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1. Introduction

Consider a typical configuration of the sampled-data control system. It consists of the plant
to be controlled, a sampler, a discrete-time controller and a zero-order hold. Disturbance can
be seen as an integral part of the plant so that the plant is characterized by the control path re-
sponsible for control signal influence on the output and the disturbance. The system output is
usually sensed by sensors whose output signal can be corrupted by noise. Sometimes analog
filters are put between the analog sensor output signal and sampler. In the control literature
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Fig. 1. General control system diagram

(Astrém and Wittenmark, 1997; Feuer and Goodwin, 1996) strong belief is expressed, that fil-
ters are necessary prior to sampling to guarantee correct digital signal processing and control.
This belief is usually supported by heuristic speculations based on Shannon-Kotelnikov Re-
construction Theorem, e.g. (Jerri, 1977), which states that in order to reconstruct the signal
s(t) from its samples s(il), —co < i < oo, the sampling frequency should be at least twice the
highest frequency component in the signal. Since the spectra of physical signals often stretch
on infinite frequency range, this gives rise to the idea of so called anti-aliasing filters that cut
off the portion of frequency spectrum lying outside the region determined by that theorem.
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128 PID Control, Implementation and Tuning

It should, however, be stressed that no proofs are available concerning the necessity of anti-
aliasing filters in sampled-data systems, and no statements can be found with regard to the
consequences of the lack of such filters.

Anti-aliasing filters usually take the form of Butterworth filters whose cutoff frequency equals
to the so called Nyquist frequency wy = 7t/h, which is depending solely on sampling period
h. As an alternative, so called integrating or averaging samplers are considered (Blachuta &
Grygiel, 2008a;b; Feuer and Goodwin, 1996; Goodwin et al., 2001; Steinway and Melsa, 1971;
Shats and Shaked, 1989).

In (Blachuta & Grygiel, 2008a;b) we studied the impact of antialiasing filters for pure signal
processing, while in (Blachuta & Grygiel, 2009b) the context of discrete-time LQG control was
discussed. The statement was made, that there is no reason for using them in the noiseless
case, and practically they find no use in the case of noisy measurements. The best results in
the latter case are obtained when the continuous-time output is passed through a continuous-
time Kalman filter, which depends rather on disturbance and noise characteristics than the
sampling period, before being sampled. Similar results were observed in PID control systems
(Blachuta & Grygiel, 2009a;b;c)and (Blachuta & Grygiel, 2010)

In this chapter we summarize these results and compare them with LQG minimum-variance
benchmark control using simple, but representative examples.

2. Analog part of the system

2.1 Plant, disturbance and noise model

The model of system displayed in Fig. 1 is presented in Fig. 2, where K.(s) is the transfer
function of control path of the plant, while K;(s) and K, (s) represent filters forming stochastic
disturbance and noise, respectively. K¢(s) stands for a continuous-time filter.
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Fig. 2. Control system
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The entire continuous-time system can be modeled in state-space as follows:

a(t) = Az (t) + bu(t) + CE(1), 1)
y(t) = dyz(t), (2
s(t) = dyz(t), (3)
z(t) = d'z(t), (4)
where:
A, 0 0 0 0 o
0 A 0 0 c; O
A=1 od a4, ol €= Od cnl’
bfdlc bfdfi bfd{n Af 0 0
be d.] d, 0
0 d d 0
b=l =g d= di,d: ol
0 0 | 0 dy
@c(t)]
o= 20| €= 0]
zy(t)]

Processes &;(t) and ¢, (t) are independent continuous-time white noises with zero means and
covariance functions defined as unit Dirac pulse functions, i.e.:
E [Za(t)]
E[Gn ()]
2.2 Analog Filters

In the paper two types of filters are considered: Butterworth filter as the anti-aliasing filter, as
well as a continuous-time Kalman filter as a filter based on signals spectra.

(t—1); (5)
(t—1). (6)

O/
O/

2.2.1 Butterworth Filter
Transfer function of the Butterworth filter has the form:

Kf (s) = 3(1) @)

Wy
where By, (%) is the n'-degree Butterworth’s polynomial and w, is called the cutoff frequency.

In this paper w, will be assumed as Nyquist frequency w, = wy = 7. The first Butterworth’s
polynomials are definded as follows:

Bi(x)=x+1; By(x)=x2+V2-x+1. 8)
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2.2.2 Kalman Filter
Kalman filter is the one that provides the best noise filtering under assumptions of our model.
Since the noise added to the measured output is not white, the classical Kalman filter for
a system consisting of disturbance and noise becomes singular. One way to overcome the
problem is to replace the continuous-time filter with a discrete-time one working at a high
enough sampling frequency 1/hs. The output of such filter could be re-sampled at lower
frequency if necessary.
Very often the power spectrum S, (w) of noise n(t), defined by transfer function Ky (s), is
much wider than that of the signal of interest y(t). In such case it can be modeled as white
noise n(t)

E[n(t)] =0,  E[n(t)n(7)] =n?(t—7); ©)
with constant spectral density ;2 independent of frequency w. The model of disturbances is
then simplified to

d4(t) = Agy(t) + cala(t), (10)
Yan(t) = dyza(t) + 1u(t), (11)
with
1 = |Kn(0)| = |d}, Ay cnl (12)
The continuous-time Kalman filter is then defined by:
ap(t) = Ay (t) + kL [yan () — djap(1)] (13)
where: ,
Pd;d,P
kz{ = %; A, P + PA"i - % + cdc;, =0. (14)

We use this filter in the system to pass the signal y, () through it, i.e. we substitute y4,(f) =
y2(t) and receive z(t) = djjx¢(t)

Since only a rough characterization of noise is required and filter equations are of lower order
equal to the order of disturbance model, analog filtering is greatly simplified.

3. Control algorithms

The aim of the control system is to keep the output of the system close to the reference value
y'(f) = 0, ie. to make the error e(t) = y"(#) — y(t) small. Since standard deviation is a
good measure of the expected magnitude, the quality of the control systems will be assessed
based on standard deviation of output and control signals. To this end, appropriate variations
should be calculated.

3.1 PID controller
Discrete-time PID controller defined by transfer function:

Kreg(z) = U(Z) =kp (1+ ﬁ z + TfDZ_l) (15)

E(z) Trz—1 h z
can be presented in the state-space form, assuming e; = —z;, as follows:
@,y = Fa) - gz, (16)
u; = dyxl —ez;, (17)
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Table 1. QDR PID controller settings

where:
1 0 1 kp T h Tp
Fr: |:0 0], gr = |:1:|, dy: |:—k +D , er:kp 1+TI+7 (18)

3.1.1 QDR controller settings

There are several methods to find continuous-time PID controller settings. Perhaps the
simplest one is the so called QDR (Quarter Decay Ratio) method, which is based on lag-
delay approximation of the plant. We adapt this method to sampled-data controller using
a continuous-time approximation of the discrete-time system consisting of ZOH, plant, fil-
ter and sampler. Moreover, a lag-delay approximation Gop (s) of the control path including
respective filter, Koy (s) = Kc(s)K/(s), is used.

k

GOL (S) = ,Tsiﬂeisﬂf. (19)

The parameters of Gop (s) can be determined by several methods based on the step response
of Kor(s). One of them, called "two points method", relies on two time instants, t; and tp, at
which the step response reaches the values 63.2% and 28.3% of the steady state, respectively.
We then have:

T=15 (tl —tz), T=1=4 —T. (20)
Then the QDR settings (Goodwin et al., 2001) are taken from Table 1 where L accounts for
ZOH and sampler as follows:

h
L=1+~- 21
T+ (1)

which corresponds to the /2 delay approximation of ZOH.

3.1.2 Optimal PID controller

QDR controller settings do not depend on disturbance and noise characteristics. Therefore
. ./

optimal controllers settings p = [fcp T; T]D} will be chosen as the ones minimizing the

output variance of the controlled system:

p = arg mpin var {y;} (22)

where the variance var {y; } is determined by the formuale in (24) - (28) that take disturbance

. : s R .
and noise characteristics into account. Denoting p/ = [k]P T/ T],| at j-th stage of the
minimization procedure, the computation stops when:

| — 1| < e where ¢ = 0.01 (23)
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In the above, Powell method of extremum seeking, amended with a procedure determining
the range of stable values of parameters at each direction, can be used. The parameters result-
ing from QDR tuning can then be chosen as an initial guess.

3.1.3 PID Control System Assessment
The output and control variances are as follows:

(Tyz =var {y;} = d,V"dy, (24)
02 =var{u;} =d\V'd, +e,d'VPde, — d,V'Pde, — e,d'V''d,, (25)

where the covariance matrix V'

. Vp VPV
V=E H””l} E% mf’]} = { by } (26)
w;’ 1 i V; V;r
is a solution of
V=0oVe + AWA’ (27)
with ( A ,
_ |(F—ged) gd, I

3.2 MV LQG control law
The best control accuracy is achieved when using the optimal Minimum-Variance sampled-
data LQG controller which will be used as a benchmark to assess PID control quality.

3.2.1 Controller
LQG control problem with a continuous performance index | is formulated, where

Nh
] = I\%iinooEﬁ /{y2(t) + AR (H) . (29)
0

Setting A = 0 defines a MV sampled-data LQG problem. Since noise influences only state
estimate &;; and not the control law, being itself a linear function of &;; the above sampled
data control problem can be reformulated as follows.

The problem defined by modulation equation

u(t) =u;, for t € (ih,ih+h],i=0,1,..., (30)
state equation
@p(t) = Apwy(t) +bpu(t) +cpl(t), (31)
y(t) = dyp (1), (32)
where:
AC 0 bc 0
S U IR M
a=|g] e =20 w=ao,
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and feedback signal z;, is equivalent with the following discrete-time problem

wﬁ_l = Fp:cf +gpui + ’wf, (33)
zZ; = d;,wlp, (34)
. LN v P 2
J = lim E Yo (=] Q] +22] quau; + quf +qu}, (35)
* i=0

where

Fy(T)MFy(t)dt, M = dyd,

Fy(t) =T, F, = F,(h), (36)
gp(1) = [ Ay, gp = gp(h) )
0

and wf is a zero mean vector Gaussian noise with E { wlp wlp /} = Wy, and
h
’
W, = /eA!’s cpc;,eAPSds. (38)
0

Vectors :Bg and 'wf are independent for all i > 0. The optimal control law minimizing the
performance index (35) for the discrete stochastic system (33)-(34) is a linear function

uj = —kl&h (39)

ili’
where aAclp‘ ; denotes the Kalman filter estimate of wf’ based on available information up to and
including i from (47)-(48).The feedback gain k.,
_ant+FyKgy

72+ g, Kgp

k/

(40)

depends on the positive definite solution K of the following algebraic Riccati equation:

(g2 + FyKgp)(a12 + FyKgp)'
72+ g, Kgp '

K=Q +F,KF,—
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3.2.2 Discrete-time Kalman filter
Simple instantaneous sampling with sampling period & consists in taking the values of the
sampled signal at discrete time instants t; = ih,i = 0,1,.... Available measurements z; are
expressed as

z; = ]/2(ti)- (41)
The problem defined by measurement equation z; = z(ih) and state equation (1) is equivalent
to the following discrete-time system:

iy = Fo; + gu; + w;, (42)
zZj = d/w,-, (43)
where:
F(t) =e7, F =F(h), (44)
T
g(t) = / Abdy, g=g(h) (45)
0

and w; is a zero mean vector Gaussian noise with E {w;w/} = W, and
h
W= / ASC A ds. (46)
0

Vectors &g and w; are independent for all 7 > 0.
The limiting Kalman filter, (Anderson & Moore, 1979), that provides (£;; = E [;|Z]) for the
discrete-time system in (42)-(43) as i — oo has the form:

Tic1jion = T + R (i1 — d'2iq)), (47)
®i)i = F&; +gui,  ®o-1 =0, (48)
where o
Xd Xdd'x
E=—""2, = F(z-— F'. 4
dzd’ W ( d'¥d ) “9)

3.2.3 MV LQG Control System Assessment
Output and control variances for systems with continuous-time filters can be expressed by
following formulae:

oy = var{y;} = dyV°d, (50)
02 = var{u;} = k.V/ky, (51)

where V°, Vf, end V/° are submatrices of matrix V'

; P Vo Vof
verdla e} - [ v 2

which is a solution of the following matrix Lyapunov equation:

V=0Vd + QW (53)
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with:
A=(I-Kd)(F+gkl), ¥ = (A +kfd'gkl),
_ F gk, [ I
q)_[kfd/F ¥ } Q_[kfd/]'

4. Examples

We will study the properties of control systems for a plant having control path

1
K = — 4
(8) = T ose (54)
with disturbance modeled by:
__ka

with T; = 2 and k; chosen such, that vard(t) = 1. For the noise model in Fig.2 we use three
different transfer functions

kl
Ks)=———""  T,=0050 =1 56
n(s) T252 420, Tys +1" " n (56)
k2
K(s)= ——— " T, =0.057, =005 57
n(S) T%52+2€nTnS+l n Cn ( )
K3(s) =k, - (Kh(s) + K& (s)) (58)

with ki, i = 1,2,3 chosen such that var () = o2. The model in eq. (56) produces a wide-band
noise, the one in eq. (57) a narrow band, while the model in eq. (58) a mixed character one.
Spectral density characteristics of K, (s) and K;(s)) are presented in Fig. 3.

wide band mixed narrow band

Spectral density S(v); 5, =1 Spectral density S(o); 6, =1 Spectral density S(o); =1
— Kol 1K Gl 1
8,0
S () — 8 (0)

— K Go)l

10° 107 107! 10° 10' 10° 10’ 107 10 10° 10 10° 10°
Frequency (rad/sec) Frequency (rad/sec) Frequency (rad/sec)

Fig. 3. Spectral density for std {n(¢)} = 1.0

4.1 Open-loop results

The effect of Butterworth filter compared with continuous-time Kalman filter in the pure sig-
nal processing context is presented in Fig. 4a - b for a wide-band noise. In Fig. 4a it is clearly
seen, that for small level of noise the only result is that filtration error increases with increas-
ing sampling period h. This is due to the signal deformation caused by filtering. At high noise
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levels there are two effects: decreasing influence of noise with increasing sampling period

accompanied by increasing deformation of the useful signal. This situation becomes greatly

improved when Butterworth filter is followed by a discrete-time Kalman filter of (47)-(48), see

Fig. 4b. In this figure we have std (Ad*) = lgn std {Ad* (i) }, where Ad* (i) is the difference be-
1—00

tween actual value d; and a sample s;, and std (As) = lim std {As(i) }, where Ad(i) = d; — d;;
1—00
is the difference between d; and its estimate d, il produced by the discrete-time Kalman filter

These phenomena will play important role in the control context in closed loop.

Butterworth Butterworth with DT Kalman
std{n(t)}=0.

01; CT(Kn) std{n(t)}=0.01; CT(Kn)
01; CT(B) 1 — std{n(t)}=0.01; CT(B)+DT(n)

std{n(t)}=0.1; CT(Kn) std{n(t)}=0.1; CT(Kn)
-® - std{n(1)}=0.1; CT(B) -® - std{n(t)}=0.1; CT(B)+DT(n)
0.8 sld(n(t))_ ECT(K,n) 08 std{n(t)}=0.5; CT(Kn) 1
R ::gm;;; 5C %TK(g; -0~ std{n(t)}=0.5; CT(B)+DT(n)
A stdin(t)=1; CT(Bi § A ::gmij gzg’)ﬁ)DT(n)
~06} e 306 ’ 1
55 A ®
3 o AL -
B 04t o4 & 1
O-el B2
ST T P S S 7 Omimimim @mimin@ o mimmm Qe = =@ n 2 T T DI

Fig. 4. Wide-band noise filtering results: CT Butterworth filter and CT Butterworth with DT
Kalman compared with CT Kalman filter

Butterworth Butterworth with DT Kalman
sta{n()}=0.01; CT(Km) std{n()=0.01; CT(Km)
11— — std{n(t)=0.01; 1 — std{n(t))=0.01; CT(B}+*DT(n)
> ; std{n(9)=0.1; CT(Kn)
-e -= - std{n(t))=0.1; CT(B)+DT(n)
0.8r o 0.8 std{n(t)}=0.5; CT(Kn) i
- std{n(t)}=0.5; CT(B)+DT()
N - std{n()=1; CT(Kn)
Sl 3 A std{n(h)=1; CT(B)*DT()
-~ 0.6} Y =10 ]
2 e 2
] i)
@ 0.4f \»,\ 3 %0.4 1
‘b\ A, ®
L Mg  C
0.2 . doon
e e /
0 —_
0 0.2 0.4 0.6 0.8 1

h

Fig. 5. Narrow-band noise filtering results: CT Butterworth filter and CT Butterworth with
DT Kalman compared with CT Kalman filter

4.2 Closed-loop results
The results for PID QDR, optimal PID and LQG controlled systems are presented in figure
Fig. 6 as functions of the sampling period /. The main conclusion is that all control systems
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PID(QDR); std{n}=0 PID(opt); std{n}=0 LQG; std{n}=0
1 1 1
— o — PID X
- ) — LQG
- oG | | o || EmCTE ~ - [as.cre
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LQG; CT(K)-n

PID; CT(K)n

PID; CT(K)n

% 0.1 02 03 04 o5 % 0.1 02 03 04 s % 01 0.2 03 04 05
PID(QDR); std{n}=1 PID(opt); std{n}=1 LQG; std{n)=1
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Fig. 6. Control errors and control efforts as functions of & for various noise magnitudes

behave worse when the anti-aliasing filter is used in the noiseless case. This is also true in the
case of small noise level and PID controllers.

In contrast to the LQG control, the continuous-time Kalman filter does not help either. Very
small improvement is attained in MV LQG system at very high noise level and longer sam-
pling periods. The characteristic feature of MV LQG is that the control magnitudes do not
depend on the type of filter used.

The improvement in terms of output variance is better visible in the case of PID controllers.
Systems with Kalman filter behave then better in wide range of sampling instants.

Rather large improvement is seen, however, in terms of control signal magnitudes. It does not
depend practically on sampling period in the case of CT Kalman filter, and tends to it with
increasing sampling period in the case of Butterworth filter.

Selected results for PID and LQG controllers with parameters collected in Table 2 are illus-
trated in Fig.7 on the plane std{u}-std{y} for h = 0.2. It is readily seen that analog filtering
makes restricted sense only for PID controllers with QDR tuning and high noise level. Un-
fortunately the quality of control remains then very poor, even if the continuous-time Kalman
filter is applied as analog filter. Application of optimally tuned PID controllers leads to an
even more surprising result: from figure Fig.7 it is seen that even at large noise level very
good results close to the LQG benchmark can be obtained without any analog filter.

In Fig.7the results are plotted on the plane std{u}-std{y} for various values of h, showing
again that the use of anti-aliasing filter makes no sense, and that the quality of disturbance
attenuation of optimally tuned PID controllers is very similar to that of MV LQG controller.
Unfortunately, Nyquist plots of a series connection of the plant and the controller depicted in
Fig.8 show that PID systems are less robust than the MV LQG ones. Moreover, the usage of
anti-aliasing filters makes this even worse.
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QDR std {y;} OPTIMAL std {y;}

kp = 2.8146 kp = 0.9383

PID T; = 07045 078 T; = 09647  0.50
Tp = 0.1761 Tp = 0.2199
kp = 2.2328 kp = 0.9293

PID;B T, =08843 0.71 T; = 09486 0.50
Tp = 0.2211 Tp = 0.2427
kp = 1.8621 kp = 14118

PIDK T;=16319 055 T; = 1.5648 053
Tp = 0.4080 Tp = 0.6619

Table 2. QDR PID & Optimal PID controller settings for std {n} = 1and h = 0.2

PID(QDR) & PID; h=0.2

1.2
1
PID(QDR), o, {1
0.8 PID(QDR);B o 1
= o é PID(QDR), o, =
= PID(QDR);B
% 0.6 PID(QDRYK O PID@DRIK
poK % A PID,G, =0
PIDBo [e] PID, 6, =1 :' PID;B
; PIDK
0.4 O PID(QDR), o =1
¢ PID(QDR)B
x :
0.2P08 *PID(QDR):B o E}B!EHD:RR'K
PID(OR), A PIDQDRIK 4 POk
o= PID, 6 =0 PIDK .
0 . . .
0 2 6 8

4
std{u}
Fig. 7. PID QDR & optimal PID controller results, for 1 = 0.2 with std {n(f)} = 0 and
std{n(t)} =1

PID(QDRY); std{n(t)}=1; h=0.5 B PID(opt); std{n(t)}=1; h=0.5 LQG; std{n(t)}=1; h=0.5
2 - 2. -
== 1.0) == (10) == 10)
2| — PID 2 — PID 2| — LQG
15| - - PID,CT(B) 15| - -+ PIDICT(B) 1.5 - - LQG,CT(B)
& L= PIDCT) |-~ - -t R I I o L e R I IR e -
€ o5 -7 & o5k -7 8 os -7
g o g o g o
= = =
- -1

=1 -05

0 0.5 =1
Frequency (rad/sec)

0.5

-0.5 0 -0.5 0
Frequency (rad/sec) Frequency (rad/sec)

Fig. 8. Nyquist plots and robustness of various control systems

Influence of sampling period and noise character is further studied in figures Fig.9 - Fig.14
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no filter Kalman Butterworth
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Fig. 9. Negligible noise level results as functions of &, std {n;} = 0.01
no filter Kalman Butterworth
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Fig. 10. Wide-band noise results for various controllers and filters as functions of
no filter Kalman Butterworth
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Fig. 11. Mixed-band noise results for various controllers and filters as functions of i
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Fig. 12. Narrow-band noise results for various controllers and filters as functions of i
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Fig. 13. Wide-band noise: realizations of output and control signals

5. Conclusion

It has been shown that the use of anti-aliasing filters is not justified in sampled-data MV LQG
and PID control systems with noiseless measurements, or when the level of noise is small.
Certain improvement can be made in the case of PID control systems with QDR and optimal
settings in terms of both, output signal and control signal variance, in the case of large level of
noise. However, continuous-time Kalman filter is then much better in the wide range of sam-
pling periods, while the effect of Butterworth filter becomes better with increasing sampling
period. Unfortunately the usage of any analog filters deteriorates the robustness of control
systems. This makes the claim of uselessness of anti-aliasing filters even stronger.

Optimal tuning of PID controllers that takes the disturbance and noise parameters into ac-
count leads to the results comparable with those of LQG controllers without any analog pre-
filters. (Goodwin et al., 2001)
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no filter Kalman Butterworth
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Fig. 14. Narrow-band noise: realizations of output and control signals

6. References

Anderson, B.D.O. and Moore, J.B. (1979). Optimal Filtering, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, .

Astrém, K. and Wittenmark, B. (1997). Computer—Controlled Systems, Prentice Hall, 1997.

Blachuta, M. J., Grygiel, R. T. (2008a). Averaging sampling: models and properties. Proc. of the
2008 American Control Conference, pp. 3554-3559, Seattle USA, June 2008.

Blachuta, M. J., Grygiel, R. T. (2008b). Sampling of noisy signals: spectral vs anti-aliasing
filters, Proc. of the 2008 IFAC World Congress, pp. 7576-7581, Seul Korea, July 2008.

Blachuta, M. J., Grygiel, R. T. (2009a). On the Effect of Antialiasing Filters on Sampled-Data
PID Control, Proc. of 21th Chinese Conference on Decision and Control, Guilin China,
June 2009.

Blachuta, M. J., Grygiel, R. T. (2009b). Are anti-aliasing filters really necessary for sampled-
data control? Proc. of the 2009 American Control Coference, pp. 3200-3205, St Louis
USA, June 2009.

www.intechopen.com



142 PID Control, Implementation and Tuning

Blachuta, M. J., Grygiel, R. T. (2009¢). Are anti-aliasing filters necessary for PID sampled-data
control? Proc. of European Control Conference, Budapest Hungary, August 2009.

Blachuta, M. J., Grygiel, R. T. (2010). Impact of Anti-aliasing Filters on Optimal Sampled-Data
PID Control. Proc. of 8th IEEE International Conference on Control & Automation, Xiamen
China, June 2010.

Feuer, A. and Goodwin, G. (1996). Sampling in Digital Signal Processing and Control. Birkhduser
Boston, 1996.

Goodwin, G.C.; Graebe S.F; and Salgado M.F. (2001). Control System Design. Prentice Hall,
2001.

Jerri, A.J. (1977). The Shannon sampling theorem - its variuos extensions and applications: a
tutorial review. Proc. IEEE, Vol.(65), 1977, pp. 1656-1596

Steinway, W.J. and Melsa, J.L. (1971). Discrete Linear Estimation for Previous Stage Noise
Correlation. Automatica, Vol. 7, pp. 389-391, Pergamin Press, 1971.

Shats, S. and Shaked U. (1989). Exact discrete-time modelling of linear analogue system. Int. J.
Control, Vol. 49, No. 1, pp 145-160, 1989.

www.intechopen.com



PID Control, Implementation and Tuning

PID CONLR“?._!; Edited by Dr. Tamer Mansour

bt by Tarmer Mamais

ISBN 978-953-307-166-4

Hard cover, 238 pages

Publisher InTech

Published online 19, April, 2011
Published in print edition April, 2011

The PID controller is considered the most widely used controller. It has numerous applications varying from
industrial to home appliances. This book is an outcome of contributions and inspirations from many
researchers in the field of PID control. The book consists of two parts; the first is related to the implementation
of PID control in various applications whilst the second part concentrates on the tuning of PID control to get
best performance. We hope that this book can be a valuable aid for new research in the field of PID control in
addition to stimulating the research in the area of PID control toward better utilization in our life.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Marian J. Blachuta and Rafal T. Grygiel (2011). Sampled-Data PID Control and Anti-aliasing Filters, PID
Control, Implementation and Tuning, Dr. Tamer Mansour (Ed.), ISBN: 978-953-307-166-4, InTech, Available
from: http://www.intechopen.com/books/pid-control-implementation-and-tuning/sampled-data-pid-control-and-
anti-aliasing-filters

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia HE BT ERAERES S LBEIF R E RS S AR406 85T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.



https://creativecommons.org/licenses/by-nc-sa/3.0/

