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Standard statistical methods often provide no way to make

accurate estimates about the characteristics of hidden popula-

tions such as injection drug users, the homeless, and artists. In

this paper, we further develop a sampling and estimation techni-

que called respondent-driven sampling, which allows research-

ers to make asymptotically unbiased estimates about these

hidden populations. The sample is selected with a snowball-type
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design that can be done more cheaply, quickly, and easily than

other methods currently in use. Further, we can show that under

certain specified (and quite general) conditions, our estimates

for the percentage of the population with a specific trait are

asymptotically unbiased. We further show that these estimates

are asymptotically unbiased no matter how the seeds are

selected. We conclude with a comparison of respondent-driven

samples of jazz musicians in New York and San Francisco, with

corresponding institutional samples of jazz musicians from these

cities. The results show that some standard methods for studying

hidden populations can produce misleading results.

1. INTRODUCTION

The problem of collecting accurate information about the behavior

and composition of social groups arises in many areas of research. In

most cases, standard sampling and estimation techniques, developed

over the past 70 years, provide a means for collecting such informa-

tion. However, there are a number of important groups for which

these techniques are not applicable.

For example, injection drug users andmenwho have sex withmen

are populations of great interest to researchers because the behavior of

these groups affects the spread of HIV/AIDS and other diseases.

Unfortunately, standard sampling and estimation techniques cannot be

used on these populations. A recent report by the World Health

Organization cited inability to monitor the behavior and HIV seropre-

valence of at-risk subpopulations, like injection drug users and men who

have sex with men, as a major weakness in current HIV prevention

efforts (World Health Organization, 2000). This limitation of current

statistical methodology has received attention not just from public health

researchers, but also from statisticians and sociologists.

Standard sampling and estimation techniques require the

researcher to select sample members with a known probability of

selection. In most cases this requirement means that researchers must

have a sampling frame, a list of all members in the population. However,

for many populations of interest such a list does not exist.

A researcher wishing to study a population without a sampling

frame could attempt to construct such a frame. However, for a

number of populations this frame construction is made impractical

or impossible by, first, the small size of the target population and,
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second, the difficulty of locating members of the target population.

This difficulty could be caused by the sensitive nature of the behaviors

in the population (for example, injection drug users) or simply

because members of the target population are difficult to distinguish

from members of the general population (for example, jazz musi-

cians). These special populations that cannot be studied using

standard sampling and estimation techniques are called hidden popula-

tions. A short list of examples includes injection drug users, men who

have sex with men, artists, commercial sex workers, illegal immigrants,

participants in some social movements, draft resisters, and the homeless.

Inability to collect information about hidden populations has

complicated existing studies and forced researchers to focus on other

problems. Imagine a researcher who wishes to begin a study of, for

example, injection drug users. This researcher is immediately faced

with a huge problem—how to get a sample from the hidden popula-

tion from which one can generalize.

A first thought might be to attempt to construct a sampling

frame and then, once the frame is complete, select people with known

probability of selection from the frame. This approach brings the

problem back under the purview of standard sampling and estima-

tion. However, for reasons discussed earlier, frame construction is

extremely expensive and probably impossible—imagine trying to

make a list of all the injection drug users in a large city.

Another approach would be to reach a large number of people

via random digit dialing and then screen them for membership in the

hidden population. Again, this approach is extremely costly and

potentially very inaccurate. For example, if 1 percent of a city is a

member of the hidden population it would take approximately 50,000

screening interviews to yield a sample of size 500. Further, it is unlikely

that the resulting sample would be a simple random sample from the

hidden population because many members are not reachable by phone,

or would not reveal their behavior to an unknown interviewer over the

phone. The nature and the magnitude of these biases would be

unknown, and thus there would be no way to generalize from this

type of sample to the entire hidden population.

A more efficient way to collect information about the behavior

and composition of hidden populations is to take a sample of target

population members in an institutional setting—for example, injection

drug users in a drug rehabilitation program. This can provide researchers
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with valuable information, but since the members of the population who

enter institutional settings are a nonrandom sample from the hidden

population, it is impossible to use samples from institutional settings to

make accurate estimates about the entire hidden population. For

example, Watters and Cheng (1987) found that in San Francisco,

injection drug users outside of drug treatment programs were twice as

likely to be infected with HIV as injectors in treatment programs.

Because of the problems with these three approaches, they are

rarely used. The two most common approaches, targeted sampling

and time-space sampling, will be discussed more thoroughly in Sec-

tion 2. These two methods, as well as those previously discussed, often

fail to provide researchers with a way of making accurate estimates

about a hidden population based on a sample. These methods also

have another common feature: they implicitly treat members of the

population as discrete, atomized units. By doing so, these methods fail to

make use of an important feature ofmany hidden populations—they are

made of real people connected in a network of relationships.

Switching to this network perspective gives us a fresh and novel

approach to the study of hidden populations. Using the extra infor-

mation that is available in the social network allows one to design a

sampling and estimation scheme that, in many cases, is both cheaper

and more accurate than existing methods commonly in use.

This new sampling and estimation method, called respondent-

driven sampling, is a variation of chain-referral sampling methods that

were first introduced by Coleman (1958) under the name snowball

sampling.1 The basic idea behind these methods is that respondents are

selected not from a sampling frame but from the friendship network of

existing members of the sample. The sampling process begins when the

researchers select a small number of seeds who are the first

people to participate in the study. These seeds then recruit others to

participate in the study.This process of existing samplemembers recruiting

future sample members continues until the desired sample size is reached.

Experience with chain-referral methods has shown them to be

effective at penetrating hidden populations. However, researchers also

correctly realized that the promise of chain-referral methods was tempered

by the difficulty of making statistical inferences from this type of sample.

1Other variations of snowball sampling have also appeared under the
names link-tracing sampling and random-walk sampling.
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This difficulty occurs because chain-referral methods produce

samples that are not even close to simple random samples. For example,

in a simple random sample all people have the same probability of

selection. However, in chain-referral samples this is far from the

case. Since people recruit their friends, those with many friends are

more likely to be included in the sample than social isolates.

Another main concern among researchers centers around the

choice of seeds (the first people to be included in the sample). Since all

people in the sample are indirectly recruited by the seeds, researchers

believed that any small bias in selecting the seeds would be com-

pounded in unknown ways as the sampling process continued.

Both of these specific problems occur because chain-referral

designs fall outside of the realm of traditional probability sampling,

where units are selected from a sampling frame with known prob-

ability of selection. Instead, because of a lack of sampling frame and

unknown probability of selection, chain-referral samples have been

considered to be nonprobability or convenience samples ‘‘which can

only be assessed by subjective evaluation’’ (Kalton 1983).

Because of the nature of the chain-referral samples, numerous

researchers have questioned the estimates that can be drawn from them

(Welch 1975; Erickson 1979; Kalton 1983; Kalton and Anderson 1986;

Berg 1988; Spreen 1992; Friedman 1995; Eland-Goosensen et al.,

1997). This research is fairly well summarized by Berg (1988) when

he writes, ‘‘as a rule, a snowball sample will be strongly biased toward

inclusion of those who have many interrelationships with or are

coupled to, a large number of individuals. In the absence of knowl-

edge of individual inclusion probabilities in different waves of the

snowball sample, unbiased estimation is not possible.’’ It would be

fair to say that the conventional wisdom among sociologists, public

health researchers, and statisticians is that chain-referral sampling

holds great promise for a number of problems, especially the study

of hidden populations, but that it is so hopelessly biased that it cannot

be used to make reliable estimates.

We believe that previous researchers have been overly pessi-

mistic about chain-referral samples. In this paper we will show that it

is possible to make unbiased estimates about hidden populations from

these types of samples. Further, we will show that these estimates are

asymptotically unbiased no matter how the seeds are selected.
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2. EXISTING METHODS FOR STUDYING HIDDEN

POPULATIONS

Most studies about the characteristics of hidden populations use

either targeted sampling or time-space sampling.2 These approaches

differ in their strengths and weaknesses, but one problem that they

both share is that, for many hidden populations, they allow no

systematic or principled way to use the information collected to

make inferences about the population from which they are drawn.

In targeted sampling (Watters and Biernacki 1989) researchers

use a number of different outreach techniques to attract a sample of

people in the hidden population. This technique is also sometimes

called ‘‘street outreach’’ because it generally involves sending field-

workers into to the streets to find, and recruit, members of the hidden

population. Some of these studies also make use of some type of

chain-referral technique to recruit additional people into the sample.

Targeted sampling does succeed in giving researchers access to

a large sample of noninstitutional members of the population. How-

ever, the targeted sample is clearly not a random sample where all

people have the same probability of selection. For example, in studies

of injection drug users, safety concerns often require that recruitment

occur only during the day when most drug scenes are less active. Also,

injection drug users who do not congregate in public are almost

certain to be missed in the sampling process. There is no way to

know the magnitude of these selection biases, so it is not possible to

generalize from the sample to the target population.

A more refined alternative to targeted sampling is time-

space sampling (Muhir et al. 2001). Under this procedure,

ethnographic fieldwork is done to construct a sampling frame

identifying times when members of the target population gather

at specific locations—for example, Tuesday afternoon from 2 PM

2There have also been a number of approaches to estimating the size of
hidden populations. This research has shown that estimating the size of a
population can be different from estimating its behavior and characteristics. Some
examples are based on snowball sampling (Frank 1979; Frank and Snijders 1994;
Dávid and Snijders 2002), network scale-up designs (Killworth et al. 1998a, b),
multiplicity sampling (Sirken 1970), and capture-recapture (Sudman, Sirken, and
Cowan 1988; Hogan 1993; Heckathorn et al. 2002; Heckathorn and Jeffri 2003).
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to 6 PM at a specific park. These specific venue-day-time segments

are the primary sampling units. These units are randomly selected,

in some cases with probabilities based on the expected sample

yield at the location, and members of the target population enter-

ing the venue are intercepted and interviewed.

Because the venue-day-time segments are sampled with a

known probability, it is possible to use the sample to make statistical

inferences about the population that attends the identified venues.

Unfortunately, all venues are not accessible. For example, some

studies do not sample from venues with low expected sample yields

because it is prohibitively costly (Stueve et al. 2001). Additionally,

private venues are generally not accessible to the researchers and in

some studies safety concerns further limit the choice of venues (see

Kanouse et al. [1999] for an example).

Time-space sampling produces probability samples of the

population that attend venue-day-time segments, which are accessible

to researchers. However, in some situations this venue-attending

population differs in unknown ways from the true population of

interest. For example, drug injectors who appear in public places

accessible to researchers probably are not representative of all drug

injectors.3 These coverage problems introduce unknown bias into the

estimates, a bias that could be substantial in some situations and

minimal in others depending on the population under study.

In summary, most current studies of hidden populations

require researchers to expend a lot of effort to collect a sample from

which they can not generalize to the population of interest. Instead,

they present summary statistics about the sample and then leave

interpretation to the reader. As we will see in Section 9, this approach

can lead people to make extremely misleading conclusions. Clearly,

we would prefer a way to collect a sample from which it is possible to

accurately generalize to the population.

3One potential solution to this coverage problem is to change the
definition of the population of interest. For example, we could study brothel-
based sex workers if all brothels are accessible for researchers. However, if there
are differences between the brothel-based sex workers and nonbrothel-based sex
workers, it must be made clear that the estimates refer only to brothel-based sex
workers and not sex workers in general.
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3. A NEW APPROACH TO THE STUDY OF HIDDEN

POPULATIONS

In this paper we develop a new approach to studying hidden popula-

tions that is based on a technique called respondent-driven sampling

(Heckathorn 1997, 2002). In respondent-driven sampling, a sample is

collected using a chain-referral procedure. That is, respondents are

selected not from a sampling frame but from the social network of

existing members of the sample.

Unlike a conventional probability sampling design, where each

unit has a known and constant probability of selection, respondent-

driven sampling is based on an adaptive sampling design where the

selection procedure is affected by the realized network in the popula-

tion (Thompson and Seber 1996; Thompson and Frank 2000).

Therefore, special estimation procedures must be used.

Rather than attempting to directly estimate from the sample to

the population, as in traditional sampling and estimation, as shown in

Figure 1(a), respondent-driven sampling uses an indirect method. First,

the sample is used to make estimates about the social network connect-

ing the population. Then, this information about the social network is

Sample

Collection Estimation

Population

(a)

Social Network

Sample

Population

Estimation

Estimation

Collection

(b)Schematic of traditional
sampling and estimation

Schematic of respondent-driven
sampling

FIGURE 1. Schematic representations showing the differences between

traditional sampling and estimation and respondent-driven

sampling. By not attempting to estimate directly to from the

sample to the population, respondent-driven sampling avoids many

of the well-known problems with estimation from a chain-referral

sample.
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used to derive the proportion of the population in different groups (for

example, HIVþ or HIV�). This process is illustrated in Figure 1(b).

To explain how respondent-driven sampling works, in Section

4 we present the method for using information about the social

network to make estimates about the characteristics of the popula-

tion. In Section 5, we then describe how to collect a sample that can

be used to estimate the necessary information about the social

network. Section 6 presents the estimation techniques and conditions

under which they are unbiased. These analytic results are supported

by simulation results presented in Section 7. In Section 8 we present

results showing that the estimates are asymptotically unbiased no

matter how the seeds are selected. We conclude in Section 9 with

some real data from a study of jazz musicians that shows that institu-

tional samples and naive snowball samples can produce misleading

results.

4. USING THE SOCIAL NETWORK TO MAKE ESTIMATES

ABOUT POPULATION PROPORTIONS

The key idea behind the estimation procedure is that the estimates do

not come from the sample proportions. Rather, the sample is used to

make estimates about the network connecting the population. Then,

using information about this network, we can derive the population

proportion in different groups. By not attempting to estimate directly

from the sample to the population, we avoid many of the well-known

problems with chain-referral samples. To estimate from the social

network to the population, we will use the reciprocity model that

was introduced in Heckathorn (2002).

Consider a hypothetical population such as that shown in

Figure 2(a). The population is made up of two groups of people (for

example, HIVþ and HIV�), and we would like to estimate the

proportion of the population in each of these groups. By redrawing

the same population in a different way, as shown in Figure 2(b), we

are able to notice that the number of ties from someone in group A to

someone in group B, which in this example is 6, is the same as the

number of ties from someone in B to someone in group A. This

statement may seem quite trivial, but it turns out to be very useful
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because there are two different ways to calculate this number of cross-

group ties. First, we must begin with some notation.

We can store all the information about the social network in an

adjacency matrix X. That is, xij¼ 1 if there is a directed edge between

person i and j, otherwise xij¼ 0. In this paper we will consider only

reciprocal relations, so if it is the case that xij¼ 1, then it is also the

case that xji¼ 1. For convenience, we will call these relationships

friendships, although other relationships are possible.

An important property of a person is the number of friends

that he or she has. We define the degree of a person i, di, to be the

number of friendships that involve person i, di¼�j xij. The total

number of friendships radiating from people in group A, RA, is the

sum of the degree of all people in group A and is defined as

RA ¼
X
i2A

di ¼ NA � DA; ð1Þ

(a) (b)A visual representation of a
hypothetical population

An alternative representation
of the same population

FIGURE 2. Two different representations of the same hypothetical population

made up of two types of people—circles ( ) and diamonds ( ). In

(b) the population is drawn to emphasize the difference between

within-group friendships (represented by dotted lines) and between-

group friendships (represented by solid lines). Using just

information about the network structure and equations (8) and

(9), we are able to correctly estimate that 60 percent of the

population are circles and 40 percent are diamonds.
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where NA is the number of people in group A and DA is the average

degree of people in group A.

Now consider, for a given network X, the probability that if we

follow a randomly chosen friendship beginning with a person in group

A that we cross groups and end up at someone in group B. We can

define this probability, CA,B, as

CA;B ¼ TAB

RA
; ð2Þ

where TAB is the number of ties that contain a person in group A and

a person in group B.

Since we are considering only reciprocal ties, we know that the

number of relationships from group A to group B, in this example 6, is

the same as the number of relationships from group B to group A. We

can calculate that number two different ways: (1) the number of friend-

ships radiating from group A, RA, times the probability that one of those

relationships will lead to someone in group B, CA,B or (2) the number of

friendships radiating from group B, RB, times the probability that one of

those relationships will involve someone from group A, CB,A. That is,

RA � CA;B ¼ TAB ð3Þ

RB � CB;A ¼ TAB: ð4Þ

Setting equations (3) and (4) equal to each other and using the

definition of RA and RB, we can write

NA � DA � CA;B ¼ NB � DB � CB;A: ð5Þ

Note that equation (5) brings together both information about

the characteristics of the nodes and characteristics of the network.

Thus, we can begin to see how we can infer properties of the nodes

from information about the network.

However, even if we had complete information about the social

network—that is, if we knew DA, DB, CA,B, and CB,A—we still have

one equation with two unknowns—NA and NB, the sizes of the

population in group A and group B. If we divide both sides of

equation (5) by N, the total size of the population, then we can rewrite
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equation (5) in terms of population proportions, PPA and PPB. This

allows us to add a second constraint—that the sum of the population

proportions must be 1. So now we have

PPA � DA � CA;B ¼ PPB � DB � CB;A ð6Þ

PPA þ PPB ¼ 1; ð7Þ

where PPA is the proportion of the population in group A and PPB is

the proportion of the population in group B.

Now we have a system with two equations and two unknowns.

Using ordinary algebra, we can derive that

PPA ¼ DB � CB;A

DA � CA;B þ DB � CB;A
ð8Þ

PPB ¼ DA � CA;B

DA � CA;B þ DB � CB;A
: ð9Þ

Examination of equations (8) and (9) reveals that we can

recover the population proportions, PPA and PPB, with knowledge

only of the network structure connecting the population.

Again we can return to the hypothetical population in Figure 2.

Using the values D	¼ 4, D
¼ 3, C	,
¼ 0.25, and C
,	¼ 0.5 as well

as equations (8) and (9), we can correctly estimate that 60 percent of

the population are circles and 40 percent are diamonds. It is import-

ant to note that these equations are true for any network structure

that contains only reciprocal relations.

We can see now that it is possible to estimate the proportion of

the population in group A and group B, but only if we know some

other information about the network connecting people in these

groups. Next we will discuss methods for collecting a sample that

can be used to estimate this network information.

5. COLLECTING THE SAMPLE

A respondent-driven sample is collected via a chain-referral design.

These designs were originally introduced by Coleman (1958), and
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later elaborated by Goodman (1961) in order to study characteristics

of social networks. Work by Snijders (1992) has further reinforced the

point that chain-referral designs are more appropriate for inference

about the structure of the network than the characteristics of the

people in the network. However, much confusion has arisen because

people have ignored this advice and attempted to use chain-referral

samples to make estimates directly about the population, and not the

network connecting the populations.

To conduct a respondent-driven sample, one begins by select-

ing a set of s initial seeds that are chosen based on preexisting contact

with the study population. These seeds are paid to be interviewed and

form wave 0 of the sample.

Interviews for these studies can be organized in a number of ways

depending on the target population. A study of injection drug users

conducted interviews in a storefront office in a location accessible to the

target population (Heckathorn 2002). However, in a study of jazz musi-

cians, interviewers traveled to locations convenient to the respondents

(Heckathorn and Jeffri 2001). In some cases telephone interviews may be

preferred, as in a study of Vietnam War draft resisters (Hagan 2001).

No matter how the interview is conducted, each seed in wave 0

is supplied with c unique recruitment coupons similar to the one in

Figure 3. Subjects are told to give these coupons to other people they

know in the target population. Because each coupon is unique, it can

be used to trace the recruitment patterns in the population. When a

new member of the target population participates in the study, the

recruiter of that person is paid an additional bonus. Thus, subjects are

paid to participate and to recruit others.

FIGURE 3. An example of a recruitment coupon given to subjects.
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The recruits of people in wave 0 form wave 1. Upon com-

pletion of the screening, a person from wave 1 is provided with c

recruitment coupons and the process continues. The sampling con-

tinues in this way until the desired sample size is reached.

The choice of the number of recruitment coupons given to each

subject, c, depends on the expected recruitment behavior of the people

in the sample. For the sampling process to continue, each participant

must recruit on average at least one new participant. So, the choice of

c should be large enough so that the recruitment continues even if

some subjects choose not to recruit. However, it is also desirable to

have a small c because it means that the sample can go through many

waves before the desired sample size is reached.

If the seeds are not drawn as desired (as explained in Section

6.1), many sampling waves are preferable because they allow the

sampling process to explore parts of the network that may have had

a zero probability of being included as a seed. These long chains are

important because all members of the hidden population must have a

nonzero chance of being included in the estimation procedure. Work

on the ‘‘small-world’’ problem (Watts and Strogatz 1998; Watts 1999;

Dodds et al., 2003) seems to indicate that in most networks the

average path length between any two people is often quite short.

Thus, we can be fairly confident that with reasonably long recruit-

ment chains all members of the population have a nonzero probability

of being reached even if the seeds occupy an unusual place in the

network structure. Also, in the case where the seeds are not selected as

desired, many recruitment waves are preferable because they allow the

sampling process to converge to an equilibrium (as we will see in

Section 8).

In other chain-referral type sampling techniques—for example,

the random-walk design by Klovdahl (1989)—respondents are asked

to list the people they know in the population under study, and then

the researcher uses a randomization device to select the people to be

included in the next wave of the sample. While appropriate for

Klovdahl’s study of the social network of a large city, there are

problems with this approach to sampling in hidden populations.

First, since the populations under study are often subject to

social stigma and/or criminal prosecution, respondents are often

hesitant to give researchers information about their colleagues in the

population. This bias, sometimes called masking (Erickson 1979),
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can cause respondents to provide inaccurate information to research-

ers leading to unknown biases in the sample selection process.

Additionally, once the next member of the sample is selected via the

randomization device, it is often difficult to locate the person so that

they can be interviewed (McGrady et al. 1995; Eland-Goosensen et al.,

1997). Finally, this procedure is sometimes forbidden in the Uni-

ted States because, by requiring respondents to divulge sensitive

information about their peers, it violates federal guidelines for the

protection of human subjects (Heckathorn et al., 2002).

Respondent-driven sampling solves these problems by allowing

the subjects to do the recruitment. Thus, participants are not required

to divulge any sensitive information to the researcher, and the

researcher does not have to spend time looking for the named recruitee.

One concern with having the subjects do the recruitment is that it

could introduce unknown bias into the sampling process if the recruit-

ments are not random. However, there is some evidence that is con-

sistent with the idea that respondents recruit randomly from their

friends (Heckathorn et al. 2002).

In addition to the substantive information a researcher desires

to collect, two additional pieces of information must be collected from

each participant. These additional pieces of information are needed to

implement the estimation procedure.

First, the researcher must collect the degree of each person in

the sample.4 Second, the researcher must use the coupons to record

the recruitment patterns so that each sample member can be linked to

the person who recruited them. These two pieces of information, the

self-reported degree and the observed recruitment patterns, will be

critical for the estimation procedures that will be described more fully

in Section 6.

There are two additional important steps in the sample selec-

tion process: nonduplication and population membership verification.

It is a common problem in studies of drug injectors that some respond-

ents attempt to participate in the study multiple times in order to earn

additional money (Biernacki and Waldorf 1981). This duplication

can affect the quality of the data and thus accuracy of the estimates.

4It is known that there are a number of difficulties in collecting the
degree of a person accurately (McCarty et al. 2001). This source of nonsampling
error is not considered in this paper.
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It is an important, but difficult, problem to ensure that each person

can participate only once. Because the respondents in many hidden

populations may be unwilling or unable to provide photographic

identification, some other methods must be used to prevent

duplication. Previous researchers have had success using biometric meas-

urements that are not threatening to the respondents (Heckathorn,

Broadhead, and Sergeyev 2001).

Another important step in ensuring the quality of the sample

data is to verify that sample members are indeed members of the target

population. Again, there is a possibility that people who are not in the

population under study may attempt to participate in the study for

financial reasons. Methods of population verification must be tailored

to the specific population under study. For example, urinalysis can be

used to verify recent use of certain drugs (Kral et al. 1998).

This sampling methodology was designed to be implementable

in the real world and does not require an unrealistic amount of

funding, time, or cooperation by subjects. Because the design is

relatively simple and robust, it has already been used successfully in

a number of studies. Also, a recent review article by Semaan, Lauby,

and Liebman (2002) found that respondent-driven sampling is

cheaper, quicker, and easier to implement than other methods that

have been used for sampling hidden populations in evaluations of

HIV risk-reduction interventions.

At the end of the sampling procedure, the researcher has a

sample that consists of people who are seeds, people who are not

seeds, and a set of recruitments. In the next section, we will discuss

how to use the information in the sample to make estimates about the

social network. This information about the social network will be

used to make estimates about the population.

6. USING THE SAMPLE TO MAKE ESTIMATES ABOUT THE

SOCIAL NETWORK

Once we have selected a sample, we must then have a procedure to use

information from that sample to make estimates about the social net-

work from which it was drawn. Previous work on estimating propri-

eties of networks have often required a random sample of nodes (Frank

1981). However, it is not possible to collect such a sample from a
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hidden population. This impossibility forces us to make estimates from

a chain-referral sample, which is notoriously difficult.

6.1. Assumptions

In order to make estimates from a respondent-driven sample, we must

first assume some things about the population under study and the

way that the recruitment occurs. By making these assumptions expli-

cit, we allow for them to be tested and for research to be done about

the nature of the bias introduced by their violation.

It is helpful to think of the sample selection as a process that

alternates between the selection of nodes and the selection of edges.

That is, nodes are first drawn to form wave 0 of the sample. Then

these nodes choose edges that define recruitment period 1. The edges

in recruitment period 1 determine the nodes drawn in wave 1. The

process continues in this way with nodes selecting edges that in turn

select nodes until the desired sample size is reached.

To make our assumptions more clear, we must first develop

some notation. We begin by setting up two indicator functions: one

for the nodes, NI(j)w¼x, which tells us whether a given node, j, is

selected in wave x and one for the directed edges, EI(ej!k)r¼x, which

tells us whether a given directed edge ej!k is selected in recruitment

period x. These indicator functions are defined as follows:

NIðjÞw¼x ¼ 1 if node j is selected in wave x
0 otherwise

n
ð10Þ

EIðej!kÞr¼x ¼ 1 if edge ej!k is selected in recruitment x
0 otherwise

n
ð11Þ

First, throughout this paper we will consider only the case of

sampling with replacement, even though, in practice, the actual sam-

pling is sometimes without replacement. This assumption simplifies

the calculations because it eliminates changes in the population as the

sampling progresses.5

5Preliminary simulations for the case of sampling without replacement
show that it has a very small effect on the estimates when the sample size is small
relative to the population. However, this question deserves further research.
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Next, we will assume that the network of the hidden popula-

tion forms one connected component. That is, we assume that there is

a path between every person and every other person. This may seem

like a restrictive assumption, but a number of results from random

graph theory predict that even for very sparse graphs, almost all

nodes belong to one giant component (Newman, 2003b). For many

hidden populations, like jazz musicians or injection drug users, the

friendship network used in the recruitment is dense enough that this

assumption is reasonable.6 It is important to note that the assumption

that the network forms only one component is the only assumption

that we need to make about the structure of the network. This lack

of potentially untestable network assumptions makes respondent-

driven sampling applicable to many different types of hidden popula-

tions.

Additionally, we assume that all respondents receive and use

one coupon,7 and that when respondents recruit others, they recruit

randomly from all edges that involve them. Some readers may doubt

this random recruitment assumption, but there is some empirical

evidence that is consistent with this assumption (Heckathorn et al.

2002). To specify this recruitment assumption more clearly, we can

write

Pr½EIðej!kÞr¼xþ1 ¼ 1jNIðjÞw¼x ¼ 1� ¼ 1

dj
: ð12Þ

Finally, we will assume, initially, that the seeds are drawn with

probability proportional to their degree. That is, a person with 10

6However, given this assumption, it may not be wise to do the
recruitment over the sexual or drug-sharing networks, which are less dense and
potentially consist of multiple components. Also, this network assumption means
that respondent-driven sampling is not appropriate for groups like tax evaders,
who do not have frequent contact with each other.

7These results easily extend to the case of multiple coupons as long as all
coupons are used. However, this extension requires messier algebra, and so for
ease of presentation we presented the one coupon case. However, once multiple
coupons are allowed, new possibilities emerge for heterogeneous recruitment
behavior within a group and heterogeneous recruitment behavior between groups.
These situations clearly deserve further research.
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friends is twice as likely to be a seed as a person with 5 friends. This

assumption can be expressed mathematically as8

Pr½NIðjÞw¼0 ¼ 1� ¼ djP
i2N

di
: ð13Þ

We chose to make this assumption because in studies of hidden

populations, the people drawn as seeds are often those who are

known to the researchers. These more well-known people tend to

have more friends than average. Thus, it seems reasonable to assume

that a person’s chance of being drawn as a seed increases with his or

her degree. In order to increase the generality of respondent-driven

sampling, this assumption about the seeds being drawn with prob-

ability proportional to degree will be relaxed in Section 8.

6.2. Consequences of the Assumptions

Since we have assumed that the seeds are drawn with probability

proportional to degree, we can make some conclusions about the

the probability that certain edges will be drawn in recruitment

period 1 and then the probability that certain nodes will be

drawn in wave 1.

A relationship ej!k can be selected in recruitment period 1 only

if the node from which it points, node j, is selected in wave 0. Using

the indicator function notation and the rules of conditional probabil-

ity, we can calculate the probability that a given relationship, ej!k,

will be drawn in recruitment period 1 as follows:

Pr½EIðej!kÞr¼1 ¼ 1� ¼
Pr½NIðjÞw¼0 ¼ 1� � Pr½EIðej!kÞr¼1 ¼ 1jNIðjÞw¼0 ¼ 1�:

ð14Þ

8For equation (13) the probabilities should not be considered the
overall probability of being selected as a seed but the draw probability in each one
of the s draws that select the seeds. To see this further, compare equation (13)
with the overall probability that node j will be selected as a seed, which

is 1� ðP
i2N

diÞ�djP
i2N

di

� �s

.
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Since we have assumed that the seeds were drawn with prob-

ability proportional to their degree and that people choose randomly

from their relationships when making a recruitment, we can rewrite

equation (14) as

Pr½EIðej!kÞr¼1 ¼ 1� ¼ djP
i2N

di
� 1
dj
; ð15Þ

which can be simplified to,

Pr½EIðej!kÞr¼1 ¼ 1� ¼ 1P
i2N

di
: ð16Þ

Equation (16) tells us that if the nodes in wave 0 are drawn with

probability proportional to degree, then each relationship has the

same probability of being drawn in recruitment period 1.

This fact also gives us some information about the draw prob-

abilities of the nodes in wave 1. The probability that a node j will be

drawn in wave 1 is equal to the sum of the probabilities that the dj

relationships leading to it will be drawn in recruitment period 1. That

is,

Pr½ðNIðjÞw¼1 ¼ 1� ¼
X

dj

1P
i2N

di
¼ djP

i2N

di
: ð17Þ

Equation (17) shows us that if the seeds are drawn with

probability proportional to degree, then the nodes in wave 1 will

also be drawn with probability proportional to degree. Repeating

this argument iteratively shows that, if the nodes in wave 0 are

drawn with probability proportional to degree, then the nodes in all

successive waves also will be drawn with probability proportional to

degree.

This argument can also be repeated iteratively to show that, if

the seeds are drawn with probability proportional to degree, then the
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probability that a specific edge, ej!k, will be drawn in recruitment

period x is constant and equal for all edges:9

Pr½EIðiÞr¼x ¼ 1� ¼ 1P
i2N

di
: ð18Þ

It is important to note that these arguments apply for any

network structure with reciprocal ties and thus are quite general.

The consequences of the assumptions will prove useful when consid-

ering our estimators.

6.3. Making the Estimates

Using the results derived in the previous section, we can now derive

estimators for specific network properties and show that these esti-

mates are asymptotically unbiased. First, we show how to use the

observed recruitment behavior to estimate the probability of cross-

group connections, CA,B and CB,A. Second, we will estimate the

average degree for people in the groups, DA and DB, using the self-

reported network-size information. Third, we will combine these esti-

mates to estimate the proportion of the population falling into one of

two distinct groups, PPA and PPB.

6.3.1. Estimating CA,B and CB,A

Recall that we wanted to use the information from the sample to

estimate some properties of the network connecting the population.

The first thing that we would like to estimate is the probability that if

we follow a random friendship beginning in group A that we cross

groups and end up in group B. One way to estimate this probability,

CA,B, would be to ask respondents what percentage of their friends

fall into certain groups. However, this is not possible because for

9As was pointed out by a reviewer, equal draw probabilities for
all edges does not mean that these probabilities are independent. The
edge draw probabilities are correlated. That is, Pr[EI(ei!j)r¼t¼ 1,
EI(ej!k)r¼tþ1¼ 1] 6¼Pr[EI(ei!j)r¼t¼ 1]� Pr[EI(ej!k)r¼tþ1¼ 1]. This dependence in
the edge selection process could introduce difficulties into the estimation of
certain network properties. However, for the properties of interest in this paper it
does not present a problem.
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many items of interest—for example HIV status—respondents may

not have enough information about their peers to make accurate

assessments. The accuracy of this self-reported data is also doubtful.

Instead of basing the cross-group friendship probabilities on

self-reported data, we base them on actual behavior. When one

respondent recruits another, this behavioral link represents a network

link that can be verified by asking the recruitee to characterize the

relationship to the recruiter. Verification requires that the recruitee

identify the recruiter as an acquaintance, friend, or closer than friend,

rather than as a stranger. Only verified links should be used for

estimation.

To be able to construct an estimate for CA,B and CB,A, we must

know something about how the recruitments we observed are selected

from the set of possible recruitments. In Section 6.2, we showed that

each edge, ej!k is equally likely to be selected in each recruitment

period. That is, we showed that the recruitments we observe are a

random sample of all possible recruitments.

Recall that for each sample we observe a set of recruitments.

These recruitments can be divided into four groups—recruitments

from a person in group A to another person in group A, rAA, recruit-

ments from a person in group A to a person in group B, rAB, etc.

Since the observed recruitments are a random sample from all

edges, unbiased estimates for CA,B and CB,A are

dCA;BCA;B ¼ rAB

rAA þ rAB
ð19Þ

dCB;ACB;A ¼ rBA

rBB þ rBA
: ð20Þ

We now turn our attention to deriving estimators for DA and

DB, the average degree of nodes in group A and group B.

6.3.2. Estimating DA and DB

Recall that during the sampling process we collected the degree of

each member of our sample. If we tried to estimate the mean degree of

people in group A by taking the mean degree of the people in the

sample, our estimate would be too high, in some cases much too high

because chain-referral methods overrepresent people with high degree
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(Erickson 1979; Kalton and Anderson 1986; Eland-Goosensen et al.

1997).

Because the simple mean is not a good estimator, a different

estimation procedure is required. That is, we must take the sample

data and somehow adjust it so that it yields accurate information

about the population.10 Two distinct approaches can be used to

motivate the exact form of this adjustment, and, as we will see, both

of these approaches lead us to the same estimator. We can then see

that this estimator is asymptotically unbiased.

One approach for constructing an estimator for the average

degree, which we call the degree distribution approach, is motivated

by the degree distributions of the sample and the population. We

begin by recalling that in Section 6.2 we showed that if our assump-

tions are met, then the nodes are drawn with probability proportional

to their degree in all waves. We can use this fact, together with the

observed sample degree distribution, qA(d), to estimate population

degree distribution pA(d). This population degree distribution can be

used to estimate the average degree of people in group A, DA.

Previous work on unrelated problems (Feld 1991; Newman,

Strogatz, and Watts, 2001; Newman 2003a) has found that if nodes

are drawn with probability proportional to their degree, the sample

degree distribution, qA(d), is given by

qAðdÞ ¼
d � pAðdÞPmaxðdÞ

d¼1

d � pAðdÞ
; ð21Þ

10When attempting to estimate the average degree of people in group A,
DA, we recommend that researchers do not include the degree of the seeds. The
seeds are selected with a different and potentially unknown mechanism, and they
should really be treated differently from the data that are collected via the chain
referrals. In practice, since the number of seeds is small (about 5) relative to the
sample size (about 500), only a small amount of data are not used. For the
simulations presented in this paper, all estimates of average degree exclude the
degrees of the seeds. It is somewhat unusual not to use all of the information
collected when making the estimates from a sample, but this is not without
precedent when estimating after adaptive sampling procedures (for example, see
Thompson [1990]).
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where pA(d) is the population degree distribution andPmaxðdÞ
d¼1 d � pAðdÞ is a normalizing constant to ensure that qA(d) sums

to 1.

Equation (21) allows us to predict the sample degree distribu-

tion given the population degree distribution. However, we have the

opposite problem. That is, we know the sample degree distribution

and want to predict the population degree distribution. Since, as

described in equation (21), d � pA(d) is proportional to qA(d), it is

also the case that pA(d) is proportional to 1
d
� qAðdÞ. So, if a sample

has a degree distribution, qA(d), then the population degree distribution,

pA(d), can be estimated as

dpAðdÞpAðdÞ ¼
1
d
� qAðdÞPmaxðdÞ

d¼1

1
d
� qAðdÞ

; ð22Þ

where
PmaxðdÞ

d¼1
1
d
� qAðdÞ is a normalizing constant.

From this predicted population distribution, dpAðdÞpAðdÞ, we can

estimate the average degree in the population, DA, by recalling that

the average of a discrete probability density function f(x) isP1
x¼0 x � f ðxÞ. Since we are using a population distribution approach,

we will annotate our estimator, cDADA, with the superscript dist:

dDdist
ADdist
A ¼

XmaxðdÞ

d¼1

d � dpAðdÞpAðdÞ: ð23Þ

In equation (23) the summation in the estimator is indexed by

degree and not by sample element. If we rewrite equation (23)

indexed by sample element (see Appendix B for the derivation), we

get

dDdist
ADdist
A ¼ nAPnA

i¼1

1
di

: ð24Þ

The estimator presented in equation (24) at first appears unlike

an estimator for a population mean because the sample size, nA, is in

the numerator and not the denominator.
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However, as we will show, this estimator is equivalent to some-

thing that is more familiar—the ratio of two Hanson-Hurwitz estima-

tors,11 one that estimates RA, the total number of stubs radiating from

people in group A, and one that estimates NA, the number of people

in group A.

We write this Hansen-Hurwitz based estimator for cDADA with the

superscript hh,

dDhh
ADhh
A ¼

cRARAcNANA

¼
1

nA

PnA

i¼1

1
pi
� di

1
nA

PnA

i¼1

1
pi

; ð25Þ

where pi is the probability that person i will be selected on a specific

draw.

At first it seems we have no hope for working with equation

(25) because the draw probabilities, pi, are unknown. However,

because people are drawn with probability proportional to degree,

we do know that the relative draw probabilities for two nodes, i and k,

will be

pk

pi
¼ dk

di
8 i; k: ð26Þ

So for each person we can rewrite the draw probability in terms

of a chosen reference person k. Thus, using equation (26) to rewrite

equation (25), we get

dDhh
ADhh
A ¼

1
nA

PnA

i¼1

dk

di�pk
� di

1
nA

PnA

i¼1

dk

di�pk

: ð27Þ

11Hansen-Hurwitz estimation is a standard procedure when estimating
from data where the sampling is with replacement and the units have unequal
draw probabilities (Hansen and Hurwitz 1943; Cochran 1977; Brewer and Hanif,
1983). The basic idea, similar to the Horvitz-Thompson estimator, is that the
procedure weights each sample element by the inverse of its draw probability.
That is, units with a small chance of being selected are counted more.
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Since dk

pk
is constant, we can remove it from the numerator and

denominator. Also, canceling the 1
nA

terms, we are left with

dDhh
ADhh
A ¼ nAPnA

i¼1

1
di

: ð28Þ

Note that equation (28) does not require the unknown draw

probabilities, pi, for each node. It requires only information that is

collected in the sample.

Also, surprisingly, equations (24) and (28) are identical. That

is, we can see that these two very different approaches—one based on

degree distributions and one based on Hansen-Hurwitz estimators—

have led us to the same estimator. Since these estimators are equal, we

will drop the superscripts hh and dist and refer to the estimator as

simply cDADA.

The numerator and denominator of cDADA are both Hansen-

Hurwitz estimators that are known to be unbiased (Brewer and

Hanif 1983). It is also the case that the ratio of two unbiased estimators

is asymptotically unbiased with bias on the order of n�1, where n is the

sample size (Cochran 1977). So as nA, the sample size in group A, gets

large, E½cDADA� ! DA. Generally, this bias is considered negligible in

samples of moderate size (Cochran 1977).

We have now shown that two distinct approaches to estimate

the average degree for group A are equivalent and that this estimator,cDADA, is asymptotically unbiased.

6.3.3. Putting It All Together to Estimate PPA and PPB

Now that we have estimated certain information about the social

network that connects the population, we can use that information

to estimate PPA and PPB. Plugging equations (28) and (19) into the

equations that express the population proportions in terms of net-

work information (equations [8] and [9]), we can now estimate the

population proportion as

dPPAPPA ¼
cDBDB � dCB;ACB;AcDADA � dCA;BCA;B þ cDBDB � dCB;ACB;A

: ð29Þ
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Again we have a ratio of asymptotically unbiased estimates that

is also asymptotically unbiased. Equation (29) is the central result of

this paper. With it, we are claiming that we can make an asymptotically

unbiased estimate of the proportion of the population with a

specific trait based only on data collected during respondent-driven

sampling.

7. COMPUTER SIMULATIONS

In the previous section, we have presented a number of analytic

results arguing that our proposed population proportion estimator

is asymptotically unbiased. These analytic arguments can be further

supported with numerical simulation. Also, simulation will allow us

to consider questions that are not analytically tractable, like those

considered in Section 8.

In these simulations, we generate a population and then

repeatedly take samples (with replacement) from that population. The

properties of our proposed estimators can be evaluated by averaging

the estimates that come from these many samples. For example, if the

average of these estimates matches the true population value, then we

have further support for our argument that the estimation procedures

we have developed are unbiased. The algorithms used to perform

these simulations are described in Appendix A.

In Figure 4 we can see the results of these numerical

simulations for a wide range of population proportion values. The

average value of the estimates, represented by the circles, is the same

as the true value, represented by the dotted line. It seems that

averaging these estimates over many repetitions does in fact yield

the true population proportion in group A, thus providing strong

support for our argument that these estimates are asymptotically

unbiased.

Because the estimate is only asymptotically unbiased, and not

strictly unbiased, we might be interested in knowing the rate of

convergence and the magnitude of the resulting bias. Since our esti-

mate for population proportions is a ratio of two asymptotically

unbiased estimates, we know that the bias is on the order of n�1.

Thus, as the sample size gets big, the bias gets small very quickly.
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Numerical simulations from a population with parameters

described in Appendix A are presented in Figure 5. We see that, in

this case, the rate of convergence is rapid and the magnitude of the

bias is small. With a sample size of 500, the bias is less than one-tenth

of 1 percent (0.001) and therefore not a serious cause for concern.

However, more general results about the convergence properties, and

the resulting bias, would be desirable.

8. A NOTE ON THE CHOICE OF SEEDS

So far in our derivations we have assumed that the seeds were drawn

with probability proportional to degree. This assumption deserves

further consideration. Previously, numerous researchers have doubted

estimates from chain-referral samples because it is not possible to

select the seeds randomly from the target population (Erickson

1979; Spreen 1992; Snijders 1992; Friedman 1995). In a review article
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FIGURE 4. Numerical simulations of equation (29) supporting our analytic

argument that the respondent-driven sampling population

proportion estimates are asymptotically unbiased. With a sample

size of only 500, the bias is negligible. The vertical lines show 90

percent confidence intervals around the estimate.
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on chain-referral methods, Spreen (1992) summarizes this and other

literature: ‘‘[T]he central question in the methodological discussion

about sampling and analyzing hidden populations is basically: How

to draw a random (initial) sample?’’ Given that the choice of seeds has

long been considered a critical weakness of chain-referral methods, it

is natural to devote further attention to this topic.

Most previous chain-referral methods have assumed that the

seeds are a simple random sample from the population. However,

when actually implementing chain-referral sampling, researchers often

select people known to them to serve as seeds. These known

individuals are far from representative, and usually have much higher

degrees than other members of the hidden population. Unlike

other chain-referral methods, in respondent-driven sampling the

estimates are unbiased if the seeds are drawn with probability

proportional to degree—much closer to what actually happens in

the field.
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FIGURE 5. Numerical simulations supporting our argument that the rate of

convergence to the true estimate is quite rapid. The circles represent

the average estimate from 100,000 samples. In this case, the

magnitude of the bias is also small. For a sample size of 500 the

respondent-driven sampling estimate is within one-tenth of 1 percent

(0.001) of the true population value.
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However, even though our assumption is closer to what actually

happens, it is still the case that it is unlikely that the seeds will be

drawn exactly with probability proportional to degree. Fortunately, it

turns out that using a Markov chain argument we can show that our

estimates are asymptotically unbiased no matter how the seeds are

chosen.

8.1. Convergence of Estimates for Arbitrary Choice of Seeds: Analytic

Results

Previously in this paper, we have shown that our estimates are

asymptotically unbiased if the seeds are drawn with probability

proportional to degree. This assumption about the seeds selection

mechanism was important because it allowed us to derive two import-

ant conclusions: (1) that nodes are drawn with probability propor-

tional to their degree in all waves and (2) that edges are drawn with

uniform probability. These conclusions were critical in showing that

our estimates were asymptotically unbiased.

However, it turns out that even if the seeds are not drawn with

probability proportional to degree, the sampling process converges to

one in which people are drawn with probability proportional to

degree. So, after a number of waves the draw probability for the

nodes will converge to the situation that we needed to make our

estimates unbiased.

We can see this by setting up a Markov chain on the nodes12 as

in Thompson (2003). A Markov chain is a natural way of modeling

this problem because the draw probabilities for nodes in wave w are

only dependent on the draw probabilities of nodes in wave w� 1.

To begin, let’s construct a 1�N vector, ~��ðtÞ, which stores the

draw probability for each person j in wave t. That is,

~��
ðtÞ
j ¼ Pr½NIðjÞw¼t ¼ 1�: ð30Þ

12In a previous work on respondent-driven sampling, Markov chains
have been used on the population groups (Heckathorn 1997, 2002). These
previous Markov chain arguments showed that the sample proportions converged
independent of the seeds. This is different than the claim here, which is that the
respondent-driven sampling estimates converge to the true population value.
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Now let’s construct an N�N transition probability matrix, P,

which stores the probability that if we are at node i at time w then we

will be at node j at time wþ 1. That is,

pij ¼ 1=di if xij= 1
0 otherwise.

�
ð31Þ

Since we assumed that the network is connected and that every

person is reachable from every other person, then this transition

probability matrix P describes a regular Markov chain.13 This type

of Markov chain has a number of nice properties. In this case, the

most useful is that for all possible initial probability vectors (for any

way of selecting the seeds), the draw probability in later waves con-

verges to a unique probability vector, ~��ð�Þ, which satisfies the follow-

ing self-consistency equation (Häggström 2002):

~��ð�ÞP ¼ ~��ð�Þ: ð32Þ

The only probability vector ~��ð�Þ where equation (32) holds (see

Appendix C for proof) is

~��
ð�Þ
j ¼ djP

i2N

di
ð33Þ

So we can now see that even if the seeds are not drawn with

probability proportional to degree, the selection of the nodes in the

later waves more and more closely approximates probability propor-

tional to degree. As ~��ðtÞ ! ~��ð�Þ, the selection process for the sample

becomes closer and closer to desired. As the sample size gets larger, the

13In order for the Markov chain to be regular, it must be irreducible and
aperiodic. Because the network consists of one connect component, we know that
the chain is irreducible. Further, if the network contains one triangle, then there
are paths of both odd and even length from each state back to itself. This
condition ensures aperiodicity. Since the networks under study are large, and
since social networks have a strong tendency toward transitivity, the existence of
at least one triangle has probability approaching 1. So, since the chain is
irreducible and aperiodic, it is regular (Häggström 2002).
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people selected as desired make up a larger and larger part of the

sample and so our estimate converges to the true population value.

8.2. Convergence of Estimates for Arbitrary Choice of Seeds:

Simulation Results

Asymptotic convergence results are reassuring, but we will never be

able to select an infinitely large sample of people. Therefore, it is

important to consider the rate of convergence. Also, it is important

to note that this convergence, due to the seeds not being drawn as

desired, is different, and potentially more serious than, the previous

problems of convergence that were caused by the use of ratio estima-

tion.

Previously, some work has been done on the rate of conver-

gence to ~��ð�Þ in the case of random walks on networks (Lovász 1993)

and in Markov chain Monte Carlo methods14 (Cowles and Carlin

1996). However, we are interested in the rates of convergence of our

estimates, not the vector ~��ð�Þ. Simulation using the algorithm in

Appendix A will be used to explore rates of convergence.

To begin to explore convergence, we can consider a family of

different ways to draw the seeds:

Pr½NIðjÞw¼0 ¼ 1� ¼ ðdjÞ�P
i2N

ðdiÞ�
: ð34Þ

When �¼ 1, the seeds are drawn with probability proportional to

degree. However, it may be the case that the degree of the nodes has a

smaller or larger effect on the chance that a node is drawn as a seed.

For example, the nodes could be drawn with probability proportional

to degree squared (�¼ 2) or the nodes could be drawn independent of

degree—that is, via simple random sampling (�¼ 0).

A natural first question to ask is, for a typical network struc-

ture such as the one described in Appendix A, and a reasonable

sample size (say, 500 people): How close will our estimate be to the

14Readers familiar with Markov chain Monte Carlo (MCMC) methods
will notice a similarity between our convergence argument and the method of
selecting random draws from a difficult distribution. However, unlike in MCMC,
we do not discard the data collected during the convergence process.
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true population value even if the seeds are not drawn as assumed? For

a wide range of population proportion values, we have presented

simulation results when �¼ 0 and �¼ 2 in Figure 6. We see that for

a sample size of only 500, the estimates are all within one-half of one

percentage point (0.005) of the true population values. That is, for this

network structure, our estimates are essentially unbiased when we

selected a reasonable sample size, even though in both cases we violate

the assumption that the seeds are drawn with probability proportional

to degree.

Another natural question to ask is, how fast does our estimate

converge? For this question we can offer only preliminary results. In

Figure 7 we present simulation results for a population with 30

percent of its members in group A, and where the seeds are drawn

with probability proportional to degree squared, �¼ 2 (the other

population parameters appear in Appendix A). Note that even for

small sample sizes of fewer than 200 people, the average estimate has

a small bias—a little more than two-tenths of one percentage point

(0.002). As the sample size gets larger, the bias gets smaller. In this

case, for a sample size of 500 the bias is about one-tenth of one

percentage point (0.001), or well within rounding error and not a

serious cause for concern.

The figures are provided as illustrations—the actual rates of

convergence will depend on the characteristics of the population and
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FIGURE 6. Simulation results for a wide range of population proportion values.

In (a) the seeds are drawn with probability proportional to degree

squared (�¼ 2). In (b) the seeds are drawn independent of degree

(�¼ 0). In both cases, the selection of the seeds violates our

assumptions but has almost no effect on the estimates. The vertical

lines show 90 percent confidence intervals.
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the method of selecting the seeds. Further research in this area is

called for.

9. A WARNING ABOUT IGNORING SAMPLE DESIGN

Up until now, in almost all research on hidden populations, research-

ers have collected a sample with some nonrandom sample design and

then presented summary statistics about the sample they collected—

for example, the proportion of the sample that is HIV positive. There

is never an explicit claim that this sample can be generalized to the

population, but that claim is often implicit. This procedure can lead

researchers to draw very misleading conclusions (Thompson and

Frank 2000; Thompson and Collins 2002).
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FIGURE 7. Numerical simulations showing that the respondent-driven sampling

estimate converges to the true value even if the seeds are not drawn

as desired. (In this case the seeds are drawn with probability

proportional to degree squared.) The circles represent the average

estimate from 100,000 samples. Note that, in this case, for all sample

sizes greater than 200, the bias is less than three-tenths of 1 percent

(0.003) and not a serious cause for concern.
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We can see this problem more clearly if we look at some real

data collected from jazz musicians in San Francisco and New York. A

major problem for arts organizations is that it is often difficult to get

accurate information about the communities they seek to represent

and support (Throsby and Mills 1989). In the case of jazz musicians,

there is no sampling frame from which one can draw a sample.

To resolve this situation, researchers took a sample of jazz

musicians via respondent-driven sampling in several American cities

(Heckathorn and Jeffri 2001). A random sample from the American

Federation of Musicians was also taken and screened for jazz musi-

cians. With this data it is possible to compare the estimates from two

methods currently in use—institutional sampling and chain-referral

sampling ignoring the sample design—with the estimates from

respondent-driven sampling.

Some of the data from this study are presented in Table 1. It is

important to note the differences between the estimates depending on

the data source and the method of estimation. These differences are

not merely of academic concern. Results from studies of hidden

populations are often used to set public policy. If these policies are

set based on incorrect information, they could waste valuable

resources or even have effects counter to the goal of the policy.

In San Francisco, using the union sample we would conclude

that 81.6 percent of the city’s jazz musicians have had their work

played on the radio. However, the respondent-driven sampling

estimate, which, based on the arguments presented in this paper we

believe to be accurate, is that only 31.4 percent have had their work

played on the radio. This same pattern, overrepresentation of

successful musicians in the union sample, is also observed in New

York, but to a smaller extent. This overrepresentation of successful

musicians in the union could have been predicted ahead of time, and

in some sense serves as a reality check for the respondent-driven

sampling procedure. However, even though the direction of the bias

could have been predicted ahead of time, it would have been hard to

guess its magnitude.

In other situations, the relationship between the estimate from

the union sample and respondent-driven sampling estimate is quite

difficult to guess ahead of time. For example, in San Francisco the

union sample overestimates the percentage of females by about 10

percentage points. But in New York we observe the opposite; females
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are underestimated in the union sample by almost 7 percentage

points. The magnitude—or even direction—of this bias could not

have been guessed at ahead of time. Because of these types of prob-

lems, the sample proportion from institutional samples should be

viewed as a bad estimate of the true population proportion.

Another technique currently used by researchers of hidden

populations is to select a sample via some nonrandom sample design

and then to ignore the sample design and treat the sample as if it were

a simple random sample. In these cases, the proportion of the sample

with a given characteristic (for example, HIV positive) is used as an

estimate of the proportion of the population with that characteristic.

By comparing this naive estimate, which ignores the sample design,

with the respondent-driven sampling estimate, which correctly

accounts for the sample design, we can see that ignoring the sample

design can produce misleading estimates.

TABLE 1

Three Different Estimates of the Characteristics of Jazz Musician Populations

JAZZ MUSICIANS IN NEW YORK

Characteristic

Union Sample

(n¼ 415)

Chain-Referral Sample

(n¼ 251)

RDS Estimate

(n¼ 251)

Union member 100 39.6 25.4

Female 16.1 26.8 23.7

Solo only 19.9 8.8 11.6

Received airplay 79.6 81.6 74.9

JAZZ MUSICIANS IN SAN FRANCISCO

Characteristic

Union Sample

(n¼ 237)

Chain-Referral Sample

(n¼ 221)

RDS Estimate

(n¼ 221)

Union member 100 11.2 4.0

Female 21.9 14.5 11.1

Solo only 15.0 9.2 21.0

Received airplay 81.6 48.7 31.4

Note: The data reflect different conclusions researchers would make depending on

the source of data used. The estimates from the union sample and chain-referral sample are

sample means. The respondent-driven sampling (RDS) estimates use the data from the

chain-referral sample and the estimation techniques presented in this paper.
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As one might expect, the sample proportion from a chain-

referral sample overestimates those with many contacts in the popula-

tion—for example, union members. In New York, the naive estimate

from the chain-referral sample estimates that 39.6 percent of jazz

musicians are in the union. However, when we properly account for

the method used to collect the sample, we estimate that only 25.4

percent are union members. We observe a similar pattern, where

the naive chain-referral estimate (11.2 percent) is larger than the

respondent-driven sampling estimate (4.0 percent), in San Francisco.

The sample proportion from the chain-referral sample also

underestimates those with fewer relationships in the population—for

example, musicians who perform solo. In San Francisco, the chain-

referral estimate is that only 9.2 percent of jazz musicians perform

solo. The respondent-driven sampling estimate indicates that this was

an underestimate, and estimates the actual value to be 21.0 percent. A

similar bias, but of different magnitude, is observed in the New York

data.

We can draw a number of conclusions from this jazz musician

data. Most importantly, failure to successfully consider the sampling

design can lead researchers to make misleading conclusions. The

magnitudes, and sometimes even the directions, of these biases are

often difficult to predict ahead of time.

10. CONCLUSIONS

For many years researchers have known that chain-referral samples

are an extremely useful way to collect samples from hidden popula-

tions. However, they have also considered chain-referral samples mere

convenience samples, so hopelessly full of bias as to be useful only for

exploratory purposes. However, we have shown here that when

handled properly, chain-referral samples can produce estimates that

are asymptotically unbiased.

We have also shown that our estimation method is robust to

the actual selection mechanism for the seeds, even though this is

traditionally considered to be one of the largest problems with

chain-referral methods.

There are several other nice properties of respondent-driven

sampling. First, the sample gives us information about not just the
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people in the population but also the network connecting them.

Currently, researchers are beginning to explore ways of extracting

useful social network information from the sample (Heckathorn and

Jeffri 2001). Given the role that networks play in the transmission of

disease, this information could prove extremely useful in public health

studies.

Another desirable property of respondent-driven sampling is

that sample data can be combined with institutional data to estimate

the size of a hidden population (Heckathorn and Jeffri 2001). Pre-

vious methods for estimating the sizes of hidden populations did not

also allow for unbiased estimates of population composition.

Respondent-driven sampling is also cheaper, quicker, and

easier to implement than other methods commonly used to study

hidden populations (Semaan, Lauby, and Liebman 2002). This is a

significant advantage because it means that for a given amount of

resources, respondent-driven sampling allows researchers to have

more study sites or larger sample sizes than other methods.

There are also still many open questions. In order to produce

analytic results about the properties of the respondent-driven sam-

pling estimators we had to make assumptions that in some cases may

be violated. For example, nonrandom recruitment of friends could

influence the estimates in unknown ways. Additionally, differential

recruitment success by different types of people could bias the sample

of edges that we observe. Nonsampling error related to estimating

subject degree could also introduce bias into the estimates. Empir-

ically checking the reasonableness of the assumptions and further

research related to the robustness of the estimation procedure are

both problems worthy of further study.

We hope this work opens up new possibilities for researchers

interested in carrying out substantive research on hidden populations.

We also hope that this will spur further work not just about

respondent-driven sampling but chain-referral methods in general.

These methods have great promise for answering a number of

important questions.
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APPENDIX A: ALGORITHMS USED FROM COMPUTER

SIMULATION

It is possible to simulate the respondent-driven sampling procedure in

order to provide support for the arguments offered in this paper. The

simulation model can also be used to explore questions that are not

analytically tractable.

There are five different population parameters that we vary in

the simulations. We can vary the number of people in the population,

N, and the proportion of the population in group A, PPA. We can

also vary the super-population degree distribution, G(d), from which

the node degrees are drawn. That is, for a given degree d, GA(d) is the

probability that a node in group A will be assigned degree d. When the

number of nodes is large, the difference between the super-population

distribution, G(d), and the population degree distribution, p(d),

becomes small. There is some evidence that degree distributions of

friendship networks are right skewed (Killworth et al. 1998a,b;

McCarty et al. 2001), so unless otherwise stated we will draw from

an exponentially distributed super-population. However, the mean for

group A and group B can be different.

Finally, we can vary the interconnectedness of the two groups.

In some situations the friendship structure may be highly homo-

philous (McPherson, Smith-Lovin, and Cook 2001)—that is, people

in group A are more likely than chance to be connected to people in

group A. We formalize this with a parameter I, which represents the

interconnectedness of the two groups. I is defined as the ratio of the

actual number of cross-group ties to the possible number of

cross-group ties, where the number of possible cross-group ties is

limited by the min(RA,RB). That is,

I ¼ TAB

minðRA;RBÞ
: ðA:1Þ

To actually construct the network, we modify the algorithm pre-

sented in Malloy and Reed (1995) and Newman, Strogatz, and Watts

(2001). First, the nodes are created and assigned to each group. Then for

each node i, we draw a random number di from GA(d) if i 2 A or from
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GB(d) if i 2 B. We then assign di ‘‘stubs’’ to node i.15 The stubs represent

the friendships to be connected with other nodes. Then each di is

increased by 1 to avoid any members of the population having degree 0.

Once the stubs are set, the required number of cross-group ties

is calculated, TA,B¼ I � min(RA,RB). Then, a randomly chosen stub

from group A is paired with a randomly chosen stub from group B

until the desired number of cross-group edges has been added. The

remaining stubs are meant for within-group edges, so they are ran-

domly connected to other stubs in their group. There is a check before

each edge is added that prevents self-loops and multiple edges

between the same two nodes.

Occasionally, the graph generation procedure can get ‘‘stuck’’.

That is, there are stubs remaining but no way to connect them without

adding self-loops or multiple edges between the same nodes. In that

case, the algorithm removes all the edges and begins adding them

again from the beginning. The algorithm described here ensures that

we are randomly sampling from the ensemble of all graphs with the

specified parameters.

Once the network is complete, we can simulate the sampling

process. First, a set of s seeds is chosen to make up wave 0. Then we

randomly sample from the s � c coupons that are eligible to recruit

people for wave 1.

Once a coupon is selected, we choose a friend of the person

who holds that coupon. This new recruitee is now a member of wave 1

of the sample. We continue choosing randomly from the set of cou-

pons of people in wave 0 until all the people from wave 0 have used all

their c coupons. At this point there are s � c � c coupons to be used to

recruit wave 2. We then begin randomly sampling from the set of

coupons to be used to recruit wave 2. This process continues until the

desired sample size is reached.

In Section 6.1, we assumed that people were selected with replace-

ment. So in the simulation, each time a person is selected they are

considered a new member of the sample. In this way the composition

of the population does not change as the sampling procedure progresses.

Unless otherwise shown, all simulations are conducted with the

following population and sampling parameters:

15All random numbers were generated using routines from Numerical
Recipes (Press et al. 1992).
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* Population size (N): 10000
* Proportion of the population in group A (PPA): 0.3
* Super-population degree distribution for group A (GA(d)): expo-

nential with mean 20
* Super-population degree distribution for group B (GB(d)): expo-

nential with mean 10
* Interconnectedness (I): 0.6
* Sample size (n): 500
* Replicate samples generated for each population (r): 1000
* Seeds (s): 5
* Coupons (c): 2

APPENDIX B: DERIVATION OF dDdist
ADdist
A

In the text we made the claim that the estimator dDdist
ADdist
A takes on a more

convenient form when it is rewritten indexed by sample element. We

will show that derivation here.

First, we begin with the equation

dDdist
ADdist
A ¼

XmaxðdÞ

d¼1

d � dpAðdÞpAðdÞ: ðB:1Þ

By plugging in the definition of dpAðdÞpAðdÞ we get,

dDdist
ADdist
A ¼

XmaxðdÞ

d¼1

qAðdÞPmaxðdÞ

d¼1

1
d
� qAðdÞ

ðB:2Þ

Since the denominator is constant, we can pull it outside of the

summation and write

dDdist
ADdist
A ¼ 1PmaxðdÞ

d¼1

1
d
� qAðdÞ

�
XmaxðdÞ

d¼1

qAðdÞ: ðB:3Þ

Because qA(d) is a probability distribution, we know thatPmaxðdÞ
d¼1 qAðdÞ ¼ 1. Therefore we can rewrite
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dDdist
ADdist
A ¼ 1PmaxðdÞ

d¼1

1
d
� qAðdÞ

: ðB:4Þ

Now let’s consider the frequency distribution, fA(d), which

records the number of people in group A of degree d observed in

the sample. It is the case that fAðdÞ
nA

¼ qAðdÞ. We can now rewrite in

terms of fA(d):

dDdist
ADdist
A ¼ 1PmaxðdÞ

d¼1

1
d
� fAðdÞ

nA

: ðB:5Þ

Since it is the case that 1
d
� fAðdÞ ¼

P
i2M

1
d
where M¼ {ijdi¼ d},

we can substitute and rewrite the sum indexed by sample element i.

Moving nA to the numerator we get

dDdist
ADdist
A ¼ nAPnA

i¼1

1
d

: ðB:6Þ

This completes the derivation.

APPENDIX C: PROOF OF CONVERGENCE OF MARKOV

CHAIN

In the text we argued that the vector ~��ðtÞ converges to a unique vector

~��ð�Þ such that,

~��ð�ÞP ¼ ~��ð�Þ ðC:1Þ

We then argued that the only such vector, ~��ð�Þ that satisfies

equation (C.1) is

~��
ð�Þ
j ¼ djP

i2N

di
: ðC:2Þ
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We now rewrite equation (C.1) in expanded form

�
ð�Þ
1 �

ð�Þ
2 � � � �

ð�Þ
N

h i p11 p12 � � � p1N

p21 p22 � � � p2N

..

. ..
. . .

. ..
.

pN1 pN2 � � � pNN

2
6664

3
7775

¼ �
ð�Þ
1 �

ð�Þ
2 � � � �

ð�Þ
N

h i
: ðC:3Þ

We can now check to see if it is the case that

XN

i¼1

~��
ð�Þ
i � pij ¼ ~��

ð�Þ
j : ðC:4Þ

To verify equation (C.4), we can begin by ignoring all terms in

the sum where pij¼ 0. These are cases where nodes i and j are not

friends, so there is no possibility of person i directly recruiting person

j. We can then rewrite both sides of equation (C.4) using the defin-

itions of the transition probability matrix P and the probability vector

~��
ð�Þ
j ,

X
fijxij¼1g

diP
i2N

di
� 1
di

¼ djP
i2N

di
; ðC:5Þ

which simplifies to

X
fijxij¼1g

1P
i2N

di
¼ djP

i2N

di
: ðC:6Þ

By recalling that the sum on the left side of equation (C.6) is

over dj terms, we can see that the equation does indeed hold.

So now we have shown that for any selection of the seeds, ~��ð0Þ,
the probability of a node being selected converges to a value which is

proportional to its degree.
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