

3!

(
z + 4 + z−1

)

(z − 1)(z−1 − 1)
+

h2
1

2

∆2

3!

(
−z + 2 − z−1

)

(z − 1)(z−1 − 1)
(3.77)

If we now choose, for example, h0 = 1 and h1 =
√

2, we obtain a sampled spectrum with no zeros,

or, equivalently, a stable spectral factor with zeros at the origin:

Φq
ȳ(z) =

∆2

(z − 1)(z−1 − 1)
⇒ Hq(z) =

∆z

(z − 1)
(3.78)

¤
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Example 3.26 (Sinusoidal GSF) Another simple GSF impulse response which satisfies Assumption

3.22 is given by:

hg(t) =







1
∆

(
h0 + h1π sin

(
2π
∆ t

))
; 0 ≤ t < ∆

0 ; t /∈ [0,∆)
(3.79)

where h0, h1 ∈ R, and the constant π is introduced as a scaling factor. For this choice we have:

Cg = h0 and

[

Ωq Σq

ΣT
q Γq

]

=

[

∆ ∆
2 (h0 + h1)

∆
2 (h0 + h1)

∆
3

(
h2

0 + 3
2h0h1 + 9

8h2
1

)

]

(3.80)

Upon substituting into (3.68), this gives:

Φq
ȳ(z) = h2

0

∆2

3!

(
z + 4 + z−1

)

(z − 1)(z−1 − 1)
− 9h2

1

4

∆2

3!

(
z − 2 + z−1

)

(z − 1)(z−1 − 1)
(3.81)

If we now choose, for example, h0 = 1 and h1 = 2/3, we again obtain a sampled spectrum (and

a stable spectral factor) as in (3.78). As required, this discrete-time model has sampling zeros at the

origin.

¤

The GSF’s obtained in Examples 3.25 and 3.26 were designed to assign the stochastic sampling

zeros of a first order integrator to the origin. However, this GSF can also be used, for fast sampling

rates, on any system of relative degree 1 to obtain sampling zeros near the origin. We illustrate this

principle by the following example.

Example 3.27 Consider the continuous-time system:

H(ρ) =
1

ρ + 2
(3.82)

We fix the sampling period to be ∆ = 0.1, which corresponds to a sampling frequency around one

decade above the model bandwidth. If we use the piecewise GSF obtained in Example 3.25, we obtain

the following stable spectral factor of the output spectrum:

Hq(z) =
0.287(z − 2.489 · 10−4)

(z − e−0.2)
(3.83)

Similarly, if we use the sinusoidal GSF described in Example 3.26, we obtain:

Hq(z) =
0.287(z − 6.590 · 10−5)

(z − e−0.2)
(3.84)

Note that, as expected, for both cases the sampling zero is very close to the origin.

¤

3.5.2 Second order integrator

We next consider the GSF design problem for the second order integrator. This is a prelude to dealing

with general systems of relative degree 2. The expressions that allow one to obtain the sampled-data

model and, thus, to identify the stochastic sampling zeros, are more involved in this case than for the
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first order integrator. However, the design procedure previously outlined can be readily adapted as we

show below.

Thus, consider the second order integrator H(ρ) = 1/ρ2. The state space representation (2.109)–

(2.110) is then given by the matrices:

A =

[

0 1

0 0

]

B =

[

0

1

]

C =
[

1 0
]

(3.85)

For any sampling period ∆, the discrete-time system matrix is given by:

Aq =

[

1 ∆

0 1

]

(3.86)

Example 3.28 (Integrating filter) This filter is defined in (3.46). In this case we have that:

Cg =
[

1 ∆
2

]
[

Ωq Σq

ΣT
q Γq

]

=







∆3

3
∆2

2
∆3

8
∆2

2 ∆ ∆2

6
∆3

8
∆2

6
∆3

20







(3.87)

which, upon substituting into (3.68), gives:

Φq
ȳ(z) = ΦIF

ȳ (z) =
∆4

5!

(z2 + 26z + 66 + 26z−1 + z−2)

(z − 1)2(z−1 − 1)2
(3.88)

The obtained spectrum is, again, consistent with the asymptotic result in Theorem 2.38 on page 36

(see also (Wahlberg, 1988, Theorem 3.2)).

¤

Example 3.29 (Piecewise constant GSF) We consider a GSF defined by the impulse response:

hg(t) =







1
∆ (h0 + h1 + h2) ; 0 ≤ t < ∆

4

1
∆ (h0 + h1 − h2) ; ∆

4 ≤ t < ∆
2

1
∆ (h0 − h1 + h2) ; ∆

2 ≤ t < 3∆
4

1
∆ (h0 − h1 − h2) ; 3∆

4 ≤ t < ∆

0 ; t /∈ [0,∆)

(3.89)

where h0, h1, h2 ∈ R. For this choice we have:

Cg =
[

h0
∆
2 (h0 + 1

2h1 + 1
4h2)

]

(3.90)

Computing the noise spectrum (3.59) and substituting in (3.68), we obtain:

Φq
ȳ(z) = h2

0Φ
IF
ȳ (z) + h2

1Φ
1
ȳ(z) + h2

2Φ
2
ȳ(z) + h1h2Φ

3
ȳ(z) (3.91)

where ΦIF
ȳ (z) is the spectrum (3.88) obtained in Example 3.28, and Φℓ

ȳ(z) (ℓ = 1, 2, 3) are other

particular spectra that do not depend on the GSF parameters.
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To assign the spectrum zeros to the origin, we solve for the weighting parameters hℓ in (3.91). We

see that any of the following choices:

h0 = 1 h1 = ∓9.891 h2 = ±23.782 (3.92)

or h0 = 1 h1 = ∓4.691 h2 = ±5.382 (3.93)

lead us to a sampled spectrum with no zeros, i.e.,

Φq
ȳ(z) =

∆4

5!

K

(z − 1)2(z−1 − 1)2
(3.94)

¤

Example 3.30 (Sinusoidal GSF) Here we restrict the GSF impulse response to the form:

hg(t) =







1
∆

(
h0 + h1π sin

(
2π
∆ t

)
+ h2π sin

(
4π
∆ t

))
; t ∈ [0,∆)

0 ; t /∈ [0,∆)
(3.95)

where h0, h1, h2 ∈ R. For this choice we have:

Cg =
[

h0
∆
2

(
h0 + h1 + 1

2h2

)
]

(3.96)

Computing the noise spectrum (3.59) and substituting into (3.68), gives:

Φq
ȳ(z) = h2

0Φ
IF
ȳ (z) + h2

1Φ
1
ȳ(z) + h2

2Φ
2
ȳ(z) + h1h2Φ

3
ȳ(z) (3.97)

where ΦIF
ȳ (z) is the spectrum (3.88) obtained in Example 3.28, and Φℓ

ȳ(z) (ℓ = 1, 2, 3) are other

spectra that do not depend on the GSF parameters hℓ. Solving for these parameters to assign the zeros

to the origin, we see that any of the following choices:

h0 = 1 h1 = ±3.902 h2 = ∓9.804 (3.98)

or h0 = 1 h1 = ±1.902 h2 = ∓1.804 (3.99)

lead to a sampled spectrum with no zeros, i.e.,

Φq
ȳ(z) =

∆4

5!

K

(z − 1)2(z−1 − 1)2
(3.100)

¤

The GSF’s described above allow us to assign the stochastic sampling zeros of general linear models

close to the origin, when using fast sampling rates. The following example illustrates the use of the

GSF’s obtained in Examples 3.29 and 3.30 for a general system of relative degree 2.

Example 3.31 Consider the following second order stochastic system:

H(ρ) =
2

(ρ + 2)(ρ + 1)
(3.101)
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We first use the piecewise GSF obtained in Example 3.29. In particular, in (3.89) we choose h0 = 1,

h1 = 4.691, and h2 = −5.382. For a sampling period ∆ = 0.1, we obtain the following stable spectral

factor:

Hq(z) =
5.269 · 10−2(z − z1)(z − z∗1)

(z − e−0.1)(z − e−0.2)
(3.102)

where z1 = −0.014 + j0.081, and where ∗ denotes complex conjugation.

We also use the sinusoidal GSF obtained in Example 3.30. The sampling period is fixed to ∆ = 0.01.

In (3.95) we choose h0 = 1, h1 = 1.902, and h2 = −1.804. The sampled-data model is then given by:

Hq(z) =
0.22 · 10−10(z − z1)(z − z2)

(z − e−0.01)(z − e−0.02)
(3.103)

where z1 = −1.0435 · 10−3 and z1 = −1.0439 · 10−3.

Note that, as in Example 3.27, both GSF’s assign the sampling zeros very close to the origin, as

expected.

¤

3.6 Robustness Issues

The design procedures that we have presented in the previous sections are aimed at assigning the sam-

pling zeros of discrete-time models for deterministic and stochastic systems. The GHF and GSF depend

on the continuous-time relative degree of the given system. Moreover, the proposed methods are asymp-

totic and assign the zeros to the desired location (e.g., the origin z = 0) when the sampling period goes

to zero.

In practice, one cannot sample a system infinitely fast. On the other hand, the concept of relative

degree is not robustly defined for continuous-time systems, since it can be affected, for example, by

high frequency unmodelled poles and/or zeros. As a consequence, when using very fast sampling rates

the nominal model of the continuous-time system may not be appropriate. Moreover, for the stochastic

system case, continuous-time white noise is a mathematical abstraction. In practice, it will correspond

to a process with broad-band spectrum. This inherently implies some form of high-frequency modelling

error (see Remark 2.24 on page 28). These issues may raise doubts about the practical use of the methods

presented here.

We address these concerns by proposing that the generalised holds (GHF) and sampling function

(GSF) be utilised in conjunction with a bandwidth of validity for the model relative degree. If the

sampling period is chosen to be fast relative to the nominal poles (say 10 times, as per the usual rule of

thumb) but slow relative to possible unmodelled poles (say 10 times) then one can heuristically expect

that the GHF or GSF design to perform roughly as expected. On the other hand, if very fast sampling

rates are used, then one can expect the relative degree to be ill-defined, and then the GHF or GSF design

may fail to perform as desired.

These ideas are illustrated and confirmed by the following examples.
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Figure 3.8: Magnitudes of the sampling zeros in Example 3.32: fast pole at s = −102.

Example 3.32 (Deterministic systems with GHF’s) Consider again the system in Example 3.13, but

including now an unmodelled fast pole, i.e.,

G(s) =
1

(s + 1)3(0.01s + 1)
(3.104)

For the ZOH-case, Theorem 2.18 predicts that the asymptotic sampling zeros are {−3.732,−0.268},

based on a nominal model of relative degree 3, and {−9.899,−1,−0.101} for the true model of relative

degree 4. Indeed, we can see in Figure 3.8(a) that, as ∆ decreases, the sampling zeros first approach

those corresponding to the nominal model (of relative degree 3), but then move to those corresponding

the true model (of relative degree 4). For this case, we see that the nominal discrete-time model (3.40)

is basically reached for a sampling period ∆ ≈ 0.2 but is not valid for ∆ < 0.1.

Similarly, we can see in Figure 3.8(b) that the zeros obtained with the fixed GHF (3.41) are close to

the origin for ∆ > 0.1. However, when the sampling period is reduced further the unmodelled pole at

s = −102 in (3.104) becomes significant and the zeros clearly depart from the desired values.

In Figure 3.9, we see even more clearly the effect of the bandwidth of validity for the nominal model

when the unmodelled fast pole is assumed to be at s = −103. On the other hand, the plots in Figure

3.10 correspond to an unmodelled pole at s = −10, where we can see that the GHF (3.41) is not able

to assign the zeros near the origin, because the model (3.39) (used for design) is a poor representation

of the true system over all sensible sampling frequencies.

¤

Example 3.33 (Stochastic systems with GSF’s) Let us consider the presence of an unmodelled fast

pole in the continuous-time stochastic system defined (3.82). Thus, consider the following true system:

H(ρ) =
1

(

ρ + 2
)(

1
ωu

ρ + 1
) (3.105)

We use the piecewise constant GSF obtained in Example 3.25 based on a nominal system of relative

degree 1.
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Figure 3.9: Magnitudes of the sampling zeros in Example 3.32: fast pole at s = −103.
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Figure 3.10: Magnitudes of the sampling zeros in Example 3.32: fast pole at s = −10.

We assume an unmodelled fast pole located at ωu = 200[rad/s]. We consider the following two

cases for the sampling period:

1. ∆ = 0.1[s] : This corresponds to a sampling frequency ωs ≈ 60[rad/s]. In this case, the

unmodelled pole lies well beyond the sampling frequency, so we expect no significant effect on the

sampled-data model. Indeed, we obtain the spectral factor:

Hq(z) =
1.1 · 10−3(z + 1.2 · 10−2)(z − 5.3 · 10−3)

(z − e−0.2)(z − e−20)
(3.106)

We can see that the sampling zeros and the fast discrete-time pole are located close the origin.

Thus, the system can be roughly approximated by (3.83), as expected.

In this case, we have chosen a sampling frequency inside the bandwidth where the assumption on

the relative degree is justified.
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2. ∆ = 0.01[s] : We now increase the sampling frequency up to ωs ≈ 600[rad/s]. The unmodelled

pole, in this case, should ideally be considered in the GSF design. However, assuming that the

presence of the high frequency pole is unknown, and then using the same GSF as above, we obtain

the following sampled-data model:

Hq(z) =
3.8 · 10−5(z + 2.1 · 10−1)(z − 3.3 · 10−2)

(z − e−0.02)(z − e−2)
(3.107)

We see, in this case, that the slowest sampling zero is far from the origin. The reason for this

outcome is understandable since the relative degree assumption on the nominal model is no longer

valid anymore at this sampling rate.

¤

The previous examples confirm the heuristic notion that the system relative degree and our design

procedures, should be considered in terms of a bandwidth of validity for the nominal model of the

continuous-time system.

3.7 Summary

In this chapter we have analysed the artifacts involved in the sampling process. Sampled-data models

depend both on the continuous-time system and the details of the discretisation process. In particular,

we have analysed the role of the hold device that generates the continuous-time input to the system,

and the sampling device, which gives us an output sequence of samples. We have shown that these

devices determine the sampling zeros of the corresponding discrete-time model, both in the determistic

and stochastic cases.

Based on the previous analysis, we have shown that the hold device, characterised as a generalised

hold function, can be designed asymptotically (as the sampling period goes to zero) to assign the sam-

pling zeros of deterministic systems. A dual result has also been presented for stochastic systems,

namely, a generalised sampling filter can be designed to assign the asymptotic zeros of the sampled

output spectrum of a system.

An important observation is that the proposed procedures deal with sampling zeros only. Intrinsic

characteristics of the system, such as non-minimum phase zeros are not artificially removed.

Another key point is that the proposed design procedures are independent of the particular plant. In

fact, the methods rely only on the system relative degree. They are based on the key observation that, at

high frequencies (i.e., for fast sampling rates), any linear system of relative degree r can be described

as an r-th order integrator.

Finally, we have made an important observation regarding the validity of nominal continuous-time

models when using fast sampling rates. In particular, the relative degree may be an ill-defined quantity

in continuous-time because of the presence of high frequency poles or zeros. Thus, in practical cases,

the use of the generalised filters described here should be considered within a bandwidth of validity

where one can rely on the relative degree assumption. This places an upper bound on the sampling rates

that can be sensibly used in connection with the proposed methods.
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Chapter 4

Sampling issues in continuous-time

system identification

4.1 Overview

In recent years, there has been an increased interest in the problem of identifying continuous-time mod-

els (Johansson, 1994; Söderström et al., 1997; Unbehauen and Rao, 1998; Johansson et al., 1999; Rao

and Garnier, 2002; Larsson and Söderström, 2002; Garnier et al., 2003; Kristensen et al., 2004; Gillberg

and Ljung, 2005a; Gillberg and Ljung, 2005b). These kinds of models have several advantages com-

pared to discrete-time models: the parameters obtained are physically meaningful, and can be related

to properties of the real system; the continuous-time model obtained is independent of the sampling pe-

riod; and these models may be more suitable for fast sampling rate applications since a continuous-time

model is the (theoretical) limit when the sampling period is infitesimally small.

Even though it is theoretically possible to carry out system identification using continuous-time data

(Young, 1981; Unbehauen and Rao, 1990), this will generally involve the use of analogue operations to

emulate time derivatives. Thus, in practice, one is usually forced to work with sampled data (Sinha and

Rao, 1991; Pintelon and Schoukens, 2001).

In this chapter we explore the issues that are associated with the use of sampled-data models in

continuous-time system identification. Specifically, we use sampled-data models expressed using the δ

operator, to estimate the parameters of the underlying continuous-time system. In this context, one might

hope that, if one samples quickly enough, the difference between discrete and continuous processing

would become vanishing small. Thus, say we are given a set of data {uk = u(k∆), yk = y(k∆)}, and

we identify a sampled-data model:

M∆ : yk = Gδ(δ, θ̂)uk + Hδ(δ, θ̂)vk (4.1)

where θ̂ is a vector with the parameters to be estimated, then, we might hope that θ̂ will converge to the

corresponding continuous-time parameters, as ∆ goes to zero, i.e.,

θ̂
∆→0−−−−→ θ (4.2)
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where θ represents the true parameter vector of the continuous-time model:

M : y(t) = G(ρ, θ)u(t) + H(ρ, θ)v̇ (4.3)

Indeed, as we have seen in the previous chapters, there are many cases which support this hypothesis.

Moreover, the delta operator has been the key tool to highlight the connections between the discrete-

and the continuous-time domains (Middleton and Goodwin, 1990; Feuer and Goodwin, 1996).

The above discussion can, however, lead to a false sense of security when using sampled data. A

sampled-data model asymptotically converges to the continuous-time representation of a given system.

However, there is an inherent loss of information when using discrete-time models representations. In

the time-domain, the use of sampled data implies that we do not know the intersample behaviour of the

system. In the frequency domain, this fact translates to the well-known aliasing effect: high frequency

components fold back to low frequencies, in such a way that is not possible to distinguish among them.

To fill the gap between systems evolving in continuous-time and their sampled data representations,

we need to make extra assumptions on the continuous-time model and signals. This is a particularly

sensitive point when trying to perform system identification using sampled-data. In Section 4.2, we

pay particular attention to the impact of high frequency modelling errors. These kinds of errors may

arise both in the discrete- and continuous-time domains. For discrete-time models, the sampling zeros

go to infinity (in the γ-domain corresponding to the δ operator) as the sampling period is reduced,

however, their effect cannot, in all cases, be neglected especially at high frequencies. For continuous-

time systems, undermodelling errors may arise due to the presence of high frequency poles and/or zeros

not included in the nominal model.

Based on the above remarks, we argue here that one should always define a bandwidth of fidelity

of a model and ensure that the model errors outside that bandwidth do not have a major impact on the

identification results. This is the identification analogue of the design restrictions discussed in Section

3.6 in the previous chapter. In Section 4.2, we propose the use of a maximum likelihood identification

procedure in the frequency domain, using a restricted bandwidth. We show that the proposed iden-

tification method is insensitive to both high frequency undermodelling errors (in the continuous-time

model), and to sampling zeros (in the sampled-data model).

A well known instance where naive use of sampled data can lead to erroneous results is in the iden-

tification of continuous-time stochastic systems where the noise model has relative degree greater than

zero. In this case, we saw in Chapter 2 that the sampled data model will have sampling zeros. These

are the stochastic equivalent of the well-known sampling zeros that occur in deterministic systems. We

will see in Section 4.3 that these sampling zeros play a crucial role in obtaining unbiased parameter esti-

mates in the identification of such systems from sampled data. We show that high frequency modelling

errors can be equally as catastrophic as ignoring sampling zeros. These problems can be overcome by

using the proposed frequency domain identification procedure, restricting the estimation to a limited

bandwidth.
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4.2 Limited bandwidth estimation

In this section we discuss the issues that arise when using sampled-data models to identify the underlying

continuous-time system. The discrete-time description, when expressed using the δ operator, converges

to the continuous-time model as the sampling period goes to zero. However, for any non-zero sampling

period, there will always be a difference between the discrete- and continuous-time descriptions, due to

the presence of sampling zeros. To overcome this inherent difficulty, we propose the use of maximum

likelihood estimation in the frequency domain, using a restricted bandwidth.

To illustrate the differences between discrete-time models and the underlying continuous-time sys-

tems we present the following example.

Example 4.1 Consider a second order deterministic system, described by:

d2

dt2
y(t) + α1

d

dt
y(t) + αoy(t) = βou(t) (4.4)

If we simply replace the derivatives in this continuous-time model by divided differences, we obtain

the following approximate discrete-time model described in terms of the δ operator:

δ2yk + a1δyk + a0yk = b0uk (4.5)

We see that this naive derivative replacement model has no extra zeros. However, in Section 2.2, we

obtained an exact discrete-time model based on the use of a ZOH:

δ2yk + a1δyk + aoyk = b0uk + b1δuk (4.6)

This model generically has a sampling zero. Moreover, as the sampling period ∆ goes to zero,

the continuous-time coefficients are recovered, and the sampling zero can be readily characterised (see

Theorem 2.19 on page 24):

δ2yk + α1δyk + αoyk = β0(1 + ∆
2 δ)uk (4.7)

Figure 4.1 shows a comparison of the Bode magnitude diagrams corresponding to a second order

system as (4.4) (on the left hand side) and the exact sampled-data model (4.6), obtained for different

sampling frequencies (on the right):

G(s) =
βo

s2 + α1s + αo

Gδ(γ) =
b1γ + bo

γ2 + a1γ + ao

(4.8)

The figure clearly illustrates the fact that, no matter how fast we sample, there is always a difference

(near the folding frequency) between the continuous-time model and the discretised models.

¤

The difference between discrete- and continuous-time models highlighted by the previous example,

in fact, corresponds to an illustration of the aliasing effect predicted by the relationship in (2.20) on page

15. If we assume that the continuous-time system frequency response G(jω) goes to zero as |ω| → ∞,

then the corresponding discrete-time frequency response converges:

lim
∆→0

Gq(e
jω∆) = lim

∆→0

∞∑

ℓ=−∞

[
(1 − e−s∆)

s∆
G(s)

]

s=jω+j 2π
∆ ℓ

= G(jω) (4.9)
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Figure 4.1: Continuous- and discrete-time frequency response magnitudes.

Remark 4.2 Equation (4.9) establishes that the frequency response of sampled-data model converges

to the continuous-time frequency response, as the sampling period goes to zero. However, for any finite

sampling frequency, there is a difference between the continuous- and discrete-time, in particular, near

the Nyquist frequency (ωN = ωs

2 = π
∆ ). Indeed, this is a direct consequence of the presence of the

asymptotic sampling zeros.

A different kind of problem may arise when the true system contains high frequency dynamics that

are not included in the continuous-time model. We illustrate this by the following example.

Example 4.3 Consider again the continuous-time system in Example 4.1. We will consider (4.4) as the

nominal model of the system. We are interested in analysing the effect of an unmodelled fast pole. Thus,

let the true system be given by:

G(s) =
βo

(s2 + α1s + αo)
(

s
ωu

+ 1
) =

Go(s)
(

s
ωu

+ 1
) (4.10)

Figure 4.2 shows the comparison of nominal and true models, both for the continuous-time system

and the sampled-data models. The nominal poles of the system are at s = −1 and s = −2, the sampling

frequency is ωs = 250[rad/s], and the unmodelled fast pole is at s = −50.

Note that the true system has relative degree 3, and, thus, the corresponding discrete-time model will

have 2 sampling zeros. As a consequence, while the asymptotic sampled-data model for the nominal

system is given by (4.8), the true model will yield different asymptotic sampling zeros as ∆ goes to zero.

Thus, the nominal model satisfies:

Go,δ(γ) → bo

(
1 + ∆

2 γ
)

γ2 + a1γ + ao

(4.11)

whereas the the true model satisfies:

Gδ(γ) →
bo

(

1 + ∆γ + ∆2

6 γ2
)

(γ2 + a1γ + ao)
(

γ
ωu

+ 1
) (4.12)

¤
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Figure 4.2: Frequency response for nominal and true models.

The previous example illustrates the problems that may arise when using fast sampling rates. The

sampling frequency was chosen well above the nominal poles of the system, in fact, two decades. In

theory, this allows one to use the asymptotic characterisation of the sampled-data model. However,

we can see that, if there are any unmodelled dynamics not included in the continuous-time model (in

this case, one decade above the nominal fastest pole), then there will also be undermodelling in the

sampled-data description. Moreover, even though the sampling zeros go to infinity for the nominal and

true models, their precise characterisation depends significantly on high frequency aspects of the model,

as shown in (4.11) and (4.12).

Remark 4.4 The above discussion highlights the issues that have to be taken into account when using

sampled-data models to identify continuous-time system. Specifically:

• Any method that relies on high-frequency system characteristics will be inherently non robust,

and, as a consequence,

• Models should be considered within a bandwidth of validity, to avoid high-frequency modelling

errors — see the shaded area in Figure 4.3.

In Section 4.3, we will see how frequency domain maximum likelihood estimation, over a restricted

bandwidth, can be used to address these issues.

4.2.1 Frequency Domain Maximum Likelihood

In this section we describe a frequency domain maximum likelihood (FDML) estimation procedure.

Specifically, if one converts the data to the frequency domain, then one can carry out the identification

over a limited range of frequencies. Note, however, that one needs to carefully define the likelihood

function in this case. We use the following result (for the scalar case, the result has been derived in

Ljung (1993), while the multivariable case is considered in McKelvey and Ljung (1997)):

Lemma 4.5 Assume a given set of input-output data{uk = u(k∆), yk = y(k∆)}, k = 0 . . . Nd , is

generated by the exact discrete-time model:

yk = Gq(q, θ)uk + Hq(q, θ)vk (4.13)
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where vk is Gaussian DTWN sequence, vk ∼ N(0, σ2
w).

The data is transformed to the frequency domain yielding the discrete Fourier transforms Uℓ and Yℓ

of the input and output sequences, respectively.

Then the maximum likelihood estimate of θ, when considering frequency components up to ωmax ≤
ωs

2 , is given by:

θ̂ML = arg min
θ

L(θ) (4.14)

where L(θ) is the negative logarithm of the likelihood function of the data given θ, i.e.,

L(θ) = − log p(Y0, . . . , Ynmax

∣
∣θ)

=

nmax∑

ℓ=0

|Yℓ − Gq(e
jωℓ∆, θ)Uℓ|2

λ2
v|Hq(ejωℓ∆, θ)|2 + log(πλ2

v|Hq(e
jωℓ∆, θ)|2) (4.15)

where λ2
v = ∆Ndσ

2
v , and nmax is the index associated with ωmax.

Proof. Equation (4.13) can be expressed in the frequency domain as:

Yℓ = Gq(e
jωℓ∆, θ)Uℓ + Hq(e

jωℓ∆, θ)Vℓ (4.16)

where Yℓ, Uℓ, and Vℓ are discrete Fourier transforms (DFT), e.g.,

Yℓ = Y (ejωℓ∆) = ∆

Nd−1∑

k=0

yke−jωℓk∆ ; ωℓ = 2π
∆

ℓ
Nd

(4.17)

Assuming that the DTWN sequence vk ∼ N(0, σ2
w), then Vℓ are (asymptotically) independent and

have a circular complex Gaussian distribution (Brillinger, 1974; Brillinger, 1981). Thus, the frequency

domain noise sequence Vℓ has zero mean and variance λ2
v = ∆Ndσ

2
v . We therefore see that Yℓ is also

complex Gaussian and satisfies:

Yℓ ∼ N(Gq(e
jωℓ∆, θ)Uℓ, λ

2
v|Hq(e

jωℓ∆, θ)|2) (4.18)

The corresponding probability density function is given by:

p(Yℓ) =
1

πλ2
v|Hq(ejωℓ∆, θ)|2 exp

{

−|Yℓ − Gq(e
jωℓ∆, θ)Uℓ|2

λ2
v|Hq(ejωℓ∆, θ)|2

}

(4.19)
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If we consider the elements Yℓ within a limited-bandwidth, i.e., up to some maximum frequency

ωmax indexed by nmax with ωmax = ωs
nmax

Nd
≤ ωs

2 , the appropriate log-likelihood function is given by:

L(θ) = − log p(Y0, . . . , Ynmax
) = − log

nmax∏

ℓ=0

p(Yℓ)

=

nmax∑

ℓ=0

|Yℓ − Gq(e
jωℓ∆, θ)Uℓ|2

λ2
v|Hq(ejωℓ∆, θ)|2 + log(πλ2

v|Hq(e
jωℓ∆, θ)|2) (4.20)

¤

Remark 4.6 The logarithmic term in the log-likelihood function (4.15) plays a key role in obtaining

consistent estimates of the true system. This term can be neglected only if (Ljung, 1993):

• The noise model is assumed to be known. In this case Hq does not depend on θ and, thus, plays

no role in the minimisation (4.14); or

• The frequencies ωℓ are equidistantly distributed over the full frequency range [0, 2π
∆ ). This is

equivalent to considering the full bandwidth case in (4.15), i.e., nmax = N
2 (or N , because of

periodicity). This yields:

2π

Nd

Nd−1∑

ℓ=0

log |Hq(e
jωℓ∆, θ)|2 Nd→∞−−−−−−−−→

∫ 2π

0

log |Hq(e
jω, θ)|2dω (4.21)

The last integral is equal to zero for any monic, stable and inversely stable transfer function

Hq(e
jω, θ) (Ljung, 1993).

Remark 4.7 In the previous lemma the discrete-time model (4.13) has been expressed in terms of the

shift operator q. The results apply mutatis mutandis when the model is reparameterised using the δ-

operator:

Gq(e
jωℓ∆) = Gδ(γω) = Gδ

(
ejωℓ∆ − 1

∆

)

(4.22)

4.3 Robust continuous-time identification

In this section we illustrate the problems that may arise when sampled-data models are used for continuous-

time system identification. In particular, we illustrate the consequences of both types of undermodelling

errors discussed earlier:

• Sampling zeros are not included in the sampled-data model, and

• The continuous-time system contains unmodelled high frequency dynamics.

We show that these kinds of errors can have severe consequences in the estimation results for de-

terministic and stochastic systems. We show that the frequency domain maximum likelihood (FDML)

procedure, using restricted bandwidth, allows one to overcome these difficulties.
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4.3.1 Effect of sampling zeros in deterministic systems

We first explore the consequences of neglecting the presence of sampling zeros in determistic models

used for identification. Specifically, the following example considers a deterministic second order sys-

tem with known input. The parameters of the system are estimated using different sampled-data model

structures.

Example 4.8 Consider again the linear system in (4.4). Assume that the continuous-time parameters

are α1 = 3, α0 = 2, β0 = 2. We performed system identification assuming three different model

structures:

SDRM: Simple Derivative Replacement Model. This corresponds to the structure given in (4.5), where

continuous-time derivatives have been replaced by divided differences.

MIFZ: Model Including Fixed Zero. This model considers the presence of the asymptotic zero, assum-

ing a structure as in (4.7).

MIPZ: Model Including Parameterised Zero. This model also includes a sampling zero, whose location

has to be estimated, i.e., we use the structure given by (4.6).

The three discrete-time models can be represented in terms of the δ operator as:

Gδ(γ) =
Bδ(γ)

γ2 + α̂1γ + α̂0
(4.23)

where:

Bδ(γ) =







β̂0 (SDRM)

β̂0(1 + ∆
2 γ) (MIFZ)

β̂0 + β̂1γ (MIPZ)

(4.24)

We use a sampling period ∆ = π/100[s] and choose the input uk to be a random Gaussian sequence

of unit variance. Note that the output sequence yk = y(k∆) can be obtained by either simulating the

continuous-time system and sampling its output, or, alterntatively, by simulating the exact sampled-data

model in discrete-time. Also note that the data is free of any measurement noise.

The parameters are estimated in such a way to minimise the equation error cost function:

J(θ̂) =
1

N

N−1∑

k=0

ek(θ̂)2 =
1

N

N−1∑

k=0

(δ2yk − φT
k θ)2 (4.25)

where:

φk =







[−δyk, −yk, uk]T

[−δyk, −yk, (1 + ∆
2 δ)uk]T

[−δyk, −yk, δuk, uk]T

and θ̂ =







[α1, α0, β0]
T (SDRM)

[α1, α0, β0]
T (MIFZ)

[α1, α0, β1, β0]
T (MIPZ)

(4.26)

Table 4.1 shows the estimation results. Note that the system considered is linear, thus, the exact

discrete-time parameters can be computed for the given sampling period. These are also given in Table

4.1.
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Parameters Estimates

CT Exact DT SDRM MIFZD MIPZD

α1 3 2.923 2.8804 2.9471 2.9229

α0 2 1.908 1.9420 1.9090 1.9083

β1 – 0.0305 – β0∆
2 = 0.03 0.0304

β0 2 1.908 0.9777 1.9090 1.9083

Table 4.1: Parameter estimates for a linear system

We can see that, while both models incorporating a sampling zero (MIFZ and MIPZ) are able to

recover the continuous-time parameters, when using SDRM the estimate β̂0 is clearly biased.

¤

The result in the previous example may be surprising since, even though the SDRM in (4.27) con-

verge to the continuous-time system as the sampling period goes to zero, the estimate β̂0 does not

converge to the underlying continuous-time parameter. This estimate is asymptotically biased. Specifi-

cally, we see that β0 is incorrectly estimated by a factor of 2 by the SDRM. This illustrates the impact

of not considering sampling effects on the sampled-data models used for continuous-time system iden-

tification.

Indeed, the following result formally establishes the asymptotic bias that was observed experimen-

tally for the SDRM structure in the previous example. In particular, we show that β0 is indeed underes-

timated by a factor of 2.

Lemma 4.9 Consider the general second order deterministic system given in (4.4). Assume that sam-

pled data is collected from the system using a ZOH input generated from a DTWN sequence uk, and

sampling the output yk = y(k∆)

If an equation error identification procedure is utilised to estimate the parameters of the simple

derivative replacement model:

δ2y + α̂1δy + α̂0y = β̂0u (4.27)

then the parameter estimates asymptotically converge, as the sampling period ∆ goes to zero, to:

α̂1 → α1, α̂0 → α0, and β̂0 → 1
2β0 (4.28)

Proof. The parameters of the approximate SDRM (4.27) model can be obtained by simple Least

Squares, minimising the equation error cost function:

J(θ̂) = lim
N→∞

1

N

N−1∑

0

ek(θ̂)2 = E{ek(θ̂)2} (4.29)

where ek = δ2y + α̂1δy + α̂0y − β̂0u. The parameter estimates are given by the solution of
dJ(θ̂)

dθ̂
= 0.

Thus, differentiating the cost function with respect to each of the parameter estimates, we obtain:






E{(δy)2} E{(δy)y} −E{(δy)u}
E{(δy)y} E{y2} −E{yu}
−E{y2} −E{yu} E{u2}













α̂1

α̂0

β̂0







=







−E{(δy)(δ2y)}
−E{yδ2y}
E{uδ2y}







(4.30)
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This equation can be rewritten in terms of (discrete-time) correlations as:







2ry(0)−2ry(1)
∆2

ry(1)−ry(0)
∆

ryu(0)−ryu(1)
∆

ry(1)−ry(0)
∆ ry(0) −ryu(0)

ryu(0)−ryu(1)
∆ −ryu(0) ru(0)













α̂1

α̂0

β̂0







=







3ry(0)−4ry(1)+ry(2)
∆3

−ry(0)+2ry(1)−ry(2)
∆2

ryu(0)−2ryu(1)+ryu(2)
∆2







(4.31)

To continue with the proof we need to obtain expressions for the correlations involved in the last

equation. If we assume that the input sequence is a DTWN process, with unit variance then we have

that:

ru(k) = δK [k] ⇐⇒ Φq
u(ejω∆) = 1 (4.32)

Then, the other correlation functions can be obtained from the relations:

ryu(k) = F−1
d

{
Φq

yu(ejω∆)
}

= F−1
d

{
Gq(e

jω∆)Φq
u(ejω∆)

}
= F−1

d

{
Gq(e

jω∆)
}

(4.33)

ry(k) = F−1
d

{
Φq

y(ejω∆)
}

= F−1
d

{
Gq(e

−jω∆)Φq
yu(ejω∆)

}
= F−1

d

{
|Gq(e

jω∆)|2
}

(4.34)

where Gq(e
jω∆) is the exact sampled-data model corresponding to the continuous-time system (4.4).

Given a sampling period ∆, the exact discrete-time model is given by:

Gq(z) =
β0(c1z + c0)

(z − eλ1∆)(z − eλ2∆)
(4.35)

where:

c1 =
(eλ1∆ − 1)λ2 − (eλ2∆ − 1)λ1

(λ1 − λ2)λ1λ2
=

∆2

2
+

∆3

6
(λ1 + λ2) + . . . (4.36)

c0 =
eλ1∆(eλ2∆ − 1)λ1 − eλ2∆(eλ1∆ − 1)λ2

(λ1 − λ2)λ1λ2
=

∆2

2
+

∆3

3
(λ1 + λ2) + . . . (4.37)

and λ1 and λ2 are the continuous-time system (stable) poles of system (4.4), i.e., α1 = −(λ1 + λ2) and

α0 = λ1λ2.

The exact discrete-time model (4.35) can be rewritten as:

Gq(z) =
C1

z − eλ1∆
+

C2

z − eλ2∆
(4.38)

where C1 = β0(c1eλ1∆+c0)
(eλ1∆−eλ2∆)

and C2 = β0(c1eλ2∆+c0)
(eλ2∆−eλ1∆)

. Substitituting in (4.34), we obtain:

ryu(k) = F−1
d

{
Gq(e

jω∆)
}

=
(

C1e
λ1∆(k−1) + C2e

λ2∆(k−1)
)

µ[k − 1] (4.39)

where µ[k] is the discrete-time unitary step function. From (4.35), we have that:

Gq(z)Gq(z
−1) = K1

(
eλ1∆

z − eλ1∆
+

e−λ1∆

z − e−λ1∆

)

+ K2

(
eλ2∆

z − eλ2∆
+

e−λ2∆

z − e−λ2∆

)

(4.40)

K1 =
β2

0(c2
1e

λ1∆ + c0c1 + c0c1e
2λ1∆ + c2

0e
λ1∆)

(e2λ1∆ − 1)(eλ1∆eλ2∆ − 1)(eλ1∆ − eλ2∆)
(4.41)

K2 =
β2

0(c2
1e

λ2∆ + c0c1 + c0c1e
2λ2∆ + c2

0e
λ2∆)

(e2λ2∆ − 1)(eλ2∆eλ1∆ − 1)(eλ2∆ − eλ1∆)
(4.42)

Substitituting in (4.34), we obtain:

ry(k) = F−1
d

{
|Gq(z = ejω∆)|2

}
= K1e

λ1∆|k| + K2e
λ2∆|k| ; ∀k ∈ Z (4.43)
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The correlations (4.32), (4.39), and (4.43) can be used in the normal equation (4.30) to obtain:






−β2
0

2(λ1+λ2)
∆ 0 + O(∆2) −β0

2 ∆

0 + O(∆2)
−β2

0

2(λ1+λ2)λ1λ2
∆ 0

−β0

2 ∆ 0 1













α̂1

α̂0

β̂0







=







∆
β2
0

4

∆
−β2

0

2(λ1+λ2)
β0

2 + O(∆)







(4.44)

If we consider only terms up to of order ∆ we obtain:






α̂1

α̂0

β̂0







=







−2(λ1+λ2)
2+(λ1+λ2)∆

λ1λ2

β0(2−(λ1+λ2)∆)
2(2+(λ1+λ2)∆)







∆→0−−−−−−−→







−(λ1 + λ2)

λ1λ2

β0/2







(4.45)

which corresponds to the result in (4.28).

¤

The above results show that sampling zeros should be considered to obtain a sampled-data model

accurate enough for estimation. Even though the sampling zero for the exact discrete-time model (4.7)

goes asymptotically to infinity (in the γ-domain), if it is not considered, then the parameter estimates

will be generically biased (for equation error structures).

4.3.2 Effect of sampling zeros in stochastic systems

A particular case of the above problem for stochastic systems has been studied in detail by (Söderström

et al., 1997; Larsson and Söderström, 2002; Larsson, 2003). These papers deal with continuous-time

auto-regressive (CAR) system identification from sampled data. Such systems have relative degree n,

where n is the order of the auto-regressive process. Thus, consider a system described by:

E(ρ)y(t) = v̇(t) (4.46)

where v̇(t) represents a continuous-time white noise (CTWN) process, and E(ρ) is a polynomial in the

differential operator ρ = d
dt

, i.e.,

E(ρ) = ρn + an−1ρ
n−1 + . . . + a0 (4.47)

For these systems, it has been shown that one cannot ignore the presence of stochastic sampling

zeros. Specifically, if derivatives are replaced by divided differences and the parameters are estimated

using ordinary least squares, then the results are asymptotically biased, even when using fast sampling

rates (Söderström et al., 1997). Note, however that the exact discrete-time model that describes the

continuous-time system (4.46) takes the following generic form:

Eq(q
−1)y(k∆) = Fq(q

−1)wk (4.48)

where wk is a discrete-time white noise process, and Eq and Fq are polynomials in the backward shift

operator q−1.

As we have already seen in Chapter 2, the polynomial Eq(q
−1) in equation (4.48) is well behaved in

the sense that it converges naturally to its continuous-time counterpart. This relationship is most readily

portrayed using the delta form:

Eδ(δ) = δn + ān−1δ
n−1 + . . . + ā0 (4.49)
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Using (4.49), it can be shown that, as the sampling period ∆ goes to zero:

lim
∆→0

āi = ai ; i = n − 1, . . . , 0 (4.50)

However, as seen in Section 2.4, the polynomial Fq(q
−1) contains the stochastic sampling zeros,

with no continuous-time counterpart. Thus, to obtain the correct estimates — say via the prediction

error method (Ljung, 1999) — then one needs to minimise the cost function:

JPEM =

N∑

k=1

[
Eq(q

−1)y(k∆)

Fq(q−1)

]2

(4.51)

Notice the key role played by the sampling zeros in the above expression. A simplification can be

applied, when using high sampling frequencies, by replacing the polynomial Fq(q
−1) by its asymptotic

expression. However, this polynomial has to be taken into account when estimating over full band-

width. Hence it is not surprising that the use of ordinary least squares, i.e., a cost function of the form:

JLS =

N∑

k=1

[
Eq(q

−1)y(k∆)
]2

(4.52)

leads to (asymptotically) biased results, even when using (4.49). We illustrate these ideas by the follow-

ing example.

Example 4.10 Consider the continuous-time system defined by the nominal model:

E(ρ)y(t) = v̇(t) (4.53)

where v̇(t) is a CTWN process with (constant) spectral density equal to 1, and

E(ρ) = ρ2 + 3ρ + 2 (4.54)

From Example 2.32 on page 32, we know that the equivalent sampled-data model has the form:

Y (z) =
Fq(z)

Eq(z)
W (z) =

K(z − z1)

(z − e−∆)(z − e−2∆)
W (z) (4.55)

Moreover, from Example 2.39, we know that, as the sampling rate increases, the sampled model

converges to:

Fq(z)

Eq(z)

∆≈0−−−→ ∆2

3!

(z − z∗1)

(z − e−∆)(z − e−2∆)
(4.56)

where z∗1 = −2 +
√

3 is the asymptotic stochastic sampling zero, which corresponds to the stable root

of the sampling zero polynomial B3(z) = z2 + 4z + 1 (see Section 2.5).

For simulation purposes we used a sampling frequency ωs = 250[rad/s]. Note that this frequency is

two decades above the fastest system pole, located at s = −2. We performed Nsim = 250 simulations,

using N = 10000 data points in each run.

Test 1: If one uses ordinary least squares as in (4.52), then one finds that the parameters are (asymptoti-

cally) biased, as discussed in detail in (Söderström et al., 1997). The continuous-time parameters
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are extracted by converting to the delta form and then using (4.50). We obtain the following

(mean) parameter estimates:
[

â1

â0

]

=

[

1.9834

1.9238

]

(4.57)

In particular, we observe that the estimate â1 is clearly biased with respect to the continuous-time

value a1 = 3.

Test 2: We next perform least squares estimation of the parameters, but with prefiltering of the data

by the asymptotic sampling zero polynomial, i.e., we use the sequence of filtered output samples

given by:

yF (k∆) =
1

1 + (2 −
√

3)q−1
y(k∆) (4.58)

Note that this strategy is essentially as in (Larsson and Söderström, 2002; Larsson, 2003).

Again, we extract the continuous-time parameters by converting to the delta form and using

(4.50). We obtain the following estimates for the coefficients of the polynomial (4.54):

[

â1

â0

]

=

[

2.9297

1.9520

]

(4.59)

The residual small bias in this case can be explained by the use of the asymptotic sampling zero

in (4.56), while the sampling period ∆ is finite.

¤

In the previous example we obtained an asymptotically biased estimation of the parameter â1 when

the sampling zeros are ignored. In fact, the estimates obtained in (4.57) are predicted by the following

lemma. This presents the stochastic counterpart of Lemma 4.9, namely, the asymptotic parameter esti-

mates obtained when using the simple derivative replacement approach for second order CAR systems.

Lemma 4.11 Consider the second order continuous-time autoregressive system:

d2

dt2
y(t) + α1

d

dt
y(t) + αoy(t) = v̇(t) (4.60)

where v̇(t) is a continuous-time white noise process. Assume that a sequence {yk = y(k∆)} is obtained

sampling instantaneously the system output. If an equation error procedure is used to estimate the

parameters of (4.60) using the model:

δy2 + α̂1δy + α̂oy = e (4.61)

Then, as the sampling period ∆ goes to zero, the parameters goes to:

α̂1 → 2
3α1 α̂0 → α0 (4.62)

Proof. The proof follows similar lines to the proof of Lemma 4.9 on page 71. The details can be

found in (Söderström et al., 1992).

¤
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Up to this point, we have considered undermodelling errors that arise when sampling zeros (stochas-

tic or deterministic) are not considered in the discrete-time model. In the next subsection, we show

that high frequency modelling errors in continuous-time can be have an equally catastrophic effect on

parameter estimation.

4.3.3 Continuous-time undermodelling

In this section, we illustrate the consequences of unmodelled dynamics in the continuous-time model,

when using estimation procedures based on sampled data. Our focus will be on the case of stochastic

systems, however, similar issues arise for deterministic system.

The input of a stochastic system is assumed to be a continuous-time white noise (CTWN) pro-

cess. However, such a process is only a mathematical abstraction and does not physically exist (see

Remark 2.24 on page 28). In practice, we will have wide-band noise processes as disturbance. This is

equivalent to a form of high frequency undermodelling.

The solution of the CAR identification problem for sampled data would seem to be straightforward

given the discussion in the previous subsection. Apparently, one only needs to include the sampling

zeros to get asymptotically unbiased parameter estimates using least squares. However, this ignores

the issue of fidelity of the high frequency components of the model. Indeed, as pointed out before in

Section 3.6, the system relative degree cannot be robustly defined for continuous-time models due to the

presence of (possibly time-varying and ill-defined) high frequency poles or zeros. If one accepts this

claim, then one cannot rely upon the integrity of the extra polynomial Fq(q
−1). In particular, the error

caused by ignoring this polynomial (as suggested by the cost function (4.52)) might be as catastrophic as

using a sampling zero polynomial arising from some hypothetical assumption about the relative degree.

Thus, this class of identification procedures are inherently non-robust. We illustrate this by continuing

Example 4.10.

Example 4.12 (Example 4.10 continued) Let us assume that the true model for the system (4.53) is

given by the polynomial:

E(ρ) = Eo(ρ)(0.02ρ + 1) (4.63)

where we have renamed the polynomial (4.54) in the original model as Eo(ρ). The true system has

an unmodelled pole at s = −50, which is more than one decade above the fastest nominal pole in

(4.53)–(4.54), but almost one decade below the sampling frequency, ωs = 250[rad/s].

We repeat the estimation procedure described in Test 2, in Example 4.10, using the filtered least

squares procedure. We obtain the following estimates:

[

â1

â0

]

=

[

1.4238

1.8914

]

(4.64)

These are clearly biased, even though the nominal sampling zero has been included in the model.

To analyse the effect of different types of under-modelling, we consider the true denominator poly-

nomial (4.63) to be:

E(ρ) = Eo(ρ)

(
ρ

ωu

+ 1

)

(4.65)
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We consider different values of the parameter ωu in (4.65), using the same simulation conditions as

in the previous examples (i.e., 250 Monte Carlo runs using 10000 data points each). The results are

presented in Figure 4.4. The figure clearly shows the effect of the unmodelled dynamics on the parameter

estimates. We see that the undermodelling has an impact even beyond the sampling frequency, which

can be explained in terms of the inherent folding effect of the sampling process.
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Figure 4.4: Mean of the parameter estimates as a function of the unmodelled dynamics, using filtered

LS.

Figure 4.5 shows similar simulations results using an instrumental variable (IV) estimator. The IV-

estimator is a basic IV method where the IV vector consists of observations of y(t) delayed one sampling

period (Bigi et al., 1994).

¤

The difficulties discussed above arise due to the fact that the true high frequency characteristics

are not exactly as hypothesised in the algorithm. Thus, the folding that occurs is not governed by the

anticipated sampling zero polynomial that is used to prefilter the data.

4.3.4 Restricted bandwind FDML estimation

The examples presented in the previous subsections raise the question as to how these problems might

be avoided or, at least, reduced, by using an identification procedure more robust to high frequency

under-modelling. Our proposal to deal with this problem is to designate a bandwidth of validity for the

model and, then, to develop an algorithm which is insensitive to errors outside that range. This is most

easily done in the frequency domain.

In the following example we will use the FDML procedure presented in Lemma 4.5 to estimate the

parameters of CAR systems as (4.46).
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Figure 4.5: Mean of the parameter estimates as a function of the unmodelled dynamics, using simple

delayed IV.

Remark 4.13 For the a CAR system as in (4.46), let us consider the (approximate) derivative replace-

ment discrete-time model:

Eq(q)yk = wk (4.66)

where yk is the sequence of instantaneous output samples of (4.46), and wk is a discrete-time stationary

Gaussian white-noise sequence with variance σ2
w. Given N data points of the output sequence y(k∆)

sampled at ωs[rad/s], the appropriate likelihood function, in the frequency domain, takes the form:

L =

nmax∑

ℓ=0

|Eq(e
jωℓ∆)Y (ejωℓ∆)|2

Nσ2
w

− log
|Eq(e

jωℓ∆)|2
σ2

w

(4.67)

where ωℓ = ωsℓ
N

and nmax corresponds to the bandwidth to be considered, i.e.,, ωmax = ωsnmax

N
.

Example 4.14 We consider again the CAR system presented in 4.10. If we use the result in Lemma 4.5,

using the full bandwidth [0, π/∆] (or, equivalently, up to 125[rad/s]) we obtain the following (mean)

value for the parameter estimates:
[

â1

â0

]

=

[

4.5584

1.9655

]

(4.68)

As expected, these parameters are clearly biased because we are not taking into account the presence

of the sampling zero polynomial in the true model.

Next we consider an estimation procedure restricted to a certain bandwidth of validity. For example,

the usual rule of thumb is to consider up to one decade above the fastest nominal system pole, in this

case, 20[rad/s]. The resultant (mean of the) parameter estimates are then given by:

[

â1

â0

]

=

[

3.0143

1.9701

]

(4.69)
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Figure 4.6: Parameter estimates using FDML as a function of unmodelled pole.

Note that these estimates are essentially equal to the (continuous-time) true values. Moreover, no

prefiltering as in (4.51) or (4.58) has been used! Thus, one has achieved robustness to the relative

degree at high frequencies since it plays no role in the suggested procedure. Moreover, the sampling

zeros can be ignored since their impact is felt only at high frequencies.

Finally, we show that the frequency domain procedure is also robust to the presence of unmodelled

fast poles. We consider again the true system to be as in (4.63). We restrict the estimation bandwidth up

to 20[rad/s]. In this case, the mean of the parameter estimates is again very close to the nominal system

coefficients, i.e., we obtain:
[

â1

â0

]

=

[

2.9285

1.9409

]

(4.70)

A more general situation is shown in Figure 4.6. The figure shows the parameter estimates ob-

tained using the proposed FDML procedure, with the same restricted bandwidth used before ωmax =

20[rad/s], for different locations of the unmodelled fast pole ωu, as in (4.65).

¤

Remark 4.15 Note that the likelihood function (4.67) is not scalable by σ2
w and hence one needs to also

include this parameter in the set to be estimated. This is an important departure from the simple least

squares case.

4.4 Summary

In this chapter we have explored the robustness issues that arise in the identification of continuous-

time systems from sampled data. A key observation is that the fidelity of the models at high frequencies

generally plays an important role in obtaining models suitable for continuous-time system identification.

In particular, we have shown that:
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• Sampling zeros may have to be included in the discrete-time models to obtain accurate sampled-

data descriptions.

• Unmodelled high frequency dynamics in the continuous-time model can have a critical impact on

the quality of the estimation process when using sampled-data.

This implies that any result which implicitly or explicitly depends upon the folding of high frequency

components down to lower frequencies will be inherently non-robust. As a consequence, we argue that

models have to be considered within a bandwidth of validity.

To address these issues, we have proposed the use of frequency domain maximum likelihood esti-

mation, using a restricted bandwidth. We have shown that this approach is robust to both the presence

of sampling zeros and to high frequency modelling errors in continuous-time.

The problems discussed above have been illustrated for both, deterministic and stochastic, systems.

Special attention was given to the identification of continuous-time auto-regressive stochastic models

from sampled data. We have argued that traditional approaches to this problem are inherently sensitive

to high frequency modelling errors. We have also argued that these difficulties can be mitigated by using

the proposed FDML with restricted bandwidth.



Chapter 5

Sampled-data models in LQ problems

5.1 Introduction

In this chapter we consider a particular application of sampled-data models, namely, their use for Linear-

Quadratic (LQ) optimal control problems. In particular, we examine the presence of input and/or state

constraints, when using fast sampling rates. We present two main convergence results. These estab-

lish connections between continuous-time and sampled-data optimal control problems. First, we show

that the constrained control problem in discrete-time has a well defined limit as the sampling rate in-

creases. An immediate consequence of this result is the existence of a finite sampling period such that

the achieved performance is arbitrarily close to the limiting performance, obtained by the hypothetical

continuous-time control law. The second result considers the singular structure of sampled data LQ

problems for continuous-time linear systems. We show that, as the sampling rate is increased, there

is a natural convergence between the finite set of singular values of the discrete time problem, and the

(infinite) countable set in continuous time.

Connections between continuous-time and sampled-data optimal control strategies have previously

been addressed in the literature (Middleton and Goodwin, 1990; Feuer and Goodwin, 1996; Chen and

Nett, 1995) for the unconstrained case. However, the constrained case has received less attention,

because of the inherent difficulties involved in solving the constrained control problems in continuous-

time (Berkovitz, 1974; Vinter, 2000). However, in discrete-time, different numerical procedures and

algorithms can be implemented to deal with this kind of problems.

An increasingly common strategy to deal with constraints in control is Receding Horizon or Model

Predictive Control (MPC) strategies (Sznaier and Damborg, 1987; Rawlings and Muske, 1993; Scokaert

and Rawlings, 1998; Mayne et al., 2000; De Oliveira Kothare and Morari, 2000; Cannon et al., 2001;

Cheng and Krogh, 2001; Goodwin et al., 2004). This is a form of (discrete-time) control in which the

current control action is obtained by solving on-line, at each sampling instant, a finite horizon optimal

control problem for the open-loop plant using the current (observed) state as initial condition. The first

component of the optimal control sequence is applied to the system, and the procedure is repeated again

at the next sampling instant. One of the key advantages of these strategies is that constraints can be

taken into account in the optimisation procedure, for example, via Quadratic Programming (QP) (Van

81



82 Sampled-data models in LQ problems

De Panne, 1975; Sznaier and Damborg, 1987; Chmielewski and Manousiouthakis, 1996; Scokaert and

Rawlings, 1998).

Traditionally, MPC has been applied to systems having long time constants, e.g. petrochemical

processes. However, increasing computational power and recent advances in this area, such as off-line

implementations of the solution (Bemporad et al., 2002; Serón et al., 2003), have opened the door to

short time constant applications including aerospace, automobile control and electro-mechanical servo

problems. These applications typically use fast sampling rates and a common design goal is that the

sample-hold nature of the input should have minimal impact on the achievable performance. This goal

is consistent with the control of linear systems in the absence of constraints. Indeed, it is common for

the sampling rate to be chosen so that the response of the sampled-data control system is practically

indistinguishable from the corresponding continuous-time solution. The goal of constrained control

will often be similar, i.e., it is desirable to choose a sampling period such that the artifacts of sampling

are practically unobservable.

We begin in Section 5.2 by presenting the (constrained) LQ optimal control problem, both in

continuous- and discrete-time. In particular, the latter problem is formulated in such a way that it

corresponds to the sampled-data version of the underlying continuous-time problem. A particular fea-

ture of the discrete-time problem statement is that the input and/or state constraints are tightened by a

scaling factor α(∆), whose choice is explained later.

The analysis presented in Section 5.3 shows that there exists a finite sampling period such that the

sampled-data response of a finite horizon constrained linear controller is arbitrarily close to the response

which would be achieved by a continuous-time constrained linear controller. Previous work having a

connection with our work has been reported in (Kojima and Morari, 2004), where the finite horizon

constrained LQ problem is solved in continuous-time, using spectral properties. In their approach,

however, the constraints are satisfied only at a finite set of points over the control horizon. By way

of contrast, we show that the continuous-time solution, with constraints imposed for all time, can be

arbitrarily approximated using a standard discrete-time approach provided one chooses a suitably fast

sampling rate and, possibly, tighter constraints at the sampling instants.

In Section 5.4 we study the spectral properties of the optimal control problem, both for the continuous-

time formulation and its corresponding sampled-data version. Specifically, we obtain the singular struc-

ture in continuous- and discrete-time domains. We show that, as the sampling rate is increased, there

is a natural convergence between the finite set of singular values of the discrete time problem, and the

(infinite) countable set in continuous time.

The motivation for this work was the results reported in (Kojima and Morari, 2001), where a sin-

gular value decomposition of linear operators is used to approximate the solution of constrained LQ

problems in continuous time. Related work regarding singular value structures has also been reported

in the context of cross directional control (Rojas et al., 2002) and constrained receding horizon control

(Rojas et al., 2003; Rojas and Goodwin, 2004) for discrete time systems. This body of work raises

the more general system theoretic question regarding the connection between the singular value struc-

ture of discrete-time LQ problems and the associated continuous-time case. A deeper understanding

of this connection could, for example, lead to approximate algorithms for the continuous time prob-

lem, which are solved using standard discrete time methods. Moreover, the existence of a well defined
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limit as the sampling rate increases could be exploited in high speed applications, using ad-hoc algo-

rithms for constrained systems in MPC strategies. Furthermore, connections with intrinsic properties

of the continuous-time system, such as its frequency response, have also been established (Rojas and

Goodwin, 2004; Rojas et al., 2004; Rojas, 2004).

5.2 Linear-Quadratic optimal control problems

In this section we present the LQ optimal control problem formulation in continuous-time and its cor-

responding sampled-data version. The latter problem is usually solved in open loop using discrete-time

MPC strategies at each sampling instant. Then a closed loop implementation is obtained by exploiting

a receding horizon strategy. We will initially focus our analysis on the fixed horizon case. The moving

horizon problem will be discussed later in Section 5.3.2.

In the following subsections we consider two related problems, one defined in continuous-time and

an associated discrete-time sampled-data problem.

5.2.1 Continuous-time problem

As a benchmark problem, we consider a fixed horizon constrained control problem P , defined in the

continuous-time domain as follows:

(i) A continuous-time model in state-space form:

ẋ(t) = Ax(t) + Bu(t) ; x(0) = xo (5.1)

y(t) = Cx(t) (5.2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n.

(ii) A fixed time horizon Tf < ∞.

(iii) A quadratic cost function:

J(u) = J1 + J∞ (5.3)

where:

J1 =

∫ Tf

0

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt (5.4)

J∞ = x(Tf )T P x(Tf ) (5.5)

with Q ≥ 0, R > 0, and where the final state weighting matrix, P , gives rise to the infinite

horizon optimal unconstrained cost associated with the cost J1 when the initial state is x(Tf ).

Thus P satisfies the continuous-time algebraic Riccati equation:

0 = Q + AT P + PA − PBR−1BT P (5.6)
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(iv) And a set of (continuous-time) state and/or input constraints, written in the following general

form:

Lu u(t) ≤ Mu

Lx x(t) ≤ Mx

(5.7)

for all t ∈ [0, Tf ]. Note that Lu will typically have rank m whilst Lx will have rank less than or

equal to n.

Let U ⊂ R
m and X ⊂ R

n be the sets of all possible values of u(t) and x(t), t ∈ [0, Tf ], such that

(5.1) and (5.7) are satisfied. Then, the only requirements on Lu, Lx, Mu, and Mx are that the sets

U and X are bounded (possibly as a function of xo in the case of X ) and contain the origin of the

respective space — see (Chmielewski and Manousiouthakis, 1996). Note that this implies that all

entries in both Mu and Mx are positive.

Given (i)–(iv), the continuous-time problem P is defined to be: find the optimal control signal

u∗ = u∗(t) such that the cost function (5.3) is minimised, i.e.,

u∗(t) = arg min
u(t)∈U

J(u) (5.8)

Remark 5.1 There has been substantial work, spanning three centuries, but particularly since the

1950’s, on the general conditions under which optimal control problems such as P have a solution.

These results give necessary and sufficient conditions under which a solution is truly a minimiser. More-

over, existence theorems for this minimiser assume that the problem is feasible, i.e., that the class of

admissible pairs {u(t), x(t)} which satisfy the system dynamic equation (5.1) and constraints (5.7) is

non-empty (Berkovitz, 1974; Vinter, 2000).

We will thus assume the existence of a solution of the continuous-time constrained optimal control

problem P , even though an explicit expression will not be obtained. Instead, we show that, subject to

existence, the solution can be approximated to any desired degree of accuracy by solving an associated

sampled-data constrained optimal control problem P∆, described in the next subsection.

Remark 5.2 Note that it is common in Receding Horizon Control to utilise a final state weighting matrix

as in (5.5) (see also equation (5.14) below). This choice ensures that, if the constrains are not active at

the end of the fixed horizon Tf , the cost (5.3) represents in fact the infinite horizon cost (Chmielewski

and Manousiouthakis, 1996; Mayne et al., 2000; Goodwin et al., 2004).

5.2.2 Sampled-data problem

A natural way to approximate the continuous-time problem P is to use a (small) sampling period ∆

together with a Zero Order Hold (ZOH) approximation to the input signal. In this framework, the

optimal solution can be found using standard numerical algorithms such as QP.

For a given sampling interval ∆, we define u∆(t) as the piece-wise constant continuous-time input

to the system, generated by a Zero Order Hold (ZOH) as in (2.10) on page 13, i.e.,

u(t) = u∆(t) = uk ; k∆ ≤ t < k∆ + ∆ (5.9)
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where k ∈ Z is the discrete time domain index. Furthermore, we assume that the sampling interval is

an integer fraction of the fixed time horizon Tf , i.e.,

∆ =
Tf

N
⇐⇒ N∆ = Tf (5.10)

for some N ∈ N.

Given the continuous-time problem P , we next define an associated discrete-time constrained op-

timal control problem P∆. This, in fact, corresponds to a sampled-data version of problem P , but

where the input and state constraints have been slightly modified. The choice of the scaling factor in the

discrete-time constraints will be clarified later in Section 5.3.

We consider:

(i) A discrete-time model expressed in state-space form:

xk+1 = Aqxk + Bquk ; xo as in (5.1) (5.11)

yk = Cxk (5.12)

As discussed earlier in Section 2.2, if the system matrices are given by:

Aq = eA∆ ; Bq =

∫ ∆

0

eAηB dη (5.13)

the model (5.11)–(5.12) corresponds, in fact, to the sampled version of the continuous-time system

(5.1)–(5.2), i.e., xk = x(k∆) and yk = y(k∆).

(ii) A fixed discrete-time horizon N =
Tf

∆ .

(iii) A quadratic cost function:

J∆(uk) =

N−1∑

k=0

[

xT
k uT

k

]
[

Qq Sq

ST
q Rq

][

xk

uk

]

+ xT
NP∆ xN (5.14)

where:

Qq =

∫ ∆

0

eAT tQeAt dt (5.15)

Sq =

∫ ∆

0

eAT tQh(t) dt (5.16)

Rq =

∫ ∆

0

h(t)T Qh(t) dt + R∆ (5.17)

h(t) =

∫ t

0

eAτB dτ (5.18)

and where P∆ satisfies the following discrete-time algebraic Riccati equation:

P∆ = Qq + AT
q P∆Aq −

(
AT

q P∆Bq + Sq

) (
Rq + BT

q P∆Bq

)−1 (
BT

q P∆Aq + ST
q

)
(5.19)



86 Sampled-data models in LQ problems

(iv) And a set of discrete-time constraints for the state and/or the input signal, written in the following

form:

Lu uk ≤ α(∆)Mu

Lx xk ≤ α(∆)Mx

(5.20)

for all k ∈ {0, . . . , N − 1} and where α(∆) ∈ (0, 1] is a scaling factor, whose choice will be

discussed in the next section.

Given (i)–(iv), the sampled-data problem P∆ is to find the optimal control sequence u∗ = u∗
∆,k such

that the cost function (5.14) is minimised, i.e.,

u∗
∆,k = arg min

uk

J∆(uk) (5.21)

The previous formulation of the discrete-time problem P∆ is clearly justified by the following two

remarks.

Remark 5.3 It can be readily shown (Middleton and Goodwin, 1990; Åström and Wittenmark, 1997)

that the choices (5.15) to (5.19) ensure that:

J(u∆) = J∆(uk) (5.22)

where J∆(uk) denotes the discrete-time cost value, as defined in (5.14), when the control sequence uk

is applied to the system (5.11)–(5.12), and J(u∆) denotes the continuous-time cost value in (5.3)–(5.6)

when u∆(t), as defined in (5.9), is applied to the continuous-time system (5.1)–(5.2).

Remark 5.4 It has been shown earlier in this thesis that delta operator models provide a natural con-

nection between discrete- and continuous-time. In fact, as the sampling period goes to zero, we have

that (Feuer and Goodwin, 1996; Middleton and Goodwin, 1990):

Aq − I

∆
→ A,

Bq

∆
→ B,

Qq

∆
→ Q,

Sq

∆
→ 0,

Rq

∆
→ R, P∆ → P (5.23)

This means that the unconstrained sampled-data problem given by (i)–(iii) converges to the descrip-

tion of the underlying unconstrained continuous-time problem given by (i)–(iii) in Section 5.2.1.

In the next section we consider the corresponding constrained case. We show that, under some

additional requirements on the scaling factor α(∆), the formulation of the sampled-data problem P∆

converges, as ∆ → 0, to the formulation of problem P , defined in continuous-time.

5.3 Constrained control using fast sampling rates

While the explicit solution of the continuous time problem P is very difficult to obtain, solving P∆

for a given sampling period ∆ is relatively straightforward using standard numerical procedures, e.g.,

quadratic programming (QP) (Goodwin et al., 2004).

In this section, we present results that will help us to relate the solution of P∆ to the solution of

P . We first discuss the scalar α(∆) introduced earlier, in equation (5.20), as a scaling factor associated
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with the discrete-time constraints (5.20). We then present two results that will be used later, in Theorem

5.11 in the next section, to establish the convergence of the solution of P∆ to the solution of P .

We first introduce some definitions and notation that will be used in the sequel. Given the continuous-

time system (with initial condition xo) in (5.1), and the constraints (5.7), we define the following sets:

S = {u ∈ L2[0, Tf ] : Lu u(t) ≤ Mu and Lx x(t) ≤ Mx , ∀t ∈ [0, Tf ]} (5.24)

and:

S∆ =
{
u ∈ L2[0, Tf ] : Lu u(t) ≤ α(∆)Mu , ∀t ∈ [0, Tf ]

and Lx x(k∆) ≤ α(∆)Mx , ∀k ∈ {0, . . . , N − 1}
}

(5.25)

Remark 5.5 Note that the set S contains all possible signals u(t) among which we need to find the one

that minimises the cost function J(u) in (5.3)–(5.6), i.e., u∗(t) ∈ S ⊂ L2[0, Tf ].

On the other hand, every sequence uk (including u∗
k, the solution of P∆) satisfying the difference

equation (5.11) and the constraints (5.20), will generate a piece-wise signal u∆(t), as in (5.9), that

belongs to S∆. However, even if we choose a scaling factor α(∆) < 1, assuming u∆(t) ∈ S∆ is not

sufficient to ensure that u∆(t) ∈ S, because of the inter-sample state trajectory.

The previous remark highlights the fact that further conditions are required on the scalar α(∆)

to ensure that, when using a ZOH to implement in continuous-time the solution of the discrete-time

problem P∆, the conditions of the continuous-time problem P are also satisfied.

Given a sequence of sampling periods {∆i > 0}, such that:

∆i > ∆i+1 and lim
i→∞

∆i = 0 (5.26)

we require the following properties for the corresponding scaling factors α(∆i):

lim
i→∞

α(∆i) = lim
∆i→0

α(∆i) = 1 (5.27)

and for the resulting sequence of sets {S∆i
}:

S∆i
⊆ S∆i+1

(5.28)

Remark 5.6 Condition (5.27) ensures that, as the sampling rate increases, the sequence of discrete-

time constraints (5.20) approaches the continuous-time constraints in (5.7). Moreover, from definitions

in (5.24) and (5.25), we have that:

lim
i→∞

S∆i
= lim

∆i→0
S∆i

= S (5.29)

Furthermore, the requirement (5.28) ensures that the sequence of sets {S∆i
} approach the set S

from the interior, i.e.,

S∆0
⊆ S∆1

⊆ . . . ⊆ S (5.30)

¤
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A particular choice for the sequences {∆i} and {α(∆i)} ensuring that the above requirements are

satisfied, is described in the following result:

Lemma 5.7 Consider the sequence of sampling intervals {∆i}, defined by:

∆i =
22−i

‖A‖ ln

(√

1 + 4γ2

2γ

)

(5.31)

Then, one particular choice for the scaling factor α(∆) that satisfies (5.27)–(5.28) is given by:

α(∆) =
1

1 + (2γ + 1)(e‖A‖∆ − 1)
(5.32)

where γ is a constant given by:

γ =

(

max
i

‖Li
x‖

M i
x

) (

X +
‖B‖
‖A‖U

)

(5.33)

and where Li
x and M i

x are the i-th row and i-th entry of Lx and Mx respectively, and where X and U

denote upper bounds on the norms of x(t) and u(t) in the bounded sets X and U , respectively, defined

in Section 5.2.1.

Proof. We show that the choice of the sequence of sampling periods {∆i} and the scaling factor

α(∆) satisfies the given requirements (5.26)–(5.28).

If the sampling period ∆i is chosen as in (5.31), we clearly have the strictly decreasing condition in

(5.26). As a consequence, the scaling factor α(∆) defined as in (5.32) satisfies condition (5.27).

To show that (5.28) holds, let us take any u ∈ S∆i
, which by definition (5.25) implies that:

Lu u(t) ≤ α(∆i)Mu and Lx x(k∆i) ≤ α(∆i)Mx (5.34)

Since α(∆i) < α(∆i+1) we have that Lu u(t) ≤ α(∆i+1)Mu. (Recall that the entries of Mu are

positive). Furthermore, solving the differential equation (5.1) for t = σ + k∆i , 0 ≤ σ < ∆i, we have:

Lx x(t) = Lx

(

eAσx(k∆i) +

∫ σ

0

eA(σ−τ)Bu(τ + k∆i) dτ

)

= Lxx(k∆i) + Lx

(

(eAσ − I)x(k∆i) +

∫ σ

0

eA(σ−τ)Bu(τ + k∆i) dτ

)

≤ α(∆i)Mx +







‖L1
x‖

‖L2
x‖
...







(
∥
∥eAσ − I

∥
∥ ‖x(k∆i)‖ +

∥
∥
∥
∥

∫ σ

0

eA(σ−τ)Bu(τ + k∆i) dτ

∥
∥
∥
∥

)

≤ α(∆i)Mx + Mx

(

max
r

‖Lr
x‖

Mr
x

)

(

(e‖A‖σ − 1)‖x(k∆i)‖ +

∫ σ

0

e‖A‖(σ−τ) ‖B‖ ‖u(τ + k∆i)‖dτ

)

(5.35)

From the definitions of the bounds X and U and equation (5.34) we have:

‖x(k∆i)‖ ≤ α(∆i)X and ‖u(τ + k∆i)‖ ≤ α(∆i)U (5.36)
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Then:

Lx x(t) ≤ α(∆i)Mx + α(∆i)Mx

(

max
r

‖Lr
x‖

Mr
x

)(

e‖A‖σ − 1
) (

X +
‖B‖
‖A‖ U

)

≤ α(∆i)Mx

(

1 + (e‖A‖∆i − 1)γ
)

= Mx

1 + γ(e‖A‖∆i − 1)

1 + (2γ + 1)(e‖A‖∆i − 1)

≤ Mx

1 + γ(e2‖A‖∆i+1 − 1)

1 + (2γ + 1)(e2‖A‖∆i+1 − 1)
(5.37)

We next show that:

1 + γ(e2‖A‖∆i+1 − 1)

1 + (2γ + 1)(e2‖A‖∆i+1 − 1)
≤ 1

1 + (2γ + 1)(e‖A‖∆i+1 − 1)
= α(∆i+1) (5.38)

for:

0 < ∆i+1 ≤ 1

‖A‖ ln

(√

1 + 4γ2

2γ

)

⇐⇒ 1 < e‖A‖∆i+1 ≤
√

1 + 4γ2

2γ
(5.39)

After some manipulation, the inequality (5.38) is easily seen to be equivalent to:

γ(2γ + 1)e2‖A‖∆i+1 − (γ + 1)e‖A‖∆i+1 − 2γ2 ≤ 0 (5.40)

The left hand side is negative for both e‖A‖∆i+1 = 1 and e‖A‖∆i+1 =

√
1+4γ2

2γ
, hence it is negative

in the whole range which verifies (5.39). In (5.37) we then have that, for all t ∈ [0, Tf ]:

Lx x(t) ≤ α(∆i+1)Mx for u ∈ S∆i
(5.41)

This implies, by definition, that u ∈ S∆i+1
. Hence (5.28) follows.

¤

We next present two additional technical results, which will be utilised in the proof of the main

convergence result in Section 5.3.1.

Lemma 5.8 Let u(t) ∈ S. Then, for any δ > 0 there exists a ∆δ > 0 such that, for all ∆ ≤ ∆δ and

u∆(t) such that:

u∆(t) = u(k∆) ; k∆ ≤ t < (k + 1)∆ (5.42)

we have:

‖u − u∆‖2 < δ (5.43)

Proof. We consider the sequence of decreasing sampling periods {∆i > 0} in (5.26). For every

∆i, the piecewise constant signal u∆i
(t) belongs to L2[0, Tf ], because it is obtained by sampling and

holding the signal u(t), which belongs to S ⊆ L2[0, Tf ].

Thus, the sequence of functions {u∆i
(t)} converges point-wise almost everywhere (i.e., except on

a set of zero measure) to u(t). Using (Lang, 1993, Theorem 1.6), this implies that {u∆n
(t)} converges

to u(t) in an L2 sense, i.e.,

lim
i→∞

‖u − u∆i
‖2 = lim

∆i→0
‖u − u∆i

‖2 = 0 (5.44)

¤
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Lemma 5.9 For any ε > 0 there exists a δε > 0 such that if:

‖u − u∗‖2 < δε (5.45)

then:

J(u) − J(u∗) < ε (5.46)

Proof. This follows from the operator factorisation approach that we will study in more detail

later in Section 5.4.1 on page 94. In particular, if we use the definitions and relations detailed later in

(5.67)–(5.74), the continuous-time cost function (5.3) — see also (5.71) — can be rewritten as:

J = J(ũ) = Jopt + 〈ũ , (R + G∗G)ũ〉 (5.47)

where:

ũ = u − uopt (5.48)

uopt = −(R + G∗G)−1G∗Fxo (5.49)

Jopt = xT
o F∗(I + GR−1G∗)−1Fxo (5.50)

We note that uopt and Jopt are the unconstrained optimal control signal and cost.

The operator R+G∗G in (5.47) is a compact bounded self-adjoint operator. It can thus be expressed

as:

R + G∗G = S∗S (5.51)

We then have that, for u1, u2 ∈ L2[0, Tf ]:

|J(u1) − J(u2)| = |〈 ũ1 , S∗Sũ1 〉 − 〈 ũ2 , S∗Sũ2 〉| = |〈 Sũ1 , Sũ1 〉 − 〈 Sũ2 , Sũ2 〉|
=

∣
∣‖Sũ1 ‖2 − ‖Sũ2 ‖2

∣
∣ ≤ ‖Sũ1 − Sũ2 ‖2

≤ ‖S‖2 ‖ ũ1 − ũ2 ‖2 ≤ σmax‖u1 − u2‖2 (5.52)

where σmax > 0 is the largest singular value of the operator S. The result then follows by taking

u2 = u∗, δε =
√

ε/σmax , and on recalling that u∗ is the optimal control signal, so J(u) ≥ J(u∗) for

all u.

¤

Remark 5.10 Lemma 5.8 establishes that any input signal u(t) ∈ S can be arbitrarily approximated,

in an L2 sense, by the sample-and-hold signal u∆(t). On the other hand, Lemma 5.9 establishes that

the optimal continuous-time performance J(u∗) can be arbitrarily approximated by choosing any sig-

nal u(t) sufficiently close, in an L2 sense, to u∗(t). These two facts will be used in the proof of the

convergence of the solution of problem P∆ to the solution of P , in the next section.

5.3.1 Sampled-data LQ problem convergence

In this section we present one of the main results of this chapter, namely, that the optimal performance

obtained by solving the continuous-time problem P can be arbitrarily approximated by solving the

discrete-time problem P∆.
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u∗

L2[0, Tf ]

S∆ℓ

S∆j

S

ū

A

δε

δ1

ū∆j

Figure 5.1: Schematic representation of proof of Theorem 5.11.

We note first that, for any chosen ∆, the corresponding problem P∆ is well defined and can be

solved. We denote the resulting optimal control sequence by {u∗
∆,k}N−1

k=0 .

We can now state our main result.

Theorem 5.11 Provided P has a solution u∗(t) ∈ S, then, for every ε > 0 there exists a ∆ε > 0, such

that:

J(u∗
∆ε

) − J(u∗) < ε (5.53)

where u∗
∆ε

(t) is generated, using the ZOH (5.9), by the sequence u∗
∆ε,k , the solution of problem P∆ε

.

Proof. Given ε > 0 we know by Lemma 5.9 that there exists a δε > 0 such that for every

u ∈ L2[0, Tf ] for which (5.45) holds, (5.46) also holds.

Since u∗ ∈ S and limi→∞ S∆i
= S , there exists ∆ℓ > 0 for which the set

A = {u ∈ L2[0, Tf ] : ‖u − u∗‖2 < δε} ∩ S∆ℓ
(5.54)

is non-empty. Let ū be in this set. The set {u ∈ L2[0, Tf ] : ‖u − u∗‖2 < δε} is open. Hence, there

exists δ1 > 0 such that:

{u ∈ L2[0, Tf ] : ‖u − ū‖2 < δ1} ⊂ A (5.55)

Now, using Lemma 5.8, we know that ū can be arbitrarily approximated in an L2 sense by a piece-

wise constant function. This means that there exists a sampling period ∆j < ∆ℓ such that:

‖ū − ū∆j
‖2 < δ1 (5.56)

Hence, ū∆j
∈ S∆ℓ

⊂ S∆j
⊂ S and ‖ū∆j

− u∗‖2 < δε. This is represented schematically in Figure

5.1. Using Lemma 5.9, the latter implies that:

J(ū∆j
) − J(u∗) < ε (5.57)
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If we now consider u∗
∆j ,k, the solution of the problem P∆j

, we know that:

J∆(ū∆j ,k) ≥ J∆(u∗
∆j ,k) (5.58)

where ū∆j ,k is the sequence with the values taken by ū∆j
(t). Using (5.22), we then have that:

J(ū∆j
) ≥ J(u∗

∆j
) (5.59)

and equation (5.53) follows by choosing ∆ε = ∆j . This completes the proof.

¤

The above theorem establishes that there exists a finite sampling period ∆, such that the performance

achieved with the optimal fixed horizon discrete-time constrained controller is arbitrarily close to the

performance achievable by the optimal fixed horizon continuous-time constrained controller.

We illustrate the results in the previous sections by a simple example:

Example 5.12 Consider the second order system:

ẋ =

[

−2 0

1 −1

]

x +

[

4

0

]

u ; xo =

[

0

2

]

(5.60)

y =
[

0 1
]

x (5.61)

with continuous cost function (5.3), where Tf = 5, Q = CT C, R = 0.1, and where P is the solution

of the algebraic Riccati equation (5.6). We impose constraints on the input and on one of the states as

follows:

|u(t)| ≤ 1 ⇐⇒
[

1

−1

]

u(t) ≤
[

1

1

]

(5.62)

|x1(t)| ≤ 1 ⇐⇒
[

1 0

−1 0

]

x(t) ≤
[

1

1

]

(5.63)

The matrices of the discrete-time sampled model (5.11)–(5.12) are obtained from equation (5.13).

Similarly, the matrices for the sampled-data cost function (5.14), are obtained from equations (5.15)–

(5.19)

Figure 5.2 shows the evolution of the cost function as N increases (i.e., ∆ decreases), for the con-

strained and unconstrained cases. Note that a logarithmic scale has been used. For the unconstrained

case, it can be seen that the value of the cost function approaches the continuous time optimal result.

Similarly, for the constrained case, we can see that beyond N = 16, the minimum achievable for the

cost function is almost constant. This is also confirmed in Figure 5.3, which shows the convergence of

the (ZOH or piece-wise constant) control and state signals for the constrained case.

¤

5.3.2 Receding horizon control problem

To conclude this section, we consider the moving horizon control problem. An issue here is that usually,

in discrete receding horizon strategies, only the first element of the fixed horizon control solution is
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Figure 5.2: Cost function values v/s N

applied to the system at each step. The problem is then solved again at the next sampling instant

(Goodwin et al., 2004).

If we take the limit of the receding horizon procedure as ∆ tends to zero, we end up with an ill-

defined control law because the optimal continuous-time solution is only unique up to an L2 equivalence.

To address this issue, we will adopt a form of discrete MPC which mirrors the common strategy

suggested for continuous-time predictive control (Cannon and Kouvaritakis, 2000). The control input

applied to the plant is changed every ∆ (seconds), but the fixed horizon optimisation is done only every

∆̄ (seconds), where ∆̄ > ∆. Let ℓ be an integer, and define:

u∗
FH(ℓ∆̄, τ) = u∗(τ) ∀τ ∈ [0, ∆̄) (5.64)

where u∗(τ) is the solution to the fixed horizon constrained continuous-time problem P on the interval

τ ∈ [0, Tf ]. We then define the continuous time moving horizon optimal solution in terms of (5.64) as:

u∗
MH(t) = u∗

FH(ℓ∆̄, t − ℓ∆̄) ∀t ∈ [ℓ∆̄, (ℓ + 1)∆̄) (5.65)

Theorem 5.13 . The discrete-time approximation of the receding horizon strategy defined above, where

the control is restricted to be piece-wise constant over every interval [k∆, (k + 1)∆), converges to the

continuous-time result, i.e.,

lim
∆→0

‖u∗
MH ∆(t) − u∗

MH(t) ‖2 = 0 (5.66)

Proof. The result readily follows from the definitions of u∗
MH in (5.65) and (5.64), and the previous

convergence result in Theorem 5.11

¤

5.4 Spectral properties of LQ problems

In this section we will explore a related aspect of the link between continuous- and discrete-time LQ

optimal control problems. Our goal here is to examine spectral properties of the dicrete and continuous
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Figure 5.3: Control and state signals for N = 1, 4, . . . , 256

problems via a functional analysis approach.

Functional analysis has proven to be a powerful tool in the development of control and estimation

theory, since their early years. In fact, minimisation of quadratic functionals in L2-spaces is still the

paradigm behind optimal control and optimal estimation problems (Kwakernaak and Sivan, 1972; Leigh,

1980; Grimble and Johnson, 1988). The use of linear operator theory provides a concise conceptual

framework and a wide range of useful theorems, both for linear control and estimation (Kailath, 1969;

Hagander, 1973; De Doná et al., 2000; Kojima and Morari, 2004). A brief review on linear operators in

Hilbert spaces is presented in Appendix B.

In this section we study the singular structure of the operators involved in LQ control problems P ,

in continuous-time, and its sampled-data version P∆, defined in discrete-time. In particular, we are

interested in the relationship between the singular values and functions associated with the continuous-

time system operator, to its sampled-data counterpart. We will show that the (finite set of) singular values

of the discrete-time problem, converge to a subset of the (infinite, but countable) set in continuous-time.

In the following sections we first obtain the singular structure characterisation in the continuous-

and discrete-time domain, to then show the convergence result previously mentioned.

5.4.1 Continuous-time singular structure

Our results will build on earlier work on the singular value structure of problem P as presented in

(Kojima and Morari, 2004). We summarise these results below.

We consider the Hilbert spaces V = L2(0, Tf ; Rm) and Z = R
n × L2(0, Tf ; Rn), with inner
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products:

〈f1, f2〉V =

∫ Tf

0

f1(t)
T f2(t) dt ; f1, f2 ∈ V (5.67)

〈g1, g2〉Z =
(
g0
1

)T
g0
2 +

∫ Tf

0

g1
1(t)T g1

2(t) dt ; g1 =

[

g0
1

g1
1

]

, g2 =

[

g0
2

g1
2

]

∈ Z (5.68)

We rewrite the input and response signal as:

v = v(t) = R
1
2 u(t) ∈ V (5.69)

z =

[

z0

z1(t)

]

=

[

P
1
2 x(Tf )

Q
1
2 x(t)

]

∈ Z (5.70)

The cost function (5.3) and the system dynamics can then be expressed as:

J = ‖v‖2
V + ‖z‖2

Z (5.71)

z = Fxo + Gv (5.72)

where xo ∈ R
n, and F and G are linear operators:

Fxo =

[

(Fxo)
0

(Fxo)
1(t)

]

=

[

P
1
2 eATf xo

Q
1
2 eAtxo

]

(5.73)

Gv =

[

(Gv)0

(Gv)1(t)

]

=







P
1
2

∫ Tf

0

eA(Tf−ξ)BR− 1
2 v(ξ) dξ

Q
1
2

∫ t

0

eA(t−ξ)BR− 1
2 v(ξ) dξ







(5.74)

The following theorem establishes the singular values of the operator G, which satisfy:

σ > 0 : Gf = σg , G∗g = σf (5.75)

where G∗ is the adjoint operator of G (see Example B.11 on page 149).

Theorem 5.14 The set of singular values {σi} of the linear operator G in (5.74) are given by the roots

of the equation:

det

(
[

−σ−1P In

]

eM(σ)Tf

[

0

In

])

= 0 (5.76)

where σ > 0, and:

M(σ) =

[

A σ−1BR−1BT

−σ−1Q −AT

]

(5.77)

The corresponding singular vectors fi ∈ V and gi ∈ Z , are given by the following functions:

fi(ξ) = R− 1
2 BT

[

0 In

]

eM(σi)ξ

[

0

In

]

di (5.78)

g0
i = P

1
2

[

In 0
]

eM(σi)Tf

[

0

In

]

di (5.79)

g1
i (ξ) = Q

1
2

[

In 0
]

eM(σi)ξ

[

0

In

]

di (5.80)
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where di 6= 0 is a vector such that:

[

−σ−1P In

]

eM(σi)Tf

[

0

In

]

di = 0 (5.81)

Proof. See Kojima and Morari (2004).

¤

5.4.2 Discrete-time singular structure

We next explore the singular value structure of the associated sampled-data problem. In Section 5.4.3

we will show that it naturally converges to that of the underlying continuous problem.

We consider the Hilbert spaces V = l2(0, N − 1; Rm) and Z = R
n × l2(0, N − 1; Rn), with inner

products:

〈f1, f2〉V =

N−1∑

0

fT
1 f2 ; f1, f2 ∈ V (5.82)

〈g1, g2〉Z =
(
g0
1

)T
g0
2 +

N−1∑

0

(
g1
1

)T
g1
2 ; g1 =

[

g0
1

g1
1

]

, g2 =

[

g0
2

g1
2

]

∈ Z (5.83)

We rewrite the input and response signals as:

v = vk = R
1
2
q uk ∈ V (5.84)

z =

[

z0

z1
k

]

=

[

P
1
2

∆ xN

Q
1
2
q xk

]

∈ Z (5.85)

In the cost function (5.14) we can neglect the coupled term depending on Sq based on its convergence

properties given earlier in (5.23). In this case, the cost and the system dynamics can then be expressed

as:

J∆ = ‖v‖2
V + ‖z‖2

Z (5.86)

z = F∆xo + G∆v (5.87)

where xo ∈ R
n, and F∆ and G∆ are linear operators defined by:

F∆xo =

[

(F∆xo)
0

(F∆xo)
1
k

]

=

[

P
1
2

∆AN
q xo

Q
1
2
q Ak

qxo

]

(5.88)

G∆v =

[

(G∆v)0

(G∆v)1k

]

=









P
1
2

∆

N−1∑

l=0

AN−1−l
q BqR

− 1
2

q vl

Q
1
2
q

k−1∑

l=0

Ak−1−l
q BqR

− 1
2

q vl









(5.89)

where 0 ≤ k < N .
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Theorem 5.15 For a given ∆, the set of singular values {σi} of the linear operator G∆ in (5.89) are

given by the roots of the equation:

det

(
[

−σ−1P∆ AT
q

]

M∆(σ)N

[

0

In

])

= 0 (5.90)

where σ > 0, and:

M∆(σ) =









Aq

1

σ
BqR

−1
q BT

q

− 1

σ
(AT

q )−1QqAq (AT
q )−1

(

I − 1

σ2
QqBqR

−1
q BT

q

)









(5.91)

The corresponding singular vectors fi ∈ V and gi ∈ Z , are given by the following functions:

fi[k∆] = R
− 1

2
q BT

q

[

0 In

]

M∆(σi)
k

[

0

In

]

di (5.92)

g0
i = P

1
2

∆

[

In 0
]

M∆(σi)
N

[

0

In

]

di (5.93)

g1
i [k∆] = Q

1
2
q

[

In 0
]

M∆(σi)
k

[

0

In

]

di (5.94)

where di 6= 0 is a vector such that:

[

−σ−1P∆ AT
q

]

M∆(σi)
N

[

0

In

]

di = 0 (5.95)

Proof. The singular values and singular vectors of the linear operator G∆ are defined by:

σ > 0 : G∆f = σg , G∗
∆g = σf (5.96)

where f ∈ V , g ∈ Z , and G∗
∆ is the adjoint operator of G∆ given by (see Example B.12 on page 150):

G∗
∆g = G∗

∆

[

g0

g1
k

]

= R
− 1

2
q BT

q

[

(AT
q )N−1−lP

1
2

∆g0 +

N−1∑

k=l+1

(AT
q )k−1−lQ

1
2
q g1

k

]

(5.97)

We define the variables:

pk =

k−1∑

l=0

Ak−1−l
q BqR

− 1
2

q fl (5.98)

ql = (AT
q )N−1−lP

1
2

∆g0 +

N−1∑

k=l+1

(AT
q )k−1−lQ

1
2
q g1

k (5.99)

Using (5.96) it is readily seen that these functions satisfy:

[

pj+1

qj+1

]

= M∆(σ)

[

pj

qj

]

⇒
[

pj

qj

]

= M∆(σ)j

[

p0

q0

]

(5.100)
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Also the following relations hold:

[

−σ−1P∆ AT
q

]
[

pN

qN

]

= 0 ,

[

p0

q0

]

=

[

0

I

]

q0 (5.101)

Using (5.101) in the solution of (5.100), with j = N , we have:

[

−σ−1P∆ AT
q

]

M∆(σ)N

[

0

I

]

q0 = 0 (5.102)

However, a necessary condition to have a non trivial solution, different from (f, g) = 0, is q0 6= 0.

Therefore condition (5.90) is a necessary condition. Similarly, sufficiency can be easily verified.

The singular vectors can be obtained using the definitions of G∆ in (5.89), G∗
∆ in (5.97), (5.98) and

(5.99):

fk = R
− 1

2
q BT

q qk ; g0 = P
1
2

∆ pN ; g1
k = Q

1
2
q pk (5.103)

Denoting the vector q0 = d 6= 0, equations (5.92)–(5.94), are obtained from:

[

pk

qk

]

= M∆(σ)k

[

p0

q0

]

= M∆(σ)k

[

0

I

]

q0 (5.104)

¤

The singular values of the operator G∆ correspond, in fact, to the (squared) eigenvalues of the

compact self-adjoint operator G∗
∆G∆. They satisfy also the following important properties (Kreyszig,

1978):

1. The singular vectors {fi} are orthogonal, and

2. The singular values {σi} are real and positive, being σ = 0 the only possible point of accumula-

tion:

σ1 ≥ . . . ≥ σN > 0 (5.105)

Theorem 5.16 Given a sampling period ∆ = Tf/N the operator G∆ has exactly Nm singular values.

Proof. Following the same lines as in (Kojima and Morari, 2004), for the continuous-time case,

it can be proved that σ = 0 is not an eigenvalue of the operator G∗
∆G∆. Then the set of (orthogonal)

eigenvectors form a complete basis of V = l2(0, N−1; Rm). This space has dimension Nm and, hence,

the operator G∆ has exactly Nm singular vectors and singular values.

¤

5.4.3 Singular structure convergence

We next explore the relations and connections between the continuous and discrete singular structure

characterised in the previous sections. In particular, we show that, as the sampling period ∆ goes to

zero, the singular values in discrete-time approach the singular values in continuous-time.

We start by presenting a limiting result for matrix M∆(σ), defined in equation (5.90).
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Lemma 5.17 The matrix M∆(σ)N has a well defined limit when ∆ goes to zero. Specifically:

lim
∆→0

M∆(σ)N = eM(σ)Tf (5.106)

where:

M(σ) =

[

A σ−1BR−1BT

−σ−1Q −AT

]

(5.107)

Proof. We write M∆(σ) = M∆, and then we consider the following expression:

log MN
∆ = N · log (I + (M∆ − I)) =

Tf

∆

[

(M∆ − I) − (M∆ − I)2

2
+ . . .

]

(5.108)

Using the delta domain state space matrices Aδ = (Aq − I)/∆ and Bδ = Bq/∆ (Middleton and

Goodwin, 1990), we have:

M∆ − I =

[

L11 L12

L21 L22

]

(5.109)

where:

L11 = Aq − I = Aδ ∆ (5.110)

L12 =
1

σ
BqR

−1
q BT

q =
1

σ
Bδ

(
Rq

∆

)−1

BT
δ ∆ (5.111)

L21 = − 1

σ
(AT

q )−1QqAq = − 1

σ
(I + ∆AT

δ )−1 Qq

∆
(I + ∆Aδ)∆ (5.112)

L22 = (AT
q )−1

(

I − 1

σ2
QqBqR

−1
q BT

q − AT
q

)

= −(I + ∆AT
δ )−1

(

AT
δ +

∆

σ2

Qq

∆
Bδ

(
Rq

∆

)−1

BT
δ

)

∆ (5.113)

Using the convergence properties in (5.23), we can thus see that:

lim
∆→0

1

∆

[

L11 L12

L21 L22

]

=

[

A σ−1BR−1BT

−σ−1Q −AT

]

(5.114)

which corresponds exactly to M(σ) in (5.107). Therefore we finally have:

lim
∆→0

log
(
M∆(σ)N

)
= Tf · M(σ) (5.115)

and (5.106) is obtained by applying the exponential function, which is continuous, on both sides of the

equation. ¤

Remark 5.18 Based on the previous result, and the convergence properties of matrices P∆ and Aq

when the sampling rate grows to infinity, we can notice that equation (5.90) is transformed to (5.76), as

∆ → 0.

Finally, we show that the finite set of singular values of the discrete problem converge, in a well

defined fashion, to a countable subset of singular values for the continuous problem.
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Theorem 5.19 When the sampling period ∆ goes to zero, the singular values of the operator G∆, for the

discrete time problem, converge to a subset of the singular values of the operator G, for the continuous

time problem.

Proof. The singular values of the operator G∆ are the square root of the eigenvalues of the self-

adjoint operator G∗
∆G∆. The last statement is true for every operator, so the same holds for the conti-

nuous time operators G defined in (5.74) and G∗G. The adjoint operators G∗ and G∗
∆ are explicitly found

in Appendix B.

The proof uses the fact that the discrete self-adjoint operator:

G∗
∆G∆v = R

− 1
2

q BT
q

[

(AT
q )N−1−lP∆

N−1∑

k=0

AN−1−k
q BqR

− 1
2

q vk

+

N−1∑

j=l+1

(AT
q )j−1−lQq

j−1
∑

k=0

Aj−1−k
q BqR

− 1
2

q vk



 (5.116)

can be rewritten as:

G∗
∆G∆v =

(
Rq

∆

)− 1
2 BT

q

∆

[

eAT ∆(N−1−l)P∆

N−1∑

k=0

eA∆(N−1−k) Bq

∆

(
Rq

∆

)− 1
2

vk∆

+
N−1∑

j=l+1

eAT ∆(j−1−l) Qq

∆
∆

j−1
∑

k=0

eA∆(j−1−k) Bq

∆

(
Rq

∆

)− 1
2

vk∆



 (5.117)

This operator converges point-wise exactly to its continuous time counterpart:

G∗Gv = R− 1
2 BT

[

eAT (Tf−β)P

∫ Tf

0

eA(Tf−ξ)BR− 1
2 v(ξ) dξ

+

∫ Tf

β

eAT (τ−β)Q

∫ τ

0

eA(τ−ξ)BR− 1
2 v(ξ) dξ dτ

]

(5.118)

as the sampling period ∆ goes to zero, where we have used the convergence properties in Remark 5.4 on

page 86, and:

N∆ = Tf , (l + 1)∆ = β , j∆ = τ , k∆ = ξ (5.119)

According to Theorem 1.6 in (Lang, 1993), given a sequence of bounded functions {G∗
∆n

G∆n
v}

in L2 which converges point-wise to G∗Gv, then G∗Gv is in L2 and {G∗
∆n

G∆n
v} is L2-convergent to

G∗Gv, i.e., the discrete time operator converges in norm to the continuous time one.

Then, following the same arguments used in (De Doná et al., 2000), we prove that every limiting

point of the set of eigenvalues of G∗
∆G∆ (singular values of G∆) converges to an eigenvalue of G∗G. Let

us suppose that λ 6= 0 is a limit point of a sequence of eigenvalues λ∆ of G∗
∆G∆, hence, (λ∆I −G∗

∆G∆)

converges in norm to (λI −G∗G). Since the set of invertible operators is open, if (λ∆I −G∗
∆G∆) is not

invertible (i.e., λ∆ belongs to the spectrum of the self-adjoint operator) for all ∆ then (λI − G∗G) is

not invertible. This establishes that λ belongs to the spectrum of the compact self-adjoint operator G∗G,

different from zero, so it is one of its eigenvalues.

¤

Finally, we illustrate the previous convergence results for a simple example:
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Example 5.20 Consider the double integrator system:

ẋ =

[

0 1

0 0

]

x +

[

0

1

]

u (5.120)

y =
[

1 0
]

x (5.121)

with continuous cost function (5.3), where Tf = 5, Q = CT C, R = 0.1, and P is the solution of the

algebraic Riccati equation associated to J1 in (5.3).

The discrete time model matrices, from (5.13), are:

Aq =

[

1 ∆

0 1

]

Bq = ∆

[

∆/2

1

]

(5.122)

The matrices for the sampled data cost function (5.14), are:

Qq = ∆

[

1 ∆/2

∆/2 ∆2/3

]

Rq = ∆
(
∆4/20 + 0.1

)
Sq = ∆

[

∆2/6

∆3/8

]

(5.123)

and P∆ is obtained from the discrete time algebra Riccati equation associated with (5.14).
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Figure 5.4: Plot of f∆(σ) (solid) and f(σ) (dashed) for N = 1, 4 and 16.

We define f(σ) to be the function on the left hand side of equation (5.76), whose positive roots are

the singular values of G, and analogously, we use f∆(σ) to define the function on the left hand side of

(5.90), whose positive roots are the singular values of G∆. Figure 5.4 shows the functions f(σ) and

f∆(σ) for three different values of ∆ = Tf/N . We can see that the finite set of roots (singular values)

obtained in discrete time approach the countable set of roots in the continuous time set. Note that the

zero crossings by f(σ) and f∆(σ) correspond to the singular values.

To illustrate the above results, Figure 5.5 shows the evolution of the first 10 singular values for

the discrete problem, P∆, compared with the singular values obtained in (Kojima and Morari, 2004)

for the continuous-time problem. Note that given any N ∈ N, and the corresponding sampling period

∆ = Tf/N , the operator G∆ has only N singular values given by equation (5.90), as stated in Theorem
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Figure 5.5: Convergence of the (first 10) singular values of G∆

5.16. In the figure we can see that the discrete-time singular values quickly approach their continuous-

time counterpart. For example, with N = 4 the four singular values obtained are within 10% of the

continuous time ones.

¤

5.5 Summary

This chapter has explored the use sampled-data models in (constrained) optimal control problems, when

using fast sampling rates. We have established two natural convergence results as the sampling period

goes to zero:

First, we have shown that a constrained optimal control problem, defined in continuous-time, can

be approximated arbitrarily closely, by considering an associated sampled-data problem, with (possibly)

tighter constraints. The existence of a well defined limit ensures that there exists a finite sampling period

∆, for which the performance achieved by the discrete-time constrained controller is arbitrarily close to

the achievable performance by the hypothetical continuous-time constrained control law.

Secondly, we have explored the connections between the singular structure of LQ problems in con-

tinuous and discrete-time. In particular, we have shown that there is a natural convergence between

the finite set of singular values of the sampled-data problem, and the (infinite) countable set in conti-

nuous time. This result can be applied in suboptimal continuous-time control strategies by exploiting

the singular structure of the problem, which is implemented in discrete-time.



Part II

Nonlinear Systems
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Chapter 6

Sampled-data models for deterministic

nonlinear systems

6.1 Introduction

Models for continuous-time systems typically take the form of (nonlinear) differential equations. How-

ever, in practice we need alternative models that describe the relationship between the discrete-time

actions taken on the system and the samples taken from its signals. In this second part of the thesis,

our interest is on sampled-data models for nonlinear systems. A key departure point from to the linear

sampled-data models presented in Chapter 2, is that, for nonlinear systems, only approximate sampled-

data models can be obtained. However, the accuracy of these models can be characterised in a precise

way, as we will see later.

In this chapter we consider the sampling of deterministic nonlinear systems. Later, in Chapter 7, we

will consider the stochastic case. A similar separate analysis was presented for linear systems in Part I.

Even though superposition does not generally apply for nonlinear systems, we have kept this separation

both for the sake of simplicity and to better reveal the relations to the linear case.

The use of sampled-data models raises the question of the relationship between the discrete-time

description of the samples and the original continuous-time model. It is tempting to simply sample

quickly and then to replace derivatives in the continuous-time model by divided differences (i.e., simply

replacing the differential operator ρ by the δ operator) in the sampled-data model. This certainly leads

to an approximate model. However, one can obtain more accurate models. For the linear case studied

in Part I, we saw that exact sampled-data models can be generated by including extra zeros due to the

sampling process (Åström et al., 1984; Wahlberg, 1988). One would reasonably expect similar results to

hold in the more general nonlinear framework. However, the situation, in this case, is more complex than

for linear systems. Indeed, to the best of our knowledge, an explicit characterisation of the sampling zero

dynamics has previously remained unresolved, although, an implicit characterisation of the (nonlinear)

sampling zeros was given in Monaco and Normand-Cyrot (1988). On the other hand, in (Kazantzis and

Kravaris, 1997), system-theoretic properties of sampled-data models for nonlinear system are studied.

Any sampled-data model for a nonlinear system will, in general, be an approximate description of

105
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the combination of two elements: the continuous-time system itself, together with the sample and hold

devices. An exact discrete-time description of such a hybrid nonlinear system is, in most cases, not

known or impossible to compute (Nešić et al., 1999). Thus, one needs to be clear about the potential

accuracy achieved by any model. In fact, the accuracy of the approximate sampled-data plant model

has proven to be a key issue in the context of control design, where a controller designed to stabilise an

approximate model may fail to stabilise the exact discrete-time model, no matter how small the sampling

period ∆ is chosen (Nešić and Teel, 2004).

In this chapter, we present an approximate sampled-data model for deterministic nonlinear systems.

We show how a particular strategy can be used to approximate the system output and its derivatives in

such a way as to obtain a local truncation error, between the output of the resulting sampled-data model

and the true continuous-time system output, of order ∆r+1, where ∆ is the sampling period and r is the

(nonlinear) relative degree.

An insightful interpretation of the sampled-data model described here can be made in terms of ad-

ditional zero dynamics. As in the linear case, these extra zero dynamics, due to the sampling process,

have no continuous-time counterpart. We give an explicit characterisation of these sampling zero dy-

namics and show that they are a function only of the (nonlinear) system relative degree r. Moreover, the

sampling zero dynamics turn out to be identical to those found in the linear case.

The occurrence of nonlinear sampling zero dynamics is also relevant to the problem of sampled-

data control of nonlinear continuous-time systems. In this context, topics such as relative degree,

normal form, and zero dynamics of nonlinear systems have been extensively studied. In particu-

lar, these elements play a key role in feedback linearisation techniques (Isidori, 1995; Isidori, 1999;

Khalil, 2002; Byrnes and Isidori, 1988; Marino, 1986). Some of these results have also been ex-

tended to discrete-time and sampled nonlinear systems (Grizzle, 1986; Monaco et al., 1986; Lee et

al., 1987; Jakubczyk, 1987; Glad, 1988; Arapostathis et al., 1989; Jakubczyk and Sontag, 1990; Barbot

et al., 1992; Barbot et al., 1993; Castillo et al., 1997; Teel et al., 1998; Dabroom and Khalil, 2001; Hamzi

and Tall, 2003; Chen and Narendra, 2004; Monaco and Normand-Cyrot, 2005). However, the theory for

the discrete-time case is less well developed than for the continuous-time case (Monaco and Norman-

Cyrot, 1997) and the absence of good models for sampled-data nonlinear plants is still recognised as an

important issue for control design (Nešić and Teel, 2001).

The approximate sampled-data models presented in this chapter are believed to give important in-

sights into nonlinear systems theory. By way of illustration, in Section 6.4, we examine their implica-

tions in the system identification context.

6.2 Background on nonlinear systems

In this section we review some concepts and results from nonlinear system theory that will be used later

in Section 6.3. The results presented here are based on (Isidori, 1995), for continuous-time systems, and

partially based on (Monaco and Normand-Cyrot, 1988; Barbot et al., 1992; Hamzi and Tall, 2003), for

the discrete-time case.
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6.2.1 Continuous-Time Systems

Much of the work regarding control of (continuous-time) nonlinear systems is based on a model con-

sisting of a set of ordinary differential equations affine in the control signals (Isidori, 1995):

ẋ(t) = f(x(t)) + g(x(t))u(t) (6.1)

y(t) = h(x(t)) (6.2)

where x(t) is the state evolving in an open subset M ⊂ R
n, and where the vector fields f(·) and g(·),

and the output function h(·) are analytic.

Definition 6.1 (Relative degree) The nonlinear system (6.1)–(6.2) is said to have relative degree r at a

point xo if:

(i) LgL
k
fh(x) = 0 for x in a neighbourhood of xo and for k = 0, . . . , r − 2, and

(ii) LgL
r−1
f h(xo) 6= 0.

where Lg and Lf correspond to Lie derivatives. For example, Lgh(x) = ∂h
∂x

g(x).

¤

Intuitively, the relative degree, as defined above, corresponds to the number of times that we need to

differentiate the output y(t) to make the input u(t) appear explicitly. For example:

dy

dt
=

∂h

∂x

dx

dt
=

∂h

∂x
f(x) +

∂h

∂x
g(x)u = Lfh(x) + Lgh(x)u (6.3)

We next show that there is a local coordinate transformation that allows one to rewrite the nonlinear

system (6.1)–(6.2) in the, so called, normal form.

Lemma 6.2 (Local coordinate transformation) Suppose that the system has relative degree r at xo.

Consider the new coordinate defined as:

z1 = φ1(x) = h(x) (6.4)

z2 = φ2(x) = Lfh(x) (6.5)

...

zr = φr(x) = Lr−1
f h(x) (6.6)

Furthermore, if r < n it is always possible to define zr+1 = φr+1(x), . . . , zn = φn(x) such that:

z =







z1

...

zn







=







φ1(x)
...

φn(x)







= Φ(x) (6.7)

has a nonsingular Jacobian at xo. Then, Φ(·) is a local coordinate transformation in a neighbourhood

of xo. Moreover, it is always possible to define zr+1 = φr+1(x), . . . , zn = φn(x) in such a way that:

Lgφi(x) = 0 (6.8)

in a neighbourhood of xo, for all i = r + 1, . . . , n.
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Proof. See (Isidori, 1995).

¤

Lemma 6.3 (Normal form) The state space description of the nonlinear system (6.1)–(6.2) in the new

coordinate defined by Lemma 6.2 is given by the, so called, normal form:

ζ̇ =










0
... Ir−1

0

0 0 . . . 0










ζ +










0
...

0

1










(
b(ζ, η) + a(ζ, η)u(t)

)
(6.9)

η̇ = c(ζ, η) (6.10)

where the output is z1 = h(x) = y, the state vector is:

z(t) =

[

ζ(t)

η(t)

]






ζ(t) = [z1(t), z2(t), . . . , zr(t)]
T

η(t) = [zr+1(t), zr+2(t), . . . , zn(t)]T
(6.11)

and:

b(ζ, η) = b(z) = Lr
fh(Φ−1(z)) (6.12)

a(ζ, η) = a(z) = LgL
r−1
f h(Φ−1(z)) (6.13)

c(ζ, η) = c(z) =







Lfφr+1(Φ
−1(z))

...

Lfφn(Φ−1(z))







(6.14)

Proof. See (Isidori, 1995).

¤

Remark 6.4 Note that the state variables contained in ζ(t), defined in (6.4)–(6.6), correspond to the

output y(t) and its first r − 1 derivatives:

zℓ(t) = z
(ℓ−1)
1 (t) = y(ℓ−1)(t) ; ℓ = 1, . . . , r (6.15)

This fact will be used later, in Section 6.3, where a sampled-data model for a nonlinear system is

obtained based on its normal form.

Definition 6.5 (Zero dynamics) The zero dynamics of the nonlinear system (6.1)–(6.2) are defined as

the internal dynamics that appear in the system when the input and initial conditions are chosen in such

a way as to make the output identically zero, i.e., y(t) ≡ 0, for all t > 0.

Using the coordinate transformation, and, thus, the system expressed in the normal form (6.9)–

(6.10), we can see that the zero dynamics satisfy:

η̇ = c(0, η) (6.16)
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for any initial condition z(0) = [0, η(0)T ]T , and, from (6.9), for an input:

u(t) = uzd(t) = − b(0, η)

a(0, η)
(6.17)

The concepts presented above, of course, apply mutatis mutandis for linear systems. This is formally

stated below.

Remark 6.6 For linear systems, the zero dynamics correspond to the system zeros. In this case, equa-

tion (6.16) reduces to a linear differential equation η̇ = Sη, where the eigenvalues of the matrix S are

the roots of the polynomial F (s) in (2.6) on page 13 — see also (Isidori, 1995).

6.2.2 Discrete-Time Systems

In this section, we consider the case of nonlinear systems defined in discrete-time. We summarise, in a

similar fashion to the continuous-time case in the previous section, several concepts and results partially

based on (Monaco and Normand-Cyrot, 1988; Barbot et al., 1992; Califano et al., 1998).

We consider the class of nonlinear discrete-time systems expressed as:

δxk = F (xk) + G(xk)uk (6.18)

yk = H(xk) (6.19)

where F (·), G(·), and H(·) are assumed analytic. Note that the state equation (6.18) can also be easily

rewritten using the shift operator:

qxk = xk+1 = Fq(xk) + Gq(xk)uk (6.20)

where, using the delta operator definition (2.30), the functions can be readily obtained as:

Fq(xk) = xk + ∆F (xk) and Gq(xk) = ∆G(xk) (6.21)

Definition 6.7 (Discrete-time relative degree) The discrete-time system (6.18)–(6.19) has relative de-

gree r if (Barbot et al., 1992):

(i)
∂yk+ℓ

∂uk

∣
∣
∣
∣
(xk,uk)

= 0, for all ℓ = 0, . . . , r − 1

(ii)
∂yk+r

∂uk

∣
∣
∣
∣
(xk,uk)

6= 0.

Intuitively, the discrete-time relative degree corresponds to the number of time shifts before an

element uk of the input sequence u appears explicitly in the output sequence y. The relative degree r

can be also characterised in terms of divided differences of yk, as follows:

Lemma 6.8 The conditions in Definition 6.7 are equivalent to:

(a)
∂(δℓyk)

∂uk

∣
∣
∣
∣
(xk,uk)

= 0, for all ℓ = 0, . . . , r − 1

(b)
∂(δryk)

∂uk

∣
∣
∣
∣
(xk,uk)

6= 0.
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Proof. We next prove that (i)–(ii) ⇐⇒ (a)–(b).

(i)–(ii) ⇒ (a)–(b) : Using the delta operator definition (2.30), we have that:

∂(δℓyk)

∂uk

=
∂

∂uk

((
q−1
∆

)ℓ
yk

)

=
1

∆ℓ

∂

∂uk

ℓ∑

i=0

(
ℓ

i

)

(−1)ℓ−i(qiyk)

=
1

∆ℓ

ℓ∑

i=0

(
ℓ

i

)

(−1)ℓ−i ∂yk+i

∂uk

(6.22)

where clearly if
∂yk+i

∂uk
= 0, for all i = 0, . . . , r − 1, then

∂(δℓyk)
∂uk

= 0, for all ℓ = 0, . . . , r − 1.

Furthermore,
∂yk+r

∂uk
6= 0 implies

∂(δryk)
∂uk

6= 0.

(a)–(b) ⇒ (i)–(ii) : This follows from similar arguments, on noting that q = 1 + ∆δ. Then we have

that:

∂yk+ℓ

∂uk

=
∂(qℓyk)

∂uk

=
∂

∂uk

(
(1 + ∆δ)ℓyk

)
=

∂

∂uk

(
ℓ∑

i=0

(
ℓ

i

)

∆iδiyk

)

=
ℓ∑

i=0

(
ℓ

i

)

∆i ∂(δiyk)

∂uk

(6.23)

where clearly if
∂(δiyk)

∂uk
= 0 , for all i = 0, . . . , r − 1, then

∂yk+ℓ

∂uk
= 0 for all ℓ = 0, . . . , r − 1.

Furthermore,
∂(δryk)

∂uk
6= 0 implies

∂yk+r

∂uk
6= 0.

¤

Definition 6.9 (Discrete-time normal form) Consider the nonlinear discrete-time system (6.18)–(6.19)

and assume that it has relative degree r. We say that the system is expressed in its discrete-time normal

form when it is rewritten as:

δζk =










0
... Ir−1

0

0 0 . . . 0










ζk +










0
...

0

1










(
B(zk) + A(zk)uk

)
(6.24)

δηk = C(zk) (6.25)

where the state vector is:

zk =

[

ζk

ηk

]






ζk = [z1,k, z2,k, . . . , zr,k]T

ηk = [zr+1,k, zr+2,k, . . . , zn,k]T
(6.26)

and the output is z1,k = H(xk) = yk.

Remark 6.10 The state variables contained in ζk, defined in (6.26), correspond, in fact, to yk and its

first r − 1 divided differences, i.e.:

zℓ,k = δℓ−1z1,k = δℓ−1yk ∀ℓ = 1, . . . , r (6.27)
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Califano et al. (1998) discuss necessary and sufficient for the existence of a discrete-time normal

form defined in a different way. They consider nonlinear discrete-time models expressed in terms of

the shift operator, and, thus, their result cannot be directly applied to the normal form considered in

Definition 6.9.

Definition 6.11 (Discrete-time zero dynamics) The discrete-time zero dynamics of the nonlinear sys-

tem (6.18)–(6.19) are defined as the internal dynamics that appear in the system when the input and

initial conditions are chosen in such a way as to make the output identically zero, i.e., yk ≡ 0, for all

k ≥ 1.

If the system is expressed in the normal form (6.24)–(6.25), we can see that the zero dynamics

satisfy:

δηk = C(0, ηk) (6.28)

for any initial condition z0 = [0, ηT
0 ]T , and, from (6.24), for an input:

uk = uzd
k = −B(0, ηk)

A(0, ηk)
(6.29)

Remark 6.12 Similarly to the continuous-time case in Remark 6.6, when restricting ourselves to linear

systems, the discrete-time zero dynamics (6.28) reduce to a linear difference equation δη = Sη, where

the eigenvalues of the matrix S correspond to the zeros of the discrete-time transfer function.

The following result re-establishes Lemma 2.12 regarding the sampled model for an n-th order

integrator. Here, we restate the result in a novel form. In particular, we show, via use of the normal

form, that the eigenvalues of the zero dynamics in this case correspond to the sampling zeros of the

discrete-time transfer function (2.54). This result will be used for the nonlinear case in Section 6.3,

specifically, as a key building block in the proof of Theorem 6.22.

Lemma 6.13 (Sampled n-th order integrator in normal form) Given a sampling period ∆, the discrete-

time sampled-data model corresponding to the n-th order integrator G(s) = s−n, n ≥ 1, for a ZOH

input, can be written in the normal form:

δz1 = q11z1 + Q12η + ∆n−1

n! uk (6.30)

δη = Q21z1 + Q22η (6.31)

with output y = z1. The scalar q11 and the matrices Q12, Q21, and Q22 take specific forms as given

below in (6.35). Furthermore, the sampling zeros in (2.54) appear as eigenvalues of the matrix Q22,

i.e., the following equation holds:

pn(∆γ) = detMn = ∆n−1

n! det (γIn−1 − Q22) (6.32)

Proof. An n-th order integrator can be represented in state-space form (2.2)–(2.3), on page 12,

where the matrices are given by (2.57). We consider the corresponding sampled-data model, in delta

form, given by (2.31)–(2.32), where the matrices are given by (2.59), on page 21.
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If we apply the state space similarity transformation z = Tx, where the nonsingular matrix T is

given by:

T =

[

1 0

T21 In−1

]

⇐⇒ T−1 =

[

1 0

−T21 In−1

]

(6.33)

where:

T21 =
[

− n
∆ · · · − n!

∆n−1

]T

(6.34)

Then, the new state space representation is given by the following matrices:

Āδ = TAδT
−1 =

[

q11 Q12

Q21 Q22

]

=

[

1 0

T21 In−1

][

0 A12

0 A22

][

1 0

−T21 In−1

]

=

[

−A12T21 A12

− (T21A12 + A22) T21 T21A12 + A22

]

(6.35)

where, from (2.59):

A12 =
[

1 ∆
2 · · · ∆n−2

(n−1)!

]

(6.36)

A22 =










0 1 · · · ∆n−3

(n−2)!

...
. . .

. . .
...

0 · · · 0 1

0 0 · · · 0










(6.37)

and:

B̄δ = TBδ =
[

∆n−1

n! 0 . . . 0
]T

(6.38)

These state space matrices give the normal form that appears in (6.30)–(6.31).

To prove (6.32), we first note that:

Mn

[

0 In−1

1 0

]

=

[
∆n−1

n! A12

−∆n−1

n! T21 A22 − γIn−1

]

(6.39)

Computing the determinant of the matrices on both sides of the above equation (using matrix results

in Appendix A), we have that:

(detMn)(−1)n−1 = ∆n−1

n! det (A22 − γIn−1 + T21A12) (6.40)

where, from definition of Q22 in (6.35), we finally have that:

det Mn = ∆n−1

n! (−1)n−1 det (−γIn−1 + (A22 + T21A12))

= ∆n−1

n! det (γIn−1 − Q22) (6.41)

¤
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6.3 A sampled data model for deterministic nonlinear systems

In this section we present the main result of this chapter, namely, a sampled-data model that approxi-

mates the input-output mapping of a given nonlinear system. We also show that this discrete-time model

contains extra zero dynamics which correspond to the asymptotic sampling zeros of the linear case.

We are interested in obtaining a discrete-time model that closely approximates the nonlinear input-

output mapping given by (6.1)–(6.2), when the input u(t) is generated by a digital device using a ZOH.

This will result in a model of the form:

δxS = fS(xS) + gS(xS)u (6.42)

yS = hS(xS) (6.43)

where xS = xS
k ∈ R

n is the discrete-time state sequence, u = uk is the input sequence, yS = yS
k is the

output sequence, and k ∈ Z is the discrete-time index.

Our goal is to define the discrete-time model (6.42)–(6.43), such that yS is close (in a well defined

sense) to the continuous-time output y(t) in (6.2) at the sampling instants t = k∆, when the input u(t)

is generated from uk with the ZOH (2.10). Theorem 6.15 (below) explicitly defines the vector fields

fS(·), gS(·), and hS(·) in (6.42)–(6.43) in terms of the sampling period ∆ and the vector fields a(·),
b(·), and c(·) in Lemma 6.3, which are function of f(·), g(·), and h(·) in the original continuous-time

nonlinear model (6.1)–(6.2).

We first introduce the following assumption:

Assumption 6.14 The continuous-time nonlinear system (6.1)–(6.2) has uniform relative degree r ≤ n

in the open subset M ⊂ R
n, where the state x(t) evolves.

This assumption ensures that there is a coordinate transformation, as in Lemma 6.2, that allows us

to express the system in its normal form.

We then have the following key result:

Theorem 6.15 Consider the continuous-time nonlinear system (6.1)–(6.2) subject to Assumption 6.14.

Then the local truncation error between the output yS = zS
1 of the following discrete-time nonlinear

model and the true system output y(t) is of order ∆r+1:

δζS =













0 1 ∆
2 · · · ∆r−2

(r−1)!

0 0 1 · · · ∆r−3

(r−2)!

...
. . .

. . .
...

0 . . . 0 1

0 0 . . . 0













ζS +












∆r−1

r!
∆r−2

(r−1)!

...

∆
2

1












(
b + a u

)
(6.44)

δηS = c(ζS , ηS) (6.45)

where a = a(ζS , ηS), b = b(ζS , ηS), and c(ζS , ηS) are defined in Lemma 6.3, u is the discrete-time

input to the ZOH, and the discrete-time state vector is:

zS =

[

ζS

ηS

]






ζS = [zS
1 , zS

2 , . . . , zS
r ]T

ηS = [zS
r+1, z

S
r+2, . . . , z

S
n ]T

(6.46)
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Proof. Assumption 6.14 ensures the existence of the normal form for the nonlinear model (6.1)–

(6.2). In Lemma 6.3, the vector fields b(·), a(·), and c(·) are continuous and, thus, the state variables

z1(t), . . . , zr(t) are continuous functions of t. This implies (see Remark 6.4) that the output signal y(t)

and its first r−1 derivatives are continuous. However, when the input signal u(t) is generated by a ZOH,

the r-th derivative, y(r)(t) = żr(t) = b(z) + a(z)u(t), is well defined but is, in general, discontinuous

at the sampling instants t = k∆, when the ZOH control signal (2.10) is updated. This allows us to apply

the Taylor’s formula with remainder (Apostol, 1974, Theorem 5.19) to y(t) and to each one of its r − 1

derivatives at any point to as:

y(to + τ) = y(to) + y(1)(to)τ + . . . +
y(r)(ξ1)

r!
τ r (6.47)

y(1)(to + τ) = y(1)(to) + . . . +
y(r)(ξ2)

(r − 1)!
τ r−1 (6.48)

...

y(r−1)(to + τ) = y(r−1)(to) + y(r)(ξr)τ (6.49)

for some to < ξℓ < to + τ , for all ℓ = 1, . . . , r.

In turn, this implies that, taking to = k∆ and τ = ∆, the state variables zℓ at t = k∆ + ∆ can be

exactly expressed by:

z1(k∆ + ∆) = z1(k∆) + ∆ z2(k∆) + . . . +
∆r

r!
[b + a u]t=ξ1

(6.50)

z2(k∆ + ∆) = z2(k∆) + . . . +
∆r−1

(r − 1)!
[b + a u]t=ξ2

(6.51)

...

zr(k∆ + ∆) = zr(k∆) + ∆ [b + a u]t=ξr
(6.52)

and

η(k∆ + ∆) = η(k∆) + ∆[q]t=ξr+1
(6.53)

for some time instants k∆ < ξℓ < k∆ + ∆, ℓ = 1, . . . , r + 1.

Next we rewrite (6.50)–(6.53) using the δ-operator. We also replace the signals at sampling instants

by their sampled counterparts, using the superscript S :

δzS
1 = zS

2 +
∆

2
zS
3 + . . . +

∆r−1

r!
[b(ζ, η) + a(ζ, η)u]t=ξ1

(6.54)

δzS
2 = zS

3 + . . . +
∆r−2

(r − 1)!
[b(ζ, η) + a(ζ, η)u]t=ξ2

(6.55)

...

δzS
r = [b(ζ, η) + a(ζ, η)u]t=ξr

(6.56)

δηS = [c(ζ, η)]t=ξr+1
(6.57)

Note that this is an exact discrete-time description of the nonlinear system together with a ZOH

input, for some (undetermined) time instants ξℓ, ℓ = 1, . . . , r + 1. Replacing these unknown time

instants by k∆ we obtain the approximate discrete-time model in (6.44)–(6.45).
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We next analyse the local truncation error (Butcher, 1987) between the true system output and

the output of the obtained sampled data model, assuming that, at t = k∆, the state zS is equal to

the true system state z(k∆). We compare the true system output at the end of the sampling interval,

y(k∆ + ∆) = z1(k∆ + ∆) in (6.50), with the first (shifted) state of the approximate sampled-data

model in (6.44), i.e., with:

qzS
1 = (1 + ∆δ) zS

1 = zS
1 + ∆zS

2 + . . . + ∆r

r! [b(ζS , ηS) + a(ζS , ηS)u] (6.58)

This yields the following local truncation output error:

e =
∣
∣y(k∆ + ∆) − q yS

∣
∣

= ∆r

r!

∣
∣
∣[b(ζ, η) + a(ζ, η)uk]t=ξ1

− [b(ζ, η) + a(ζ, η)uk]t=k∆

∣
∣
∣

≤ ∆r

r! · L
∥
∥(ζ, η)t=ξ1

− (ζ, η)t=k∆

∥
∥

= ∆r

r! · L
∥
∥z(ξ1) − z(k∆)

∥
∥ (6.59)

where the existence of the Lipschitz constant L > 0 is guaranteed by the analyticity of f(·), g(·), and

h(·) in (6.1)–(6.2) and, as a consequence, of a(·), b(·), and c(·). Indeed, any C1 map satisfies locally at

each point a Lipschitz condition (Lang, 1997).

Furthermore, according to (Butcher, 1987, Theorem 112E), the Lipschitz condition guarantees that

the variation of the state trajectory z(t) can be bounded as:

∥
∥z(ξ1) − z(k∆)

∥
∥ ≤ C · eL|ξ1−k∆| − 1

L
< C · eL∆ − 1

L
= O(∆) (6.60)

The result then follows from equation (6.59). ¤

Remark 6.16 The Taylor series truncation used in the proof of Theorem 6.15 is closely related to

Runge-Kutta methods (Butcher, 1987), commonly used to simulate nonlinear systems. In fact, the model

in Theorem 6.15 describes an approximate model for the output y(t) and its derivatives to solve the

nonlinear differential equation in one sampling interval. Furthermore, we will see in Theorem 6.22

that this improved numerical integration technique can be interpreted as incorporating sampling zero

dynamics into the discrete-time model.

Remark 6.17 Theorem 6.15 shows that the accuracy of the approximate sampled-data model improves

with the continuous-time system relative degree r. Thus, in general, one obtains a more accurate model

than would result from simple derivative replacement using an Euler approximation.

Remark 6.18 Note that the sampled-data model described in Theorem 6.15 can be obtained for any

equivalent representation of the nonlinear system of the form (6.1)–(6.2). Specifically, the approximate

sampled-data model (6.44)–(6.45) is described in terms of b(·), a(·), and c(·) which are functions of

f(·), g(·), and h(·) — see Lemma 6.3.

Remark 6.19 In (Barbot et al., 1992), a sampled normal form is obtained by a Taylor series expansion

of all the elements of the state vector (6.11) to the same order in the sampling period ∆. By way of

contrast, we have considered the smoothness of the input u(t), and, thus, of y(t) and its derivatives,

to obtain the exact representation given in (6.54)–(6.57) and, from there, the approximate discrete-time

model (6.44)–(6.45).
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Remark 6.20 Note that the result in Theorem 6.15 can be equally applied to the nonuniform sampling

case. In the latter case, the local truncation output error will be of order in ∆r+1
k , where ∆k is the

length of the sampling interval [tk, tk+1).

Remark 6.21 An interesting observation can be made when obtaining the proposed sampled-data

model for a linear n-th order integrator. The normal form for this particular system is readily ob-

tained by substituting a(x) ≡ 1 and b(x) ≡ 0 in Lemma 6.3. Thus, the model given by Theorem 6.15

corresponds to the exact discrete-time description of the integrator obtained in Lemma 2.12 on page 20

— see, in particular, the matrices in (2.59).

Next we present a result which shows that the discrete-time zero dynamics of the sampled-data

model presented in Theorem 6.15 are given by the sampled counterpart of the continuous-time zero

dynamics, together with extra zero dynamics produced by the sampling process. Perhaps surprisingly,

these sampling zero dynamics turn out to be the same as those which appear asymptotically for the

linear case.

Theorem 6.22 The sampled-data model (6.44)–(6.45) generically has relative degree 1, with respect to

the output zS
1 = yS . Furthermore, the discrete-time zero dynamics are given by two subsystems:

(i) The sampled counterpart of the continuous-time zero dynamics:

δηS = c(0, z̃S
2:r, η

S) (6.61)

where z̃S
2:r , [z̃S

2 , . . . , z̃S
r ]T , and

(ii) A linear subsystem of dimension r − 1:

δ z̃S
2:r = Q22 z̃S

2:r (6.62)

where the eigenvalues of matrix Q22 are the same sampling zeros as in the asymptotic linear case,

namely, the roots of pr(∆γ) defined in (2.55).

Proof. Using the definition of discrete-time relative degree given in Lemma 6.8, we have that:

∂yS

∂u
=

∂zS
1

∂u
= 0 (6.63)

∂(δyS)
∂u

=
∂(δzS

1 )
∂u

= ∂
∂u

(

zS
2 + . . . + ∆r−1

r! [b + au]
)

6= 0 (6.64)

which shows that (6.44)–(6.45) generically has relative degree 1. This result is consistent with (Barbot

et al., 1992, Lemma 2.2).

Now, in order to extract the zero dynamics of the discrete-time nonlinear system (6.44)–(6.45), we

rewrite it in its normal form. To do so, we proceed as in the proof of Lemma 6.13 on page 111 for the

n-th order integrator. We first define the following linear state transformation:

ζ̃S =







z̃S
1

...

z̃S
r







= T







zS
1

...

zS
r







= TζS (6.65)
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where matrix T is defined analogously to (6.33):

T =

[

1 0

T21 Ir−1

]

⇐⇒ T−1 =

[

1 0

−T21 Ir−1

]

(6.66)

where:

T21 = −
[

r
∆ · · · r!

∆r−1

]

(6.67)

Substituting (6.65)–(6.66) in (6.44), we obtain a discrete-time normal form:

δζ̃S = δ

[

z̃S
1

z̃S
2:r

]

=

[

q11 Q12

Q21 Q22

] [

z̃S
1

z̃S
2:r

]

+





∆n−1

n!

(

b(ζ̃S , ηS) + a(ζ̃S , ηS)u
)

0



 (6.68)

δηS = c(ζ̃S , ηS) = q
(
z̃S
1 , z̃S

2:r, η
S
)

(6.69)

where the sub-matrices in (6.68) are given by expressions analogous to (6.35)–(6.34).

Taking the output yS = zS
1 = z̃S

1 = 0, for all (discrete) time instants k ∈ Z, we now see that the

discrete-time zero dynamics are described by two subsystems:

δ z̃S
2:r = Q22 z̃S

2:r (6.70)

δ ηS = q
(
0, z̃S

2:r, η
S
)

(6.71)

and the eigenvalues of Q22 are clearly the same as the roots of pr(∆γ) as in Lemma 6.13.

¤

Remark 6.23 If the continuous-time input u(t) is generated by a different hold device, for example,

a First Order Hold as in (2.11) on page 13, this information can be used to include more terms in the

Taylor’s expansion (6.50)–(6.52). This, of course, would lead us to a different approximate discrete-time

model in Theorem 6.15, with different sampling zeros in Theorem 6.22.

Indeed, this fact corresponds to the results for linear systems in Chapter 3, where it was shown that

the asymptotic sampling zeros depend on the system relative degree and also on the nature of the hold

device used to generate the continuous-time system input.

6.4 Implications in nonlinear system identification

We believe that the results in the previous sections give additional insight into many problems in non-

linear system theory. As a specific illustration, we next consider the problem of nonlinear system iden-

tification based on sampled output observations. Note that we do not explicitly consider noise in this

section since our focus is on the deterministic (bias) errors resulting from under-modelling in sampled-

data models.

The results in Section 6.3 describe an approximate sampled-data discrete-time model for a nonlinear

system. This model shows that the accuracy of the sampled data model can be improved by using a

better approximation than simple Euler integration (The latter procedure is equivalent to replace d
dt

, in
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the continuous model, by the δ operator in the approximate sampled-data model). The more accurate

discrete-time model can be interpreted as including sampling zero dynamics, which are the same as in

the linear system case.

In this section we illustrate the use of the approximate sampled-data model (6.44)–(6.45) for param-

eter estimation of a particular nonlinear system. This model, which includes sampling zero dynamics,

gives better results than those achieved by simply replacing time derivatives by divided differences, even

when fast sampling rates are utilised.

Example 6.24 Consider the nonlinear system defined by the differential equation:

ÿ(t) + α1ẏ(t) + α0y(t)(1 + ε1y
2(t)) = β0(1 + ε2y(t))u(t) (6.72)

This model can be expressed in state-space form as:

[

ẋ1

ẋ2

]

=

[

x2

f(x1, x2, u)

]

(6.73)

y = x1 (6.74)

where we have defined the function:

f(x1, x2, u) = −α1x2 − α0x1(1 + ε1x
2
1) + β0(1 + ε2x1)u (6.75)

This system has relative degree r = 2 for all xo ∈ R
2, and is already in normal form (6.9)–(6.10).

The nonlinear function (6.75) can be linearly reparameterised as f(x1, x2, u) = φ(t)T θ, where:

φ(t) =












−x2(t)

−x1(t)

−x1(t)
3

u(t)

x1(t)u(t)












and θ =












θ1

θ2

θ3

θ4

θ5












=












α1

α0

ε1α0

β0

ε1β0












(6.76)

We next perform system identification by applying an equation error procedure on three different

model structures (compare with the linear case treated in Section 4.3.1):

SDRM: A Simple Derivative Replacement Model. This model is obtained by simply replacing the

time derivatives by divided differences in the state-space model (6.73)–(6.74). This leads to the

approximate model:

SDRM: δ2y = −θ1δy − θ2y − θ3y
3 + θ4u + θ5uy (6.77)

where the parameters θi are given in (6.76).

MIFZD: A Model Incorporating Fixed Zero Dynamics. This is based on our proposed discrete-time

nonlinear model in Theorem 6.15. The corresponding state space representation is given by:

δx1 = x2 + ∆
2 f(x1, x2, u) (6.78)

δx2 = f(x1, x2, u) (6.79)
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where f(x1, x2, u) is defined in (6.75). This particular system can be rewritten as a divided

difference equation as follows:

MIFZD: δ2y = −θ1δy + (1 + ∆
2 δ)(−θ2y − θ3y

3 + θ4u + θ5yu) (6.80)

where the parameters θi are given in (6.76).

MIPZD: A Model Incorporating Parameterised Zero Dynamics. This is also based on our proposed

discrete-time nonlinear model (6.78)–(6.79), with the difference being that here we expand (6.80)

and relax the existing relation between the parameters of the different terms. This yields:

MIPZD: δ2y = −θ1δy − θ2y − θ3y
3 + θ4u + θ5yu − θ6δ(y

3) + θ7δu + θ8δ(yu) (6.81)

where θ1 = α1 + ∆
2 α0, {θ2, . . . , θ5} are given in (6.76), θ6 = ∆

2 α0ε1, θ7 = ∆
2 β0, and θ8 =

∆
2 β0ε2.

Note that the MIPZD in (6.81) can be rewritten in state-space form as:

δx1 = x2 − θ1x1 − θ6x
3
1 + θ7u + θ8ux1 (6.82)

δx2 = −θ2x1 − θ3x
3
1 + θ4u + θ5ux1 (6.83)

with output y = x1.

The parameters for the three models, SDRM in (6.77), MIFZD in (6.80), and MIPZD in (6.81), can

be estimated using the ordinary least squares method by minimising the Equation Error cost function:

Jee(θ) =
1

N

N−1∑

k=0

ek(θ)
2

=
1

N

N−1∑

k=0

(δ2y − φk
T θ)2 (6.84)

where:

φk =







[−δy, −y, −y3, u, uy]T (SDRM)

[−δy, −(1 + ∆
2 δ)y, −(1 + ∆

2 δ)(y3), (1 + ∆
2 δ)u, (1 + ∆

2 δ)(uy)]T (MIFZD)

[−δy, −y, −y3, u, uy, −δ(y3), δu, δ(uy)]T (MIPZD)

(6.85)

The parameters for each model were estimated by performing 50 Monte Carlo simulations, using

different realisations of a Gaussian random input sequence uk (zero mean, unit variance). The sampling

period was ∆ = π/20[s]. The results are summarised in Table 6.1. We can see that both MIFZD and

MIPZD give good estimates for the continuous-time parameters, whereas SDRM is not able to find

the right values, especially for the parameters {θ3, θ4, θ5}. Of course, small discrepancies from the

continuous-time parameters are explained by the non infinitesimal sampling period.

To explore the convergence of the parameter estimates to the continuous-time values, we repeat the

simulations for different sampling period. Table 6.2 shows the root mean square error between the

average parameters obtained by running 50 Monte Carlo simulations for each sampling period. Note

that we are able to compare only the first five parameters of the MIPZD. In fact, we can see that, as the
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CT SDRM MIFZD MIPZD

avg std avg std avg std

θ1 3 2.6987 0.4622 2.6479 0.0241 2.6414 0.0141

θ2 2 1.5080 1.2832 1.5999 0.0487 1.5876 0.0330

θ3 1 5.8089 30.2745 0.6442 1.0831 0.7299 0.3986

θ4 2 0.7431 0.1467 1.6054 0.0081 1.5882 0.0052

θ5 1 0.1597 0.9703 0.7752 0.0557 0.7770 0.0317

θ6 – – – – – 0.1152 0.0959

θ7 – – – – – 0.1345 0.0004

θ8 – – – – – 0.0665 0.0022

Jee(θ) 0.6594 0.1493 0.0069 0.0021 0.0001 0.0001

Validation 0.7203 0.0076 0.0003

Table 6.1: Parameter estimates using equation error procedures.

√
√
√
√1

5

5∑

i=1

(
θ̄i − θi

ct
)2

∆ SDRM MIFZD MIPZD

π/20 2.2691 0.3513 0.3438

π/100 9.6156 0.0744 0.0714

π/200 53.6027 0.0508 0.0366

π/500 109.5187 0.0167 0.0146

Table 6.2: Convergence of parameter estimates.

sampling period is reduced this is the model that gives the best estimation of the true parameter vector.

On the other hand, the estimate corresponding to the SDRM is clearly asymptotically biased.

We also tested the three models, SDRM, MIFZD, and MIPZD, with the average estimated parameters

that appear in Table 6.1, using a longer validation data set of length 100[s] and the same sampling

period ∆ = π/20[s]. Part of the output of the nonlinear continuous-time system and the discrete-time

models, when using the validation input, are shown in Figure 6.1. We see that both models based on

our proposed state-space model as described in Section 6.3 replicate the continuous-time output very

accurately. On the other hand, the SDRM has a clear bias.

The value of the Equation Error cost function (6.84) for each one of the three discrete-time models,

when considering the sampled input and output validation data, appears in the last row of Table 6.1.

¤

The results obtained for the nonlinear models in the previous example highlight that the inclusion of

zero dynamics (as in MIFZD and MIPZD) allows one to obtain better results than a simple derivative

replacement approach (as in SDRM). Actually, the results presented here are a nonlinear extension of

the results presented earlier in Chapter 4 for linear systems. In particular, if we consider ε1 = ε2 = 0 in

(6.72), we obtain the same second order linear system considered earlier in Example 4.1 on page 65.
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MIFZD

MIPZD

Figure 6.1: Simulated output sequences for the validation input.

We recall that in the linear case presented in Section 4.3.1 on page 70, we were able to show ana-

lytically that the system gain was underestimated by a factor of 2 using the SDRM approach. On the

other hand, all the continuous-time parameters were recovered when using MIFZD and MIPZD. Thus,

the results presented in Example 6.24 are clearly consistent with the simpler linear results presented in

Part I.

Remark 6.25 The asymptotic bias in the SDRM estimates obtained in Example 6.24 can be explained

by reviewing Lemma 4.9 on page 71. In that result, we show asymptotic bias is also obtained in the

linear case (see Example 4.8). This bias can be mitigated, for example, if we use output error system

identification instead of least squares estimation, but at the expense of using non-convex optimisation.

6.5 Summary

In this chapter we have developed an approximate discrete-time model for deterministic nonlinear sys-

tems. The sampled-data model described here has several interesting features:

• It is simple to obtain, in particular, by expressing the continuous-time system in its normal form.

• It provides a local truncation error between the output of the approximate discrete-time model

and the output of the underlying continuous-time system of order ∆r+1, where r is the (nonlinear)

system relative degree and ∆ is the sampling period.

• It is obtained through a more sophisticated derivative approximation than the simple Euler ap-

proach.

• An insightful interpretation is given in terms of explicit characterisation of the nonlinear sampling

zero dynamics of the obtained discrete-time model.

These results extend well-known results for models of sampled linear systems to the nonlinear case.

Of particular interest is the occurence of sampling zero dynamics, with no counterpart in the underlying

continuous-time nonlinear system. This mirrors the linear case.

The results are believed to give important insights in different problems in nonlinear systems theory.

By way of illustration, we have shown that models obtained using equation error system identification

methods have higher fidelity when nonlinear sampling zero dynamics are included in the model.
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Chapter 7

Sampled-data models for stochastic

nonlinear systems

7.1 Introduction

In this chapter we consider sampled-data models for stochastic nonlinear systems. These systems are

usually expressed, in continuous-time, using stochastic differential equations (SDEs).

Stochastic differential equations are of interest in many different areas of science and engineering.

They have been successfully applied to problems such as population growth models, signal estimation,

optimal control, boundary value problems, and mathematical finance (Øksendal, 2003). SDE models

have also been used for nonlinear system identification (Bohlin and Graebe, 1995; Kristensen et al.,

2003; Kristensen et al., 2004) and control of stochastic systems (Deng and Krstic, 1997a; Deng and

Krstic, 1997b; Pan, 2001; Pan, 2002).

In this chapter we are interested in the use of SDEs to model continuous-time stochastic systems

(also called noise models), and from those models, to obtain sampled-data descriptions which are accu-

rate in a well defined sense.

The mathematical treatment of SDEs has similarities, but also slight differences, to the usual theory

of deterministic differential equations. One needs to be aware of these similarities and differences when

considering numerical methods to solve them. This will turn out to be important in the context of the

current chapter, where we study how one can obtain discrete-time models for nonlinear systems based

on numerical solutions of stochastic differential equations.

Explicitly solvable SDEs are rare in practical applications (Kloeden and Platen, 1992). Thus, nu-

merical solutions play a key role in filling the gap between a well developed theory and applications. In

this framework, sampled-data models can be understood as numerical algorithms for solving (approxi-

mately) a given SDE.

The basic theory of SDEs presented in Section 7.2 is mainly based on (Øksendal, 2003), whereas

topics related to numerical methods for SDEs can be found in (Kloeden and Platen, 1992). There also

exist many other references in the area of stochastic calculus applied to control and estimation (Bucy

and Joseph, 1968; Åström, 1970; Jazwinski, 1970; Kallianpur, 1980). More advanced mathematical

123
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details can be found in (Protter, 1990; Kushner and Dupuis, 1992; Klebaner, 1998).

In Section 7.3 we present a sampled-data model to represent stochastic nonlinear systems. To find

the exact solution of a (stochastic) nonlinear differential equation will usually be impossible, as was

found for the deterministic case in the previous chapter. Thus, only approximate sampled-data models

will be obtained. However, the accuracy of the proposed model will be characterised in terms of a very

specific order of convergence. Connections to the linear case are also established.

7.2 Background on stochastic differential equations

In this section we review some concepts and results from stochastic calculus and stochastic differential

equations. We deal with these topics in a general framework, including linear systems as a particular

case of the nonlinear theory.

We will consider stochastic nonlinear systems expressed as a set of differential equations:

dx(t)

dt
= a(t, x) + b(t, x)v̇(t) (7.1)

y(t) = c(t, x) (7.2)

where the input v̇(t) is a continuous-time white noise (CTWN) process having constant spectral density

σ2
v = 1. The functions a(·) and b(·) are assumed analytical, i.e., C∞. This latter assumption can some-

times be relaxed to smooth enough functions, ensuring that the required derivatives are well defined.

Note that the model structure in (7.1) is similar to the deterministic description in (6.1), i.e., the

system equation is affine in the input signal. Conditions for existence of diffeomorphisms that transform

stochastic linear systems to different canonical forms can be found in (Pan, 2002).

The model (7.1)–(7.2) depends on the CTWN process v̇(t). However, as previously discussed in

Section 2.4, white noise processes in continuous-time do not exist in any meaningful sense (see Re-

mark 2.24 on page 28). In fact, for a proper mathematical treatment, equation (7.1) should be understood

as a stochastic differential equation (SDE):

dxt = a(t, xt) dt + b(t, xt) dvt (7.3)

where the driving input to the system are the increments of vt = v(t), a Wiener process of unitary

incremental variance. Equation (7.3) is, in fact, usually rewritten as the integral equation:

xt = xo +

∫ t

0

a(τ, xτ )dτ +

∫ t

0

b(τ, xτ )dvτ (7.4)

which consists of an initial condition xo (possibly, random), a slowly varying continuous component

called the drift term, and a rapidly varying continuous random component called the diffusion term.

Remark 7.1 The last integral involved in expression (7.4) cannot be interpreted in the usual Riemann-

Stieltjes sense (Øksendal, 2003). In the literature, two constructions of this integral are usually consid-

ered, leading to different calculi:

• The Ito integral construction:
∫

f(t)dvt = lim
∑

ℓ

f(tℓ)[vtℓ+1
− vtℓ

] (7.5)
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• The Stratonovich integral construction:

∫

f(t) ◦ dvt = lim
∑

ℓ

f
(

tℓ+1−tℓ

2

)

[vtℓ+1
− vtℓ

] (7.6)

Each one of these definitions presents some advantages and drawbacks. For example, by using the

Stratonovich construction (7.6), the usual chain rule for transformations can be applied, whereas when

using (7.5) we need to apply the Ito rule (see Section 7.2.1). On the other hand, the Ito integral (7.5)

has the specific feature of not looking into the future. In fact, the Ito integral is a martingale, whereas

the Stratonovich integral is not, and, conversely, every martingale can be represented as a Ito integral

(Øksendal, 2003) .

Here we will consider the Ito construction (7.5) only, but equivalent results can be obtained by using

the Stratonovich definition (7.6). We will refer to (7.4) as an Ito integral, and xt as an Ito process

described either by this integral equation or by the SDE in (7.3).

7.2.1 The Ito rule

The Ito construction of a stochastic integral in (7.5) implies an important departure point from the usual

calculus. Specifically, the usual chain rule for transformations has to be modified. The key point that

leads to this result is given by the properties of the Wiener process v(t) (see Section 2.4.2 on page 27).

In particular, its incremental variance can be obtained as:

E
{
(v(t) − v(s))2

}
= |t − s| ;∀t 6= s (7.7)

⇒ E
{
dv2

}
= E

{
(v(t + dt) − v(t))2

}
= dt (7.8)

Lemma 7.2 (Ito rule for scalar processes) Let us consider a scalar Ito process xt as in (7.3), and a

transformation of this process:

y = g(t, x) (7.9)

where g(t, x) ∈ C2 , i.e., g has at least its second order continuous derivatives. Then y = yt is also an

Ito process, and:

dy =
∂g

∂t
(t, x)dt +

∂g

∂x
(t, x)dx +

1

2

∂2g

∂x2
(t, x)(dx)2 (7.10)

The differential in the last term, (dx)2 = (dx(t))(dx(t)), is computed according to:

dt · dt = dt · dv = dv · dt = 0 (7.11)

dv · dv = dt (7.12)

Proof. See, for example, (Øksendal, 2003).

¤

Note that the Ito rule arises from (7.7), where we can see that the variance of the increments dv is of

order dt. As a consequence, the last term in (7.10) has to be considered.

Lemma 7.2 presents the derivative rule for transformations of a scalar process x(t). The next result

considers the general case for a vector process Xt.
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Lemma 7.3 (Multidimensional Ito rule) Let us consider an Ito process Xt defined by the set of SDE:

dX = A(t,X)dt + B(t,X)dV (7.13)

where:

X = Xt =







x1(t)
...

xn(t)







A(t,X) =







a1(t,X)
...

an(t,X)







B(t,X) =







b11(t,X) · · · b1m(t,X)
...

. . .
...

bn1(t,X) · · · bnm(t,X)







(7.14)

and dV are increments of a multidimensional Wiener (vector) process:

V = Vt =
[

v1(t) · · · vm(t)
]T

(7.15)

We consider the transformation given by a C2 vector map:

Y = G(t,X) =
[

g1(t,X) · · · gp(t,X)
]T

(7.16)

Then Y = Yt is again an Ito process, given (component-wise) by:

dYk =
∂gk

∂t
(t,X)dt +

n∑

ℓ=1

(
∂gk

∂xℓ

(t,X)dxℓ

)

+
1

2

n∑

ℓ,m=1

∂2gk

∂xℓ∂xm

(t,X)(dxℓ)(dxm) (7.17)

for all k = 1, . . . , p ; and where the terms in the last sum are computed according to:

dvℓ · dt = dt · dvm = dt · dt = 0 (7.18)

dvℓ · dvm = δK [ℓ − m] dt (7.19)

Proof. See (Øksendal, 2003).

¤

Remark 7.4 A linear stochastic system as considered in Section 2.4 on page 25 can be expressed as

the (vector) SDE:

dXt = AXt dt + Bdvt (7.20)

where the matrices A ∈ R
n×n and B ∈ R

n.

Note that, in this case, the driving input comprises increments of a single scalar Wiener process

vt = v(t). The solution to this SDE can be obtained by applying the result in Lemma 7.3 for the

transformation:

Y = e−AtX ⇒ d(e−AtX) = (−A)e−AtXdt + e−AtdX (7.21)

Note that, in this case, all the second order derivatives in (7.17) vanish. Thus, reordering terms in

(7.20) and multiplying by the integrating factor e−At, we can see that:

e−AtdXt − Ae−AtXtdt = e−AtBdvt (7.22)

d(e−AtXt) = e−AtBdvt (7.23)

e−AtXt = X0 +

∫ t

0

e−AτBdvτ (7.24)
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where we finally obtain the solution:

Xt = eAtX0 +

∫ t

0

eA(t−τ)Bdvτ (7.25)

Note that this solution corresponds, in fact, to the same state transition equation as in the determin-

istic linear case (see, for example, (2.15) on page 14) where the deterministic input is replaced by the

CTWN process, i.e., u(τ)dτ = v̇(τ)dτ = dvτ .

¤

7.2.2 Ito-Taylor expansions

In this section we review stochastic Taylor expansions. These expansions generalise the deterministic

Taylor formula as well as the Ito stochastic rule. They allow one to obtain higher order approximations

to functions of stochastic processes and, thus, will prove useful in the context of numerical solutions of

SDEs in the next section.

We first review the usual Taylor formula we used to obtain the deterministic sampled-data model in

Chapter 6. However, in this case we will reexpress it in integral form. We thus consider the following

nonlinear differential equation and its implicit solution in integral form:

dx

dt
= a(x) ⇐⇒ x(t) = x(0) +

∫ t

0

a(x)dτ (7.26)

If we now consider a general (continuously differentiable) function f(x), then, by using the usual

chain rule, we have that:

df(x)

dt
= a(x)

∂f

∂x
⇐⇒ f(x) = f(x0) +

∫ t

0

Lf(x)dτ (7.27)

where we have used the notation L = a(x) ∂
∂x

, and x0 = x(0).

Note that the integral relation in the last equation is valid, in particular, for f = a. Thus, it can be

used to substitute a(x) into the integral on the right hand side of (7.26), i.e.,

x(t) = x0 +

∫ t

0

(

a(x0) +

∫ τ1

0

La(x)dτ2

)

dτ1

= x0 + a(x0) t + R2 (7.28)

where we have a residual term:

R2 =

∫ t

0

∫ τ1

0

La(x)dτ2dτ1 (7.29)

We can use again relation in (7.27), with f = a, to replace a(x) in R2, obtaining:

x(t) = x0 + a(x0) t + (La)(x0)
t2

2
+ R3 (7.30)

R3 =

∫ t

0

∫ τ1

0

∫ τ2

0

L2a(x)dτ3dτ2dτ1 (7.31)

We thus have the following general result.
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Lemma 7.5 Given a function f ∈ Cr+1, i.e., r + 1 continuously differentiable, we can express it using

the Taylor formula in integral form:

f(x(t)) = f(x0) +

r∑

ℓ=1

(Lℓf)(x0)
tℓ

ℓ!
+ Rr+1 (7.32)

where the residual term is given by:

Rr+1 =

∫ t

0

∫ τ1

0

· · ·
∫ τr

0

Lr+1f(x)dτr+1 . . . dτ2dτ1 (7.33)

¤

Note that (7.28) and (7.30) are particular cases of (7.32), considering f(x) = x and, thus, Lf(x) =

a(x).

For the stochastic case we can follow a similar line of reasoning. Thus, if we consider an Ito process:

xt = x0 +

∫ t

0

a(xτ )dτ +

∫ t

0

b(xτ )dvτ (7.34)

and a transformation f(x) ∈ C2, we can apply the Ito rule in (7.10) to obtain:

f(xt) = f(x0) +

∫ t

0

(

a(xτ )
∂f(xτ )

∂x
+

1

2
b2(xτ )

∂2f(xτ )

∂x2

)

dτ +

∫ t

0

b(xτ )
∂f(xτ )

∂x
dvτ

= f(x0) +

∫ t

0

L0f(xτ )dτ +

∫ t

0

L1f(xτ )dvτ (7.35)

where we have defined the operators:

L0 = a
∂

∂x
+

1

2
b2 ∂2

∂x2
L1 = b

∂

∂x
(7.36)

Analogously to the deterministic case, if we now apply the Ito formula (7.35) to f = a and f = b in

(7.34), we obtain:

xt = x0 + a(x0)

∫ t

0

dτ + b(x0)

∫ t

0

dvτ + Rs
2 (7.37)

Rs
2 =

∫ t

0

∫ τ1

0

L0a(xτ2
) dτ2 dτ1 +

∫ t

0

∫ τ1

0

L1a(xτ2
) dvτ2

dτ1

+

∫ t

0

∫ τ1

0

L0b(xτ2
) dτ2 dvτ1

+

∫ t

0

∫ τ1

0

L1b(xτ2
) dvτ2

dvτ1
(7.38)

which is the stochastic analogue for the Taylor formula of second order. Indeed, if the diffusion term is

b(xt) ≡ 0, then equations (7.37)–(7.38) reduce to the deterministic expressions in (7.28)–(7.29)

It is possible to go further to obtain Ito-Taylor expansions where we use again (7.35) to substitute

f = a and f = b in (7.38). However, the expressions become increasingly involved, including multiple

stochastic integrals. Kloeden and Platen (1992) give a systematic notation to manipulate the required

multiple integrals and, thus, to obtain higher order Ito-Taylor expansions for a general SDE, by using

multi-indices and hierarchical sets. For example, in (Kloeden and Platen, 1992, p.182) the following

expression is obtained for the stochastic analogue to the expansion obtained in (7.30):

xt = x0 + aI(0) + bI(1) +
(
aa′ + 1

2b2a′′) I(0,0)

+
(
ab′ + 1

2b2b′′
)
I(0,1) + ba′I(1,0) + bb′I(1,1) + Rs

3 (7.39)
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where:

a = a(x0) a′ =
∂a

∂x
(x0) a′′ =

∂2a

∂x2
(x0) (7.40)

b = b(x0) b′ =
∂b

∂x
(x0) (7.41)

and:

I(0) =

∫ t

0

dτ1 I(1) =

∫ t

0

dvτ1
(7.42)

I(0,0) =

∫ t

0

∫ τ1

0

dτ2dτ1 I(0,1) =

∫ t

0

∫ τ1

0

dτ2dvτ1
(7.43)

I(1,0) =

∫ t

0

∫ τ1

0

dvτ2
dτ1 I(1,1) =

∫ t

0

∫ τ1

0

dvτ2
dvτ1

(7.44)

In the next section we will discuss numerical solutions for SDEs that can be derived from Ito-Taylor

expansions of the type described above. We first present the following result which establishes the

convergence of truncated Ito-Taylor expansions.

Lemma 7.6 Consider an Ito process xt as in (7.34) and its corresponding k-th order truncated Ito-

Taylor expansion xk(t), around t = to. Then we have that:

E
{
|xt − xk(t)|2

}
≤ Ck(t − to)

k+1 (7.45)

where Ck is a constant that depends only on the truncation order k.

Proof. The details of the proof and can be found in (Kloeden and Platen, 1992, Section 5.9).

¤

The previous lemma establishes that an Ito-Taylor expansion converges to the original Ito process in

the mean square sense, as k goes to infinity. Under additional assumptions, the previous result can be

strengthened to convergence with probability one, uniformly on the interval [to, t].

7.2.3 Numerical solution of SDEs

In the previous section we presented Ito-Taylor expansions that allow higher order approximations of an

Ito process defined by an SDE. Analogously to the deterministic case in the previous chapter, Ito-Taylor

expansions can be used to derive discrete-time approximations to solve SDEs. The simplest of these

approximations can be obtained by truncating the expansion in (7.37):

xt = x0 + a(x0)t + b(x0)

∫ t

0

dvτ (7.46)

This is the stochastic equivalent of the Euler approximation for ordinary differential equations, and

is sometimes called the Euler-Maruyama approximation. Note that from this approximation a simple

sampled-data model can readily be obtained as:

x̄((k + 1)∆) = x̄(k∆) + a(x̄(k∆))∆ + b(x̄(k∆))∆vk (7.47)
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where ∆vk = v(k+1)∆ − vk∆ are increments of the Wiener process vτ :

E {∆vk} = 0 E
{
(∆vk)2

}
= ∆ (7.48)

Naturally, other algorithms can be derived by considering more terms in the Ito-Taylor expansions.

To analyse the quality of different algorithms we will employ two different criteria to measure their

accuracy, namely, strong and weak convergence. These concepts are formally defined as follows:

Definition 7.7 We say that a sampled-data approximation x̄(k∆), obtained using a sampling period ∆,

converges strongly to the continuous-time process xt at time t = k∆ if

lim
∆→0

E{|x̄(k∆) − xk∆|} = 0 (7.49)

Furthermore, we will say that it converges strongly with order γ > 0, if there exists a positive

constant C and a sampling period ∆o > 0 such that

E
{∣
∣x̄(k∆) − xk∆

∣
∣
}
≤ C∆γ (7.50)

for all ∆ < ∆o.

This type of convergence is also called path-wise convergence: the sampled data model is required

to replicate the continuous-time system output when the same realisation of noise process is used as

input.

The error between the discrete-time model and the continuous-time process can also be bounded

using the Lyapunov inequality:

E
{∣
∣x̄(k∆) − xk∆

∣
∣
}
≤

√

E
{∣

∣x̄(k∆) − xk∆

∣
∣
2
}

(7.51)

Example 7.8 If we consider again the Euler-Maruyama scheme introduced previously in (7.46), we see

that it corresponds to the truncated Ito-Taylor expansion containing only the time and Wiener integrals

of multiplicity one. Thus, it can be interpreted as an order 0.5 strong Ito-Taylor approximation (Kloeden

and Platen, 1992, p. 341)

¤

A weaker definition of convergence can be obtained by not considering each path of the process

involved, but instead focusing on the associated statistical properties.

Definition 7.9 We say that a sampled-data approximation x̄(k∆), obtained using a sampling period ∆,

converges weakly to the continuous-time process xt at time t = k∆, for a class T of test functions if

lim
∆→0

|E {g(xt)} − E {g(x̄(k∆))}| = 0 (7.52)

Note that if T contains all polynomials this definition implies the convergence of all moments. Fur-

thermore, we will say that it converges weakly with order β > 0, if there exists a positive constant C

and a sampling period ∆o > 0 such that

|E {g(xk)} − E {g(x̄(k∆))}| ≤ C∆β (7.53)

for all ∆ < ∆o.
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7.3 A sampled data model for stochastic systems

In this chapter we will restrict ourselves to the class of nonlinear stochastic systems described in (7.1)–

(7.2). Note, in particular, that this continuous-time model has a single scalar noise source as driving

input. Before presenting a sampled-data model for this class nonlinear stochastic system, we consider

the following preliminary case.

Example 7.10 Consider the stochastic n-th order integrator:

dny(t)

dtn
= v̇(t) (7.54)

This system can be described by the linear SDE:

dX = AX dt + B dvt (7.55)

where:

X =










x1

...

xn−1

xn










A =










0
... In−1

0

0 0 · · · 0










B =










0
...

0

1










(7.56)

and the output is y(t) = x1(t).

If we consider the SDE equation corresponding to the last state xn, we can see that the expansion

in (7.37) gives the exact solution, because Rs
2 ≡ 0, i.e.,

dxn = dvt ⇒ xn(∆) = xn(0) +

∫ ∆

0

dvτn
(7.57)

If we now use this expression in the equation corresponding to xn−1, we have that:

dxn−1 = xn dt ⇒ xn−1(∆) = xn−1(0) +

∫ ∆

0

xn(τn−1)dτn−1

= xn−1(0) + xn(0)∆ +

∫ ∆

0

∫ τn−1

0

dvτn
dτn−1 (7.58)

Proceeding in this way for the other state components of the SDE (7.55)–(7.56) we obtain:

X∆ =










1 ∆ . . . ∆n−1

(n−1)!

0 1 . . . ∆n−2

(n−2)!

...
. . .

. . .
...

0 · · · 0 1










X0 +










I(1,0,...,0,0)

I(1,0,...,0)

...

I(1)










(7.59)

where we have used multi-indices as in (7.42), i.e.,

I
(1, 0, . . . , 0

| {z }

m zeros

)
=

∫ ∆

0

∫ τ1

0

· · ·
∫ τm

0

dvτm+1
dτm . . . dτ1 (7.60)
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Note that since this system is linear, the same discrete-time model can be obtained using our earlier

results in Chapter 2. Specifically, we can use Lemma 2.25 on page 29. Substituting the matrices A and

B given in (7.56) into equation (2.115) we obtain:

X∆ =










1 ∆ . . . ∆n−1

(n−1)!

0 1 . . . ∆n−2

(n−2)!

...
. . .

. . .
...

0 · · · 0 1










︸ ︷︷ ︸

Aq

X0 +

∫ ∆

0

eA(∆−τ)Bdvτ

︸ ︷︷ ︸

Ṽ

(7.61)

where Aq = eA∆, and the elements of Ṽ can be obtained from (2.116) on page 29, i.e.,

Ṽ =
[

ṽ1 ṽ2 · · · ṽn

]T

(7.62)

⇒ ṽℓ =

∫ ∆

0

(∆ − τ)(n−ℓ)

(n − ℓ)!
dvτ ; ℓ = 1, . . . , n (7.63)

The first two moments of vector Ṽ in (7.61) can be obtained as in Lemma 2.25, i.e.,

E
{

Ṽ
}

= 0 (7.64)

E
{

Ṽ Ṽ T
}

=

∫ ∆

0

eAηBBT eAT ηdη =

∫ ∆

0







ηn−1

(n−1)!

...

1













ηn−1

(n−1)!

...

1







T

dη

=

∫ ∆

0

[
ηn−i

(n − i)!

ηn−j

(n − j)!

]

i,j=1,...,n

dη

=

[
∆2n−i−j+1

(n − i)!(n − j)!(2n − i − j + 1)

]

i,j=1,...,n

(7.65)

where
[
mij

]

i,j=1,...,n
represents an n × n matrix whose entries are mij .

For example, if we consider the case of a the second order stochastic integrator, we have that:

E

{[

ṽ2
1 ṽ1ṽ2

ṽ2ṽ1 ṽ2
2

]}

=

[
∆3

3
∆2

2
∆2

2 ∆

]

(7.66)

¤

Remark 7.11 The results in the previous example are consistent with (Kloeden and Platen, 1992, Sec-

tion 5.7) where moments of multiple stochastic integrals such as the ones given in (7.59) are obtained.

Remark 7.12 Note that the discretised model (7.61) was obtained by expanding each of the states of

the continuous-time description (7.55) to different orders. However, for this particular system, each one

of the Ito-Taylor expansions involved is exact and, thus, the sampled-data model for the stochastic n-th

order integrator converges strongly to the true solution with order γ = ∞.

Note that we have found two alternative ways to define the noise vector Ṽ . First, its elements were

defined in terms of multiple stochastic integrals in (7.59) and (7.60). Secondly, using the (simpler)

approach in Lemma 2.25 in Chapter 2, we obtained (7.61)–(7.63). We next prove that both expressions

are equivalent.
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Lemma 7.13 Consider a standard Wiener process vt and a time period ∆. Then the following reduction

rule for multiple integrals holds:

I
(1, 0, . . . , 0

| {z }

m zeros

)
=

∫ ∆

0

∫ τm

0

· · ·
∫ τ1

0

dvτ dτ1 . . . dτm =

∫ ∆

0

(∆ − τ)m

m!
dvτ ; m ≥ 1 (7.67)

Proof. Relation (7.67) can be proven using induction. For m = 0, we have, by definition:

I(1) =

∫ ∆

0

dvτ (7.68)

For m = 1 we have:

I(1,0) =

∫ ∆

0

∫ τ1

0

dvτdτ1 =

∫ ∆

0

∫ ∆

τ

dτ1dvτ =

∫ ∆

0

(τ − ∆)dvτ (7.69)

where we changed the order of integration in the double integral.

Finally, we assume that the result holds for m = k, and we will prove it for m = k + 1:

I
(1, 0, . . . , 0

| {z }

k+1 zeros

)
=

∫ ∆

0

(∫ τk+1

0

· · ·
∫ τ1

0

dvτ dτ1 . . . dτk

)

dτk+1

=

∫ ∆

0

(∫ τk+1

0

(τk+1 − τ)k

k!
dvτ

)

dτk+1 (7.70)

where we have used the result (7.67) for m = k setting ∆ = τk+1. The result is obtained by changing

the order of integration, i.e.,

I
(1, 0, . . . , 0

| {z }

k+1 zeros

)
=

∫ ∆

0

∫ τk+1

0

(τk+1 − τ)k

k!
dvτdτk+1 =

∫ ∆

0

∫ ∆

τ

(τk+1 − τ)k

k!
dτk+1dvτ

=

∫ ∆

0

(∆ − τ)k+1

(k + 1)!
dvτ (7.71)

¤

Corollary 7.14 As a consequence of Lemma 7.13 we have the following relation between (7.60) and

(7.63):

ṽℓ = I
(1, 0, . . . , 0

| {z }

n−ℓ zeros

)
(7.72)

¤

We next turn to a general class of nonlinear stochastic systems. We will obtain a sampled-data model

for this class of systems based on a similar expansion on the different state variables. We will consider

that these systems can be expressed in a particular state-space description which mimics the, so called,

normal form for deterministic nonlinear systems. Normal forms for stochastic differential equations

have been studied in (Arnold and Kedai, 1995; Arnold and Imkeller, 1998).
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Assumption 7.15 Given the stochastic nonlinear system (7.1)–(7.2), we assume that there exists a

transformation Z = Φ(X), such that, in the new coordinates, the system is expressed as:

dZ(t)

dt
= AZ + B (a(t, Z) + b(t, Z)v̇(t)) (7.73)

y(t) = z1 (7.74)

where the matrices A and B are as in (7.56).

Renaming the state variables, the previous assumption implies that we will restrict ourselves to

stochastic nonlinear systems that can be expressed as the following set of SDEs:

dx1 = x2dt (7.75)

...

dxn−1 = xndt (7.76)

dxn = a(x)dt + b(x)dvt (7.77)

where the output is y = x1. The functions a(·) and b(·) are assumed analytic or C∞.

Note that, as in Example 7.10, if we expand the last state equation (7.77), we can use the first

Ito-Taylor expansion as:

xn(∆) = xn(0) + a(X0)∆ + b(X0)ṽn (7.78)

where X0 = [x1(0), x2(0), · · · , xn(0)]T and ṽn is defined in (7.63).

If we proceed in the same manner with the second last state SDE in (7.76), we obtain:

xn−1(∆) = xn−1(0) +

∫ τ

0

xn(τ)dτ

= xn−1(0) + xn(0)∆ + a(X0)
∆2

2
+ b(X0)ṽn−1 (7.79)

where we have used Corollary 7.14 to substitute I(1,0) = ṽn−1. Proceeding in a similar way with the

rest state components, we can obtain truncated Ito-Taylor expansions up to the first state in (7.75), i.e.,

x1(∆) = x1(0) + x2(0)∆ + . . . + xn(0)
∆n−1

(n − 1)!
+ a(X0)

∆n

n!
+ b(X0)ṽ1 (7.80)

Note that the last equation corresponds, in fact, to the Ito-Taylor expansion for the system output

y = x1 of order n.

Note that the truncated Ito-Taylor expansions obtained above for each of the state components can

be readily rewritten and summarised in terms of the δ operator:

X∆ − X0

∆
= δX∆ = Aδ X∆ + Bδa(X0) + b(X0)V (7.81)

where:

X∆ =










x1(∆)

x2(∆)
...

xn(∆)










Aδ =











0 1 · · · ∆n−2

(n−1)!

0 0
. . .

...
...

. . . 1

0 · · · 0 0











Bδ =










∆n−1

n!
∆n−2

(n−1)!

...

1










V =
1

∆
Ṽ (7.82)
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The following theorem presents a sampled-data model based on the expansions in (7.78)–(7.80), and

precisely characterises its accuracy.

Theorem 7.16 Consider the continuous-time stochastic system (7.75)–(7.77), with output y = x1, and

the following sampled-data model:

δX̄(k∆) = AδX̄(k∆) + Bδa(X̄(k∆)) + b(X̄(k∆))Vk (7.83)

and Aδ and Bδ are defined as in (7.82), and Vk = 1
∆ Ṽk corresponds to (7.62)–(7.63) where the inte-

gration interval has to be changed to [k∆, k∆ + ∆) (By stationarity of vt, vectors Vk and V have the

same covariance).

Then, the output ȳ(k∆) = x̄1(k∆) of this model converges strongly to the true output with order

γ = n/2, provided that:

E
{∣

∣y0 − ȳ(0)
∣
∣
2
}

≤ C0 ∆n (7.84)

for some constant C0.

Proof. The proof follows from the fact that the discrete-time expression obtained for the output

ȳ = x̄1 corresponds to the truncated Ito-Taylor expansion of order n, and thus from (Kloeden and

Platen, 1992, Section 10.6) we have that:

E
{∣

∣yt=k∆+∆ − ȳ(k∆ + ∆)
∣
∣
2
}

≤ Ck+1 ∆n (7.85)

provided that E
{∣

∣yt=k∆ − ȳ(k∆)
∣
∣
2
}

≤ Ck ∆n.

The result then follows by applying the Lyapunov inequality (7.51) and the Definition 7.7.

¤

Remark 7.17 From (7.65) we can see that the covariance structure of Vk will be given by:

E
{
VkV T

ℓ

}
=

1

∆2
E

{

ṼkṼ T
ℓ

}

=

[
∆2n−i−j

(n − i)!(n − j)!(2n − i − j)

]

i,j=1,...,n

δK [k − ℓ]

∆
(7.86)

As the sampling period goes to zero, this covariance approaches the continuous-time covariance of

Bv̇(t) (see equation (7.73)). This results parallels the linear case discussed earlier in Remark 2.27 on

page 30.

Remark 7.18 We can see that the sampled-data model presented in (7.83) closely resembles the discrete-

time model obtained for the n-th order stochastic integrator in Example 7.10. In particular, the vector

Ṽk plays a key role as the driving input in both cases. If we substitute a(X) ≡ 0 and b(X) ≡ 1 in

(7.83), we can see that this model reduces to the exact sampled-data model obtained (7.61). Thus, for

this particular case, the order of strong convergence of the sampled-data model is γ = ∞.

The previous remarks show strong parallels between the stochastic nonlinear case discussed here and

the corresponding results for linear stochastic sampled-data models. The analysis reinforces the notion

that the n-th integrator case gives important insights into obtaining accurate sampled-data models for

more general systems. The role of the integrator was first highlighted in the context of linear systems in

Part I to characterise asymptotic sampled-data models for continuous-time system. Furthermore, in the

previous chapter we noticed that the sampled-data model for deterministic nonlinear systems happens

to be exact when considering the case of linear integrator (see Remark 6.21 on page 116).
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7.4 Summary

In this chapter we have presented a sampled-data model for stochastic nonlinear systems described by

stochastic differential equations (SDEs).

We have briefly reviewed basic SDE theory and associated numerical solution schemes. These

schemes are generally based on Ito-Taylor expansions of stochastic processes. These expansion are the

stochastic counterpart of the usual deterministic Taylor expansion in integral form.

We have considered a particular class of stochastic nonlinear systems that can be expressed in a

form that resembles the, so called, normal form for deterministic nonlinear models. The discrete-time

description obtained for this class of systems was shown to be accurate in a well defined sense.

Moreover, a connection to the linear case was established. Specifically, the associated input of the

proposed stochastic sampled-data model has the same covariance structure as the discrete-time input

that arises in the sampling of an n-th order stochastic linear integrator.



Chapter 8

Summary and conclusions

8.1 General Overview

In this thesis we have studied sampled-data models for linear and nonlinear systems. We have reviewed

existing results and presented novel contributions. In this final chapter we summarise the main results

presented throughout the thesis. We also discuss the implications and inherent difficulties of using

sampled-data models, defined at discrete-time instants, to represent real systems evolving in continuous-

time. There are still many open and new problems in this area and, thus, we also present some future

research directions based on the issues raised along the chapters of this thesis.

8.1.1 Sampling of continuous-time systems

We have studied the sampling process of continuous-time systems: linear and nonlinear, deterministic

and stochastic. The sampled-data models obtained were shown to depend not only on the underlying

continuous-time system, but also on the details of the sampling process itself. Specifically, the hold

device, used to generate a continuous-time input, and the sampling device, that gives us the output

sequence of samples, both play an important role in the sampling process. The effect of these artifacts of

sampling becomes negligible when the sampling period goes to zero. However, for any finite sampling

rate, their role has to be considered to obtain accurate sampled-data models.

8.1.2 Sampling zeros

We have seen that sampled-data models have, in general, more zeros than the underlying continuous-

time system. These extra zeros, called sampling zeros, have no continuous-time counterpart. For the

linear case, their presence can be interpreted as a consequence of the aliasing effect of the system

frequency response (or spectrum), where high frequency components are folded back to low frequencies

due to the sampling process. We have seen that sampling zeros arise in both deterministic and stochastic

systems. Exact expressions for these zeros are not easy to obtain. However, they can be asymptotically

characterised in terms of the Euler-Fröbenius polynomials.
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The presence of these sampling zeros in discrete-time models is an illustration of the inherent differ-

ence between continuous- and discrete-time system descriptions. When using δ-operator models these

zeros go to infinity as the sampling period goes to zero, nonetheless they generally have to be taken into

account to obtain accurate discrete-time descriptions.

We have seen that the above ideas can be also extended to the nonlinear case. In fact, the sampled-

data model obtained for nonlinear systems contains extra zero dynamics with no counterpart in conti-

nuous time. These sampling zero dynamics are a consequence of using a more accurate discretisation

procedure than simple Euler integration. Surprisingly, the extra zero dynamics turn out to be the same

as the dynamics associated with the asymptotic sampling zeros in the linear case.

8.1.3 Use of sampled-data models

We have seen that sampled-data can be successfully applied in estimation and control. In particular,

when expressed in terms of the δ-operator, these models provide a natural framework to deal with

continuous-time problems in real applications, where data and control actions are defined at specific

time instants only.

The use of sampled data taken from continuous-time systems inherently implies a loss of informa-

tion. Even though it is possible to obtain accurate models, there will always exist a gap between the

discrete- and continuous-time representations. As a consequence, one needs to rely on assumptions

on the inter-sample behaviour of signals or, equivalently, on the characteristics of the system response

beyond the sampling frequency.

We have seen that frequency aliasing and the presence of sampling zeros are strongly connected. The

characterisation of the asymptotic sampling zeros relies on the continuous-time system relative degree.

However, relative degree is an ill-defined quantity in continuous-time because that can be affected by

high frequency under-modelling.

In a similar fashion, the unknown input to stochastic systems is assumed to be a continuous-time

white noise process. However, this is a mathematical abstraction which has no physical counterpart. In

practice it is only used to approximate (coloured) broad-band noise processes. This implies the presence

of potential modelling errors in the continuous-time stochastic system description.

Based on these issues we have repeatedly stressed the concept of bandwidth of validity for continuous-

time models, within which assumptions, such as relative degree, can be trusted. We have emphasised

the importance of this concept, in particular, when utilising asymptotic results for fast sampling rates.

We introduced this concept for sample and hold designs in Chapter 3, and we showed its importance

also for continuous-time system identification from sampled data in Chapter 4.

8.2 Summary of chapter contributions

There has been significant ongoing research regarding the use of sampled-data models to represent

continuous-time systems. However, there remain many open problems and associated research oppor-

tunities. In this context, we believe that the current thesis has presented novel contributions and new

insights into the sampling process and into the use of sampled-data models for control and estimation.
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In Chapter 2 we presented the basic framework associated with the sampling process of linear

systems, both deterministic and stochastic. The results presented have been expressed in two equivalent

forms: using the shift operator q, and the divided difference operator δ. In particular, we have presented

a novel characterisation of the sampling zeros that arise in sampled-data models in the δ-domain. Even

though this result is well known in the z-domain, the alternative formulation in the δ-domain turns out

to be one of the key enabling tools for the nonlinear case in Chapter 6. We have also presented a novel

recursive relation between the polynomials that define the sampling zeros in the δ-domain.

In Chapter 3 the role of sample and hold devices in obtaining sampled-data models was studied in

detail. It is well known that the zeros of sampled-data models for deterministic and stochastic systems

depend on the particular choice of the hold used to generate the continuous-time system input, and

the pre-filter used prior to obtain the output sequence of samples, respectively. The contribution in

this chapter has been to show that these devices can be designed in such a way as to asymptotically

assign the sampling zeros of the discrete-time model. This result clearly illustrates that the artifacts

of the sampling process do play an important role in obtaining accurate discrete-time descriptions for

continuous-time systems. We have also stressed that, even though the design procedures depend only

on the continuous-time system relative degree, this may be ill-defined. In fact, we have shown that

(continuous-time) modelling errors beyond the sampling frequency can have a significant impact on the

discrete-time results. Thus, as a second contribution in the chapter, we have introduced the concept of

bandwidth of validity for continuous-time models, within which one can rely on characteristics such as

relative degree.

The issue of validity of continuous-time models was also one of the key motivations for the work

presented in Chapter 4, in the context of continuous-time system identification from sampled data.

We studied the role of the sampling zeros and the effect of high frequency (continuous-time) under-

modelling on sampled-data models used in parameter estimation. Our contribution in this chapter has

been to show that these issues can be addressed by using a restricted bandwidth maximum likelihood

estimation in the frequency domain. Indeed, the proposed procedure was successfully applied to CAR

systems and shown to be robust to (continuous- and discrete-time) modelling errors beyond the consid-

ered bandwidth of validity.

In Chapter 5 we have shown how sampled-data models can be successfully applied in LQ opti-

mal control problems. The presence of input and/or state constraints can render the continuous-time

solution of the problem impossible to find explicitly. Thus, one is usually forced to use optimisation

algorithms in discrete-time. As a first contribution, we have shown that the solution of an associated

sampled-data problem (with possibly tighter constraints) converges to the hypothetical solution of the

original problem, satisfying the continuous-time constraints. An immediate consequence of this result

is the existence of a finite sampling period such that the achieved performance is arbitrarily close to

the limiting continuous-time performance. Thus, sampled-data models are a useful tool to deal with

problems defined in continuous-time that may be more difficult or even impossible to solve.

A second novel result in Chapter 5 was the convergence established between the singular structures

of the discrete- and the continuous-time LQ problems. In particular, the singular values of a linear

operator associated with sampled-data LQ problem were shown to converge, as the sampling period

goes to zero, to (a subset of) the singular values of the operator corresponding to the continuous-time
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problem. The existence of a well defined limit, as the sampling rate increases, could be exploited in

approximate algorithms for the continuous-time problem in high speed applications, which are solved

using standard discrete-time methods for constrained systems.

In Chapter 6 we have presented an approximate sampled-data model for deterministic nonlinear

systems. The proposed model has several interesting features: it is simple to obtain, it is accurate in a

well defined sense (as a function of the nonlinear relative degree and the sampling period), and it has

sampling zero dynamics, with no counterpart in continuous-time. The model was obtained by a Runge-

Kutta-like discretisation procedure more accurate than simple Euler integration, where derivatives are

replaced by divided differences. As a way of illustration, the model was used for nonlinear system

identification and shown to lead to better results than when using simple Euler integration models.

The presence of sampling zero dynamics in sampled-data models for nonlinear systems has been

previously been established. However, a contribution in Chapter 6 has been to show that the sampling

zero dynamics of the proposed model are exactly the same as the dynamics corresponding to the asymp-

totic sampling zeros in the linear case.

Finally, in Chapter 7, we have considered sampled-data models for stochastic nonlinear systems.

An approximate model was obtained by similar considerations as in the deterministic case, but making

use of the stochastic Ito-Taylor expansions. The resultant discrete-time description is, in fact, closely

related to existing approaches for numerical solution of stochastic differential equations.

8.3 Future research

The work reported in this thesis raises several interesting lines of research for the future. We next list

some of these possible research topics.

Robust continuous-time system identification. We have seen in Chapter 4 that issues associated with

the use of sampled data can have a key impact on continuous-time system identification results.

We have shown that procedures such as frequency domain maximum likelihood estimation can

be modified, e.g., using a restricted bandwidth, in such a way as to reduce the sensitivity to the

inherent loss of information due to sampling. In this regard, other identification approaches can

be analysed and modified accordingly to achieve robustness to the issues associated with the use

of sampled data and discrete-time models.

Singular structure for the infinite horizon case. In Section 5.4 we established the convergence, from

discrete- to continuous-time, of the singular structure of linear operators associated with finite

horizon LQ optimal control problems. On the other hand, in (Rojas and Goodwin, 2004; Rojas

et al., 2004; Rojas, 2004) connections are established between the singular values of the associ-

ated Hessian of discrete-time LQ problems and the frequency response of the system, when the

discrete-time horizon tends to infinity. These results should be understood in a common frame-
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work represented schematically by the following diagram:

Discrete-time LQ problem

with finite horizon T = N∆

∆→0−−−−→ Continuous-time LQ problem

with finite horizon T

N→∞


y



yT→∞

Discrete-time LQ problem

with infinite horizon
−−−−→

∆→0

Continuous-time LQ problem

with infinite horizon

(8.1)

The result presented in Section 5.4 corresponds to the convergence described accross the top of

the diagram: the singular structure of a sampled-data problem converges, as the sampling period

goes to zero, to the singular structure of the underlying continuous-time problem, both specified

for a fixed finite horizon.

On the other hand, the results in (Rojas and Goodwin, 2004; Rojas et al., 2004; Rojas, 2004) cor-

respond to the left column of the diagram. They showed that when considering a (pure) discrete-

time problem, the singular values of the Hessian matrix associated with the LQ problem converges

to the frequency response of an associated normalised system, as the discrete-time horizon grows

to infinity.

The two aforementioned results are certainly strongly connected. In particular, singular values

of matrices are known to be equivalent to singular values of linear operators defined in Hilbert

spaces.

To complete the relations in the above diagram would unveil deeper mathematical connections be-

tween finite and infinite horizon LQ problems in discrete- and continuous-time. In particular, we

believe that once the continuous-time infinite-horizon problem (bottom left corner of the previous

diagram) is fully understood, the remaining three cases in the previous scheme can be obtained by

truncating the time horizon and/or introducing sampled-data models. This certainly constitutes an

interesting and challenging research topic.

Applications of nonlinear sampled-data models. The sampled-data model presented in Chapter 6 is

believed to give insights into nonlinear systems theory. In particular, Section 6.4 has explored

the use of this model for nonlinear system identification. However, the latter is only one example

used here to illustrate the advantages of using a sampled-data model that is simple but more

accurate than simple Euler integration. The sampled-data model presented here may give similar

advantages in other areas such as control of nonlinear systems. In this framework, it could be

used either to have an accurate discrete-time description of the plant, or to digitally implement a

continuous-time controller. These issues remain an interesting research area.

Stochastic sampling zero dynamics. An insightful interpretation of the sampled-data model for deter-

ministic nonlinear systems in Chapter 6 was given in terms of the presence of sampling zero dy-

namics. Moreover, these extra zero dynamics of the proposed (discrete-time) model were shown

to be the same as the dynamics associated with the asymptotic sampling zeros in the linear case.

An immediate question that arises is how this relation between linear and nonlinear sampling ze-
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ros can also be established for the stochastic case. We envisage two possible lines of research to

unveil this connection:

• In the linear case, stochastic sampled-data models (and, thus, stochastic sampling zeros)

are obtained by spectral factorisation of the output sampled spectrum. Thus, extensions of

spectrum and spectral factorisation of sampled-data models are required for the nonlinear

case. For continuous-time systems, nonlinear spectral factorisation has been considered in

(Ball and Petersen, 2003; Ball et al., 2004).

• Pan (2002) and Arnold and Imkeller (1998) have studied canonical and normal forms for

(continuous-time) stochastic systems. If such analysis is extended to sampled-data (or purely

discrete-time) models then, writing these models in a sampled normal form, one would be

able to recognise its (sampling) zero dynamics.



Appendix A

Matrix results

Exponential Matrix

The exponential matrix, for a given matrix M ∈ R
n×n, is given by the formal power series:

eM = In + M +
1

2!
M2 + . . . =

∞∑

n=0

1

n!
Mn (A.1)

Continuous-time Lyapunov equation

The continuous-time Lyapunov equation is given by:

AP + PAH + Q = 0 (A.2)

where Q is hermitian, i.e., Q = QH = (Q∗)T .

• There is a unique solution for P if, and only if, no eigenvalue of A has a zero real part and no two

eigenvalues are negative complex conjugates of each other. If this condition is satisfied then the

unique P is hermitian.

• If A is stable then P is unique, hermitian, and:

P =

∫ ∞

0

eAτQeAHτdτ (A.3)

• If A is stable and Q is positive definite (or semi-definite) then P is unique, hermitian and positive

definite (or semi-definite).

Discrete-time Lyapunov equation

The discrete-time Lyapunov equation is given by:

AqPAH
q − P + Q = 0 (A.4)

where Q is hermitian, i.e., Q = QH = (Q∗)T .
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• There is a unique solution P if, and only if, no eigenvalue of Aq is the reciprocal of an eigenvalue

of AH
q . If this condition is satisfied, the unique P is hermitian.

• If Aq is stable (eigenvalues inside the unit circle) then P is unique, hermitian, and:

P =
∞∑

k=0

Ak
qQ(AH

q )k (A.5)

• If Aq is stable and Q is positive definite (or semi-definite) then P is unique, hermitian, and positive

definite (or semi-definite).

Computation of covariance matrix

Lemma A.1 Let us consider a matrix Ωc hermitian, positive semi-definite, and the following matrix:

Ωδ =
1

∆

∫ ∆

0

eAτΩce
AHτdτ (A.6)

Then the following relation holds:

Ωδ =
1

∆

(

P − eA∆PeAH∆
)

(A.7)

where P is the solution of the Lyapunov equation (A.2) where Q = Ωc.

Proof. It follows from the derivative of a matrix product:

d

dτ

(

eAτPeAHτ
)

=
d

dτ

(
eAτ

)
PeAHτ + eAτP

d

dτ

(

eAHτ
)

(A.8)

But noting, from (A.1), that d
dτ

eMτ = MeMτ = eMτM , we obtain:

d

dτ

(

eAτPeAHτ
)

= eAτ
(
AP + PAH

)
eAHτ = −eAτΩce

AHτ (A.9)

if, and only if, AP + PAH + Ωc = 0. If now integrate on both sides of the last equation we obtain the

result:
∫ ∆

0

eAτΩce
AHτdτ = −

[

eAτPeAHτ
]∆

0
= P − eA∆PeAH∆ (A.10)

¤

Block Matrices

Theorem A.2 Consider the block matrix:

M =

[

A B

C D

]

(A.11)

where A is an n × n matrix, B and CT are an n × m matrices, and D is an m × m matrix.

The schur complements of A and D are defined (if they exist), respectively, as:

P = D − CA−1B (A.12)

Q = A − BD−1C (A.13)

Then the following results hold:
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(Block decomposition)

[

A B

C D

]

=

[

A 0

C Im

] [

In A−1B

0 D − CA−1B

]

(A.14)

=

[

In B

0 D

][

A − BD−1C 0

D−1C Im

]

(A.15)

(Determinant)

det

[

A B

C D

]

= det

[

D C

B A

]

= det(A) det(D − CA−1B) (A.16)

= det(D) det(A − BD−1C) (A.17)

(Inverse)

[

A B

C D

]−1

=

[

Q−1 −Q−1BD−1

−D−1CQ−1 D−1(Im + CQ−1BD−1)

]

(A.18)

=

[

A−1(In + BP−1CA−1) −A−1BP−1

−P−1CA−1 P−1

]

(A.19)

Matrix Inversion Lemma

A very important consequence of the previous results regarding block matrices is the matrix inversion

lemma, expressed in the following general form:

Lemma A.3 Provided that the matrices have the appropriate dimensions and the inverses exist, the

following equation hold:

(M1 + M2M3M4)
−1 = M−1

1 (I − M2(M
−1
3 + M4M

−1
1 M2)

−1M4M
−1
1 ) (A.20)

Proof. The result can be obtained, for example, by comparing the top left blocks of matrices (A.18)

and (A.19), where we replace A = M1, B = −M2, C = M4, and D = M−1
3 .

¤
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Appendix B

Linear operators in Hilbert spaces

Hilbert spaces

In this appendix we present some concepts and definitions related to Hilbert spaces and spectral proper-

ties of linear operators (Helmberg, 1969; Balakrishnan, 1976; Kreyszig, 1978; Leigh, 1980; Lang, 1993).

This brief review is included as supporting material for the topics and results in Chapter 5, related

to singular structure of LQ optimal control problems.

Definition B.1 A linear space is a nonvoid set S for which two operations are defined: addition and

scalar multiplication. Addition is commutative and associative. Multiplication by scalars (either from

the real or complex field) is associative, and disctributive with respect to addition of elements of S as

well as addition of scalars.

Definition B.2 An inner product in a linear space S is a function 〈·, ·〉 : S × S → C satisfying the

following properties:

(i) 〈α1x1 + α2x2, y〉 = α1〈x1, y〉 + α2〈x2, y〉 ; for all scalars α1, α2 and x1, x2, y ∈ S.

(ii) 〈x, y〉 = 〈y, x〉∗ , where ∗ denotes complex conjugation.

(iii) 〈x, x〉 ≥ 0 , and the equality holds only if x is zero.

Definition B.3 A linear space S endowed with an inner product 〈·, ·〉 is called an inner product space

(or pre-Hilbert space). It is a normed linear space, where the norm is induced by the inner product:

‖x‖ =
√

〈x, x〉 (B.1)

Definition B.4 A sequence xn in a normed linear space S is a Cauchy sequence if, and only if:

∀ε > 0 , ∃Nε > 0 such that n,m > Nε ⇒ ‖xn − xm‖ < ε (B.2)

Definition B.5 An inner product space (normed linear) S is called complete if all Cauchy sequences

{xn} converge to an element in the space, i.e.,

lim
n→∞

xn = x ∈ S (B.3)

Definition B.6 A complete inner product space is called a Hilbert space
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Linear Operators

Functions can be defined for the elements of a Hilbert space. A given function may defined only on

a subset of the Hilbert space, called the domain of definition of the function, D. The range R of

the function is the set into which the function maps the domain. In particular, the term functional is

generally used for functions whose range is scalar valued (R or C). It is common to refer to the function

as an operator when the domain is a dense subspace (and hence, as a special case, the whole Hilbert

space), and the range is contained into a Hilbert space.

Definition B.7 Given two Hilbert spaces H1 and H2, an operator L : D ⊆ H1 → R ⊆ H2 is linear if

L(αx + βy) = αLx + βLy (B.4)

for all x, y ∈ H1 and all scalars α, β.

Definition B.8 A linear operator L is bounded if D = H1 and:

sup
x∈H1

‖Lx‖
‖x‖ = M < ∞ (B.5)

If the above supremum exists, M is called the norm of the operator L.

Lemma B.9 Given a linear operator L : H1 → H2, the following statements are equivalent:

(i) The linear operator L is bounded.

(ii) The linear operator L is continuous at the origin.

(iii) The linear operator L is continuous at every point x ∈ H1.

Proof. See any of the references, for example, (Kreyszig, 1978).

¤

Adjoints operators

Definition B.10 Consider two Hilbert spaces H1 and H2, and a linear bounded operator T : H1 →
H2. Then a linear operator T ∗ : H2 → H1, is called the adjoint operator of T , if and only if:

〈y, T (x)〉H2
= 〈T ∗(y), x〉H1

; ∀x ∈ H1 , ∀y ∈ H2 (B.6)

where 〈·, ·〉H1
and 〈·, ·〉H2

denote the inner products in H1 and H2, respectively.

In the following examples we show how to obtain the adjoint operators considered in Section 5.4.

These operators are associated with LQ optimal control problem in continuous- and discrete-time, re-

spectively.
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Example B.11 Consider the Hilbert spaces V = L2(0, Tf ; Rm) and Z = R
n × L2(0, Tf ; Rn), with

inner products:

〈f1, f2〉V =

∫ Tf

0

f1(t)
T f2(t) dt ; f1, f2 ∈ V (B.7)

〈g1, g2〉Z =
(
g0
1

)T
g0
2 +

∫ Tf

0

g1
1(t)T g1

2(t) dt ; g1 =

[

g0
1

g1
1

]

, g2 =

[

g0
2

g1
2

]

∈ Z (B.8)

Let us define the linear operator G : V → Z (as in (5.74)), such that:

Gf =

[

(Gf)0

(Gf)1(t)

]

=







P
1
2

∫ Tf

0

eA(Tf−ξ)BR− 1
2 f(ξ) dξ

Q
1
2

∫ t

0

eA(t−ξ)BR− 1
2 f(ξ) dξ







(B.9)

where the matrices P , Q, and R are symmetric (see Chapter 5).

The adjoint operator can be obtained by manipulation of the inner product expressions. Let us

consider f ∈ V and g ∈ Z , then we have that:

〈g,Gf〉Z = (g0)T (Gf)0 +

∫ Tf

0

(g1(t))T (Gf)1(t)dt

= (g0)T P
1
2

∫ Tf

0

eA(Tf−ξ)BR− 1
2 f(ξ) dξ

+

∫ Tf

0

(g1(t))T Q
1
2

∫ t

0

eA(t−ξ)BR− 1
2 f(ξ) dξdt (B.10)

Note that in the last equation we can use Fubini’s theorem to change the order of integration in the

second integral as:
∫ Tf

0

∫ t

0

(g1(t))T Q
1
2 eA(t−ξ)BR− 1

2 f(ξ) dξdt

=

∫ Tf

0

∫ Tf

ξ

(g1(t))T Q
1
2 eA(t−ξ)BR− 1

2 f(ξ) dtdξ

=

∫ Tf

0

[
∫ Tf

ξ

R− 1
2 BT e−AT (ξ−t)Q

1
2 g1(t) dt

]T

f(ξ)dξ (B.11)

If we now substitute (B.11) in (B.10), and rearrange terms into the integral, we obtain:

〈g,Gf〉Z =

∫ Tf

0

[

R− 1
2 BT eAT (Tf−t)P

1
2 (g0)

+

∫ Tf

ξ

R− 1
2 BT e−AT (ξ−t)Q

1
2 g1(t) dt

]T

f(ξ) dξ

=

∫ Tf

0

(G∗(g))(ξ)T f(ξ) dξ = 〈G∗(g), f〉V (B.12)

where we have obtained the adjoint operator corresponding to G, i.e.,

G∗(g) = G∗
[

g0

g1(t)

]

= R− 1
2 BT eAT (Tf−t)P

1
2 (g0) +

∫ Tf

ξ

R− 1
2 BT e−AT (ξ−t)Q

1
2 g1(t) dt (B.13)

¤
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Example B.12 Consider the Hilbert spaces V = l2(0, N − 1; Rm) and Z = R
n × l2(0, N − 1; Rn),

with inner products:

〈f1, f2〉V =

N−1∑

0

fT
1 f2 ; f1, f2 ∈ V (B.14)

〈g1, g2〉Z =
(
g0
1

)T
g0
2 +

N−1∑

0

(
g1
1

)T
g1
2 ; g1 =

[

g0
1

g1
1

]

, g2 =

[

g0
2

g1
2

]

∈ Z (B.15)

Let us define the linear operator G : V → Z (as in (5.89)), such that:

G∆f =

[

(G∆f)0

(G∆f)1k

]

=









P
1
2

∆

N−1∑

l=0

AN−1−l
q BqR

− 1
2

q fl

Q
1
2
q

k−1∑

l=0

Ak−1−l
q BqR

− 1
2

q fl









(B.16)

where the matrices P∆, Qq, and Rq are symmetric (see Chapter 5).

The adjoint operator can be obtained by manipulation of the inner product expressions. Let us

consider f ∈ V and g ∈ Z , then we have that:

〈g,G∆f〉Z =
(
g0

)T
(G∆f)0 +

N−1∑

k=0

(
g1

)T

k
(G∆f)1k

=
(
g0

)T
P

1
2

∆

N−1∑

l=0

AN−1−l
q BqR

− 1
2

q fl +

N−1∑

k=0

(
g1

)T

k
Q

1
2
q

k−1∑

l=0

Ak−1−l
q BqR

− 1
2

q fl (B.17)

Note that in the last equation we can interchange the order of the sums in the second term as:

N−1∑

k=0

k−1∑

l=0

(
g1

)T

k
Q

1
2
q Ak−1−l

q BqR
− 1

2
q fl =

N−1∑

l=0

N−1∑

k=l+1

(
g1

)T

k
Q

1
2
q Ak−1−l

q BqR
− 1

2
q fl

=

N−1∑

l=0

[
N−1∑

k=l+1

R
− 1

2
q BT

q

(
Ak−1−l

q

)T
Q

1
2
q

(
g1

)

k

]T

fl (B.18)

If we now substitute (B.18) in (B.17), and rearrange terms into the sum, we obtain:

〈g,G∆f〉Z =

N−1∑

l=0

[

R
− 1

2
q BT

q

(
AN−1−l

q

)T
P

1
2

∆ g0 +

N−1∑

k=l+1

R
− 1

2
q BT

q

(
Ak−1−l

q

)T
Q

1
2
q

(
g1

)

k

]T

fl

=
N−1∑

l=0

G∗
∆(g)T

l fl = 〈G∗
∆(g), f〉V (B.19)

where we have obtained the adjoint operator corresponding to G∆, i.e.,

G∗
∆(g) = G∗

∆

[

g0

(g1)k

]

= R
− 1

2
q BT

q

(
AN−1−l

q

)T
P

1
2

∆ g0 +
N−1∑

k=l+1

R
− 1

2
q BT

q

(
Ak−1−l

q

)T
Q

1
2
q

(
g1

)

k
(B.20)

¤
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Serón, M.M., G.C. Goodwin and J.A. De Doná (2003). Characterisations of receding horizon control

for constrained linear systems. Asian Journal of Control 5(2), 271–286.

Sinha, N.K. and G.P. Rao (1991). Identification of continuous-time systems. Methodology and computer

implementation. Kluwer Academic Publishers. Dordrecht.

Söderström, T. (2002). Discrete-Time Stochastic Systems - Estimation and Control. 2nd. ed.. Springer-

Verlag. London, UK.
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