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Abstract

Objective. The performance and usability of brain–computer interfaces (BCIs) can be

improved by new paradigms, stimulation methods, decoding strategies, sensor technology etc.

In this study we introduce new stimulation and decoding methods for electroencephalogram

(EEG)-based BCIs that have targets flickering at the same frequency but with different phases.

Approach. The phase information is estimated from the EEG data, and used for target

command decoding. All visual stimulation is done on a conventional (60-Hz) LCD screen.

Instead of the ‘on/off’ visual stimulation, commonly used in phase-coded BCI, we propose

one based on a sampled sinusoidal intensity profile. In order to fully exploit the circular nature

of the evoked phase response, we introduce a filter feature selection procedure based on

circular statistics and propose a fuzzy logic classifier designed to cope with circular

information from multiple channels jointly. Main results. We show that the proposed visual

stimulation enables us not only to encode more commands under the same conditions, but also

to obtain EEG responses with a more stable phase. We also demonstrate that the proposed

decoding approach outperforms existing ones, especially for the short time windows used.

Significance. The work presented here shows how to overcome some of the limitations of

screen-based visual stimulation. The superiority of the proposed decoding approach

demonstrates the importance of preserving the circularity of the data during the decoding stage.

(Some figures may appear in colour only in the online journal)

1. Introduction

With a brain–computer interface (BCI), brain activity is

recorded and used for enabling the subject to directly

interact with the external world, by-passing the normal

output pathways. In this study, brain activity is read

1 These authors contributed equally to this paper.

noninvasively, using electroencephalography (EEG). The

dependent BCI considered here is based on the steady-

state visual evoked potential (SSVEP). This type of BCI

relies on the psychophysiological properties of EEG brain

responses recorded from the occipital area during periodic

visual stimulation (e.g., flickering stimuli). If the latter is

at a rate higher than 6 Hz, the individual transient visual

responses, which are time- and phase-locked to the stimulus
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f2 = 20 Hz · · ·
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(a) ‘On/off’ frequency-coded stimulation.

f = 15 Hz, ∆ϕ1 = 0 · · ·

f = 15 Hz, ∆ϕ2 = π

2
· · ·

f = 15 Hz, ∆ϕ3 = π · · ·

f = 15 Hz, ∆ϕ4 = 3π

2
· · ·

(b) ‘On/off’ (50 % duty cycle) phase-coded stimulation.

Figure 1. Examples of frame-based ‘on/off’ stimulation patterns.
The white-shaded squares represent ‘on’ frames, the dark-shaded
ones ‘off’ frames. A screen refresh rate of 60 Hz is assumed.

onset, overlap and form a steady state signal that resonates

at the stimulation frequency and its integer multipliers [1].

This means that, when the subject is looking at a stimulus

flickering at the frequency f , the evoked increase in amplitudes

at frequencies f , 2 f , 3 f , . . . can be detected in the Fourier

transform of the EEG signal recorded above the subject’s

occipital lobe. When using several frequencies, each one

for encoding a different target, one achieves a frequency-

coded SSVEP-based BCI. It has been shown that the overall

performance of the frequency-coded SSVEP BCI can be

increased by also considering phase information in addition

to amplitude information in the decoding process [2, 3].

However, when using a frequency-coding strategy a number

of limitations arise: only stimulation frequencies within a

particular frequency range evoke reasonable SSVEP responses

[4]; the harmonics of some stimulation frequencies could

interfere with one another, leading to a deterioration of

the decoding performance [5]; additionally, when using a

computer screen in combination with the standard ‘on/off’

visual stimulation (see figure 1(a)), frequencies are limited by

the refresh rate of the screen and it is desirable for frequencies

to be divisors of the screen refresh rate [5]. This encouraged the

search for modifications in stimulation methods in computer

screen-based frequency-coded SSVEP BCIs [6].

To overcome the above mentioned restrictions, a number

of authors suggested [4, 7–9] encoding the target commands

not in the frequency, but rather in the phase of the stimulation:

the N stimuli are simultaneously flickering at the same

frequency f but with different time delays �tm = (m − 1)/

( f N), corresponding to phase shifts �ϕm = 2π(m − 1)/N,

one for each target command m (m = 1, . . . , N).

However, when using a computer screen as a stimulation

device, the number of phase-coded targets is also limited in

the case of an ‘on/off’ stimulation: the target stimuli are either

maximally bright (‘on’) or completely dark (‘off’) depending

on the video frame. For example, to produce a 15-Hz stimulus

on a 60-Hz screen, there are only four video frames per

stimulation period, which leads to only four possible phase-

shifts that can be rendered (as, for example, in figure 1(b)).

In order to deal with this, one can rely on the fact that video

frames on computer screens are updated progressively, usually

from top to bottom. This means that relatively small stimuli at

different vertical positions physically appear on the screen at

different moments in time, thus causing different phase lags in

the stimulation. This effect can be used to increase the number

of phase-coded stimuli [10]. Although useful, this approach

still relies on frequencies that are integer dividers of the screen

refresh rate. In addition, it poses some restrictions on the

stimulus layout: e.g., it is not possible to achieve an arbitrary

phase shift between horizontally arranged stimuli. In this study

we propose another way to overcome the current limitations

of screen-based stimulation for phase-coded SSVEP.

In phase-coded SSVEP BCI, the classifier has to

operate on wrapped phase information, extracted from

EEG data, which is circular by nature. The output classes

are associated with phases and therefore are circularly

interrelated as well. However, the majority of conventional

classifiers used for phase-coded BCIs assume noncircular data,

which, in turn, implies some (unfolding) conversion of the

input/output circular data. Usually this conversion is done in

a straightforward way, not preserving the topological structure

of the circular data, and, therefore, in fact inappropriately.

This calls for a new BCI decoding algorithm specifically

designed/tuned for circular data.

Due to the complex nature of the problem, phase-

coded SSVEP BCI systems have been proposed that consider

the phase extracted only from a single channel (either Oz

referenced to the mastoid [7, 11], or by using a bipolar lead

[4, 9]). To incorporate phase information from several

channels, spatial filtering can be used [12–16]: it provides

weighted mixtures of recording channels, leading to new

channels from which the phases can be further extracted. The

phase can then be processed either by the mentioned single

channel decoding approach [12], or by applying standard

multichannel decoding strategies such as single layer neural

networks [13], support vector machines [14] or probabilistic

neural networks [15]. While such classification procedures

lead to adequate results, the proposed decoding strategies

either do not meet the multichannel requirement as in the case

of [12] (the authors admitted that ‘the whole methodology is

not fully based on multiple channels’), or do not cope with

the problem’s inherent circular nature as in [13–15]. In this

paper we present a fully multichannel approach based on a

fuzzy logic classifier that deals with circular information from

several channels either without the use of spatial filtering or

on top of it. As is customary when adopting a multichannel

solution, feature selection is first performed to select the

optimal (in terms of decoding accuracy) channels and to reduce

the dimensionality of the data. In this study we propose a filter-

based feature selection technique based on circular statistics

and specifically designed for our fuzzy classifier.

2. Methods

2.1. Experimental procedure

In all of the experiments the subjects were sitting about 60 cm

from the laptop’s LCD screen on which the stimuli of size

6 cm × 6 cm were shown. Seven (Ns = 7) male subjects

(aged 23–35 with an average of 28.3 years) participated in the

experiments.

The following two experiments were performed.

2



J. Neural Eng. 10 (2013) 036011 N V Manyakov et al

0

0.5

1
Δϕ1 = 0

0

0.5

1 Δ 2 = 2π/3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

Time (s)

Δ 3 = 4π/3

desired
requested

rendered

ϕ

ϕ

Figure 2. Schematic representation of the intensity profiles in the sampled sinusoidal stimulation case. The profiles of three target stimuli
are shown. All stimuli flicker at 15 Hz, but with different phase shifts �ϕi, i = 1, . . . , 3. The time interval considered is 100 ms. The green
dashed curves represent the desired sinusoidal stimulation profiles. The requested sampled sinusoidal stimulus intensities are shown as red
dot–dashed curves. The stimulus intensities rendered by the screen are (schematically) depicted as blue curves. The vertical gray dotted lines
mark the video frame vertical retrace onsets. Note that the rendered intensities do not perfectly adhere to a rectangular shape due to a
nonzero pixel response time of the screen.

(1) A stimulus flickering at frequency f = 15 Hz with zero
phase shift (�ϕ = 0) was presented at the center of the
screen for 5 s with a fixation point (a small marker on the
screen indicating the location the subject should attend
to) in the center of the stimulus, followed by 1 s of no
stimulation. This was repeated 30 times with the standard
‘on/off’ (50% duty cycle) and the proposed sampled
sinusoidal stimulation (see following section 2.2). The
recorded data were used to investigate the phase stability.

(2) A set of N = 6 stimuli (50% more than the
number of targets feasible with the standard ‘on/off’
stimulation) flickering at frequency f = 15 Hz with
phase shifts �ϕm = π(m − 1)/3 (m = 1, . . . , 6)

were simultaneously presented using the proposed
sampled sinusoidal stimulation (see section 2.2). The
6 cm × 6 cm stimuli were arranged in two rows and
three columns, separated 7.5 cm horizontally and 7.75 cm
vertically. A fixation point indicated the stimulus the
subject should attend to. All stimuli flickered for 5 s
followed by 1 s without stimulation, allowing the subject
to shift his/her focus to the new position of the fixation
point. The subjects were requested to attend each stimulus
Nr = 20 times. In total, we acquired 6 × 20 = 120 five-
second-long EEG data intervals per subject.

2.2. Visual stimulation

The stimulation frequency in our experiments was f = 15 Hz,
which was reported in [17] to elicit on average the largest
SSVEP amplitude. For visual stimulation, we used a laptop
LCD screen with a reported refresh rate of about 60 Hz. More
precisely, the estimated refresh rate was on average 59.92 Hz,
which led to an ‘on/off’ stimulation very close to, but not
exactly at 15 Hz.

To encode more than N = 4 targets (which is the limit

for ‘on/off’ stimulation for the used stimulation frequency),

we propose varying the desired intensity of the stimulus

continuously between 0 and 1 using a sinusoidal periodic

profile with frequency f = 15 Hz, specified as α f (t) =
1
2
(1 + sin(2π f t + �ϕ)). For each video frame, the intensity

of each target is estimated by sampling the desired intensity

profile at the time t when the stimulus appears on the screen

(see figure 2). In this way, the stimulation relies on time t,

rather than on the frame counter.

2.3. Luminance profiles of the stimuli

In order to gauge the real shape of the stimulus luminance

profiles and to confirm our prediction (depicted in figure 2

as the rendered profile), we recorded the actual luminance of

the stimuli with a photodiode. The photodiode measurements

are expressed in volts, while we were interested in luminance

measured in cd m−2, thus we had to convert the photodiode’s

output into luminance. To build this mapping we collected a

series of luminance measurements (using a Minolta Chroma

Meter CS-100) along with the photodiode readouts. By

uniformly sampling the requested intensity in the [0; 1]

range we collected about 200 measurements of the stimulus

luminance and the corresponding photodiode output. The

collected data were then fitted by a polynome.

Figure 3 shows the stimulus luminance profiles recorded

with the photodiode for both the ‘on/off’ and the sampled

sinusoidal stimulations. All luminance-related recordings

were done using the same setup as in our experiments (see

section 2.1).

3
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Figure 3. The stimulus luminance profiles recorded with a photodiode at 20 kHZ sampling rate. The output of the photodiode was converted
into luminance using a polynomial mapping derived from the photodiode calibration data. Both profiles were recorded in the first
experiment condition described in section 2.1 from the stimuli flickering at frequency 15 Hz. Each profile corresponds to one out of two of
the considered stimulation styles. The vertical gray dotted lines indicate the video frame vertical retrace onsets.

2.4. EEG data acquisition

The EEG data were recorded using an eight-channel EEG

system [18] developed by Holst Centre2 and built around

an ultra-low power eight-channel EEG amplifier chip (for

technical specifications, see [19]). In this device each EEG

channel is sampled at 1024 Hz with 12 bits per sample. We used

active Ag/AgCl electrodes (ActiCap, Brain Products) located

primarily on the occipital area, namely at positions PO7, PO3,

POz, PO4, PO8, O1, Oz, O2 according to the international

10–10 system. The reference and ground electrodes were

placed on the right and left mastoids respectively (mainly to

compare our decoding algorithm with the one proposed in [7],

where information from only a single Oz electrode referenced

to the right mastoid was used).

2.5. Feature generation

Additionally to the eight EEG channels mentioned above, for

further analysis we also considered the same eight electrodes

re-referenced with respect to a common average reference

(CAR), and all possible bipolar combinations (C2
8 = 28), thus

in total K = 8 + 8 + 28 = 44 channels si(t), i = 1, . . . , K.

For each stimulation stage the wrapped phases ϕi were

estimated as [4, 20]:

ϕi = Arg(F (si)( f ))

= Arg

(

∑

t

si(t) cos(2πh f t) + j
∑

t

si(t) sin(2πh f t)

)

= atan2

(

∑

t

si(t) cos(2πh f t),
∑

t

si(t) sin(2πh f t)

)

,

(1)

where f is the stimulation frequency, F (si) is the discrete

Fourier transform of the i-th channel data sequence si(t), h is

the considered (sub)harmonic coefficient, and j =
√

−1. The

phases of only the fundamental stimulation frequency were

used in this study, thus h = 1, leading to 44-dimensional

feature space of wrapped phases ϕi (i = 1, . . . , K, K = 44).

For our assessment we considered Nt = 5 cases, in which the

recordings si(t) had corresponding durations T = 1, . . . , 5 s

and were taken from the beginning of each stimulation stage,

i.e. when the subjects were expected to attend to the flickering

stimulus marked with the fixation point (see section 2.1 for

details).

2 http://holstcentre.com/

2.6. Feature selection

To reduce the amount of information for the subsequent

classification we propose a filter-based (thus not relying on

further classification) feature selection procedure on training

data, which among all class–feature pairs P = {(m, i) : m =
1, . . . , N, i = 1, . . . , K} select only a subset S ⊂ P of the

statistically most relevant (for the desired class separation)

pairs.

Since the input features (i.e. the wrapped phase values ϕi

estimated from the channels si, i = 1, . . . , K) are circular,

we suggest employing circular statistics [21] and assume

that the input features ϕi from the m-th class are sampled

from a von Mises distribution pm
i (ϕ|μm

i , κm
i ) = exp(κm

i ·
cos(ϕ − μm

i ))/(2π I0(κ
m
i )), where I0 is the modified zero-

order Bessel function, κm
i is the concentration parameter and

μm
i is the circular mean parameter. To clarify the meaning of

these parameters, assume we have the i-th channel data (si)

acquired when the subject was observing the flickering target

corresponding to the m-th class, i.e. the one with the phase shift

�ϕm = 2π(m − 1)/N. Having Nr such recordings for given

m and i, it is possible for each recording r (r = 1, . . . , Nr),

using (1), to obtain the phase estimate ϕm
i,r. For fixed m and i, all

phase estimates ϕm
i,r are expected to cluster around their circular

mean μm
i (see figure 4, where the directions of the radial lines

correspond to the discussed phase means), because the phase

shifts (�ϕm), of the corresponding visual stimulations, are

identical. The dispersion of the phase estimates is reciprocally

related to the concentration parameter κm
i : the larger κm

i is, the

more tightly the phase estimates ϕm
i are grouped around the

mean μm
i , and, therefore, the better the m-th class is localized

in the i-th channel.

By feature selection, we want to select only those class–

channel combinations (m, i), that enable us to separate the

classes as well as possible. In order to perform this selection,

we need a measure Q
m1,m2

i of the quality of classes m1 and

m2 phase data separation in the i-th channel. Assuming an

underlying von Misses distribution for the phase estimates (for

each class within each channel), we propose employing the

Watson–Williams test—a circular analogue of the one-factor

ANOVA—to define the class separation quality measure. The

channels, for which this test produces smaller p-values, would

potentially separate classes m1 and m2 better than others. Thus,

the measure Q
m1,m2

i can be specified, for example, as:

Q
m1,m2

i = exp
(

− p
m1,m2

i

)

, (2)

4
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Figure 4. Distribution of phases (expressed as angular values) estimated from different channels of the data from the second experiment (see
section 2.1) for the first subject. Each dot corresponds to a phase estimated from a 1 s long interval recorded when the subject was observing
a particular phase-shifted stimulus. Colors represent target classes (with the stimulus shifted by �φm = (m − 1)π/3, where m is the class
index). The directions of the radial lines correspond to the circular means for each class. For the sake of visualization, each class is drawn on
a circle with a different radius.

where p
m1,m2

i is the p-value of the corresponding Watson–

Williams test applied to the phases estimated from the i-th

channel of the data coming from several recordings for the

m1-th and m2-th classes. Now, the better channels m1 and m2

are separated, the larger the value of the measure Q
m1,m2

i is.

Assume that we want to find a feature (channel) that

provides the best separation of the classes m1 and m2. This

can be done by selecting the channel i with the largest value of

Q
m1,m2

i . Note, that this i-th channel is selected to separate the

chosen classes m1 and m2 only, but not all other classes. This

leads to the inclusion of only two class–channel pairs (m1, i)

and (m2, i) into S. In the same way, we can select not only

one but several (n1) channels I1 = {i1, . . . , in1
} producing n1

largest values of the separability measure (or, equivalently, n1

smallest p-values), leading to the inclusion of class–feature

pairs (m1, i1), (m2, i1), . . . , (m1, in1
), (m2, in1

) into S. This

procedure could be seen as an implementation of a one versus

one classification strategy, which is done for all possible pairs

of classes m1 and m2 (1 � m1 < m2 � N).

The procedure presented above selects an optimal set

of class–channel pairs for a pairwise class separation. As a

consequence, this approach does not guarantee that the set S

of the selected class–channel pairs would contain the entire

channels (an i-th channel we call the entire channel with

respect to S, if all the possible class–channel pairs (m, i) for

all m = 1, . . . , N, were selected into S). To select the entire

channels, in which all the target classes are well separated, we

propose the following approach.

The measure of separability of all classes within the i-th

channel, can be defined as:

Qall
i = min

1�m1<m2�N
Q

m1,m2

i . (3)

Similarly to Q
m1,m2

i , larger values of Qall
i suggest a better

separability of all classes in the i-th channel, while lower

values indicate that at least two classes are badly separated.

Using Qall
i , we choose the n2 ‘best’ entire channels (features)

I2 = {ĩ1, . . . , ĩn2
} (corresponding to the first n2 maximal values

of Qall
i across channels i = 1, . . . , K), and extend the selection

S with all the class–feature pairs related to the indices from

I2: (1, ĩ1), . . . , (N, ĩ1), . . . , (1, ĩn2
), . . . , (N, ĩn2

). Thus, for

each feature ĩ ∈ I2, all N classes are selected. Hence, such a

procedure allows one to select those entire channels for which

any class has the best separability with respect to all other

classes (which can be seen as a one versus all strategy). This

extension of the set S might seem redundant, but it enables

us to perform a comparison with the single channel-based

classifiers described in the literature.

2.7. Classification

During the training stage the system learns to distinguish

between N phase shifted stimuli/classes using the previously

selected on training data set S of class–feature pairs. To

each class–feature pair (m, i) ∈ S we assign a characteristic

membership function μAm
i
(·) indicating the level of affiliation

of feature i to class m. It is defined as a normalized to [0; 1]

von Mises distribution:

μAm
i
(ϕ) =

pm
i

(

ϕ|μm
i , κm

i

)

pm
i

(

μm
i |μm

i , κm
i

) = exp
(

κm
i

(

cos
(

ϕ − μm
i

)

− 1
))

.

The classifier is based on a fuzzy system [22] with a

K-dimensional input (here, for the sake of simplicity, all K

features are considered—keep in mind that some of those

features could have been eliminated by the feature selection

procedure) and a two-dimensional output. The fuzzy system

consists of N (one for each class m = 1, . . . , N) fuzzy IF-

THEN rules Rm of the form:

Rm : IF
(

ϕ1 is Am
1 AND · · · AND ϕK is Am

K

)

THEN
(

y1 is Bm
1 AND y2 is Bm

2

)

,

where the fuzzy sets Am
i and Bm

l are characterized by the

membership functions μAm
i

and μBm
l

respectively. Since the

resulting classes are distributed circularly, we divide the unit

circle into N equal segments [2π(m − 1)/N; 2πm/N) (m =
1, . . . , N), centered at ϕm = 2π(m − 0.5)/N, and use as the

output class membership functions μBm
1

and μBm
2
, which are

singletons3 at cos ϕm and sin ϕm respectively.

The classification is based on Mamdani-type reasoning,

where antecedents and consequences of each rule are

connected by the min T -norm, leading to a universal

3 By a singleton at a we mean the function 1a(x) =
{

1, if x = a,

0, if x �= a.
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approximator [23]. Fuzzifications of the actual (indicated with

a bar) input values ϕ̄i are performed based on the singleton

fuzzifier. Thus, each rule Rm leads to the result:

μB̄m
l
(yl ) = min

{i:(m,i)∈S}
{μAm

i
(ϕ̄i), μBm

l
(yl )}, l = 1, 2.

As a consequence, the resulting (output) fuzzy sets (taken

among all rules m = 1, . . . , N) will be:

μBl
(yl ) = max{μB̄1

l
(yl ), . . . , μB̄N

l
(yl )}, l = 1, 2.

The defuzzification is based on the center of gravity

method and produces crisp values ȳ1 and ȳ2, which are then

used to estimate the target class index m̄ that satisfies the

inequality 2π(m̄ − 1)/N � Arg(ȳ1 + jȳ2) < 2πm̄/N.

3. Results

3.1. Phase stability and class separability

While the sampled sinusoidal stimulation in principle allows us

to encode more targets, it could very well be that it increases the

scatter of the phases within each class compared to the ‘on/off’

mode. To verify this, the data from the first experiment were

used. Phases were estimated and subjected to an F-test with

the null hypothesis that two independent samples resulting

from ‘on/off’ and sampled sinusoidal stimulations came from

distributions with the same variance. Such a test was performed

separately for each subject, for different stimulation intervals

T = 1, . . . , Nt , and for all features i = 1, . . . , K (in total

Ns ×Nt ×K tests). Here, we should note that a smaller variance

potentially leads to more separable classes and, therefore, to

the encoding of more targets simultaneously.

Analysis of the phase stability revealed that in only 7.7%

of the tests, the ‘on/off’ stimulation produced a significantly

(p < 0.05) smaller variance than the sampled sinusoidal

case. The sampled sinusoidal stimulation appeared to be

significantly better (i.e. the variance is smaller) in 42.3%

of all tests. For the remaining tests there was no significant

difference. If we consider only the best n2 channels (Ns ×
Nt × n2 tests), the above mentioned percentage for the sampled

sinusoidal stimulation method even increases. For example,

for n2 = 5 the sampled sinusoidal stimulation is significantly

better in 71.4% whereas the ‘on/off’ stimulation in only 0.8%

of all tests.

In addition to the previous group of tests, we estimated

the circular variances for both SSVEP stimulation methods for

every subject, every feature i and every stimulation interval

T . For each channel and each stimulation interval separately,

a repeated measures ANOVA was performed to assess the

differences between both stimulation methods (K × Nt tests).

In 19.16% of the tests the sampled sinusoidal stimulation

performed better (p < 0.05), while in the other tests there

were no significant differences between the two stimulation

methods.

We also explored the feasibility of encoding more than

four simultaneous targets at 15 Hz on a 60-Hz monitor by

using the proposed sampled sinusoidal stimulation. For this,

we used all recorded data from the second experiment. As one

can see from figure 4, depending on the observed channel,

the classes can be well separated, confirming the hypothesis

that more than four targets can be encoded. The results for

the Oz electrode referenced to the right mastoid, as used in

[7] (see figure 4(a)), and for the bipolar combination Oz–

POz, as exploited in [4] (see figure 4(b)), show less class

separation than for the Oz referenced with respect to CAR (see

figure 4(c)). However, the class separability as well as the

optimal channel vary from one subject to another. This

supports the necessity of the proposed feature selection

procedure prior to classification.

3.2. Classification performance

In order to analyze the performance of the proposed classifier,

we acquired 120 five-second-long EEG data intervals for

each subject, which corresponds to Nr = 20 trials per

target class in experimental conditions 2 (see section 2.1).

This is a comparable amount of data as used in similar studies

[4, 12, 16], where correspondingly 15, 20 and 12 trials per class

were used. We have employed leave-one-out cross-validation

to compare the performance of the considered classifiers. This

method is commonly used in BCI research not only to estimate

performance of a BCI system [4, 12], but also to compare

different approaches [16].

Figure 5 shows the leave-one-out cross-validation

classification results (using data from the second experiment)

based on the proposed fuzzy classifier for different EEG

segment lengths T for phase derivation and classification.

We compare the results to other methods proposed in the

literature when applied to our data. The feature selection

parameters (n1, n2) were obtained through a grid-search

(n1, n2 = 0, . . . , 3) on the training data (leaving the test data

for the sole purpose of measuring the classifier performance).

The statistical significance of the difference in accuracy

between the different methods was assessed using repeated-

measures ANOVA tests.

When comparing the results obtained by applying the

existing single channel methods (see sections A.1 and A.2 in

the appendix) to our data (with the data measured from the Oz

channel referenced to the right mastoid and from the Oz–POz

bipolar combination, respectively) and by applying the method

employing spatial filtering based on canonical correlation

analysis (see section A.4 in the appendix), we observe a

superior performance for the proposed method (p < 0.001).

By applying the single-channel methods described in sections

A.1 and A.2 in the appendix to the optimal channel (obtained

via an exhaustive search through all channels si, using a

wrapper approach applied on the training data, as described in

section A.3 in the appendix), and by applying the multichannel

method based on the multilayer feedforward neural network

with multi-valued neurons (MLMVN, see section A.5 in the

appendix), we also observe the superiority of our multichannel

fuzzy classifier with p-values as seen in figure 5. This shows

a better generalization performance of the proposed fuzzy

method, in particular in comparison to some of the methods

considered, since the multichannel information increases the

decoding accuracy compared to the single-channel case. To

verify the latter assertion, we also repeated the classification

with the same fuzzy classifier for all pairs (n1, n2) used in the

grid search.
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(see section 2.1). The results for the different methods are shown in different colors. The numbers above the bars are the repeated-measures
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Figure 6. Confusion matrices (average among all subjects) for all seven classifiers considered and for T = 1 s of EEG data used for
classification. Shown are the distributions of the actual classes among the detected ones (in %). Hence, the sum within each column is equal
to 100%.

We found that the best accuracy was reached uniquely by a

single-channel mode (n1 = 0, n2 = 1) in only 6% of the cases.

In 70% of the cases this was achieved solely by a multichannel

mode (other combinations of (n1, n2)) and in the remaining

24% the best accuracy could be reached by both modes of the

classifier. This means that in range 70–94% of the cases, the

gain in accuracy was due to the multichannel mode.

In figure 6, we present the averaged cross subject

results for all seven classifiers considered. With increasing

T (the length of the EEG segment used for classification)

all classifiers reveal a saturating accuracy. The comparison

becomes more informative when the classifiers are evaluated

on more difficult conditions, i.e. when T is small as in our

case. That is why we present our results for the shortest

considered length of the EEG segment used for classification:

T = 1 s. As can be seen from figure 6, the proposed classifier

yields a superior performance for all classes compared to other

classifiers for the same experiment and for the same subjects.

The information transfer rate (ITR) [24] of the proposed

system, estimated for all subjects as a function of EEG segment
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function of EEG segment length T used for decoding in the second
experiment (see section 2.1).

length T , is presented in figure 7. The duration of each decision

consisted of T seconds of visual stimulation extended by the

half-second pause needed by the subject to shift his/her gaze

and focus on the next target, as was also done in [4].

4. Discussion

In this paper we proposed a sampled sinusoidal stimulation

mode for SSVEP BCI that overcomes some of the limitations

of the conventional ‘on/off’ stimulation mode on a regular

computer screen. The proposed stimulation design allows for

any phase shift �ϕ in the stimulation. This can be exploited

not only to increase the number of target stimuli for SSVEP

BCI, but also to compensate for the stimulus appearance lags

caused by the progressive rendering of the screen.

Based on the results of section 3.1 we can also conclude

on statistical grounds that for phase-coded SSVEP BCI the

proposed sampled sinusoidal stimulation running at 15 Hz on

an LCD screen is at least not worse than the popular ‘on/off’

method: the deviation from the circular mean in the case

of sampled sinusoidal stimulation is not higher than for the

‘on/off’ one. We attribute this to the fact that the proposed

(sinusoidal) intensity sampling relies on the precise system

timing, rather than the video frame index, which makes it

less dependent on the screen refresh rate than the ‘on/off’

stimulation, as explained in section 2.2.

To answer the question regarding the number of targets

allowed to be encoded by the proposed method using a

single frequency, we have to take into account several factors:

the refresh rate of the screen used in the stimulation, the

stimulation frequency, the length of the EEG interval taken

for deriving the phase information, the desired accuracy, and

so on. If one takes a monitor with a higher refresh rate (than

the 60-Hz one used in this study), or uses a lower stimulation

frequency (than the considered 15 Hz), one will have more

frames per stimulation period, which will lead to a smoother

(and closer to sine wave) luminance profile of the stimuli

(compare with figure 3). This, as a consequence, could render

the phase estimates more stable, i.e. more tightly concentrated

around their means, which would make the corresponding

values of the concentration parameter κ higher. Evidently, one

can increase the number of encoded targets at the expense of a

lower decoding accuracy. The exhaustive validation of target

amount dependency on the parameters mentioned is a large

study on its own, and can be seen as grounds for future work.

In order to provide a suggestion on the possible number of

encoded targets with proposed stimulation for the conditions

used in this study (15-Hz stimulation on a 60-Hz monitor),

we estimated the (averaged across all subjects and all classes)

standard deviation of phase distribution within a class. For

each considered EEG segment duration T = 1,2,. . .,5 s the

corresponding estimated mean standard deviations are: 27.8◦,

18.1◦, 16.3◦, 14.8◦ and 13.4◦.

As can be seen for the best channel in figure 4(c), the class

mean phases are not completely equidistantly distributed on

the unit circle. This was also noticed in [4, 12] for an ‘on/off’

stimulus on a computer screen. In [12] it was hypothesized

that this could be due to the layout of the target stimuli: an

attended target is surrounded by several other flickering targets

which could influence the phase of the subject’s EEG. In our

experiments, we tried to separate the stimuli on the screen

as much as possible, but the distance between the stimuli

was, probably, not large enough to avoid any influence from

neighboring stimuli. This influence could be inferred from the

results presented in figure 6, where often the first and the fifth

classes were more accurately detected. We explain this by the

stimulus layout on the screen: classes one and five correspond

to the stimuli shown at the top-left and top-right corners of the

screen. Following the above mentioned hypothesis, one can

assume that the targets in the corners of the screen are detected

with a higher accuracy, as they have fewer neighbors. This

assumption would need to be explored by specific experiments

with stimuli placed at different locations on the screen. Based

on the outcome, one could experimentally verify whether the

target stimuli layout and/or the stimulation mode, or neither,

influence the decoding accuracy.

As can be seen from figure 4(c), different channel

combinations and referencing strategies influence the

separability of the classes. Thus, the proper selection of the

channels should always be considered, as indicated in [4].

Compared to [4], where only a single channel was considered,

we report on a multichannel approach supplied with an

automatic feature selection procedure, both of which can

be observed as a step forward in the phase-coded SSVEP

BCI domain, as only some channel combinations provide

good separability. This calls for a search for the proper

spatial filtering approach, allowing the improvement of class

separability. As a step in this direction, the approaches of

[12–16] can be considered.

We hasten to add that the spatial filters should be

specially constructed to enhance the separability between

classes in the phase domain (by, for example, minimizing

the circular variance within each class and maximizing the

angular distances between the classes circular means). Filters

that are primarily designed to enhance the amplitude signal-

to-noise ratio in the frequency domain, as it is done in

frequency-coded SSVEP BCI, do not necessary yield good

results for phase-coded SSVEP BCI. Since our study is not

8
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focused on spatial filtering (preprocessing), but rather on

multichannel classification, we considered some commonly

used channel combinations: original EEG channels, bipolar

channel combinations and channels referenced to CAR. But

the proposed system performance could be further improved

by adapting the spatial filter to the given data. Nevertheless,

we should also mention that spatial filtering does not exclude

the multichannel decoding proposed in this study. Normally,

spatial filtering constructs several (linear) combinations of the

channels according to some criteria. For further decoding it

is useful to take not only one such combination (where, in

this case, we can use a single-channel decoder as in the CCA

method used for comparison in our study, see section A.4

in the appendix), but rather several of them, which could

be beneficial for increasing the decoding accuracy. These

combinations have to be further processed by a multichannel

decoder. The multichannel decoding method presented here

can also be used after the spatial filtering, as, for example, in

this work, where it is applied on top of a predefined simple

spatial filter (which involves the bipolar lead combinations and

CAR re-referencing mentioned above).

The comparison performed in this paper revealed the

superior performance of the proposed classifier on our data,

especially for the short EEG segments used for phase estima-

tion. But, we have to add that we applied all of the methods

used for comparison under the conditions of our particular

experiment, while the decoding algorithms, described in the

appendix, were initially designed for other BCI systems with

other stimulations, number of targets and channels, and so on.

Thus, it could be true that for conditions different than ours

the outcome of the comparison could be different.

Our comparison reveals that better accuracy is achieved by

the methods which use some adjustments (through exhaustive

wrapper channel selection or training) on training data. All

such adjustments take more time than filter-based feature

selection and parameter induction, used for the proposed

classifier, which also favor the latter.

The comparison of the proposed classifier with another

multichannel approach, based on MLMVN (see section A.5 in

the appendix), reveals a better performance of the former. Note,

that the MLMVN approach also depends on several parameters

(such as number of selected features, number of neurons in the

hidden layer, desired root mean square error (RMSE) during

the training), which we took following the strategy described

in [25]. Proper adjustment of these parameters through cross-

validation on training data could lead to an improvement, albeit

it would be time consuming.

The experiments reported here were done using

stimulations with only one frequency f = 15 Hz, but they

can be easily extended to the case of several stimulation

frequencies. This would allow one to increase the number

of targets even more by applying frequency-coding and phase-

coding simultaneously. The latter SSVEP BCI was already

proposed in [4], using the single-channel decoding algorithm

described in section A.1 in the appendix. In [4], the frequencies

10, 12 and 15 Hz were used, and at each frequency the phase

lag was used to encode a maximal number of phases with

‘on/off’ stimulation, i.e. 6, 5 and 4 (15 in total) stimuli,

respectively, which are the limits for such a stimulation.

The methodology we presented in this paper could be used

to improve such a system in two ways. First, the sampled

sinusoidal stimulation allows one to increase the number of

targets encoded by each frequency. For example, the results

of our experiments show that instead of four phase-lagged

stimuli for 15 Hz, one can easily encode six stimuli. Thus,

even keeping the same classifier as in [4], one can increase

the number of encoded targets. Another improvement could

be achieved by using a fuzzy decoder, as proposed in this

paper. By constructing several such fuzzy decoders, one for

each frequency (to distinguish phase shifts at this particular

frequency), and by taking for each such decoder not only

the angular value Arg(ȳ1 + jȳ2) (see section 2.7), but also

the absolute value M = | maxy1
μBm

1
(y1) + j maxy2

μBm
1
(y2)|,

one can determine the stimulation frequency for which M is

maximal for all decoders and corresponding phase shifts. Here,

maxyl
μBm

1
(yl ), l = 1, 2 determine the strength of the result

from each decoder by checking the maximum of resulting

fuzzy sets. Thus, a high M value could be seen as evidence for

a particular frequency. Such a method is, as a consequence, an

extension of the method of [4] (see section A.1 in the appendix)

developed by adding multichannel decoding (instead of one

channel) and by assuming that the boundaries of the phase

classes depend not only on their means, but also on their

variances. In this way, the methodology presented here could

lead to an improvement of existing systems.

While the previously described decoding of frequency-

phase combinations is preferable, one could also use a two-

stage procedure that first identifies the observed stimulation

frequency by any of the methods developed for frequency-

coded SSVEP BCI, and then uses phase to identify the target

stimulus.

In [4] the authors analyzed how the decoding is affected

by the involvement of harmonics and found that the latter

improves the decoding quality. In our paper we restricted

ourselves to the fundamental frequency only (h = 1), but, as

we have already mentioned, the proposed decoding algorithm

is able to incorporate features from the harmonics among other

signal features. We expect this will lead to even better results.

We constructed a fuzzy classifier, the membership

function parameters of which were statistically derived from

the training data. One could possibly further increase the

accuracy of the detector by applying the more flexible

architecture of a neuro-fuzzy system [22], where many

parameters (such as means and concentration) can be adjusted

by sampling the training set, instead of the statistical induction

we used. In our feature selection procedure we did not

explicitly excluded dependence between the features. Thus,

one can foresee an improvement in classification (or, at least,

by making the classifier even more sparse) by eliminating such

dependencies.

Another improvement for the phase-coded scenario can

be expected from an optimization of the stimulation profile.

Due to hardware limitations (i.e. nonzero pixel response time

and input latency), the real screen luminance profile does

not coincide with the desired intensity profile, but rather is

a smoothed version of the latter [26], as could also be seen in

9
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figure 3. When stimulating with intensity values from the [0; 1]
range (rather than binary set {0, 1}) and accounting for the
screen-specific pixel intensity dynamics, one could construct
an intensity profile in a such way that it would more closely
follow the desired one.

The second experiment (see section 2.1) setup is similar
to the EEG-based BCIs based on synchronous (or cue guided)
protocols where the subject must follow a fixed repetitive
scheme to switch from one mental task to the next [27]. In these
synchronous BCI systems, the phenomena (to be recognized
in EEG) are time-locked to the cue and the trial lasts for
a predefined time span of several seconds. On the contrary,
asynchronous (or self-paced) protocols are based on the fact
that the subject makes voluntary self-paced decisions on when
to stop doing a mental task and when to start the next one. The
question regarding how to implement phase-coded SSVEP
BCI working in the asynchronous mode is still open.

5. Conclusion

We advocated the use of a sampled sinusoidal stimulation
mode for phase-coded SSVEP BCI. We showed that it yields
stable phase estimates and that it allows for encoding more
targets than the traditional ‘on/off’ stimulation mode for
phase-coded SSVEP BCI. We introduced a filter-based feature
selection procedure relying on circular statistics to select the
relevant features according to their impact on the stimuli/class
separability. We also proposed a multichannel fuzzy logic-
based classifier that distinguishes itself from the existing
phase-based SSVEP decoding methods for BCI which are
intrinsically single-channel ones.

Appendix. Decoding methods

A.1. Method of Jia and co-workers

In [4], the following method was proposed. Based on the
training data, the reference phases ϕRef

m, f are estimated by
averaging, over the whole training set, the Fourier coefficients
at the stimulation frequency f of each target class m =
1, . . . , N. Here, only one optimal electrode (see section A.3
in the appendix) or Oz–POz bipolar combination (as a proper
channel for the data in [4]) is considered. To decode input data
(e.g., from the test set), the Fourier coefficients at stimulation
frequency f are estimated from the same, previously selected
optimal electrode. These complex coefficients, considered as
vectors in R

2, are then projected onto the directions of all
reference ϕRef

m, f phases and the resulting target class m̃ is
selected as the one with the maximal projected value ρm̃.
If additionally to the fundamental frequency the harmonics
are also considered, then their Fourier coefficients are also
projected onto the considered reference phase directions. The
class, for which the sum of the projections of all the considered
frequencies (fundamental + harmonics) is maximal, is then
selected as the winner class.

A.2. Method of Lee and co-workers

In [7], the following method was proposed. The EEG signals
recorded from Oz channel referenced to the mastoid were

band pass filtered in the range [ f − 2 Hz, f + 2 Hz], where f

is the stimulation frequency. Based on the training data (1 min
recorded when a subject is observing a flickering stimulus

with ‘zero’ phase lag), an SSVEPRef is generated by averaging

all epochs (EEG recordings corresponding to one period of

stimulation, from one channel). The reference value tRef is
defined from the obtained SSVEPRef as the latency of the

maximum amplitude peak. In the decoding stage, the phase

lag between SSVEPRef and SSVEPgaze is evaluated in order

to identify the target class. This was done by cutting the

SSVEPgaze signal into one-period-long segments, averaging
across these segments, and by determining from the resulting

average the latency of the maximum amplitude peak, called

tpeak. Next, the difference �t = tRef − tpeak is transformed

into a phase difference θ = 2π�t f . This phase difference
θ is then wrapped to the interval [0, 2π) by (if necessary)

adding or subtracting 2π . The achieved phase distance θ is

compared to the expected phase delays θm = 2π(m − 1)/N

(m = 1, . . . , N) through an estimation of the angular distance
as Dmc

= |θm − θ |. The resulting target class is then derived as
arg min Dm

m .

A.3. Optimal channel

We also evaluated the methods described in sections A.1 and

A.2 in the appendix using an optimal channel. The latter was

chosen based on a leave-on-out cross-validation on training
data with the wrapper method, i.e. one sample (validation

data) was excluded from the training data and the classifier

was trained on each of K considered channels (see section 2.5)

on the remaining data and applied to the validation data. By
using every sample as the validation data, we aggregated all

results and obtained a measure of the classification accuracy

for every channel. The channel with the maximal accuracy

was chosen as the optimal one. After that, the classifier
was retrained for this optimal channel on the entire training

data set.

A.4. Method based on CCA

In [12], the following method was proposed. A spatial filter was
constructed to incorporate information from several channels

followed by a decoding based on a one-channel classifier.

Consider a signal x = w1
x s1(t) + w2

x s2(t) + · · · + wK
x sK (t)

as a linear combination of several EEG channels (in our case
all eight channels above the occipital lobe), and the signal

y = w1
y sin(2π f t)+w2

y cos(2π f t), where f is the stimulation

frequency. The vectors Wx = (w1
x , w

2
x , . . . , w

K
c )T and Wy =

(w1
y , w

2
y )T are estimated using a canonical correlation analysis

(CCA), to maximize the correlation coefficient between x

and y. The vector Wy = (w1
y , w

2
y )T contains the phase

information of the SSVEP. To avoid a possible ambiguity

regarding the direction of the vector Wy, its components

are estimated as: w̄1
y = sign(−Im(F (sOz)( f )))|w1

y |
and w̄2

y = sign(Re(F (sOz)( f )))|w2
y |, where sOz denotes

the recordings from the Oz channel, and F (sOz)( f ) is the
Fourier transform of sOz. The phase is then estimated as

Arg(w̄1
y + jw̄2

y ). The decoding algorithm from section A.1

in the appendix was applied for classification.

10



J. Neural Eng. 10 (2013) 036011 N V Manyakov et al

A.5. Method based on MLMVN

In [25] a multi-channel decoding method based on the

multilayer feedforward neural network with multi-valued

neurons (MLMVN) was proposed. A network with one hidden

layer with four neurons in the input layer, ten in the hidden

layer and one in the output layer was chosen as it was

recommended in [28]. As input, complex values exp(jϕm)

were used, where the ϕm are the phases extracted from four

selected channels. The selection was done by retaining the

channels with the lowest (in the training data) averaged among

all classes circular standard deviation.

Training was done based on the back-propagation

algorithm described in [28], where θm = exp(j2π(m − 1
2
)/N)

were used as the desired outputs instead of class indicator

complex values. The network was trained until the RMSE

became lower than 0.1 radians. From the output O of the

network, the resulting class index m̃ is deduced as an integer

satisfying two conditions: 2π(m̃ − 1)/N � Arg O < 2πm̃/N

and 1 � m̃ � N.
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