## Sampling a Random Variable Distributed According to Planck's Law

C. Barnett E. Canfield

June, 1970


## DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or resporsibility for the accuracy, completeness, or usefulness of any information; apparatus, product, or process disciosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Govemment or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS $626-8401$
Available to the public from the National Technical Information Service
U.S. Department of Commerce 5285 Port Royal Rd.
Springfield, VA 22161

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

## DISCLAIMIER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Charles Rarnett
Eugene Canfield
June, 1970

In some Monte Carlo radiation transport calculations one must sample a random variable which is described by Planck's Radiation Law. That is, one must sample a random variable $X$ where $X$ is described by the density function

$$
f_{x}(x)=\left\{\begin{array}{l}
\frac{15}{\pi 4} \frac{x^{3}}{e^{x}-1} \quad \text { if } x>0  \tag{*}\\
0 \text { if } x \leqslant 0
\end{array}\right.
$$

We discuss a series expansion method and a rejection method in this note.

## Series Expansion Method

Rewrite (*) as

$$
f_{X}(x)=\frac{15}{\pi^{4}} \frac{x^{3} e^{-x}}{1-e^{-x}} \text { if } x>0
$$

What follows is valid only for $x>0$. Employ the expansion $\frac{1}{1-\theta}=\sum_{k=0}^{\infty} \theta^{k}$ if $0<\theta<1$ and ( $: \%$ ) may be written as

$$
f_{x}(x)=\frac{15}{\pi^{4}} x^{3} e^{-x} \sum_{k=0}^{\infty} e^{-k x}
$$

With a little manipulation this nay be cast into the form

$$
f_{X}(x)=\sum_{n=1}^{\infty}\left(\frac{90}{n} \cdot \frac{1}{n}\right)\left(\frac{n^{4}}{6} x^{3} e^{-n x}\right)
$$

If we define

$$
\begin{aligned}
& \pi_{n}=\frac{90}{\pi^{4}} \frac{1}{n^{4}} \quad 1 \leqslant n<\infty \\
& f_{n}(x)=\frac{1}{6} n^{4} x^{3} e^{-n x} \quad 1 \leqslant n<\infty .
\end{aligned}
$$

then

$$
\begin{equation*}
f_{X}(x)=\sum_{n=1}^{\infty} \pi_{n} f_{n}(x) \quad x>0,1 \leqslant n<\infty \tag{+}
\end{equation*}
$$

where $\sum_{n=1}^{\infty} \pi_{n}=1$ and each $f_{n}$ is a density function. Let the random variable $X_{n}$ be represented by $f_{n}$. Then ( + ) suggests the following algorithm for sampling X:
(i) Sample a random variable which is uniformly distributed in ( 0,1 ). Call the result $u_{1}$.
(ii) If $\mu_{1} \leqslant \pi_{1}$ sample $X_{1}$. Call the result $x_{1}$. Then $x_{I}$ is a sample of $X$.
(iii) If the test in (ii) fails, chock to see if $u_{1} \leqslant \pi_{1}+\pi_{2}$. If the answer is yes, sample $X_{2}$. Call the result $x_{2}$. Then $x_{2}$ is a sample of K .
(iv) Continue this procedure until

$$
u_{l} \leqslant \sum_{k=1}^{n} \pi_{n}
$$

Then sample $X_{n}$. Ca?s the result $x_{n}$.
Then $x_{n}$ is a sample of $x$.

To parapirase: Exmple $X_{n}$ with probability $\pi_{n}$.
This process is potentially open ended and could go on forever. In practice, however, it is terminated after some maximum numer of tests by rounding off a number in the "if" test. Ancl in fact, except for a miracle, the sample is acquired long before this maximun number of tests is made. These assertions are supported in what follows.

Figure 1 contains a listing of the code for the series expansion method. Notice the number 1.68232 in the IF TEST. This is a six place representation of $\pi^{4} / 90$. The seventh digit is 3 . By rounding down in this manner we have assured that the test will pass by the 47 th cycle irrespective of what $R 1$ is. In effect we are using a 47 term series expansion for the Planck Law density function,

We claimed that the IF TEST passes long before the 47 th cycle. To show this proceed as follows:

Let $U$ be a random variable which is unifomly distributed in ( 0,1 ).
Define a random variable $C$ by

$$
\begin{array}{ll}
C=1 & \text { if } U \leqslant \pi_{1} \\
C=2 & \text { if } \pi_{1}<U \leqslant \pi_{1}+\pi_{2} \\
\dot{\bullet} & \\
C=k & \text { if } \sum_{i=1}^{k-1} \pi_{i}<U \leqslant \sum_{i=1}^{k} \pi_{i}
\end{array}
$$

Then $C$ counts the muber of tines required for the IF ITST to pass. It is clear that $C$ is described by the probability mass function $P_{C}$ where

$$
P_{C}(x)=\left\{\begin{array}{l}
\frac{90}{\pi^{4}} \cdot \frac{1}{x^{4}} \text { if } x \text { is a counting number } \\
0 \text { otherwise }
\end{array}\right.
$$

The expectation of $C$ is

$$
E(C)=\sum_{k=1}^{\infty} \frac{90}{\pi^{4}} k \frac{1}{k^{4}} \cong 1.1
$$

So, "on the average", 1.1 cycles are required. This makes sense when we notice that $\pi_{I} \xlongequal{\cong} .92$ which implies that only one test is required $92 \%$ of the time. Figure I contains a flow chart of the infinite series method. When compiled on the CIIIP compiler, each sample requires about 21 microseconds of 7600 time.

The algorithm for sampling a random variable which is described by a density of the form $x^{3} e^{-n x}$ is discussed in UCIR \#474.

## The Rejection Method

The infinite series method described above is not theoretically exact. Practicaily speaking its degree of inexactness is comparable to that which results from representing real numbers by terminated decimals. But, for those who prefer theoretical exactness, we present a rejection technique.

Our density function is

$$
\begin{equation*}
f_{X}(x)=\frac{15}{\pi^{4}} \frac{x^{3} e^{-x}}{\left(1-e^{-x}\right)} \quad x \geqslant 0 \tag{*}
\end{equation*}
$$

fultiply and divide (*) by $1+e^{-x} / x$ and manjpuiate the result somewhat to obtain

$$
\begin{equation*}
f(x)=\left[\frac{6}{6.25}\left(\frac{1}{6} x^{3} e^{-x}\right)+\frac{.25}{6.25}\left(4 x^{2} e^{-2 x}\right)\right] \frac{(6.25)\left(\frac{15}{\pi^{4}}\right) x}{\left(1-e^{-x}\right)\left(x+e^{-x}\right)} \tag{**}
\end{equation*}
$$

Identify as follows

$$
\begin{aligned}
\pi_{1} & \equiv 6 / 6.25, \pi_{2} \equiv .25 / 6.25 \\
f_{1}(x) & \equiv \frac{1}{6} x^{3} e^{-x} \quad x \geqslant 0 \\
f_{2}(x) & \equiv 4 x^{2} e^{-2 x} \quad x \geqslant 0 \\
h(x) & \equiv \frac{(6.25)\left(\left.\frac{15}{4} \right\rvert\, x\right.}{\left(1-e^{-x}\right)\left(x^{+} e^{-x}\right)}
\end{aligned}
$$

and ( $* *$ ) becomes

$$
\begin{equation*}
f(x)=\left[\pi_{1} f_{1}(x)+\pi_{2} f_{2}(x)\right] h(x) \quad x \geqslant 0 \tag{+}
\end{equation*}
$$

where the $f_{i}$ are densities and $h(x)$ is a rejection function. $\begin{aligned} \operatorname{Max} h(x) \equiv \hat{h} \\ 0 \leqslant x<\infty\end{aligned}$ is approximately 1.16 which implies an acceptance efficiency of about $86 \%(\hat{I} / \hat{h})$.

Let $X_{1}, X_{2}$ be represented by $f_{1}$ and $f_{2}$. Then ( + ) suggests the following sampling procedure:
(i) Sample a random variable which is uniformly distributed in $(0,1)$. Call the result $u_{1}$.
(ii) If $u_{2}<\pi_{1}$; sample $X_{1}$. Call the result $x_{1}$. If $u_{1}>\pi_{1}$ sample $X_{2}$. Call the result $x_{2}$.
(iii) Sample a random variable which is uniform distributed in ( 0,1 ). Call the result $u_{2}$.
(iv) Let: $x_{i}$, $i=1,2$, be the result of (ii). If $u_{2} \leqslant h\left(x_{i}\right) / \hat{h}$,

$$
x_{i} \text { is a sample of } \hat{\bar{X}} . \text { If } u_{2}>h\left(x_{i}\right) / \hat{h} \text {, start arain at (i). }
$$

Figure 2 shows a listing and flow chart of the code. The alforithm used for sarmpling $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$ are discussed in UCIR $\# 474$. When compiler on the CIIIP compiler, each sample requires about 30 microseconds of 7600 time.

Contparison of the Two lfethods

Table 1 shows the results of a test of both the series and rejection calculations. The results are compared with each other and with a numerical integration of the density function. 100,000 samples were taken and the number which fell into 100 intervals of length . I was determined. The columns labeled "interval number" give $k$ where $I_{k}=(.1(k-1), 1 k]$ is the k -th interval. The "numerical integration" colum gives the number of samples which should have fallen into the $k$-th interval according to the density function. The other two colums give the results of the two sarpling techniques.

We have not performed any statistical analysis on the data. A glance at the table indicates nothing to make us prefer one method over the other.

SUBRDUTINE PLANK (X)
R1=RNFL(A)
$R 2=R N F L(O)$
R3=RNFL (D)
R4=RNFL(0)
$X=-A L O G(R 1 * R 2 * R 3 * R 4)$
$A=Y=Z=1$.
RI =RNFL( $\theta$ )
S IF (1.08232*R1.LE.A) GO TO 10
$Y=Y+1$ 。
$Z=1 \cdot / Y$
$A=A+Z * Z * Z * Z$
GO TO 5
$10 x=x * Z$
RETURN
END


TIGUNE 1. STPTPG Mmom.


SUENOUTINE PLANKER(X)
4 1र1=たNFL (0)
$R 2=\mathrm{RNFL}(0)$
R3=RNFL(B)
R4=RNFL (D)
IF (R4.LF..96) GD TO 10
$\mathrm{T} T=R 1 * R 2 * R 3$
$x=-.5 * A L O G(T T)$
$T=S O R T(T T)$
GO TO 30
$10 \mathrm{R} 4=\mathrm{RNFL}$ (0)
$T=R 1 * R 2 * R 3 * R 4$
$X=-A \operatorname{LOG}(T)$
30 RI =RNFL (保)
$R L=1.1642 * R 1 *(1 .-T) *(X+T)$
IF (RL.GT.X) GO TO 4
RETURN
END

rmatis 2. PwTCPMo! maion.





## DISTRIEOION LIST

## INITRUNL

Charles Ramett (2 copies)
Dick Pentley
Helson Dyrne
Eugene Canfield (5 copies)
GiI Cooper
Gary Corman
Joe Fleck
N. C. Grayson, Jr.
Alan Findrarsh
Malvern Jester
George l'ramer
Richard McLean
Bob Melson
Joe Pettibone
Ernie Plechaty
Alan Winslow
Paul woodizand
Technical Information Dept (3 copies)
Theoretical Division Files (3 copies)
LEGAL MOTICE

 of the Cenienstorn:





 closst in mis repol







