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Abstract

This paper presents an algorithm for sampling and triangulating a generic C2-smooth
surface Σ ⊂ R

3 that is input with an implicit equation. The output triangulation is guar-
anteed to be homeomorphic to Σ. We also prove that the triangulation has well-shaped
triangles, large dihedral angles, and a small size. The only assumption we make is that the
input surface representation is amenable to certain types of computations, namely compu-
tations of the intersection points of a line and Σ, computations of the critical points in a
given direction, and computations of certain silhouette points.

1 Introduction

The need for triangulating a surface is ubiquitous in science and engineering. A set of points
needs to be sampled from the input surface and then connected to generate such a triangulation.
The underlying space of the resulting triangulation should have the same topology as that of
the input surface. Nice geometric properties such as bounded aspect ratio and large dihedral
angles are also desirable. The input surface can be specified in various ways and each leads to
a different problem of surface triangulation.

When the surface is given by a set of point samples, the problem is known as surface
reconstruction for which algorithms with topological and geometrical guarantees have been
proposed [1, 2, 5, 18]. When the surface is polyhedral, i.e., made out of planar patches, the
Delaunay refinement techniques solve the problem elegantly [11, 12, 13, 15, 31].

The case in which the input surface is smooth and specified by an implicit equation oc-
curs in a variety of applications in geometric modeling, computer graphics, and finite element
methods [34, 37, 32]. Obtaining a surface triangulation that has the correct topology and nice
geometric properties (e.g. bounded aspect ratio and large dihedral angles) is an important issue
in these applications. In this paper we present an algorithm to triangulate a generic C2-smooth
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implicit surface without boundary. All vertices are sampled from the input surface and the
following guarantees are offered for any fixed λ ≤ 0.06:

(i) The underlying space of the output triangulation is homeomorphic to the input surface.

(ii) All angles of the triangles are at least arcsin
(

1
2+2λ

)
.

(iii) The dihedral angle between adjacent triangles is at least π − O(λ).

(iv) The number of vertices is no more than O( ε2

λ2 ) times the size of an ε-sample for any ε < 1
5 .

Although the output triangulation does not have bounded Hausdorff distance from the input
surface as enjoyed by an ε-sample [1, 2], property (iv) shows that our algorithm does not sample
an excessive number of vertices.

Because of the importance of the problem, a number of algorithms have been proposed
for meshing implicit surfaces across various application areas such as computer graphics and
mesh generation. These algorithms may give satisfactory experimental results, but they do not
have guarantees on the validity of the topology and/or the quality of the output triangulation.
We briefly survey a selected subset. The problem of triangulating implicit surfaces has been
investigated by Bajaj et al. [3], Bloomenthal [4], Tristano, Owen, and Canann [35], Lau and
Lo [27], and Cuillière [16]. The marching cube algorithm of Lorensen and Cline [28] can be
used to triangulate an implicit surface. The algorithm determines the edges of a cubic grid
intersecting the surface and then generate a tessellation by connecting these intersection points.
Although the algorithm is very simple, there is no guarantee that the output will have the
topology of the surface. Stander and Hart [34] proposed to vary the value of the implicit
function from −∞ to ∞ and dynamically maintain a triangulation of the changing isosurface.
It is necessary to track all critical points of the implicit function. Maintaining triangulations
of isosurfaces is a huge overhead considering the fact only one isosurface, which is the input
surface in R

3, needs to be triangulated. Witkin and Heckbert [37] proposed to spread particles
governed by differential equations on the implicit surface. At equilibrium, the particles can
be connected to form the surface triangulation, but it unclear how to ensure that the surface
topology is captured. The above algorithms do not offer any guarantee on the triangle shape,
although some of them include heuristics and illustrate their effectiveness experimentally.

In computational geometry, Chew [14] described an algorithm based on the “furthest-point”
strategy: among the intersections between a Voronoi edge and the input surface, select and in-
sert the furthest one from the sites defining the Voronoi edge. In effect, this algorithm attempts
to compute the restricted Delaunay triangulation of the surface. Edelsbrunner and Shah [22]
showed that a topological ball property is sufficient for the restricted Delaunay triangulation to
be homeomorphic to the input surface. The algorithm of Chew does not guarantee this property
or any other that ensures topological correctness.

Following the “furthest-point” strategy, Cheng, Dey, Edelsbrunner, and Sullivan [10] pro-
posed an algorithm for triangulating the skin surface [20] that provides both topological and
geometric guarantees. This algorithm exploits the fact that the local feature size is easily com-
putable for skin surfaces. The local feature size of a point x on the surface is the distance from
x to the medial axis.

Boissonnat and Oudot [8] carried forward the “furthest-point” strategy for general curved
surfaces. They showed how to grow from an initial seed triangle on each surface component
to a full triangulation with topological and geometric guarantees. The algorithm assumes that
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one can compute the local feature size of any point on the surface. Computing the medial axis
is hard and hence computing the local feature size exactly is difficult, if not impossible, for
surfaces in general. Of course, one can approximate the medial axis with existing algorithms
[1, 5, 17]. However, these algorithms require a dense sampling with respect to the local feature
size in the first place. An alternative suggested by Boissonnat and Oudot is to compute the
minimum local feature size and then to run their algorithm to obtain a dense sample from
which the medial axis can be approximated. In a second pass a new mesh can be computed
with appropriate density using the approximated local feature size.

A related work by Boissonnat, Cohen-Steiner, and Vegter [7] considered triangulating the
isosurfaces of a function E : R

3 → R. Their method evaluates E at grid points and triangulates
a box in R

3 recursively to provide a piecewise linear interpolant Ê of E. The isosurface E = 0
is approximated with the isosurface Ê = 0. The authors provided conditions on sampling to
guarantee that the computed surface Ê = 0 is isotopic to the surface E = 0. Their method
samples the function E rather than the surface E = 0. Moreover, it computes the critical
points of E as well as their indices. There are two other algorithms for producing isotopic
triangulations, one by Mourrain and Técourt [29] and another by Plantinga and Vegter [30].
More details about these isotopic triangulation algorithms can be found in the survey [6].

In this paper, we eliminate the need for local feature size computation. We show that
it suffices to identify the critical points and a silhouette of the surface or a cross-section of
the surface in a given direction. These computations are less demanding. (The critical
points of the surface in a given direction should not be confused with the critical points of
the implicit function as computed by the algorithms of Stander and Hart [34], and Boissonnat,
Cohen-Steiner, and Vegter [7].) To this end, we depart from the strategy of Boissonnat and
Oudot [8, 9] in a fundamental way. Topological ball property violations drive the refinement in
our algorithm whereas they are used only for analysis in [8, 9].

Our algorithm incrementally grows a set of point samples and maintains the restricted Delau-
nay triangulation of the samples. In the topology recovery phase, we use a simple “topological-
disk” test and certain critical and silhouette point computations to guide the sampling of points
from the surface. Our approach extends the “furthest-point” strategy that selects samples only
from the intersections between Voronoi edges and the surface. This extension allows us to
sample points adaptively and prove that the output triangulation has the same topology as
that of the surface. In the geometry recovery phase, we enforce the bounded aspect ratio and
smoothness of the surface triangulation.

2 Preliminaries

2.1 Input surface and assumptions

The input is a compact surface Σ ⊂ R
3 without boundary. We assume that Σ is specified as

the zero-level set of a function E : R
3 → R such that the second partial derivatives of E are

continuous (i.e., Σ is C2-smooth), and E(x) and ∇E(x) do not vanish simultaneously at any
x ∈ R

3.

A maximal ball whose interior is disjoint from Σ is called a medial ball. The medial axis of Σ
is the set of the centers of medial balls. We borrow some definitions from Amenta and Bern [1]
who proposed them in the context of surface reconstruction. The local feature size f(x) at a
point x ∈ Σ is the distance from x to the medial axis. Since Σ is assumed to be C2-smooth and
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compact, minx∈Σ f(x) is non-zero. The function f is 1-Lipschitz, that is, f(x) ≤ f(y)+ ‖x− y‖
for any two points x and y on Σ. A point set S ⊂ Σ is an ε-sample if for any x ∈ Σ, there is a
point p ∈ S such that ‖p − x‖ ≤ εf(x).

Throughout this paper, we use x1, x2, and x3 to denote the three orthogonal directions
forming the coordinate frame. Given any point y ∈ R

3, we use (y1, y2, y3) to denote the
coordinates of y. For any vector d in R

3, we use (d1, d2, d3) to denote its components in the
x1-, x2-, and x3-directions. Given two vectors d and d′, we use 〈d, d′〉 and d× d′ to denote their
inner and cross products, respectively. The gradient ∇E(x) is the vector

(
∂E(x)
∂x1

, ∂E(x)
∂x2

, ∂E(x)
∂x3

)
.

If the point x lies on Σ, ∇E(x) is parallel to the unit outward surface normal at x. The critical
points of Σ in a direction d are the points x ∈ Σ such that ∇E(x) is parallel to d.

We assume that Σ has finitely many critical points in any direction. We also assume that
the Hessian at any point x ∈ Σ is non-singular, i.e., for any two orthogonal tangent directions
u1 and u2 at x ∈ Σ, the matrix

(
∂2E(x)
∂ui ∂uj

)
is non-singular at x.

A unit vector d induces a height function hd on Σ: hd(x) = 〈∇E(x), d〉 for any x ∈ Σ.
The set h−1

d (0) consists of the points x ∈ Σ such that ∇E(x) is orthogonal to d, i.e., d is a
tangent direction at x. Let v be a tangent direction at x orthogonal to d. Orient space so
that d aligns with the x1-axis and v aligns with the x2-axis. We have hd(x) = ∂E(x)

∂d and so(
∂hd(x)

∂d , ∂hd(x)
∂v

)
=

(
∂2E(x)

∂d2 , ∂2E(x)
∂d ∂v

)
�= 0 because the Hessian is assumed to be non-singular at

x ∈ Σ. In other words, the points in h−1
d (0) are not critical points of hd and so it follows from

the inverse function theorem in differential topology [25] that h−1
d (0) is a collection of smooth

closed curves. We call these curves the silhouette of Σ with respect to d and denote it by Jd.

Take any direction d′ orthogonal to d. A point x ∈ Jd is critical in direction d′ if the tangent
to Jd at x is orthogonal to d′. We assume that Jd has finitely many critical points in direction
d′. Given a plane Π, the critical points of the intersection curve(s) in Σ ∩ Π in any direction
parallel to Π can be similarly defined. We also assume that the intersection curve(s) between
Σ and any plane Π have finitely many critical points in any direction parallel to Π.

2.2 Generic intersection and topological ball property

Let S be a finite point set in R
3. The Voronoi cell of a point p ∈ S is defined as Vp = {x ∈

R
3 : ∀q ∈ P, ‖p − x‖ ≤ ‖q − x‖ }. A Voronoi cell is a convex polyhedron. For 2 ≤ j ≤ 4,

the closed faces shared by j Voronoi cells are called (4− j)-dimensional Voronoi faces. The 0-,
1-, 2-dimensional Voronoi faces are called Voronoi vertices, edges, and facets, respectively. The
Voronoi diagram Vor S is the collection of all Voronoi faces.

Assuming general position, the convex hull of j ≤ 4 points in S defines a (j−1)-dimensional
Delaunay simplex σ if the vertices of σ define a (4 − j)-dimensional Voronoi face in Vor S. We
use Vσ to denote this Voronoi face. We call σ and Vσ the dual of each other. The 1-, 2-
, and 3-dimensional Delaunay simplices are called Delaunay edges, triangles, and tetrahedra,
respectively. The Delaunay simplices define a decomposition of the convex hull of S called the
Delaunay triangulation of S. We denote it by Del S.

The restricted Delaunay triangulation is defined as Del S|Σ = {σ ∈ Del S : Vσ ∩ Σ �= ∅ }.
For any simplex σ ∈ Del S|Σ, the intersection Vσ ∩ Σ is called a restricted Voronoi face. The
restricted Voronoi diagram Vor S|Σ is the collection of all restricted Voronoi faces. It will be
required that Vor S intersects Σ generically : for every Voronoi facet Vσ, any point in Vσ ∩ Σ is
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a crossing point. That is, the affine space of Vσ should not be tangent to Σ at that point. In
particular, this implies that a Voronoi vertex should not lie on Σ.

We say that a Voronoi face Vσ satisfies the topological ball property (TBP) if either Vσ∩Σ = ∅
or the restricted Voronoi face Vσ∩Σ is a closed topological ball of dimension dim(Vσ)−1, where
dim(Vσ) is the dimension of Vσ. The restricted Voronoi diagram Vor S|Σ satisfies TBP if all
its Voronoi faces satisfies TBP. Our meshing algorithm is based on the following result of
Edelsbrunner and Shah that relates the topology of Del S|Σ to Σ.

Theorem 2.1 [22] The underlying space of Del S|Σ is homeomorphic to Σ if Vor S intersects
Σ generically and Vor S|Σ satisfies TBP.

Notice that the above theorem is originally proved for non-degenerate point set, that is, no
five points are co-spherical. However, one may drop this requirement by appealing to the SOS
technique [21] that simulates genericity by perturbing the points symbolically.

2.3 Background results

We state a few geometric results in the literature that we use frequently. Let � and �′ be two
line segments, vectors, or lines. We use ∠�, �′ to denote the acute angle between the support
lines of � and �′. For any point x ∈ Σ, we use nx to denote the unit outward surface normal at
x. For any triangle pqr, we use npqr to denote a unit normal to pqr. Define two functions α(λ)
and β(λ) where

α(λ) =
λ

1 − 3λ
and β(λ) = α(2λ) + arcsin λ + arcsin

(
2 sin(2 arcsin λ)√

3

)
.

The key property of α(λ) and β(λ) is that both are O(λ) and they approach zero as λ does so.

Lemma 2.1 ([1]) Let x and y be two points on Σ. If ‖x − y‖ ≤ λf(x) for some λ < 1/3,
∠nx, ny ≤ α(c).1

Lemma 2.2 ([2]) Let pqr be a triangle with vertices on Σ. If the circumradius of pqr is less
than λf(p) for λ ≤ 1√

2
, ∠npqr, np ≤ β(λ).

Lemma 2.3 ([10]) Let x and y be two points in the intersection of a line � and Σ. Then
‖x − y‖ ≥ 2f(x) cos(∠�, nx).

3 Overview

Our algorithm’s goal is to obtain a sufficiently dense set of points S on Σ for which the generic
intersection condition and the TBP hold. The approach to obtain S is incremental. First,
we initialize S to contain the critical points of Σ in the x3-direction. Then, while either the
generic intersection condition or TBP does not hold, add one more point to S: a witness to
the violation. The correctness of the algorithm is then trivial as long as it halts, which follows
from a lower bound on how close a newly inserted point can be to the existing ones.

1The slightly stronger condition of ‖x − y‖ ≤ min{λf(x), λf(y)} is stated in [1], but the proof uses the
condition ‖x − y‖ ≤ λf(x) only.
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As it turns out, it is not so easy to identify a TBP violation for a facet or cell univocally,
rather we are satisfied with a conservative approach: a witness is always returned if there is
a violation, but a witness may also be returned even in some cases that there is no violation.
However, we guarantee there is no harm in inserting the false witnesses (i.e., these false witnesses
are also far away from existing points in S).

The generic intersection condition is violated when a Voronoi edge or facet is tangent to
Σ or when a Voronoi vertex lies on Σ. Notice that any tangential contact between Σ and a
Voronoi edge or facet is isolated by our assumption that Σ is generic. The case of a Voronoi
edge or facet tangent to Σ can be handled simply by returning as witness the tangency point,
which can be determined by solving an appropriate system of equations. We will show that
this witness is sufficiently far from the existing sample points. In contrast, a Voronoi vertex
lying on Σ can happen at any sampling density. It is a degenerate intersection between Voronoi
facets and cells with Σ, and so the algorithm pretends that Σ is perturbed locally to get around
the degeneracy. Nevertheless, we have to deal with the Voronoi vertices on Σ directly in the
proofs. The reason is that a local perturbation may change the local feature size a lot. Since
we need to obtain distance lower bounds in terms of the local feature size with respect to Σ,
we cannot assume the local perturbation in the analysis.

It is natural to test for TBP violations in increasing order of Voronoi face dimension. Testing
for a TBP violation at an edge e is simply a matter of counting the number of intersections
between e and Σ, which is easily determined by computing all intersections between e and Σ.
If there is a violation, the witness returned is the intersection point furthest from any sample
point in S that generates e. Testing a TBP violation at a facet or cell is comparatively more
complicated. We assume the generic intersection condition for all edges and facets:

Facet F : It is assumed that TBP holds for edges. F ∩Σ is a collection of closed or open curves
(with endpoints in the boundary of F ). TBP is violated if either F ∩Σ includes more than
one open curve or a closed curve. In the first case, there are more than two intersections
between Σ and the boundar of F , and the witness returned is the furthest intersection
point from any sample point in S that generates F . In the second case, checking whether
F ∩ Σ contains a closed curve is not easy, so we settle for a necessary witness instead.
We find the critical points of F ∩ Σ in some direction parallel to F . Then we compute
the lines in the plane of F that are normal to F ∩ Σ at these critical points. If any such
line intersects F ∩ Σ in two or more points, the furthest one is returned as the witness.
Clearly, such a witness exists if F ∩ Σ contains a closed curve. While this witness may
exist even if there is no closed curve, it will be shown that in either case the witness is
sufficiently far from the existing sample points.

Cell Vp : It is assumed that TBP holds for edges and facets. Vp ∩ Σ is a collection of surface
patches with or without boundaries. There is a violation to TBP if Vp ∩ Σ is not a
topological disk. A violation in particular happens if the boundary of Vp ∩ Σ consists of
more than one closed curve, and this is easily determined by checking whether the dual
triangles incident to p form one or more topological disks. Vp∩Σ cannot contain a surface
component without any boundary; otherwise, we would have placed the critical points
of this component in the x3-direction as seeds inside Vp. The hardest case is that the
boundary of Vp ∩Σ is a closed curve, but Vp ∩Σ has positive genus. We handle this case
using the silhouette Jnp , i.e., the set of points x ∈ Σ such that nx is orthogonal to np. It
is known that Jnp is a smooth closed curve and the points in Jnp are far from p. So the
test can be done as follows: either Jnp intersects some facet of Vp at a point w, or Jnp
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contains an extreme point w in a direction orthogonal to np. The point w is returned as
the witness in either case.

This completes an overview of the topology recovery part of our algorithm.

The rest of the paper is organized as follows. In Section 4, we present the analytic tools to
cope with the violations of the generic intersection condition and TBP. In Section 5, the details
of the topology recovery part of our algorithm is given. Figure 1 below illustrates the the
dependencies between the lemmas in Sections 2.3 and 4, the subroutines in Section 5, and TBP.
In Section 6, we show how to enforce bounded aspect ratio and large dihedral angles by inserting
new points that are far from existing sample points. After inserting some point(s) to repair
the geometry, we have to rerun the topology recovery part because the generic intersection
condition or TBP may no longer hold. Thus, the entire algorithm alternates between repairing
topology and geometry. The full analysis of the algorithm is presented in Section 6.

Lemma 4.14

TBP for Edge TBP for Facet TBP for Cell

VorEdge TopoDisk Silhouette

Subroutines

Lemma 2.3

FacetContact FacetCycle

Lemma 2.1 Lemma 4.1 Lemma 4.6

Lemma 4.11

Lemma 4.7 Lemma 4.8 Lemma 4.9 Lemma 4.10 Lemma 4.12 Lemma 4.13

Figure 1: Dependencies between the subroutines, lemmas, and TBP.

4 Violation

Theorem 2.1 is our main tool to recover topology. The following subsections treat the violations
of TBP for the cases of Vσ being a Voronoi edge, facet, and cell separately. In each case, we
show how to identify a point x ∈ Vσ ∩Σ such that ‖p− x‖ ≥ λf(p) for any vertex p of σ where

λ

1 − λ
< cos(α(λ) + 3β(λ))

α(λ) + β(λ) < π/3
arccos λ > α(λ) + β(λ).
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The above inequalities hold for any λ ≤ λ0 = 0.06 which we assume throughout the rest of the
paper.

The generic intersection condition may also be violated if some Voronoi vertex lies on Σ.
We defer this discussion to Section 5.1. The results in this section hold regardless of whether
some Voronoi vertex lies on Σ.

4.1 Technical results

We first prove a few technical results that we use later.

Lemma 4.1 Let p and x be two points on Σ. If ‖p − x‖ ≤ λf(p), then f(x) ≥ (1 − λ)f(p).

Proof. Because f is 1-Lipschitz, f(x) ≥ f(p) − ‖p − x‖ ≥ (1 − λ)f(p).

Lemma 4.2 Let p, x, and y be three points on Σ. If both ‖p − x‖ and ‖p − y‖ are at most
λf(p), then ‖x − y‖ ≤ 2λf(p) ≤ 2λf(x)/(1 − λ).

Proof. By the triangle inequality, ‖x − y‖ ≤ ‖p − x‖ + ‖p − y‖ ≤ 2λf(p), which is at most
2λf(x)/(1 − λ) by Lemma 4.1.

Lemma 4.3 Let e be an edge of a Voronoi cell Vp. For any point x ∈ e∩Σ, if ‖p−x‖ ≤ λf(p),
then ∠e, nx ≤ α(λ) + β(λ) < π/3.

Proof. By Lemma 2.1, ∠np, nx ≤ α(λ). The circumradius of the Delaunay triangle dual to e
is at most ‖p − x‖ ≤ λf(p). By Lemma 2.2, ∠e, np ≤ β(λ). Thus, ∠e, nx ≤ ∠e, np + ∠np, nx ≤
α(λ) + β(λ), which is less than π/3 as λ ≤ λ0.

Lemma 4.4 Let F be a facet of a Voronoi cell Vp. Let Π be the plane of F . Suppose that Π∩Σ
contains a point x such that ‖p − x‖ ≤ λf(p).

(i) The acute angle between Π and np is at most arcsin λ < β(λ).

(ii) The acute angle between Π and nx is at most α(λ) + arcsin λ < α(λ) + β(λ) < π/3.

Proof. Let pq be the Delaunay edge dual to F . We have ‖p − q‖ ≤ ‖p − x‖ + ‖q − x‖ =
2 ‖p − x‖ ≤ 2λf(p). It then follows from Lemma 2.3 that ∠pq, np ≥ arccos λ which implies
(i). By Lemma 2.1, ∠np, nx ≤ α(λ). By the triangle inequality, ∠pq, nx ≥ ∠pq, np − ∠np, nx ≥
arccos λ−α(λ). So the acute angle between Π and nx is at most α(λ)+arcsin(λ) < α(λ)+β(λ),
which is less than π/3 as λ ≤ λ0.

Lemma 4.5 Let F be a facet of a Voronoi cell Vp such that F ∩ Σ contains no tangential
contact point. Let x be a point in F ∩Σ. Let L be a line in the plane of F through x and normal
to F ∩ Σ at x. If ‖p − x‖ ≤ λf(p), then ∠L, nx < α(λ) + β(λ).
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Proof. Since L is normal to F ∩ Σ at x, nx lies in the plane containing L perpendicular to F .
This implies that ∠L, nx is the acute angle between F and nx, which is less than α(λ) + β(λ)
by Lemma 4.4(ii).

Lemma 4.6 Let p be a sample point. Let x and y be two points on Σ. If ∠xy, nx ≤ α(λ)+β(λ),
then ‖p − x‖ or ‖p − y‖ is greater than λf(p).

Proof. Assume to the contrary that both ‖p − x‖ and ‖p − y‖ are at most λf(p). By
Lemma 4.2, ‖x − y‖ ≤ 2λf(x)/(1 − λ). On the other hand, by Lemma 2.3, ‖x − y‖ ≥
2f(x) cos(∠xy, nx) ≥ 2f(x) cos(α(λ) + β(λ)). The lower and upper bounds on ‖x − y‖ to-
gether yield λ/(1 − λ) ≥ cos(α(λ) + β(λ)), contradicting λ ≤ λ0.

4.2 Violation at Voronoi edges

If a Voronoi edge violates the generic intersection condition or TBP, it intersects Σ in some
point far away from existing sample points. The next lemma establishes this fact.

Lemma 4.7 Let e be an edge of a Voronoi cell Vp.

(i) If e∩Σ contains two points, the distance between p and the further one is at least λf(p).

(ii) If the support line of e meets Σ tangentially at a point x ∈ e ∩ Σ, then ‖p − x‖ ≥ λf(p).

Proof. Consider the case in which e ∩ Σ contains two points x and y (Figures 2(a) and 2(b)).
If ‖x − y‖ ≥ λf(p), we are done. If ‖x − y‖ < λf(p), ∠xy, nx = ∠e, nx ≤ α(λ) + β(λ) by
Lemma 4.3. Then, Lemma 4.6 implies that ‖p − y‖ > λf(p).

x

y

x

y

x

(a) (b) (c)

Figure 2: The curves are subsets of Σ. A Voronoi edge (shown in bold) intersects Σ at two
points or tangentially.

Consider the case in which the support line of e intersects Σ tangentially at a point x ∈ e∩Σ
(Figure 2(c)). If ‖p−x‖ < λf(p), then ∠e, nx < π/3 by Lemma 4.3. This is impossible because
the support line of e meets Σ tangentially at x.
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4.3 Violation at Voronoi facets

We first characterize the intersection between Σ and a Voronoi facet F . Let Int X denote the
interior of a topological space X. There are three possible configurations for any connected
component I in Σ ∩ F . First, I may contain a tangential contact point between Σ and the
plane of F . Second, I may be a smooth closed curve. Third, I may be a smooth open curve
(possible degenerate). In the third possibility, if I is non-degenerate, then Int I ⊆ IntF and
the endpoints of I lie on the boundary of F . In this case, we call I a topological interval. If I is
degenerate, Σ barely cuts F at a single vertex v (e.g., Σ cuts across F at its topmost vertex).
Then I is just v and we call I a degenerate topological interval.

The generic intersection condition and TBP require that F intersects Σ non-tangentially, if
at all, and in at most one topological interval. Since we allow Voronoi vertices to be on Σ, we
also have degenerate topological intervals. We show that a new point can be sampled far away
from existing sample points in the other cases.

First, the next lemma shows that any tangential contact point between Σ and a Voronoi
facet is far away from existing sample points.

Lemma 4.8 Let F be a facet of a Voronoi cell Vp. If the plane of F meets Σ tangentially at a
point x ∈ F ∩ Σ, then ‖p − x‖ ≥ λf(p).

Proof. Since x is a tangential contact point, the angle between F and nx is equal to π/2. Then
the contrapositive of Lemma 4.4(ii) implies that ‖p − x‖ ≥ λf(p).

Because of Lemma 4.8, in the rest of this section, we focus on the case where a Voronoi
facet F does not meet Σ tangentially, i.e., F ∩Σ is a collection of closed curves and/or (possibly
degenerate) open curves.

Let L be a line in the plane of F which is normal to a curve in F ∩ Σ. In the next lemma
we establish that if L intersects F ∩Σ at two or more points, we can find a point in F ∩Σ that
is far away from existing sample points. Notice that this result holds irrespective of whether
F ∩ Σ is a closed curve or not. Although our main motivation is to get rid of closed curves in
F ∩ Σ, it is algorithmically easier to check if L intersects F ∩ Σ in at least two points instead
of whether F ∩ Σ contains a closed curve.

Lemma 4.9 Let F be a facet of a Voronoi cell Vp such that F ∩ Σ contains no tangential
contact point. Let x be a point on a curve C (possibly closed) in F ∩Σ. Let L be the line in the
plane of F that is normal to C at x. If L intersects F ∩Σ at a point other than x, the distance
from p to the furthest point in L ∩ F ∩ Σ is at least λf(p).

Proof. Refer to Figure 3. By assumption, there is a point y other than x in L ∩ F ∩ Σ.
If ‖p − x‖ ≥ λf(p), we are done. If ‖p − x‖ < λf(p), ∠xy, nx = ∠L, nx < α(λ) + β(λ) by
Lemma 4.5. Then, Lemma 4.6 implies that ‖p − y‖ > λf(p).

The next lemma considers the scenario of F intersecting Σ in two topological intervals,
assuming that each edge of F intersects Σ in at most one point. We show that at least one
endpoint of the two topological intervals is far away from existing sample points.

10



x

L

y

Figure 3: The line L is normal to the curve at x and L intersects F ∩ Σ at another point y.

Lemma 4.10 Let F be a facet of a Voronoi cell Vp such that F ∩ Σ contains no tangential
contact point. Assume that each edge of F intersects Σ in at most one point. If F ∩Σ contains
two topological intervals I and I ′, the distance between p and the furthest endpoint of I and I ′

is at least λf(p).

Proof. Let u and v be the endpoints of I. Let x and y be the endpoints of I ′. Since no edge of
F intersects Σ in two or more points, the four edges of F containing u, v, x, and y are distinct.
Let Q be the convex quadrilateral on the plane of F bounded by the support lines of these four
edges. We denote the edges of Q by eu, ev, ex, and ey according to the interval endpoints that
the edges contain. (In the degenerate case in which I = u = v, the two edges of F incident to u
give rise to two edges of Q. We arbitrarily call one of them eu and the other ev. The degenerate
case in which I ′ = x = y is handled similarly.) Refer to Figure 4(a).

Q

x

vu 

y
(λ)

x

vu 

y

Q

d

< β2

(λ)

y

x

d

Q

v
u 

< β2

(a) (b) (c)

Figure 4: A Voronoi facet (bounded by solid line segments) intersects Σ in two topological
intervals (shown as curves). The convex quadrilateral Q is shown in dashed line segments. In
(b) and (c), the direction d is the projection of np onto the plane of F .

Assume to the contrary that the distances ‖p − u‖, ‖p − v‖, ‖p − x‖, and ‖p − y‖ are less
than λf(p). Consider the Delaunay triangles dual to the edges of F containing u, v, x, and y.
Their circumradii are less than λf(p). By Lemma 2.2, the angles ∠eu, np, ∠ev, np, ∠ex, np, and
∠ey, np are at most β(λ).

By Lemma 4.4(i), the acute angle between the plane of F and np is less than β(λ).

Let d be the projection of np onto the plane of F . So ∠np, d < β(λ). It follows that
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∠eu, d ≤ ∠eu, np +∠np, d < 2β(λ). Similarly, the angles ∠ev, d, ∠ex, d, and ∠ey, d are less than
2β(λ). Then the convexity of Q implies that one of its interior angles must be greater than
π− 4β(λ), say the interior angle between ev and ex. In this case, a line parallel to d may either
cut through or be tangent to the corner of Q between ev and ex. Figures 4(b) and 4(c) show
the two possibilities. In both configurations, ∠vx, ev < 2β(λ) or ∠vx, ex < 2β(λ). Assume that
∠vx, ex < 2β(λ).

By Lemma 4.3, ∠ex, nx ≤ α(λ) + β(λ). We conclude that ∠vx, nx ≤ ∠vx, ex + ∠ex, nx <
α(λ) + 3β(λ). On the other hand, ‖v − x‖ ≤ 2λf(x)/(1 − λ) by Lemma 4.2. Then Lemma 2.3
implies that ∠vx, nx ≥ arccos(λ/(1 − λ)). Combining this with the previous upper bound on
∠vx, nx yields arccos(λ/(1−λ)) < α(λ)+ 3β(λ) and hence λ/(1−λ) > cos(α(λ)+ 3β(λ)). But
this contradicts the fact that λ ≤ λ0.

4.4 Violation at Voronoi cells

The TBP requires that Vp ∩ Σ is a topological disk. There are several possibilities when this
condition is violated. We assume that Σ does not meet the edges or facets of Vp tangentially
because such cases are already handled by Lemma 4.7 and Lemma 4.8.

• Vp ∩ Σ has more than one boundary cycle.

• Some connected component of Vp ∩ Σ is a surface without boundary.

• Vp ∩ Σ has non-zero genus.

Notice that Vp ∩ Σ is orientable because Σ is orientable. We deal with the first possibility in
Section 4.4.1. The second possibility is eliminated because the initialization in our algorithm
inserts all critical points of Σ in the x3-direction. Any component of Σ would contain two such
critical points which would violate the emptiness of Vp. It turns out that the last possibility is
hard to detect. In Section 4.4.2, we propose to enforce a stronger condition based on the notion
of silhouette. Detecting the violation of this stronger condition is easier and a new point can
be sampled readily in case of a violation.

Since we allow Voronoi vertices to lie on Σ, we give a definition of boundary cycles of Vp∩Σ
that capture degenerate cases as well. Let Bd X denote the boundary of a topological space
X. Consider a connected component C in Σ ∩ Bd Vp. The non-tangential contact assumption
implies that C is either a non-degenerate closed curve or a vertex of Vp. If C is a non-degenerate
closed curve, C is clearly a boundary cycle of Vp ∩ Σ. The case of C being a vertex v of Vp

happens when Σ barely cuts Vp at v. We consider v as a degenerate boundary cycle of Vp ∩ Σ.

4.4.1 Two or more boundary cycles

We first prove a technical result as stated in Lemma 4.11. This lemma says that the distance
from p to any point in a topological interval is dominated by its distances to the interval
endpoints. (Recall that a topological interval is allowed to degenerate to a vertex of Vp.)

Lemma 4.11 Let F be a facet of a Voronoi cell Vp. Suppose that no edge of F meets Σ
tangentially and F ∩Σ contains a topological interval I. If the distances from p to the endpoints
of I are less than λf(p), the distance from p to any point in I is less than λf(p).
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Proof. The lemma is trivially true if I degenerates to a vertex of Vp. So we can assume that I
has two distinct endpoints.

Let B be the ball centered at p with radius λf(p). Let Π denote the plane of F . Since the
distances from p to the endpoints of I are less than λf(p), B ∩Π is a disk D and the endpoints
of I lie in IntD. To prove the lemma, it suffices to show that I ⊆ Int D. Assume to the contrary
that I �⊆ Int D.

Let C be the connected component of Π ∩ Σ containing I. Notice that C �⊆ IntD because
I ⊂ C and I �⊆ IntD by assumption. For any point x ∈ Π ∩ Σ ∩ D, since ‖p − x‖ ≤ λf(p), x
cannot be a tangential contact point between Π and Σ by Lemma 4.4(ii). Thus, C ∩ IntD is a
collection of disjoint simple curves (open or closed).

We claim that C∩IntD is not connected. Assume to the contrary that C∩IntD is connected,
i.e., C ∩ IntD is a single curve. Recall that I ⊂ C, I �⊆ IntD, and the endpoints of I lie in
C ∩ IntD. It follows that (C ∩ IntD) ∪ I is a closed curve. Take an edge e of F that contains
an endpoint x of I. Since e does not meet Σ tangentially by assumption, the support line � of
e crosses C. Because � intersects I only at x, � must intersect C ∩ IntD at x and at least one
other point y. Since x, y ∈ D, both ‖p − x‖ and ‖p − y‖ are at most λf(p). By Lemma 4.3,
∠xy, nx = ∠e, nx ≤ α(λ)+β(λ). But then Lemma 4.6 implies that ‖p−x‖ or ‖p−y‖ is greater
than λf(p), a contradiction.

So we can assume that C ∩ IntD consists of at least two disjoint curves. Then, D can
be shrunk to a smaller disk D′ as follows so that D′ meets C tangentially at two points and
C∩IntD′ = ∅. First, shrink D radially until it touches C at some point a. Refer to Figure 6(a).
It follows that ‖p − a‖ < λf(p). If this shrunk D does not meet the requirement of D′ yet, we
shrink it further by moving its center towards a until we obtain the disk D′ as required. Refer
to Figure 5(b). Notice that a is one of the contact points between D′ and C.

C

F

D

a

C

F

D

a

D’

(a) (b)

Figure 5: Shrinking D to D′: (a) shows the radial shrinking and (b) shows the shrinking by
moving the center.

The plane Π intersects the two medial balls of Σ at a in two disks. Among these two disks,
let D′′ be the one that intersects D′. Let B′′ be the medial ball so that D′′ = B′′ ∩ Π. The
boundary circles of D′ and D′′ meet tangentially at a. So either D′′ ⊆ D′ (Figure 6(a)) or
D′ ⊂ D′′ (Figure 6(b)).

We claim that D′′ ⊆ D′ and radius(D′′) > λf(p). Suppose that D′ ⊂ D′′. By construction,
D′ meets Σ tangentially at two points. So one of these contact points must lie in Int D′′. This is
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Figure 6: D′ and D′′.

a contradiction because D′′ = B′′∩Π and IntB′′∩Σ = ∅ as B′′ is a medial ball. This shows that
D′′ ⊆ D′. By Lemma 4.4(ii), the acute angle between Π and na is less than α(λ)+β(λ). Observe
that the angle between the diametric segments of B′′ and D′′ incident to a is equal to the angle
between na and Π. Therefore, radius(D′′) > radius(B′′) · cos(α(λ) + β(λ)) ≥ f(a) · cos(α(λ) +
β(λ)) > λf(a)/(1 − λ) as λ ≤ λ0. It follows from Lemma 4.1 that radius(D′′) > λf(p). This
completes the proof of our claim.

By our claim, radius(D′) ≥ radius(D′′) > λf(p). But D′ is obtained by shrinking D = B∩Π
and radius(B) = λf(p), a contradiction. In all, the contrapositive assumption that I �⊆ IntD
cannot hold. It follows that the distance from p to any point in I is less than λf(p).

Lemma 4.11 is used in proving Lemma 4.12, which says that if Vp ∩ Σ has more than one
boundary cycle, some edge of Vp intersects Σ in a point far away from existing sample points.
It is convenient to distinguish between different types of cycles in Vp∩Σ. A boundary cycle is of
type 1 if it is degenerate or a concatenation of topological intervals in the intersections between
Σ and the facets of Vp. A boundary cycle is of type 2 if it is non-degenerate and contained in
a facet of Vp.

Lemma 4.12 Let p be a sample point. Assume that the following conditions hold.

• Σ does not meet any edge or facet of Vp tangentially.

• Vp ∩ Σ contains at least two boundary cycles of type 1.

Then the distance from p to the furthest intersection point between Σ and the edges of Vp is at
least λf(p).

Proof. Assume to the contrary that the distances from p to the intersection points between Σ
and the edges of Vp are less than λf(p). This will lead to contradictions thereby proving the
lemma. We first prove a technical result that will be used later.

Claim 1 Let x ∈ Σ be a vertex of Vp such that ‖p − x‖ ≤ λf(p). Let E be a set
of edges of Vp incident to x that point towards the same side of Σ. The smallest
cone enclosing E with apex x and axis nx cannot contain a point y ∈ Σ other than
x such that ‖p − y‖ ≤ λf(p).
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Proof. By Lemma 2.2, each edge in E makes an angle at most β(λ) with np. By
Lemma 2.1, ∠nx, np ≤ α(λ). Therefore, each edge in E makes an angle at most
α(λ) + β(λ) with nx. So the aperture of the smallest cone enclosing E with apex
x and axis nx is at most 2α(λ) + 2β(λ). Let y ∈ Σ be any point other than x
in this cone. Thus, ∠nx, xy ≤ α(λ) + β(λ) < π/3 as λ ≤ λ0. Then Lemmas 2.3
and 4.1 imply that ‖x − y‖ ≥ 2f(x) cos(∠nx, xy) ≥ f(x) ≥ (1 − λ)f(p). Since
‖p−y‖ ≥ ‖x−y‖−‖p−x‖ ≥ (1−2λ)f(p), ‖p−y‖ ≥ λf(p) as λ ≤ λ0 = 0.06.

Lemma 4.11 implies that the boundary cycles of type 1 lie strictly inside a closed ball B
centered at p with radius λf(p). By a result of Boissonnat and Cazals [5], any closed ball
centered at p with radius less than f(p) intersects Σ in a topological disk. Thus B ∩ Σ is a
topological disk. It follows that each non-degenerate boundary cycle of type 1 bounds exactly
one topological disk in B ∩ Σ (strictly inside B). Since the boundary cycles are disjoint, the
topological disks bounded by them are either disjoint or are nested. This means there exists
one such topological disk that does not contain any cycle of type 1 inside. The next claim
proves some properties of such a topological disk.

Claim 2 Let C be a boundary cycle of type 1 bounding a topological disk D which
does not contain any other boundary cycle of type 1. Then, (i) C is a non-degenerate
boundary cycle, (ii.a) D does not contain any other boundary cycles and (ii.b) D
lies in Vp.

Proof. Consider (i). If not, C is an isolated vertex v of Vp in the intersection
Vp ∩ Σ. The edges of Vp incident to v must point towards the same side of Σ.
Indeed, otherwise, Σ intersects the interior of Vp in a small neighborhood of v,
contradicting the assumption that v is an isolated point in the intersection Vp ∩ Σ.
On the other hand, Claim 1 is contradicted because ‖p−v‖ < λf(p) and p lies inside
the smallest cone with apex v and axis nv that encloses the edges of Vp incident to
v. This proves (i).

Consider (ii.a). By the definition of C, D does not contain other boundary
cycles of type 1. Assume to the contrary that D contains a boundary cycle C ′ of
type 2. So C ′ is contained in a facet of Vp. Since D lies strictly inside B, C ′ lies
strictly inside B. But by applying Lemma 4.9 to C ′, the distance from p to some
point in C ′ is at least λf(p) = radius(B), a contradiction.

Consider (ii.b). It is sufficient to show that IntD lies in Vp. Suppose not. Then
Int D lies completely outside Vp. Otherwise, Int D would contain a boundary cycle
which is prohibited by (ii.a). Refer to Figure 7. Take an edge e of Vp that intersects
C. Let x be an intersection point between e and C. By Lemma 4.3, ∠e, nx < π/3.
Thus, the support line of e intersects Σ transversally at x. Let � be a line outside
Vp that is parallel to and arbitrarily close to the support line of e. Then � must
intersect Int D transversally at a point x1 arbitrarily close to x.

Since Bd Vp is a topological sphere, it is divided by C into two topological disks.
Let T denote one of them. Then T ∪ D is a topological sphere. Since � intersects
Int D at x1, � must intersect T ∪ D at another point x2 �= x1.

The point x2 must lie on D because T ⊆ Bd Vp and � lies outside Vp. By
Lemma 2.3, ‖x2 − x1‖ ≥ 2f(x1) cos(∠�, nx1). Note that x1 is arbitrarily close to
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Figure 7: Proof of Claim 2: disk D with the opening C is like a ‘sack’ that contains a part of
Vp inside.

x and ∠�, nx = ∠e, nx < π/3. Thus, ∠�, nx1 < π/3 and so ‖x2 − x1‖ ≥ f(x) ≥
(1 − λ)f(p) by Lemma 4.1. But this is a contradiction because D lies inside B
whose diameter is 2λf(p) < (1 − λ)f(p).

Let C be a boundary cycle as stated in Claim 2. Let D be the topological disk in B ∩ Σ
bounded by C. Let F be the set of facets of Vp that intersect C. Each facet in F bounds a
half-space containing p. The intersection of these half-spaces is a convex polytope P containing
Vp. Since D lies in Vp by Claim 2, D lies in P too.

Let C ′ be another boundary cycle of type 1 which must exist by the assumption of the
lemma. Recall that both C and C ′ lie inside B ∩ Σ by Lemma 4.11. Let ρ be a curve in
(B ∩Σ) \ IntVp such that ρ connects C with C ′. Since D ⊂ P and the contact between D and
Bd P is non-tangential, ρ leaves P when ρ leaves D. Since C ′ ⊂ Vp ⊆ P , ρ must return to some
facet of P in order to meet C ′ eventually. Let G be a facet of P that ρ intersects after leaving
D. Let y be a point in ρ ∩ G. Let F be the facet of Vp contained in G. By the definition of P ,
C must intersect F .

If C ∩F consists of two or more topological intervals, Lemma 4.10 is applicable and we are
done. So we assume in the rest of the proof that C ∩ F is a single topological interval I. Refer
to Figure 8.

Claim 3 Each edge of F that contains an endpoint of I is contained in some edge
of G.

Proof. Consider an endpoint z of I. The point z lies on the boundary of F , which
means that the other facet(s) of Vp that share z with F are intersected by C. So
the planes of these facets also bound P . It follows that the edges of F containing z
are contained in some edges of G.

It follows from Claim 3 that the endpoints of I lie on the boundary of G. Let x be the
closest point to y on I. Notice that x ∈ I ⊂ C ⊂ B ∩ Σ and y ∈ ρ ⊂ B ∩ Σ. So the distances
from p to x and y are at most radius(B) = λf(p). Let L be the line passing through x and y.
There are three cases to consider.

16



ρC C’

G

I

ρ

x

y

(a) (b)

Figure 8: (a) Two cycles C and C ′ drawn schematically on the patch B∩Σ. The path ρ starting
from C goes outside Vp and then has to reach Vp again to reach C ′. (b) A different view with
the polyhedron P . The lower bold curve denotes C and its intersection with the shaded facet
G is a topological interval I. The curved patch shown is part of (B ∩ Σ) \ IntVp. The curved
path on it is ρ.

• Case 1: I is a degenerate interval. So I = x is a vertex of F . By Claim 3, the two edges
of F incident to x are contained in edges of G. So x is also a vertex of G. Let e1 and e2

be the two edges of G incident to x (which contain the edges of F incident to x). Since
I is a degenerate interval, e1 and e2 must point towards the same side of Σ. But then
Claim 1 is contradicted because y lies inside the smallest cone with apex x and axis nx

that encloses e1 and e2.

• Case 2: I is non-degenerate and x lies in the interior of G. Then L intersects I at x at
right angle. By Lemma 4.5, ∠L, nx < α(λ)+ β(λ). But then ‖p−x‖ or ‖p− y‖ is greater
than λf(p) by Lemma 4.6, a contradiction.
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Figure 9: In (a), the curve denotes C ∩ F and ∠L, d ≤ ∠e, d. In (b), the angle ∠�, nx is an
increasing function of ∠�, d.
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• Case 3: I is non-degenerate and x lies on the boundary of G. Let e be an edge of G
containing x. By Claim 3, e contains an edge of F which contains x. Let d be the
projection of nx onto the plane of G. Refer to Figure 9(a). Since x is the closest point
on I to y, ∠L, d ≤ ∠e, d. Next, observe that for any line � in the plane of G, the angle
∠�, nx increases as the angle ∠�, d increases. Refer to Figure 9(b). We conclude that
∠L, nx ≤ ∠e, nx, which is at most α(λ)+β(λ) by Lemma 4.3. But then ‖p−x‖ or ‖p−y‖
is greater than λf(p) by Lemma 4.6, a contradiction.

4.4.2 Silhouette

Consider the possibility of some connected component of Vp ∩ Σ being a closed surface. This
closed surface must contain two critical points of Σ in the x3-direction. Therefore, this possi-
bility is eliminated by our algorithm because we start by including all critical points of Σ in
the x3-direction as sample points.

The remaining possible violation of TBP is that Vp∩Σ is connected, has exactly one bound-
ary cycle, and has positive genus. Intuitively, Vp ∩ Σ contains a handle and Morse theory says
that there should be a critical point of Σ in the x3-direction. However, it is not guaranteed that
this critical point lies inside Vp. (If we were, the initialization in our algorithm would eliminate
this possibility.)

Figure 10: The closed dashed curve cuts a topological disk from the torus which contains all four
critical points of the torus: a maximum (black), a minimum (grey), and two saddles (white).

Figure 10 illustrates this possibility. A closed dashed curve cuts a topological disk from
the torus. The parts of the topological disk in front are shown shaded and the rest of the
topological disk is at the back. All the critical points of the torus lie on the topological disk.
Suppose that the facets of a Voronoi cell Vp intersects a torus at this closed dashed curve such
that the bounded topological disk lies outside Vp and the rest of the torus lies inside Vp. Then Vp

violates TBP although the surface clipped within Vp is connected, has a single boundary cycle,
and has no critical point. Apparently it may seem that a convex polytope cannot intersect the
standard torus in a closed curve as shown in the figure. However, one may imagine deforming
the torus to admit a closed curve with the stated property.

We propose a stronger condition to ensure that Vp ∩ Σ is a topological disk. The violation
of this stronger condition can be detected and a new point can be sampled readily.

Lemma 4.13 below states that if a connected component M of Vp ∩ Σ is connected, has
exactly one boundary cycle, and avoids Jd, then M is a topological disk.
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Lemma 4.13 Let M be a connected component of Vp ∩ Σ such that the boundary of M is a
single boundary cycle. If the boundary cycle of M is degenerate or there is a direction d such
that M ∩ Jd = ∅, M is a topological disk.

Proof. If the boundary cycle of M is degenerate, M is a vertex of Vp and so M is a degenerate
topological disk. Otherwise, M is a connected compact 2-manifold and its boundary is a simple
closed curve by the assumption of the lemma. Let d be a direction satisfying the condition of
the lemma. Let H be a plane perpendicular to d. Consider the map ϕ : M → H that projects
each point of M orthogonally to H. Since M is connected and compact and M has a single
boundary cycle, it suffices to prove that ϕ is injective.

Assume to the contrary that ϕ is not injective. Then there is a line L parallel to d that
intersects M in two or more points. Let x and y be two consecutive intersection points along
L. Let M ′ be the connected component of Σ containing M . By the convexity of Vp, x and y
are consecutive intersection points in L ∩ M ′ too.

Since M ∩ Jd = ∅, neither x nor y belongs to Jd, which means that neither nx nor ny is
orthogonal to d. Because x and y are consecutive in L∩M ′, nx and ny are oppositely oriented in
the sense that the inner products 〈nx, d〉 and 〈ny, d〉 have opposite signs. Since M is connected,
there is a smooth curve ρ in M connecting x and y. The normal to Σ changes smoothly from
nx to ny along ρ. By the mean-value theorem, there is a point z ∈ ρ such that nz is orthogonal
to d. But then z ∈ M ∩ Jd, contradicting the emptiness of M ∩ Jd.

By Lemma 4.13, when we are left with the case that Vp ∩ Σ is connected and has a single
boundary cycle, it suffices to check whether Vp ∩Σ intersects Jd where d = np. If not, Vp ∩Σ is
a topological disk. Otherwise, the following result says that any point in Vp∩Jd can be inserted
as a new sample point.

Lemma 4.14 Let p be a sample point. Let d = np. If x is a point in Vp ∩ Jd, ‖p−x‖ ≥ λf(p).

Proof. If ‖p − x‖ < λf(p), Lemma 2.1 would imply that ∠np, nx ≤ α(λ). But this cannot be
the case because nx is orthogonal to np by definition.

5 Topology recovery

In this section, we present an algorithm to sample a point set S from Σ. We discuss how to
handle Voronoi vertices lying on Σ in Section 5.1, which is the remaining violation of the generic
intersection condition that we did not address in the previous section. When some Voronoi
vertices lie on Σ, Del S|Σ contains their dual Delaunay tetrahedron. The handling of this case
boils down to extracting a triangulated surface Tri S|Σ from Del S|Σ to approximate Σ. The
definition of TriS|Σ is given in Section 5.1. In Section 5.2, we present some numerical primitives
needed by our algorithm. Section 5.3 describes several subroutines. These subroutines sample
points from Σ based on the results in the Section 4. In Section 5.4, we put these subroutines
together to form the topology recovering algorithm. Section 5.5 describes the analysis of the
algorithm.
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5.1 Handling Voronoi vertices on the surface

Our idea is to conceptually perturb Σ to obtain another surface Σ′ so that no Voronoi vertex
lies on Σ′. The perturbation is kept small so that Σ remains homeomorphic to Σ′.

We elaborate on the conceptual perturbation. Let S be the current set of sample points on
Σ. Let U be the subset of Voronoi vertices of Vor S that lie on Σ. Let Bv,δ denote the ball
centered at v ∈ U with radius δ. Refer to Figure 11(a). First, choose δ small enough so that
the following conditions hold for each v ∈ U :

C1: Σ ∩ Bv,δ is a topological disk.

C2: Bv,δ does not intersect Bw,δ for any other Voronoi vertex w ∈ U .

C3: Bv,δ intersects only the Voronoi edges and facets incident to v.

C4: Within Bv,δ, the Voronoi edges incident to v intersect Σ only at v.

Condition C1 guarantees that for each v ∈ U , Σ ∩ Bv,δ separates Bv,δ into two regions,
one on each side of Σ. Let Rv denote the region inside Σ. Let Dv denote the portion of the
boundary of Bv,δ inside Rv. Notice that Dv is a topological disk.

We obtain a new surface by replacing Σ ∩ Bv,δ with Dv for every Voronoi vertex v ∈ U .
Refer to Figure 11(b). The new surface needs to be smoothed at the the sharp boundary of Dv.
Since arbitrarily high curvature can be introduced for the smoothing, the smoothing happens
in an arbitrarily small neighborhood of the boundary of Dv . Hence, it has no effect on the
conceptual perturbation. Let Σ′ denote the resulting surface.

Condition C2 guarantees that the above disk replacements can be performed simultaneously
for all vertices in U . Condition C3 guarantees that only Voronoi edges, facets, and cells incident
to v are affected by the perturbation.

δB

Σ
v

e’

v, e δB
vD

v

e’

v, e

(a) (b)

Figure 11: The solid curve denotes Σ. The shaded area denotes the inside of Σ. The bold curve
on the right denotes the topological disk Dv. The Voronoi edge e′ is treated as not intersecting
Σ at v, while the Voronoi edge e is treated as intersecting Σ at v.

The idea is to use Del S|Σ′ instead of Del S|Σ as the triangulation approximating Σ. We do
not actually perturb Σ to obtain a new surface Σ′. Instead, we perform a simulation. This allows
us to exclude some triangles from Del S|Σ to obtain Del S|Σ′ . The details of the simulation are
as follows.

Let uv be a Voronoi edge incident to v. Since our topology recovery algorithm will first
check for tangential contacts between Σ and the Voronoi edges, we can assume that uv is not
orthogonal to nv. Condition C4 means that uv does not intersect Σ′ if 〈u − v, nv〉 > 0. (Recall
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that nv is the unit outward normal at v.) In this case, if uv does not intersect Σ in a point
other than v, we exclude the dual Delaunay triangle of uv. On the other hand, if uv intersects
Σ in a point other than v, we keep its dual Delaunay triangle.

Repeating the above for every v ∈ U yields Del S|Σ′ . Since we compute with Σ instead of Σ′,
it is more concrete to have a notation for Del S|Σ′ using Σ. We use TriS|Σ to denote Del S|Σ′ .
The surface Σ′ cannot introduce new tangential intersections. In the rest of this section, we
argue that if Vor S|Σ′ violates TBP, Vor S|Σ violates TBP too. Therefore, when the edges and
facets of Vor S do not intersect Σ tangentially and Vor S|Σ satisfies TBP, TriS|Σ = Del S|Σ′ is
homeomorphic to Σ.

Take a Voronoi edge e incident to v ∈ U . Let v′ be the point near v in which Σ′ intersects e
after perturbation. Suppose that e violates TBP with respect to Σ′. The violation means that
e intersects Σ′ in v′ and at least one other point. It follows that e intersects Σ in v and at least
one other point. So e violates TBP with respect to Σ too.

Take a Voronoi facet F incident to v ∈ U . If Σ cuts through F at v, the topology of F ∩ Σ
does not change after perturbation at v. The interesting case is that Σ′ intersect both edges of
F incident to v at points near v after perturbation. In this case, F ∩Σ′ is not just a geometric
perturbation of F ∩ Σ because F ∩ Σ′ and F ∩ Σ have different topologies. Specifically, F ∩ Σ′

contains a short topological interval I ′ near v. If I ′ participates in a violation of TBP with
respect to Σ′, F ∩ Σ′ must contain a connected component other than I ′. Then, F intersects
Σ in at least two components, one of them being the degenerate topological interval v. So F
violates TBP with respect to Σ too.

Similarly, consider a Voronoi cell Vp incident to v ∈ U . The interesting case is that Σ′

intersects all edges of Vp incident to v at points near v after perturbation. So Vp ∩ Σ′ contains
a small topological disk D′ near v. If D′ participates in a violation of TBP with respect to Σ′,
Vp ∩ Σ′ must have a connected component other than D′. It follows that Vp ∩ Σ has at least
two connected components, one of them being the degenerate boundary cycle v. So Vp violates
TBP with respect to Σ too.

5.2 Numerical primitives

We introduce six numerical primitives. They are responsible for computing the intersections
between Σ and lines and computing the critical points of certain height functions on Σ. We
assume a numerical or symbolic solver for solving a system of equations (e.g. [26]).

• SurfaceCritical(surface Σ): Let d denote the x3-direction. This primitives returns
the critical points of Σ in the x3-direction by returning the solutions of the system of
equations: E(x) = 0,∇E(x) × d = 0.

• SurfaceLine(surface Σ, line �): This primitive returns the intersection points between
Σ and the line �. We assume that � is given by its direction and a point on it. Using this
information, we can compute two planes H1(x) = 0 and H2(x) = 0 whose intersection is
equal to �. The intersection points are the solutions of the system of equations: E(x) = 0,
H1(x) = 0, H2(x) = 0.

• SurfacePlaneContact(surface Σ, plane Π): This primitive returns the tangential con-
tact points between Σ and the plane Π. Let H(x) be the equation of Π. Let d be the
normal to Π. The contact points are the solutions of the system of equations: E(x) = 0,
H(x) = 0, ∇E(x) × d = 0.
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• CurveCritical(surface Σ, plane Π, , vector d): We assume that d is parallel to Π. This
primitive returns the critical points of Σ ∩ Π in direction d and the tangential contact
points in Σ∩Π. Let d′ be a normal of Π. The tangent to a point x ∈ Σ∩Π is parallel to
∇E(x) × d′. So x is a critical point in direction d if and only if 〈∇E(x) × d′, d〉 = 0. Let
H(x) be the equation of Π. The critical points desired satisfy the system of equations:
E(x) = 0, H(x) = 0, 〈∇E(x) × d′, d〉 = 0. The same system captures all tangential
contact points x ∈ Σ ∩ Π too because ∇E(x) × d′ = 0 in this case.

• SilhouettePlane(surface Σ, plane Π, vector d): Let Jd be the silhouette of Σ in direc-
tion d. Let H(x) be the equation of Π. This primitive returns the intersection points
between Jd and Π, which are the solutions of the system of equations: E(x) = 0, H(x) = 0,
〈∇E(x), d〉 = 0.

• SilhouetteCritical(surface Σ, vector d, vector d′): Let Jd be the silhouette of Σ in
direction d. This primitive returns the critical points of Jd in direction d′, i.e., points on
Jd whose tangents are orthogonal to d′. Let G(x) = 〈∇E(x), d〉. The silhouette Jd is the
intersection of the isosurface G(x) = 0 and the input surface E(x) = 0. Therefore, the
tangent to a point x ∈ Jd is parallel to ∇G(x)×∇E(x). So x is a critical point if and only
if 〈∇G(x)×∇E(x), d′〉 = 0. The critical points desired are the solutions of the system of
equations: E(x) = 0, G(x) = 0, 〈∇G(x) ×∇E(x), d′〉 = 0.

5.3 Subroutines

We describe five subroutines VorEdge, TopoDisk, FacetContact, FacetCycle, and
Silhouette that implement the results in Section 4. They check for any violation of the
generic intersection condition at Voronoi edges and facets as well as any violation of TBP. In
case of violation, they sample new points on Σ. We use S to denote the set of sample points
maintained by our algorithm.

The first subroutine VorEdge checks the generic intersection condition and TBP for a
Voronoi edge. In case of violation, it returns a point as stated in Lemma 4.7.

VorEdge(Voronoi edge e)

1. Compute X := SurfaceLine(Σ, �), where � is the support line of e.

2. Let Vp be a Voronoi cell incident to e.

3. If � meets Σ tangentially at some point x on e, return x.

4. If |e ∩ X| ≥ 2, return the point in e ∩ X furthest from p.

5. Return null.

The next subroutine FacetContact detects any violation of the generic intersection con-
dition at a Voronoi facet (Lemma 4.8).

FacetContact(Voronoi facet F )

1. Compute X := SurfacePlaneContact(Σ,Π), where Π is the plane of F .

2. If some point in X lies on F , return it. Otherwise, return null.
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In the next subroutine TopoDisk, we need to check whether the triangles in TriS|Σ incident
to a sample point p form a topological disk. It is assumed that VorEdge has been called and
returns null for all Voronoi edges. This implies that no Voronoi edge meets Σ tangentially,
which allows the extraction of triangles of TriS|Σ using the conceptual perturbation.

TopoDisk performs the checking in two steps. Let Tp be the set of triangles in TriS|Σ
incident to p. First, check if every triangle edge in Tp is incident to exactly two triangles in Tp.
Second, check if Tp forms exactly one cycle of triangles around p. If both tests are passed, Tp

forms a topological disk; otherwise, it does not.

In the subsequent proof of correctness, we will see that TopoDisk handles two possible
violations of TBP. First, a facet of Vp intersects Σ in two topological intervals (Lemma 4.10).
Second, Vp ∩ Σ contains two or more boundary cycles (Lemma 4.12).

TopoDisk(sample point p)

1. If the triangles in TriS|Σ incident to p form a topological disk, return null.

2. Otherwise, find the intersection point x between Σ and the edges of Vp that is
furthest from p. Return x.

The next subroutine FacetCycle guards against the possibility of a Voronoi facet F in-
tersecting Σ in a cycle. It assumes that FacetContact(F ) has been called and returns null.
This implies that F ∩ Σ contains no tangential contact point. It returns a point as stated in
Lemma 4.9.

FacetCycle(Voronoi facet F )

1. Compute X := CurveCritical(Σ,Π, d), where Π is the plane of F and d is
a direction parallel to Π.

2. If no point in X lies on F , return null.

3. Since FacetContact(F ) returned null, F ∩Σ is a collection of disjoint simple
curves (open or closed) and X ∩ F is the set of critical points of these curves
in direction d. Let Vp be a Voronoi cell incident to F . For each x ∈ X ∩ F ,

(a) Compute the line �x in Π through x parallel to d. Notice that �x is normal
to F ∩ Σ at x.

(b) Compute X ′ := SurfaceLine(Σ, �x). If |X ′ ∩ F | ≥ 2, return the point in
X ′ ∩ F furthest from p.

4. Return null.

The next subroutine Silhouette checks if a Voronoi cell Vp intersects the silhouette Jd,
where d = np (Lemma 4.14). If Vp ∩ Jd �= ∅, either Jd intersects some facets of Vp or Vp

completely contains a component of Jd. The second possibility can be detected by checking if
Vp contains any critical point of Jd in a direction orthogonal to d.

Silhouette(sample point p)

1. Choose a direction d′ orthogonal to np.

2. Compute X := SilhouetteCritical(Σ, np, d
′).
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3. If X contains a point inside Vp, return it.

4. Otherwise, for each facet F of Vp,

(a) Compute X ′ := SilhouettePlane(Σ,Π, np), where Π is the plane of F .
(b) If X ′ contains a point in F , return it.

5. Return null.

5.4 Topology recovery algorithm

Algorithm SampleTopology samples a set of points S on Σ so that TriS|Σ is homeomorphic
to Σ. It begins with initializing S to contain the critical points of Σ in the x3-direction. We
denote it by S0, the seeds. Then it calls a procedure Topology that repeatedly invokes the
subroutines presented in the last subsection in case of any violation of the generic intersection
condition or TBP. Upon the return of Topology, TriS|Σ is homeomorphic to Σ. However, it
is possible that some seeds are too close together, which means that the surface triangulation
may be denser than necessary around the seeds. We fix this problem by deleting the seeds
incrementally. One may observe that we may start the algorithm with a single initial point
and then let Silhouette generate more points on each component of Σ instead of computing
the seed set S0. However, to avoid the more expensive computation of critical points of the
silhouette in a given direction, we recommend starting with the seed set S0.

SampleTopology(surface Σ)

1. Compute S0 := SurfaceCritical(Σ).

2. Compute S := Topology(S0).

3. While there is a seed p ∈ S, delete p from S and compute S := Topology(S).

4. Return S.

Topology(sample set S)

1. Perform steps (a)–(e) in order. Terminate the current step as soon as the
returned x is non-null; skip the following steps; and go to step 2.

(a) For every edge e of Vor S, compute x := VorEdge(e).
(b) For every facet F of Vor S, compute x := FacetContact(F ).
(c) For every p ∈ S, compute x := TopoDisk(p).
(d) For every facet F of Vor S, compute x := FacetCycle(F ).
(e) For every p ∈ S, compute x := Silhouette(p).

2. If x is non-null, insert x into S, update Vor S, and go to step 1. Otherwise,
return S.

5.5 Analysis

We first prove that any point x inserted in step 2 of Topology is at distance λf(p) or more
from its closest sample p in S. This shows that Topology terminates after introducing only
finitely many points on Σ.
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Lemma 5.1 Let x be a point inserted by Topology into S. The distance from x to its closest
sample p in the current S is at least λf(p).

Proof. If x is returned by VorEdge(e) for some edge e of a Voronoi cell Vp, Lemma 4.7 implies
that ‖p − x‖ ≥ λf(p).

If x is returned by FacetContact(F ) (resp. FacetCycle(F )) for some facet F of a
Voronoi cell Vp, then ‖p − x‖ ≥ λf(p) by Lemma 4.8 (resp. Lemma 4.9).

If x is returned by TopoDisk(p) for some sample p ∈ S, the set Tp of triangles in TriS|Σ
incident to p do not form a topological disk. There are three possibilities.

Case 1: Some triangle edge in Tp is not shared by another triangle in Tp. Let F ⊂ Vp

be the dual Voronoi facet of this triangle edge. This case happens because Σ
intersects only one boundary edge e of F . Since Σ has no boundary, the
endpoint(s) of F ∩Σ must lie on e. Thus, e intersects Σ in more than one point
or e intersects Σ tangentially. But this is impossible because VorEdge(e) did
not return any point.

Case 2: Three or more triangles in Tp share an edge. Let F ⊂ Vp be the dual Voronoi
facet of this common edge. This case happens because Σ intersects three or
more distinct boundary edges of F . Since VorEdge did not return any point
for all edges of Vor S, every edge of F intersects Σ in at most one point (non-
tangentially). Also, Σ does not meet F tangentially as FacetContact did
not return any point. It follows that F ∩ Σ contains two or more topological
intervals. Thus, Lemma 4.10 applies to imply that ‖p − x‖ ≥ λf(p).

Case 3: Tp contains two or more cycles of triangles around p. It implies that Vp ∩Σ
has at least two boundary cycles C1 and C2, and if Ci is non-degenerate, Ci

is not contained in a facet of Vp. Thus, Lemma 4.12 applies to conclude that
‖p − x‖ ≥ λf(p).

If x is returned by Silhouette(p) for some p ∈ S, then ‖p−x‖ ≥ λf(p) by Lemma 4.14.

The next result shows a useful property of the Voronoi diagram enforced by step 1 of
SampleTopology.

Lemma 5.2 If a sample set S includes all critical points of Σ in the x3-direction, no connected
component of Σ is contained in a Voronoi cell in Vor S.

Proof. The critical points of any connected component M in the x3-direction belong to S by
assumption. Each connected component has at least two critical points. Thus, if M is con-
tained inside a Voronoi cell Vp, Vp must contain two seed points. This is a contradiction to the
emptiness of Vp even though p may be one of the seed points.

We are ready to show that at the end of step 2 of SampleTopology, the generic intersection
condition and TBP are satisfied.

Lemma 5.3 Let S0 be a sample set such that no connected component of Σ is contained in a
Voronoi cell in Vor S0. Let Σ′ be the surface obtained by perturbing Σ as presented in Section 5.1.
Then Topology(S0) returns a set S such that Vor S intersects Σ′ generically and Vor S|Σ′

satisfies TBP.
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Proof. By Lemma 5.1 Topology(S0) maintains a positive lower bound on inter-point distances
for the points it inserts. This means it can insert only finitely many points on a compact surface
Σ. Therefore, it must terminate and return a sample set S. VorEdge and FacetContact

make sure that all edges and facets of Vor S intersect Σ generically. Any vertex of Vor S on Σ
is perturbed by the method presented in Section 5.1. Thus, Vor S intersects Σ′ generically.

VorEdge guarantees that Σ does not intersect any Voronoi edge in Vor S in more than
one point at the end of Topology. Neither does Σ′.

Consider a Voronoi facet F in Vor S. The intersection F ∩Σ′ cannot contain more than two
or more topological intervals. (Because of the perturbation, any topological interval in F ∩ Σ′

is non-degenerate.) Otherwise, Σ′ must intersect at least four boundary edges of F because Σ′

intersects any edge of F in at most one point. This means that the dual Delaunay edge of F is
incident to more than two triangles in TriS|Σ. But then TopoDisk should have detected this,
a contradiction. The intersection F ∩ Σ′ cannot contain any cycle. Otherwise, F ∩ Σ would
contain the same cycle and Topology would not have terminated because FacetCycle(F )
would have returned a point. In all, if F ∩ Σ′ is non-empty, it is a single topological interval.

Consider a Voronoi cell Vp in Vor S. The intersection Vp ∩ Σ′ is a manifold possibly with
boundary. By assumption, no Voronoi cell of Vor S0 contains a connected component of Σ.
Hence, no Voronoi cell of Vor S0 contains a connected component of Σ′ too. Since S0 ⊆ S, no
connected component of Σ′ is contained in any Voronoi cell in Vor S either.

Can Vp∩Σ′ have two or more boundary cycles? If so, Vp ∩Σ also has two or more boundary
cycles. (Some may degenerate to a vertex of Vp.) VorEdge guarantees that the boundary of
Vp ∩ Σ does not intersect the same edge of Vp twice. FacetCycle guarantees that no non-
degenerate boundary cycle of Vp ∩ Σ is contained in a facet of Vp. Therefore, the boundary
cycles of Vp ∩ Σ must induce at least two cycles of triangles in TriS|Σ around p. But then
TopoDisk(p) should have detected this, a contradiction.

We conclude that Vp ∩ Σ′ must be connected and have a single boundary cycle. Assume to
the contrary that Vp ∩ Σ′ is not a topological disk, i.e., its genus is positive. The perturbation
scheme in Section 5.1 does not create any component inside Vp with positive genus. Thus,
Vp ∩ Σ has a connected component M with positive genus. So M is not a single vertex of Vp,
i.e., the boundary cycle of M is non-degenerate. Lemma 4.13 implies that M must intersect the
silhouette of Σ with respect to direction np. But then Topology would not have terminated
because Silhouette(p) would have returned a point, a contradiction.

Corollary 5.1 Let S0 be a sample set such that no connected component of Σ is contained in
any Voronoi cell in Vor S0. Then Topology(S0) returns a set S where the underlying space
of TriS|Σ is homeomorphic to Σ.

Proof. Let Σ′ be the surface obtained by perturbing Σ as presented in Section 5.1. By
Lemma 5.3, TriS|Σ = Del S|Σ′ is homeomorphic to Σ′ and hence to Σ.

The lower bound in Lemma 5.1 on the distances from any new point inserted by Topology

to existing samples is instrumental to the analysis of the size of the final triangulation. How-
ever, the seeds inserted in step 1 of SampleTopology can be arbitrarily close together (un-
likely in practice though). Therefore, we delete the seeds one by one in step 3 of SampleTopology.
The generic intersection condition or TBP may become invalid after the deletion of a seed.
Thanks to the next lemma, we can restore it by running Topology.
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Lemma 5.4 Suppose that no Voronoi cell in Vor S contains a connected component of Σ and
no Voronoi facet in Vor S intersects Σ in a cycle. For any p ∈ S, no connected component of
Σ is contained in a Voronoi cell in Vor (S \ {p}).

Proof. Assume to the contrary that a connected component M of Σ is contained in the Voronoi
cell of a sample q in Vor (S \{p}). Consider the insertion of p into S \{p} and the corresponding
update of the Voronoi diagram. Let H be the bisecting plane of p and q. If H does not intersect
M , the Voronoi cell of p or q in Vor S would contain M , contradicting our assumption. If H
intersects M , H ∩M would contain a cycle in the facet between the Voronoi cells of p and q in
Vor S, a contradiction again.

Lemma 5.4 enables us to invoke Corollary 5.1 after the deletion of one seed. This shows
that TriS|Σ will be homeomorphic to Σ after running Topology.

Corollary 5.2 Following each deletion of a seed in step 3 of SampleTopology, the invocation
of Topology guarantees that the underlying space of TriS|Σ is homeomorphic to Σ afterward.

6 The meshing algorithm

Our meshing algorithm DelMesh first invokes SampleTopology to capture the topology
of Σ. Topological guarantee alone is not sufficient for many applications. In finite element
methods, it is important that the surface triangles have bounded aspect ratio. Also, the output
approximation should be smooth enough as it approximates a smooth surface. We introduce
two procedures to address these issues in Section 6.1. Notice that these two procedures help
capturing the geometry of Σ but cannot guarantee any upper bound on the Hausdorff distances
between input and output relative to the local feature sizes. It seems that such a guarantee
would require computing the local feature sizes explicitly which we want to avoid. In Section 6.2,
we give the complete description of DelMesh and its analysis.

6.1 Geometry sampling

Given a triangle t, define ρ(t) to be the ratio of the circumradius of t to shortest side length
of t. It is well-known that t has bounded aspect ratio if ρ(t) is bounded from above by some
constant. Following Chew [14], if there is a triangle t in Tri S|Σ with ρ(t) > 1+λ, the procedure
Quality below inserts into S the intersection point between Σ and the dual Voronoi edge of t.

Quality(sample set S)

1. While there is a triangle t in TriS|Σ with ρ(t) > 1 + λ,

(a) Compute an intersection point x between Σ and the dual Voronoi edge of
t. (Arbitrarily choose one if there are more than one.)

(b) Insert x into S and update Vor S.

2. Return S.

Assuming that TriS|Σ is an orientable 2-manifold without boundary, we measure its smooth-
ness using the dihedral angles at the edges. Specifically, for each edge e in TriS|Σ, we define the
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roughness of e, denoted by g(e), to be π minus the internal dihedral angle at e. The procedure
Smooth below samples a point from Σ if the roughness of some edge exceeds 2β(λ).

Smooth(sample set S)

1. If there is an edge pq in Tri S|Σ such that g(pq) > 2β(λ)

(a) Compute the intersections between Σ and the dual Voronoi edges of the
triangles in TriS|Σ incident to pq.

(b) Pick the furthest intersection point x from p.
(c) Insert x into S and update Vor S.

2. Return S.

Quality enforces that the angles of every triangle are no less than arcsin
(

1
2+2λ

)
. Smooth

enforces the dihedral angles are no less than π−O(λ). Thus, we can improve the triangle shape
and smoothness by decreasing λ. However, as explained in Theorem 6.1, the mesh size increases
linearly in 1

λ2 .

6.2 Finale

We give the pseudo-code of DelMesh below. DelMesh maintains the sample set S and TriS|Σ
throughout its execution. The final triangulation TriS|Σ is the output surface mesh desired.

DelMesh(surface Σ)

1. Compute S := SampleTopology(Σ).

2. Compute S := Quality(S). If Quality inserted some point(s) into S, com-
pute S := Topology(S) and repeat step 2.

3. Compute S := Smooth(S). If Smooth inserted a point into S, compute
S := Topology(S) and go to step 2.

4. Output TriS|Σ.

Notice that after Quality or Smooth inserts new sample point(s), we call Topology

again because the new sample point(s) may disturb the topology of TriS|Σ. It is worthwhile
to note that one does not need to search the entire Vor S for possible topology violation. Instead,
since the insertion of a new point changes Vor S locally, a local search suffices.

We need the following technical result to analyze DelMesh.

Lemma 6.1 Let x be a point whose distance to the nearest sample p ∈ S is at least λf(p). For
any point q ∈ S, (i) ‖q − x‖ ≥ λf(x)/(1 + λ) and (ii) ‖q − x‖ ≥ λf(q)/(1 + 2λ).

Proof. By the Lipschitz condition, f(x) ≤ f(p) + ‖p − x‖ ≤ (1 + λ) ‖p − x‖/λ. Since p is
the nearest sample to x, for any q ∈ S, ‖q − x‖ ≥ ‖p − x‖ ≥ λf (x)/(1 + λ). By the Lipschitz
condition again, f(q) ≤ f(x) + ‖q − x‖ ≤ (1 + 2λ) ‖q − x‖/λ.

We are ready to prove the performance guarantees of DelMesh.
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Theorem 6.1 Let λ ≤ 0.06 be a constant chosen a priori. Given a smooth closed surface Σ,
DelMesh(Σ) outputs a mesh TriS|Σ consisting of Delaunay triangles such that:

(i) The underlying space of TriS|Σ is homeomorphic to Σ.

(ii) The radius-edge ratio of every triangle in TriS|Σ is at most 1 + λ and the roughness of
every edge of TriS|Σ is at most 2β(λ).

(iii) For any ε < 1/5, the size of S is within a factor O( ε2

λ2 ) of the size of an ε-sample of Σ.

Proof. Take a non-seed point x inserted by DelMesh. We prove by induction that ‖p− x‖ ≥
λf(p), where p is a nearest sample in S to x at the time of insertion.

If x is a non-seed point inserted by SampleTopology, then ‖p−x‖ ≥ λf(p) by Lemma 5.1.

Suppose that x is inserted by Quality. So x is an intersection point between Σ and the
dual Voronoi edge of some triangle t in TriS|Σ. Let pq be the shortest edge of t. Since S
does not contain any seed point at the end of SampleTopology, p and q are non-seed points
inserted some time in the past. Without loss of generality, assume that p was inserted after
q. Then ‖p − q‖ ≥ λf(p)/(1 + λ) by induction assumption and Lemma 6.1(i). Observe that p
and the other vertices of t are the nearest samples to x when x is inserted. Since ρ(t) > 1 + λ,
‖p − x‖ > (1 + λ) ‖p − q‖ > λf(p).

Suppose that x is inserted by Smooth, triggered by an edge pq in TriS|Σ whose roughness
is greater than 2β(λ). Let pqr and pqs be the two triangles in Tri S|Σ incident to pq. So
among the intersection points between Σ and the dual Voronoi edges of pqr and pqs, x is the
furthest one from p. Observe that p is a nearest sample in S to x. Assume to the contrary that
‖p − x‖ < λf(p). This implies that the circumradii of pqr and pqs are less than λf(p). Let
d and d′ be the outward normals of pqr and pqs respectively. By Lemma 2.2, ∠d, np ≤ β(λ)
and ∠d′, np ≤ β(λ). Therefore, ∠d, d′ ≤ 2β(λ) which means that the roughness of pq is at most
2β(λ), contradicting the insertion of x. Hence, ‖p − x‖ ≥ λf(p).

In all, when x is inserted by DelMesh, the distance from x to its nearest sample p in S is
at least λf(p). Therefore, DelMesh terminates by a packing argument.

By Lemma 5.2, Corollary 5.1, and Corollary 5.2, Tri S|Σ is homeomorphic to Σ and no
Voronoi cell in Vor S contains a connected component of Σ at the end of the first call to
SampleTopology. We claim that the subsequent insertion of new point(s) to repair the
geometry preserves the property that no connected component of Σ is contained in any Voronoi
cell. This can be seen as follows. Suppose that we add a new point p to repair the geometry
after SampleTopology. Any existing Voronoi cell can only shrink and the shrunk Voronoi
cell cannot contain a component. If the new Voronoi cell Vp contains a component M , either
p is the only vertex sampled from M or no point is sampled from M at all. But this is
impossible because SampleTopology guarantees that TriS|Σ is homeomorphic to Σ which
means TriS|Σ has a vertex from every connected component of Σ before we insert any point
to repair the geometry. By our claim, one can argue inductively that no Voronoi cell in Vor S
contains a connected component of Σ throughout the execution of DelMesh. Then, (i) follows
from Corollary 5.1. The correctness of (ii) follows from the termination of DelMesh.

For the rest of the proof, S denotes the final sample set obtained by DelMesh. Erickson [23]
proved that for any ε < 1/5, the size of an ε-sampling of Σ is Ω(

∫
Σ

1
ε2f(x)2

dx). Therefore, to
prove (iii), it suffices to show that the size of S is O( 1

λ2 ) · ∫Σ
1

f(x)2
dx).
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Let q and r be two points in S. Irrespective of whether DelMesh inserted q or r first,
Lemma 6.1(i) and (ii) imply that ‖q − r‖ ≥ λf(q)/(1 + 2λ). Therefore, if we put a ball Bq

centered at q with radius λf(q)/(2 + 4λ) for each q ∈ S, the balls have disjoint interior. It
follows that ∫

Σ

1
f(x)2

dx ≥
∑
q∈S

∫
Bq∩Σ

1
f(x)2

dx.

For each point x ∈ Bq ∩ Σ, the Lipschitz condition implies that f(x) ≤ f(q) + ‖q − x‖ ≤
(2 + 5λ)f(q)/(2 + 4λ). Hence,∫

Σ

1
f(x)2

dx ≥
∑
q∈S

∫
Bq∩Σ

4(1 + 2λ)2

(2 + 5λ)2f(q)2
dx.

By Lemma 2.3, ∠qx, nq ≥ arccos(λ/(4 + 8λ)). Let x′ be the orthogonal projection of x onto
the tangent plane of Σ at q. It follows that ‖q −x′‖ ≥ ‖q −x‖ · cos(arcsin(λ/(4 + 8λ)), which is
greater than ‖q − x‖/√2 for λ ≤ λ0 = 0.06. By a result of Boissonnat and Cazals [5], Bq ∩Σ is
a topological disk as radius(Bq) < f(q). We conclude that the orthogonal projection of Bq ∩Σ
onto the tangent plane of Σ at q covers a disk centered at q with radius λ

2
√

2(1+2λ)
f(q). Hence,

area(Bq ∩ Σ) ≥ πλ2

8(1+2λ)2
f(q)2. Therefore,

∫
Σ

1
f(x)2

dx ≥
∑
q∈S

∫
Bq∩Σ

πλ2

2(2 + 5λ)2 area(Bq ∩ Σ)
dx =

πλ2 |S|
2(2 + 5λ)2

.

7 Discussions

We presented a provable algorithm for sampling and meshing a smooth surface without bound-
ary. Implicit surfaces can be meshed with this algorithm, which offers guarantees on the topol-
ogy, triangular shape, smoothness, and size of the output triangulation. The mesh is Delaunay.
It is worthwhile to note that we also obtain a Delaunay meshing of the volume bounded by the
output surface mesh.

We implemented a simplified version of DelMesh using CGAL [39]. We did not implement
the FacetContact, FacetCycle, and Silhouette subroutines. Figure 12 shows the results
of this implementation for some simple smooth surfaces. Although the theory applies to smooth
surfaces, we experimented with some triangulated surfaces obtained by a surface reconstruction
software called Tight Cocone [38]. Although these surfaces already have sample points, we
disregarded all these sample points for our experiments and considered the piecewise linear
surface as input. For each surface, DelMesh generated a new set of sample points and the
corresponding restricted Delaunay triangulation. Figure 13 shows these triangulations.

These examples show that DelMesh can be used for remeshing triangulated surfaces while
guaranteeing bounded aspect ratio. An open question remains if the method or its variant can
be proved to mesh non-smooth surfaces with guarantees. This question is partially addressed
by Dey, Li, and Ray [19] and Boissonnat and Oudot [9].

The critical point computations are the most costly computations in DelMesh. Can we
avoid them and under what circumstances?
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Figure 12: Meshing of a smooth sphere, torus, and a metaball each of which is input with an
implicit equation.
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