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Abstract

Recently, it was shown that it is possible to develop exact sampling schemes for a large class of parametric non-

bandlimited signals, namely, certain signals of finite rate of innovation [24]. A common feature of such signals is that

they have a finite number of degrees of freedom per unit of time and can be reconstructed from a finite number of

uniform samples. In order to prove sampling theorems, Vetterli et al. considered the case of deterministic, noiseless

signals, and developed algebraic methods that lead to perfect reconstruction. However, when noise is present, many of

those schemes can become ill-conditioned. In this paper, we revisit the problem of sampling and reconstruction of signals

with finite rate of innovation and propose improved, more robust methods that have better numerical conditioning in

the presence of noise and yield more accurate reconstruction. We analyze in detail a signal made up of a stream of

Diracs and develop algorithmic tools that will be used as a basis in all constructions. While some of the techniques

have been already encountered in the spectral estimation framework, we further explore preconditioning methods that

lead to improved resolution performance in the case when the signal contains closely spaced components. For classes

of periodic signals, such as piecewise polynomials and nonuniform splines, we propose novel algebraic approaches that

solve the sampling problem in the Laplace domain, after appropriate windowing. Building on the results for periodic

signals, we extend our analysis to finite-length signals and develop schemes based on a Gaussian kernel, which avoid

the problem of ill-conditioning by proper weighting of the data matrix. Our methods use structured linear systems and

robust algorithmic solutions, which we show through simulation results.

Keywords

Generalized sampling, non-bandlimited signals, rate of innovation, singular value decomposition, nonuniform splines,

piecewise polynomials, annihilating filters.



I. Introduction

Sampling theory has undergone a strong research revival over the past decade, mainly motivated by the

intense activity taking place around wavelets, which led to an extension of Shannon’s original theory and

development of advanced formulations with direct relevance to signal processing and communications [23]. For

example, a modern Hilbert-space formulation allows the standard sampling paradigm for the representation

of bandlimited functions to be extended to a more general class of shift-invariant subspaces, including uniform

splines and wavelets [1] [23]. Such a framework resulted in simpler and more realistic interpolation models,

many of which have proved to be useful from an implementation point of view [23].

Recently, it was shown that it is possible to develop exact sampling schemes for classes of signals that are

neither bandlimited nor live on a shift-invariant subspace, namely, certain signals of finite rate of innovation

[24]. A common feature of such signals is that they have a parametric representation with a finite number of

degrees of freedom and can be reconstructed from a finite set of uniform samples. Examples include streams

of Diracs, non-uniform splines and piecewise polynomials. The key in all constructions is to identify the

innovative part of a signal, such as time instants of Diracs, using an annihilating or locator filter, a well-

known tool from spectral estimation [19] or error correction coding [2]. This reduces a nonlinear estimation

problem into the simpler problem of estimating the parameters of a linear model.

In [24], only a class of deterministic, noiseless signals was considered. While in such a case the developed

schemes lead to perfect reconstruction by sampling the signal at (or above) the rate of innovation, many of

those methods involve steps that can result in numerical ill-conditioning in the presence of noise. For example,

it was shown that the problem of reconstructing non-uniform splines or piecewise polynomials can be reduced

to the problem of reconstructing streams of Diracs by taking a sufficient number of signal derivatives. However,

when noise is present, such an approach often results in an ill-conditioned problem, where standard techniques

from noisy spectral estimation, including oversampling and solving various systems using the singular value

decomposition, are not sufficient for improving the numerical performance. This naturally requires a revision

of some of the techniques presented in [24] and development of alternative algebraic approaches that can solve

the problem of ill-conditioning in the presence of noise and allow for precise reconstruction.

In this paper, we develop improved, more robust methods that make use of proper preconditioning tech-

niques and achieve good numerical performance, while retaining a linear, model-based flavor of the original

sampling schemes. We develop a subspace framework for signal reconstruction [16] [17] which, along with

efficient noise suppression via singular value decomposition, provides an elegant and robust solution to the

sampling problem. We specifically analyze the case of a stream of weighted Diracs, used as a basic build-

ing block in all our schemes, and develop algorithmic tools that yield precise estimates of all relevant signal

parameters. Furthermore, we develop techniques that can significantly improve resolution capabilities of the

proposed subspace method in the case when the signal contains closely spaced components. For classes of

periodic signals, such as piecewise polynomials and nonuniform splines, we propose novel algebraic approaches

that use proper data windowing and solve the problem in the Laplace domain. We also consider the case of

finite-length signals, and develop improved schemes based on a Gaussian sampling kernel and weighting of

the data matrix.
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Some of the techniques we use are already encountered in the context of parametric spectral estimation [8]

[17] [19] and model-based signal analysis [16]. In particular, we use algebraic methods that reduce a set of

samples into a sum of exponentials, therefore, the reconstruction problem can be broadly considered as the

one of estimating the parameters of superimposed exponentials. This problem has been studied extensively

in the literature and several classes of high-resolution or subspace methods have already been developed [16]

[17] [19]. We specifically focus on state space parameterization of a signal subspace [16], which allows us to

use high-resolution techniques based on eigendecomposition of certain well-conditioned matrices [8] [16]. A

closely related method, the ESPRIT algorithm, was developed in [17], which can be viewed as an extension

of the state space approach applicable to antenna arrays. In [8], several subspace techniques for estimating

generalized eigenvalues of matrix pencils are discussed, such as PRO-ESPRIT and TLS-ESPRIT.

The outline of the paper is as follows. In Section II, we present some of the main sampling results for signals

of finite rate of innovation from [24], and discuss the problems that arise in the presence of noise. In Section

III, we consider the problem of sampling a periodic continuous-time signal made up of a stream of Diracs,

embedded in additive white Gaussian noise. We develop a frequency-domain subspace framework for high-

resolution parameter estimation [16] and prove a relation between the subspace approach and the polynomial

realization of the estimator [8] [24]. We also discuss techniques for improving the resolution performance of the

proposed method, without increasing the computational complexity. In Section IV, we extend the results to

more complex classes of periodic signals of finite rate of innovation, such as nonuniform splines and piecewise

polynomials, and present methods that solve the problem in the Laplace domain. In Section V, we consider

the sampling problem for finite-length signals using a Gaussian kernel, and develop schemes that allow for an

almost local reconstruction of the signal. In Section VI, we present an analysis of the numerical performance

of the subspace estimator and discuss the problem of a model mismatch. Simulation results that illustrate

the numerical performance of the developed techniques are shown in Section VII, and finally, in Section VIII,

we conclude with a brief summary of the main results.

II. Problem Statement

A class of signals with finite rate of innovation can be informally defined as a class of parametric signals

having a finite number of degrees of freedom per unit of time [18] [24]. Even though such signals are generally

not bandlimited, it was shown that some of them can be perfectly reconstructed from a set of samples taken

at the innovation rate [24]. These results can also be extended to multidimensional signals [12] [13].

Consider the following simple example. Let a signal x(t) be a continuous-time signal made up of K weighted

Diracs, i.e.

x(t) =
K−1∑
k=0

akδ(t − tk). (1)

Clearly, such a signal is not bandlimited and the standard Shannon sampling theorem cannot be used in this

case. However, note that x(t) has only 2K degrees of freedom, that is, time delays {tk}K−1
k=0 and weighting

coefficients {ak}K−1
k=0 . Therefore, it seems intuitive that by taking only 2K measurements of the signal, one

can perfectly estimate all the unknown parameters. This can be achieved, provided that the signal is sampled

with a proper sampling kernel, such as a Gaussian or a sinc sampling kernel [24].
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In order to show the main idea behind the approach from [24], assume that the signal is filtered with the

Gaussian kernel hg(t) = e−t2/2σ2
and that Nt ≥ 2K samples are taken from a filtered version,

yn =< hg(t − nT ), x(t) >, n = 1, ..., Nt. (2)

In this case, the sample values are given by

yn =
K−1∑
k=0

ake
−(tk−nT )2/2σ2

=
K−1∑
k=0

ake
−t2k/2σ2 · entkT/σ2 · e−n2T 2/2σ2

. (3)

If we denote by un = ynen2T 2/2σ2
and ck = ake

−t2k/2σ2
, then (3) is equivalent to

un =
K−1∑
k=0

cke
ntkT/σ2

=
K−1∑
k=0

ckz
n
k , (4)

where zk = etkT/σ2
. Note that the samples un are given by a linear combination of exponentials zn

k , thus we can

reduce the problem of estimating the unknown parameters {tk}K−1
k=0 and {ck}K−1

k=0 , into the classical spectral

estimation problem, that is, the problem of estimating frequencies and weighting coefficients of superimposed

exponentials [8] [16] [19].

In the above example, we assumed a deterministic, noiseless signal, when the presented method yields

perfect estimates of all the parameters from only 2K samples. Yet, in the presence of noise, such an approach

often gives rise to numerical ill-conditioning. To understand the main reason for performance degradation,

consider a noisy version of the signal, that is, x̃(t) = x(t) + η(t), where η(t) is additive white Gaussian noise,

and consider the set of noisy samples ỹn, taken with the Gaussian kernel. As in the previous case, by denoting

ũn = ỹnen2T 2/2σ2
and ck = ake

−t2k/2σ2
, the set of samples ũn can be expressed as: (3)

ũn =
K−1∑
k=0

ckz
n
k + ηnen2T 2/2σ2

. (5)

In this case, however, the samples of noise ηn become significantly amplified as n increases, due to the

weighting of ỹn’s with exponentially increasing terms en2T 2/2σ2
. This obviously makes the above method for

reconstructing the signal from the samples ũn ill-conditioned.

A similar problem occurs with other classes of signals as well, such as piecewise polynomials or non-uniform

splines. In [24], it was proved that in the absence of noise, the sampling problem for these signals can

be reduced to the problem of sampling streams of Diracs, and this by taking a sufficient number of signal

derivatives. For example, consider a periodic nonuniform spline x(t) of period T and degree R, that is, a

signal whose (R + 1)-th derivative x(R+1)(t) is a periodic stream of weighted Diracs. If we denote by X[m]

and X(R+1)[m] the Fourier series coefficients of x(t) and x(R+1)(t) respectively, the following relation holds:

X(R+1)[m] = (jmω0)(R+1)X[m] =
1
T

K−1∑
k=0

cke
−jmω0tk , ω0 = 2π/T. (6)

Similarly to the argument for numerical ill-conditioning in the case of a set of Diracs, the problem with this

approach is derivation. In particular, in order to compute the coefficients X(R+1)[m] and estimate the unknown
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parameters ck and tk, one first has to multiply the coefficients X[m] with (jmω0)(R+1), which amplifies noise

as frequency increases. In the case of piecewise polynomials, the method in [24] uses derivation as well, leading

to a sum of derivatives of Diracs. In addition to noise amplification, such an approach requires identification

of multiple roots of the annihilating filter, a task that is difficult even in the noiseless case.

This obviously calls for an extension of the original results from [24] to solve the problems of ill-conditioning

and robustness to noise, and to investigate alternative algebraic approaches that will yield numerically stable

and precise reconstruction. In the following, we will show that by exploiting the signal structure properly,

one can come up with more general constructions that satisfy all of the above requirements.

III. Periodic Stream of Diracs: Continuous-Time Case

In this section, we consider the problem of sampling and reconstruction of a periodic stream of Diracs.

While this signal has a relatively simple parametric representation, it provides a basis for all the constructions

that will be discussed later.

A. Frequency domain formulation

Consider a periodic signal x(t) of period T , given by a sum of weighted Diracs,

x(t) =
∑
n

K−1∑
k=0

ckδ(t − tk − nT ). (7)

Since the signal is periodic, its Fourier series coefficients X[m] are given by

X[m] =
1
T

K−1∑
k=0

cke
−jmω0tk =

1
T

K−1∑
k=0

ckz
m
k , where ω0 = 2π/T, m ∈ Z. (8)

That is, the coefficients X[m] are given by a sum of K complex exponentials zm
k = e−jmω0tk , where zk are

usually referred to as signal poles [16] [19]. In [24], the parameters {tk}K−1
k=0 and {ck}K−1

k=0 are estimated from

a set of Nt ≥ 2K adjacent coefficients X[m], using a method based on annihilating filters, which belongs to

the class of model-based parametric methods for harmonic retrieval [16]. In particular, the annihilating filter

approach exploits the fact that in the absence of noise, each exponential {e−jmω0tk}m∈Z can be “nulled out”

or annihilated by a first order FIR filter Hk(z) = (1 − e−jω0tkz−1), that is,

e−jmω0tk ∗ [1,−e−jω0tk ] = 0.

Therefore, one can consider a K-th order FIR filter H(z) =
∑K

k=0 H[k]z−k, with K zeros at zk = e−jω0tk ,

H(z) =
K∏

k=1

(1 − e−jω0tkz−1). (9)

Note that the filter H[k] is the convolution of K elementary filters with coefficients [1,−e−jω0tk ], k = 1, ...,K.

Since X[m] is the sum of complex exponentials, each will be annihilated by one of the roots of H(z), thus we

have

(H ∗ X)[m] =
K∑

k=0

H[k]X[m − k] = 0, m ∈ Z. (10)

5



Without loss of generality, we can set H[0] = 1 and rewrite (10) as

X[m] = −
K∑

k=1

H[k]X[m − k], m ∈ Z. (11)

Therefore, equation (11) allows us to solve for the annihilating filter coefficients H[k], k = 1, ...,K, given a set

of Nt ≥ 2K adjacent Fourier series coefficients X[m]. Once the annihilating filter H(z) has been found, the

information about the time instants tk can be extracted from the roots of the filter, while the corresponding

coefficients ck are then estimated by solving the system of linear equations (8).

Note that the signal x(t) has only 2K degrees of freedom, {tk}K−1
k=0 and {ck}K−1

k=0 . Therefore, in the absence

of noise, it suffices to use only 2K adjacent Fourier series coefficients X[m] to obtain perfect estimates of

all the unknown parameters [24]. For example, one can consider the coefficients X[m], m = −K + 1, . . . ,K,

which can be obtained by sampling a lowpass version of the signal. Namely, if xn denote the uniform samples

taken with a sinc kernel ϕ(t) of bandwidth B = [−Kω0,Kω0], that is,

xn =< ϕ(t − nTs)x(t) >, n = 0, 1, ..., Nt,

then the following relation holds:

xn =< ϕ(t − nTs),
∑
m

X[m]ejmω0t >=
∑
m

X[m]Ψ(mω0)ejmω0nTs =
K∑

m=−K

X[m]ejmω0nTs , (12)

where Ψ(ω) is the Fourier transform of ϕ(t). If the sampling period Ts is chosen such that Nt = T/Ts ≥ 2K,

then the above system of equations is invertible and will yield a unique solution for X[m], m ∈ [−K,K].

Finally, we should note that in order to solve for the annihilating filter coefficients H[k] from (11), one can

also consider the coefficients X[m] corresponding to any other signal subspace, as long as its dimension is

greater than or equal to the number of degrees of freedom of the signal [11].

In practice, noise will be present, and in general this can be dealt with by oversampling (i.e. one has to

consider a larger signal subspace) and using standard techniques from noisy spectral estimation, such as the

singular value decomposition. However, even though such an approach improves numerical accuracy on the

estimates of the filter coefficients, it is not sufficient for good overall performance of the algorithm. Specifically,

both theoretical analysis and practice have shown that in order to reduce sensitivity of time-delay estimates

to noise, the filter order should be chosen according to the length of the data set, rather than the number

of unknown signal components [7] [14]. That is, even though the number of components may be relatively

low, typically, a high-order filter must be used, which imposes a significant computational burden since it is

necessary to find roots of a large size polynomial in order to extract a small number of signal poles [16]. In

addition to increased computational complexity, overmodeling gives rise to spurious filter zeros, which can be

incorrectly identified as signal poles.

This brings us to a more practical version of the model-based approach, the so-called subspace estimator,

which avoids the root finding step and relies only on a proper use of matrix operations. It takes advantage

of the so-called shift-invariant subspace property and leads to robust estimates without overmodeling, by

properly exploiting the algebraic structure of the signal subspace [7] [16].
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B. Subspace-based approach

Consider again the set of the Fourier series coefficients X[m], given by (8), and construct a Hankel1 data

matrix X of size M × N , where M,N > K,

X =

⎛
⎜⎜⎜⎜⎝

X[0] X[1] . . . X[N − 1]

X[1] X[2] . . . X[N ]
...

X[M − 1] X[M ] . . . X[M + N − 2]

⎞
⎟⎟⎟⎟⎠

(13)

For simplicity, we have constructed the data matrix using only the coefficients X[m] with non-negative indices

m. In [11], we showed that the method can be directly extended to the case when the coefficients with negative

indices are used as well.

In the absence of noise, X can be decomposed as X = USVH , where U, S and VH are given by:

U =

⎛
⎜⎜⎜⎜⎝

1 1 1 . . . 1

z0 z1 z2 . . . zK−1
...

zM−1
0 zM−1

1 zM−1
2 . . . zM−1

K−1

⎞
⎟⎟⎟⎟⎠

, (14)

S =
1
T

diag ( c0 c1 c2 . . . cK−1 ) , (15)

VH =

⎛
⎜⎜⎜⎜⎝

1 z0 z2
0 . . . zN−1

0

1 z1 z2
1 . . . zN−1

1
...

1 zK−1 z2
K−1 . . . zN−1

K−1

⎞
⎟⎟⎟⎟⎠

. (16)

At this point, it is important to note that the above factorization is not unique. That is, if X = USVH , then

X = UP ·P−1SQ ·Q−1VH is another possible factorization, for every choice of K×K non-singular matrices

P and Q. However, as we will show in the following, any such factorization can be used to estimate the signal

parameters.

Consider first the matrix U, given by (14). Since U has a Vandermonde structure, it can be written in the

following, more compact form:

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

b

b · Φ
b · Φ2

...

b · ΦM−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (17)

where b is a row vector of length K, given by b = [1 1 ... 1], while Φ is a K × K diagonal matrix containing

the signal poles on the main diagonal, i.e. Φ = diag(zk). Similarly, due to the Vandermonde structure of the
1A Hankel matrix is a matrix in which the (i, j)-th entry depends only on the sum i + j.
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matrix V (16), it can be written as

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

b

b ·Φh

b ·Φh
2

...

b ·Φh
N−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (18)

where Φh = ΦH .

The subspace approach takes advantage of two properties of the data matrix X. The first property is that

in the case of noiseless data, X has rank K. This will allow us to reduce the noise level by approximating

the noisy data matrix with a rank K matrix. The second property is the shift-invariant subspace property.

Namely, if we consider the matrices U and V, given by (17) and (18), they satisfy the following relations:

U = U · Φ and V = V ·Φh, (19)

where (·) and (·) denote the operations of omitting the first and the last row of (·) respectively. Note that the

shift-invariance property is satisfied not only by U and V, but also by all matrices UP and VQ, where, as

already mentioned, P and Q are any non-singular K ×K matrices. In order to prove this property, consider,

for example, the matrix UP. This matrix can be expressed as

UP =

⎛
⎜⎜⎜⎜⎜⎜⎝

bP

bP · P−1ΦP

bP · P−1Φ2P
...

bP · P−1ΦM−1P

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)

where we have inserted PP−1 between b and Φk, k = 1, ...,M − 1. Given that (P−1ΦP)k = P−1ΦkP, it

becomes obvious that UP satisfies the shift-invariance property as well, that is,

UP = UP ·P−1ΦP. (21)

Since the matrix P−1ΦP in (21) is related to Φ by a similarity transformation, it has the same eigenvalues as

Φ, i.e. {zk}K−1
k=0 . Similarly, it can be proved that the matrix VQ, where Q is any K ×K non-singular matrix,

satisfies the following relation:

VQ = VQ · Q−1ΦhQ. (22)

In practice, the data matrix X will be decomposed using the singular value decomposition (SVD) as

X = UsSsVs
H + UnSnVn

H , (23)

where the columns of Us and Vs are K principal left and right singular vectors of X respectively, while the

second term contains remaining non-principals. Since the presence of additive white noise has little effect on

the principal singular vectors2, the singular vectors Us and Vs, corresponding to the K dominant singular

values, will be good estimates of the singular vectors of the original, noiseless matrix X. Since both Us and
2This is true under the assumption that the smallest singular value corresponding to the signal is not dominated by noise.
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Vs are matrices of rank K (as well as U and V in (17) and (18)), there will exist K×K non-singular matrices

P and Q such that Us = U · P and Vs = V · Q. As a result, both matrices Us and Vs will satisfy the

shift-invariance property, and therefore, the time instants of Diracs {tk}K−1
k=0 can be uniquely determined from

the eigenvalues λk of an operator that maps Us onto Us (or Vs onto Vs), that is,

tk = −T∠λk

2π
. (24)

Finally, we should note that when the signal poles are estimated from the left singular vectors Us, the minimum

required size of the data matrix X in the noiseless case is (K + 1) × K. Alternatively, if the right singular

vectors Vs are used for estimation, the minimum size of X is K × (K + 1). Once the signal poles have been

estimated, the weighting coefficients ck can be found as a least-squares solution to (8). In the following, we

give a summary of the algorithm.

Subspace-based algorithm

1. Given a set of the Fourier series coefficients X[m], construct an M × N matrix data X as in (13), where

M,N > K.

2. Compute the singular value decomposition of X, that is, X = USVH . Find the principal left and right

singular vectors, Us and Vs, as the singular vectors corresponding to the K largest singular values of X.

3. Estimate the signal poles zk = e−jω0tk by computing the eigenvalues of a matrix Z, defined as

Z = Us
+ · Us. (25)

Note that if Vs is used in (25), one would estimate complex conjugates of zk’s, since in the singular value

decomposition of X, Vs is used with the Hermitian transpose.

4. Find the coefficients ck as a least-squares solution to the Vandermonde system (8), that is,

X[m] =
K−1∑
k=0

cke
−jnω0tk + N [m].

C. Relation between the subspace and the polynomial estimator

In the above case, where the coefficients X[m] are given by a linear combination of exponentials, it is

possible to find a decomposition of the matrix X = USVH , where both U and V are Vandermonde matrices.

This allowed us to exploit the shift-invariance property (19), and estimate the signal poles as the eigenvalues

of the operator Z that maps one signal subspace onto another, “shifted” subspace. However, in the case when

the coefficients X[m] have more complex structure (e.g. in the case of piecewise polynomial signals), finding

an exact algebraic expression for matrices obtained by any such decomposition becomes a much more involved

task, whereas the polynomial parameterization may still allow for an intuitive and relatively simple solution.

Therefore, in this section, we prove a general relation between the annihilating filter approach [24] and the

subspace estimator, which will allow us to extend the subspace method to other classes of signals. To avoid

any confusion about notation, in the following, lowercase bold and uppercase bold will denote respectively, a

column/row vector and a matrix.
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Given a set of Fourier series coefficients X[n], we first define the state vector [16] of length K as:

x[n] = (X[n − 1] X[n − 2] X[n − 3] · · · X[n − K] )T . (26)

From the system (11), one can see that each coefficient X[n] can be predicted from its K past values, thus we

can write,

X[n] = (−H[1] −H[2] −H[3] · · · −H[K] )x[n] ⇔ X[n] = h x[n]. (27)

Combining (26) and (27), we obtain:

⎛
⎜⎜⎜⎜⎜⎜⎝

X[n]

X[n − 1]

X[n − 2]
...

X[n − K + 1]

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−H[1] −H[2] −H[3] · · · −H[K]

1 0 0 · · · 0

0 1 0 · · · 0
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

X[n − 1]

X[n − 2]

X[n − 3]
...

X[n − K]

⎞
⎟⎟⎟⎟⎟⎟⎠

, (28)

or in matrix form

x[n + 1] = H x[n]. (29)

Therefore, the state space representation of the polynomial estimator is given by

X[n] = h x[n], (30)

x[n + 1] = H x[n]. (31)

Starting with (30) and (31), we can write:

X[n] = h Hn x[0]. (32)

Now let us show how the above relations can be used to find a subspace-based solution to the estimation

problem. Similarly to the approach from Section III-B, one should first construct a Hankel data matrix X

as in (13), of size M × N , where M,N ≥ K. Using (31) and (32), the matrix X in (13) can be factored as

follows:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

h

h H

h H2

...

h HM−1

⎞
⎟⎟⎟⎟⎟⎟⎠

· (x[0] H x[0] H2 x[0] · · · HN−1 x[0] ) ⇔ LRT . (33)

Thus, one can think of H as being an operator that maps L onto L (or, alternatively, R onto R). Now the

key is to observe that the characteristic polynomial of H is given by

det(λI −H) = λK +
K∑

i=1

H[i]λK−i. (34)

By comparing (34) with an expression for the annihilating filter (46), that is, H(z) = 1 +
∑K

i=1 H[i]z−i, it

follows that the eigenvalues of the operator H (i.e. the zeros of its characteristic polynomial) are identical
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to the zeros of the annihilating filter. Note that this relation holds in the general case and allows one to

obtain the subspace estimator once the annihilating filter has been determined, and vice versa. As already

discussed in Section III-B, there will be no difference whether H is obtained from the matrix L in (33), or

from another matrix LQ, where Q is any non-singular matrix. The corresponding estimates of H are related

by similarity transformation and thus have the same eigenvalues. This property also holds in the case when

H is computed from the matrix R or, alternatively, QR. In practice, since the matrix X will be decomposed

using the singular value decomposition as X = UsSsVs
H + UnSnVn

H , with the first term corresponding to

the principal components, the operator H can be found either from the matrix Us or from the matrix Vs.

This leads us to the following proposition.

Proposition 1: Consider a Hankel matrix X with entries X[m] (13), and let X = USVH denote its singular

value decomposition. Assume next that X[m] can be annihilated by an FIR filter H(z) =
∑K

k=0 H[m]z−m,

that is, (H ∗ X)[m] =
∑K

k=0 H[k]X[m − k] = 0, ∀m ∈ Z, where K is chosen such that H(z) is of minimum

order. Then, in the noiseless case, the roots of the filter H(z) are identical to the non-zero eigenvalues of a

matrix H = U+ ·U.

D. Estimation of Closely Spaced Diracs: Improving the Resolution

Model-based parameter estimation using subspace methods has received significant attention in the litera-

ture [8] [9] [16]. In many problems encountered in practice, such as direction finding, frequency estimation,

channel estimation and others, subspace-based methods provide an attractive alternative to a more complex

maximum likelihood (ML) estimator, as they yield accurate estimates at a reasonable computational cost.

However, the problem encountered in all model-based methods is that their performance typically degrades if

the signal contains closely spaced components. This can become critical in certain applications, such as chan-

nel estimation in ultra-wideband systems [11] [14], where one has to estimate many closely spaced components

in a very low signal-to-noise ratio regime. In the following, we present two different techniques that improve

the resolution performance of the developed scheme without increasing the data set used for estimation.

Consider again the data matrix X, defined in (13). In order to estimate the signal poles zk’s, we have

exploited the shift-invariant subspace property (19), that is, U = U ·Φ, or alternatively, V = V ·Φh, where Φ

is a diagonal matrix with zk’s along the main diagonal, while Φh = ΦH . However, the Vandermonde structure

of U and V allows for a more general version of (19), specifically,

Up = Up ·Φp and Vp = Vp ·Φh
p, (35)

where (·)p
and (·)

p
denote the operations of omitting the first p rows and last p rows of (·) respectively [22]. In

this case, the matrix Φp has elements zp
k = e−jω0ptk on its main diagonal. Therefore, the advantage of using

the values of p larger than p = 1, is that the effective separation among the estimated time delays is increased

p times, which in turn improves the resolution capabilities of the method [14]. In the sequel, this approach

will be referred to as the “subspace-shifting” approach.

Another way to improve the performance in the case of closely spaced components is the following. Instead

11



of constructing the data matrix X as in (13), one can construct another data matrix Xi as

Xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X[0] X[1] . . . X[N − 1]

X[p] X[p + 1] . . . X[p + N − 1]

X[2p] X[2p + 1] . . . X[2p + N − 1]
...

. . .

X[1] X[2] . . . X[N ]

X[p + 1] X[p + 2] . . . X[p + N ]

X[2p + 1] X[2p + 2] . . . X[2p + N ]
...

. . .

X[p − 1] X[p] . . . X[p + N − 2]

X[2p − 1] X[2p] . . . X[2p + N − 2]
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

That is, Xi is obtained by interleaving the rows of the original matrix X in (13). Similarly to the approach

from Section III-B, in the noiseless case, the matrix Xi can be decomposed as Xi = UiSiVH
i , where Si and

Vi are the matrices given by (15) and (16) respectively, while the matrix Ui is now given by

Ui =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

zp
0 zp

1 zp
2 . . . zp

K−1

z2p
0 z2p

1 z2p
2 . . . z2p

K−1
...

. . .

z0 z1 z2 . . . zK−1

zp+1
0 zp+1

1 zp+1
2 . . . zp+1

K−1

z2p+1
0 z2p+1

1 z2p+1
2 . . . z2p+1

K−1
...

. . .

zp−1
0 zp−1

1 zp−1
2 . . . zp−1

K−1

z2p−1
0 z2p−1

1 z2p−1
2 . . . z2p−1

K−1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(37)

Note that each column k of the matrix Ui is made up of p blocks that contain consecutive powers of the signal

pole zk. Therefore, in order to estimate zk’s, one can exploit the following shift-invariance property:

Ui
p,b = Uip,b

· Φp, (38)

where in this case (·)p,b
and (·)

p,b
denote the operations of omitting the first row and last row in each block of

(·) respectively. Note that the matrix Φp is the same diagonal matrix as before, with elements zp
k = e−jω0ptk

on its main diagonal. However, since the matrix Xi has better conditioning than the original data matrix X,

the interleaving approach results in better resolution performance, as we will show in Section VI. Therefore,

we can state the following proposition.

Proposition 2: Consider the matrices X and Xi defined in (13) and (36) respectively, and let X = USVH

and Xi = UiSiVH
i denote their singular value decompositions. Then, the following holds:

12



1. If {zk}K−1
k=0 are eigenvalues of the matrix Z1 = U+ · U, then {zp

k}K−1
k=0 are eigenvalues of the matrix Z2 =

Up
+ ·Up.

2. Matrices Z2 = Up
+ · Up and Z3 = Uip,b

+ · Ui
p,b have identical eigenvalues.

3. If {tk}K−1
k=0 are the time locations of Diracs estimated from the eigenvalues {zk}K−1

k=0 , then {ptk}K−1
k=0 are the

locations estimated from {zp
k}K−1

k=0 , that is, the separation between each two components is increased p times.

Finally, we would like to note that since we are considering periodic signals, estimates of the time locations tk

obtained from the powers of the signal poles zp
k are not unique. That is, for each computed eigenvalue zp

k, there

exists a set of p possible corresponding time delays t̃k, given by t̃k = tk + nT/p, where n = 0, 1, ..., p − 1. In

order to avoid this ambiguity, one can first find an approximate location of the cluster of Diracs, by estimating

only one principal component, using the original method from Section III-B, since it is well-known that the

largest signal-space singular vector is relatively insensitive to signal separation [10]. This information can be

used later to select a proper set of the locations tk, once the values of zp
k have been estimated.

IV. Extension to Other Periodic Signals with Finite Rate of Innovation

In this section, we extend our results to more general classes of periodic signals with finite rate of innovation,

such as non-uniform splines and piecewise polynomials. In particular, we show how to modify methods from

[24] in order to achieve good numerical performance in the noisy case.

A. Periodic Nonuniform Splines

We first consider the sampling problem for periodic nonuniform splines, since this case is a direct extension

of the sampling problem for a stream of Diracs, which will also set the grounds for the following section on

piecewise polynomials.

A signal x(t) is a periodic nonuniform spline of period T and degree R, with knots at {tk}K−1
k=0 ∈ [0, T ], if

its (R + 1)-th derivative is a periodic stream of K weighted Diracs, that is,

x(R+1)(t) =
∑
n

K−1∑
k=0

ckδ(t − tk − nT ). (39)

The Fourier series coefficients X(R+1)[m] are given by (6), that is, X(R+1)[m] = 1
T

∑K−1
k=0 cke

−jmω0tk , where

ω0 = 2π/T . Therefore, by considering the coefficients that correspond to the (R + 1)-th derivative of the

original signal x(t), we can reduce the problem of estimating the unknown signal parameters to the one of

estimating the parameters of superimposed complex exponentials. Note that the derivation can be done in the

frequency domain, by multiplying the Fourier series coefficients X[m] with (jmω0)(R+1). Once the coefficients

X(R+1)[m] have been computed, the signal parameters can be estimated using the method developed in Section

III-B. However, in the presence of noise, derivation of x(t) is an ill-conditioned step, as it enhances noise. In

the following, we will present a modified version of the method from [24], which yields better performance

while retaining the shift-invariant flavor of the original scheme.

Consider again the Fourier series coefficients X[m], given by (6). Note that the term (jmω0)R+1, corre-

sponding to the (R + 1)-th derivative operator in the frequency domain, grows as mR+1. Thus, the idea is to
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weight the coefficients X(R+1)[m] with a multiplicative term S[m], which has an exponential decay, in order

to compensate for the polynomial growth of (jmω0)R+1. One possible solution is to choose S[m] = e−smω0 ,

where s is a parameter that can be adjusted according to the value of SNR (s is a positive real number) and

the size of the data set used for estimation. Consider thus an expression for the new, weighted coefficients

Xs[m]:

Xs[m] = (jω0m)(R+1)X[m]e−smω0 =
K−1∑
k=0

cke
−jmω0tke−smω0 =

K−1∑
k=0

cke
−mω0(s+jtk). (40)

Note that the Xs[m]’s are given by a sum of damped exponentials, however, the shift invariance property

(19) still holds. Therefore, one can use the method from Section III-B to estimate the unknown parameters

{ck}K−1
k=0 and {tk}K−1

k=0 from the coefficients Xs[m]. The only difference compared to the original approach is

that the estimated eigenvalues zks are now given by zks = e−ω0σk , where σk = s + jtk. Given that the value

of the damping factor s is known, the time instants tk’s can be found directly from the eigenvalues zks, while

estimation of the weighting coefficients ck follows the same procedure as before. We note that this is a general

result, which holds for all classes of periodic signals considered in [24]. Namely, all the methods developed

for periodic signals use the Fourier series coefficients X[m] to extract the signal poles zk = e−jω0tk , and thus

estimate the unknown locations tk. Alternatively, one can consider the set of weighted coefficients Xs[m],

and use the same techniques to estimate the scaled version of the signal poles, zks = e−ω0(s+jtk). Therefore,

instead of solving the problem in the Fourier domain [24], one can solve the problem in the Laplace transform

domain, which allows for the same algorithmic tools, and yet leads to better conditioning for certain classes

of signals. Thus, we have the following proposition.

Proposition 3: Consider a periodic nonuniform spline x(t) of period T and degree R, with the (R + 1) − th

derivative of the form x(R+1)(t) =
∑

n

∑K−1
k=0 ckδ(t − tk − nT ), and corresponding Fourier series coeffi-

cients X(R+1)[m] = 1
T

∑K−1
k=0 cke

−jmω0tk , ω0 = 2π/T . Consider a weighted set of coefficients Xs[m] =

X(R+1)[m]e−smω0 , s ≥ 0. If H(z) is the annihilating filter for X[m], then H(ze−sω0) will be the annihi-

lating filter for Xs[m], and vice versa. An equivalent statement holds for eigenvalues obtained by the subspace

approach (25).

While in the above proposition we made no assumption on the value of the parameter s, in practice, it should

be chosen such that in a considered frequency band, the power spectral density (PSD) of noise, weighted

by |(jmω0)(R+1)e−smω0 |2, is as uniform as possible (and does not exceed the PSD of a signal). However, we

should note that in the general case of nonuniform splines of degree R > 1, the method may still be sensitive

to noise, despite windowing. Namely, in the case when transitions between adjacent pieces are almost smooth,

it is difficult to extract the discontinuities in the differentiated signal, even with proper windowing. In the

case of piecewise polynomials, this is not an issue, since the signal itself already contains discontinuities.

B. Piecewise Polynomials

Similarly to the definition of periodic nonuniform splines, a signal x(t) is a periodic piecewise polynomial of

period T , having K pieces of maximum degree R, if and only if its (R + 1)-th derivative is a periodic stream
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of differentiated Diracs, that is,

x(R+1)(t) =
∑
n

K−1∑
k=0

Rk−1∑
r=0

ck,rδ
(r)(t − tk − nT ). (41)

The corresponding Fourier series coefficients are now given by

X(R+1)[m] =
1
T

K−1∑
k=0

Rk−1∑
r=0

ck,r(jω0m)re−jmω0tk . (42)

By denoting c̃k,r = (1/T )ck,r(jω0)r, we obtain

X(R+1)[m] =
K−1∑
k=0

Rk−1∑
r=0

c̃k,rm
re−jmω0tk . (43)

As already discussed in the previous section, the problem in the presence of noise is derivation. Therefore,

instead of considering the set of coefficients corresponding to the (R + 1)-th derivative, the idea is to consider

a set of weighted coefficients X
(R+1)
s [m] = X(R+1)[m]e−jsmω0 , given by

X(R+1)
s [m] =

K−1∑
k=0

Rk−1∑
r=0

c̃k,rm
re−mω0(s+jtk). (44)

However, in this case, it is no longer obvious that the shift-invariant subspace property (19) can be exploited,

since each term e−mω0(s+jtk) is additionally multiplied by a polynomial
∑Rk−1

r=0 mr. That is, the coefficients

X
(R+1)
s [m] are given by a non-linear combination of complex exponentials. In the following, we will show that

one can still obtain a closed-form subspace solution to the problem of parameter estimation from X
(R+1)
s [m].

Specifically, since the exact solution can be relatively easily obtained using the annihilating filter method

[24], we will use Proposition 1, to find a subspace solution to the problem. This will provide a practical

approach for solving a more general class of non-linear estimation problems [14], and will also extend classic

high-resolution spectral estimation techniques [8] [16] [19].

Consider thus the annihilating filter H(z) =
∑N

m=0 H[m]z−m, which satisfies

(H ∗ X(R+1)
s )[n] = 0, ∀n ∈ Z. (45)

In [24], it was shown that in the case when the coefficients X
(R+1)
s [n] are given by (44), the annihilating filter

has multiple roots at zk = e−ω0(s+jtk):

H(z) =
K−1∏
k=0

(1 − e−ω0(s+jtk)z−1)R =
RK∑
m=0

H[m]z−m. (46)

Namely, the key is to observe that each component S
(R+1)
k,r [m] = mre−mω0(s+jtk) in (44) is annihilated by a

filter which has r + 1 zeros at zks = e−ω0(s+jtk) [24], i.e.

Hk,r(z) = (1 − e−ω0(s+jtk)z−1)r+1. (47)

Since the filter Hk,R−1(z) annihilates all the components S
(R+1)
k,r [m], r = 0, ..., R− 1, the annihilating filter for

the signal X
(R+1)
s [n] is given by

H(z) =
K∏

k=1

Hk,R−1(z) =
K−1∏
k=0

(1 − e−ω0(s+jtk)z−1)R. (48)

15



Therefore, the information about the time delays tk can be extracted from the R-th order roots zks of the

filter H(z), while the corresponding weights ck,r can be then found by solving the system of linear equations

(42).

Let us show next how this result can be used to find a subspace solution to the estimation problem.

Following the approach from Section III-B, given a set of the coefficients X
(R+1)
s [m], one first has to construct

a Hankel data matrix X of size M × N , where M,N ≥ RK. The second step is to compute the SVD of X

and extract its RK principal left singular vectors Us (or alternatively, RK principal right singular vectors

Vs). Once Us has been estimated, one should compute the matrix Z as in (25), that is, Z = Us
+ ·Us. From

Proposition 1, it follows that the eigenvalues of Z are identical to the roots of the annihilating filter H(z) (48).

Specifically, since the filter has R-th order roots at zks = e−ω0(s+jtk), k = 1, ...,K, the matrix Z will have K

distinct eigenvalues at zks, each with an algebraic multiplicity R. Thus, an equivalent statement to the one

in Proposition 1, holds in this case as well. However, we note that in the presence of noise, it is desirable to

estimate the signal poles from those eigenvalues zks closest to the circle |z| = e−sω0 [19]. Finally, we note that

since the signal already contains discontinuities, the above method will generally result in better numerical

performance than in the case of nonuniform splines.

V. Aperiodic Signals of Finite Rate of Innovation

So far, we have considered the sampling problem for periodic signals of finite rate of innovation and developed

methods that exploit the structure of the Fourier series coefficients. The problem becomes more challenging in

the aperiodic case, since the frequency domain approach cannot be used. Therefore, we will present alternative

methods that solve the problem in the time domain. We will consider schemes where a signal is sampled with

a Gaussian kernel, since in such a case the signal samples have an algebraic structure that can be easily

exploited (3)-(4).

A. Streams of Diracs

Consider first the basic problem discussed in Section II, that is, the problem of sampling the finite stream

of K weighted Diracs, x(t) =
∑K−1

k=0 akδ(t − tk), with the Gaussian kernel hσ(t) = e−t2/2σ2
. Denote by yn

the samples of the noiseless signal and let wn = en2T 2/2σ2
. We have shown that the weighted set of samples

un = ynwn can be expressed as a sum of real exponentials (4), i.e.

un =
K−1∑
k=0

cke
ntkT/σ2

=
K−1∑
k=0

ckz
n
k ,

where zk = etkT/σ2
and ck = akwk. In practice, the samples un will be perturbed by noise, and the noisy

measurements ũn can be expressed as

ũn = un + wnηn, (49)

where ηn denote the samples of additive white Gaussian noise. Clearly, the problem in the presence of noise

is exponential weighting of the samples, and the Laplace domain formulation of the problem, discussed in

Section IV-A, may not always provide a good alternative. We will thus present a similar approach to the one

developed for periodic signals, which can also be viewed as a generalization of the Laplace domain solution.
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Consider again the subspace approach, where the following Hankel matrix is constructed:

X̃ =

⎛
⎜⎜⎜⎜⎝

ũ0 ũ1 . . . ũN−1

ũ1 ũ2 . . . ũN
...

...
. . .

ũM−1 ũM . . . ũM+N−2

⎞
⎟⎟⎟⎟⎠

(50)

with M,N ≥ K. Denote by X a matrix constructed from the noiseless samples un. Then we can write

X̃ = X + W, where the matrix W is made up of weighted samples of noise,

W =

⎛
⎜⎜⎜⎜⎝

w0η0 w1η1 . . . wN−1ηN−1

w1η1 w2η2 . . . wNηN
...

...
. . .

wM−1ηM−1 wMηM . . . wM+N−2ηM+N−2

⎞
⎟⎟⎟⎟⎠

(51)

For medium to high values of SNR, perturbation on the matrix X has little effect on the principal singular

vectors. In such a case, a rank K approximation of the noiseless data matrix X can be obtained by computing

the singular value decomposition of X̃ and setting all but the K largest singular values to zero. However,

in our case, due to the exponential weighting of noise samples, dominant singular values do not necessarily

belong to the signal space, as they may also include those corresponding to noise. In the following, we propose

a scaling technique that additionally multiplies the entries of the noisy matrix X̃ in order to make the noise

variance as uniform (and minimal) as possible. This will allow us to use the SVD for noise suppression.

The idea is to replace X̃ with another matrix:

X̃s = AX̃B = AXB + AWB.

In general, A and B can be any invertible matrices, however, the goal is to choose those matrices such that

the entries of Ws = AWB have a uniform and minimum variance. One possible solution is to make both A

and B be diagonal matrices, since any linear combination of lines or columns of W would increase the noise

variance. In order to obtain a uniform variance, the elements of A and B can be chosen as:

A[i, i] =
1

1
N

∑N−1
n=0 wn+i

, i = 0, . . . ,M − 1 (52)

B[j, j] =
1

1
M

∑M−1
m=0 A[m,m]wm+j

, j = 0, . . . , N − 1. (53)

As a result of such a transformation, one can think of the entries of Ws as being the samples of additive

white noise. Now we can use the singular value decomposition of the noisy matrix X̃s, i.e.

X̃s = UsSsVs
H + UnSnVn

H ,

where the first term contains K principal components of X̃s. However, note that the above transformation

destroys the Hankel structure of the original data matrix. Therefore, once the principal components of X̃s

have been computed, one can compensate for the effects of A and B by constructing a new, denoised data

matrix Xd as Xd = A−1UsSsVs
HB−1.
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At this point, we should note that there are other whitening transformations that can be used to mitigate

the effect of exponential weighting of noisy samples. For example, one can compute a Cholesky decomposition

[6] of the noise covariance matrix, that is, Rw = CTC (assuming that Rw is a positive definite matrix), and

multiply the data matrix by C−T prior to computing the singular value decomposition. The main advantage

of the method we proposed (with two diagonal matrices A and B) is its simplicity: it involves only averaging

along rows/columns and avoids matrix inversion, while achieving the desired goal.

B. Nonuniform splines

We will now extend the analysis to the more general class of finite-length signals with finite rate of innovation,

such as non-uniform splines. A signal x(t) is a nonuniform spline of degree R if and only if its (R + 1)-th

derivative is a stream of weighted Diracs, that is,

x(R+1)(t) =
K−1∑
k=0

ckδ(t − tk). (54)

Clearly, by sampling the signal x(R+1)(t) with the Gaussian kernel, we can reduce the problem of signal

reconstruction to the one of estimating the parameters of superimposed weighted Diracs, which can be solved

using the method from Section III-B. However, since one has no access to the derivatives of the input signal,

an equivalent approach would be to sample the input signal with an (R + 1)-th derivative Gaussian kernel.

Such a kernel can be expressed as

h(r+1)
σ (t) =

dr

dtr
{e−t2/2σ2} = Pr(t)e−t2/2σ2

, (55)

where Pr(t) is a polynomial of degree r, given by the following recurrence relation:

P0(t) = 1; Pr(t) = P ′
r−1(t) −

t

σ2
Pr−1(t). (56)

Note that in the case when σ2 = 1/2, the polynomial Pr(t) in (55)-(56) is a Hermite polynomial of degree r

[5]. In Section V-D, we will show how one can approximate such kernels with a linear combination of Gaussian

functions. Such an approach will lead to a more practical version of the sampling scheme where the signal is

sampled with the Gaussian kernel, while all subsequent manipulations are carried out on a set of samples.

C. Piecewise polynomials

Similarly to the periodic case, a signal x(t) is a piecewise polynomial with K pieces, each of maximum

degree R, if and only if its (R + 1)-th derivative is a stream of differentiated Diracs, that is,

x(R+1)(t) =
K−1∑
k=0

R∑
r=0

ck,rδ
(r)(t − tk). (57)

If the signal is sampled with a (R + 1)-th derivative Gaussian kernel, the samples yn are given by

yn =
K−1∑
k=0

R∑
r=0

ck,r
dr

dtr
{e−(t−tk)2/2σ2}

∣∣∣∣∣
t=nT

. (58)
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As already discussed in Section V-A, we can consider a new set of samples un, obtained by multiplying yn with

wn. If we let Pr(t) be an r-th order polynomial from (56) and c̃k,r = ck,re
t2k/2σ2

, then the samples un = ynwn

can be expressed as:

un =
K−1∑
k=0

R∑
r=0

c̃k,rPr(nT − tk)entkT/σ2
. (59)

Since in the above expression each exponential entkT/σ2
is additionally multiplied by a polynomial in tk, one

can use the subspace approach discussed in Section IV-B to solve for all the unknown parameters. Note that

in this case one has to have access to the derivatives of the signal x(t) as well, or alternatively, one should

use the (R + 1)-th derivative Gaussian kernel. However, such an approach is not desirable in practice, since

typically one cannot choose the sampling kernel arbitrarily. In the following, we present a method that allows

the signal to be sampled with the Gaussian kernel, while the derivatives of the signal are then computed from

a set of samples.

D. Practical Realization of the Gaussian Sampling Schemes

Consider again the Gaussian kernel hσ(t) = e−t2/2σ2
. The idea is to express the n-th derivative Gaussian

kernel as a linear combination of the shifted versions of hσ(t). Let h
(1)
σ (t) = hσ(t−σ/m)−hσ(t+σ/m), where

σ/m is the corresponding shift. By choosing m ≥ 3, the function h
(1)
σ (t) becomes a very good approximation

of the first derivative Gaussian function (up to a scaling factor). In order to show this, consider the Fourier

transform of h
(1)
σ (t), i.e.

H(1)
σ (ω) = Hσ(ω)ejωσ/m − Hσ(ω)e−jωσ/m, (60)

where Hσ(ω) denotes the Fourier transform of hσ(t). Since Hσ(ω) =
√

2πσe−ω2σ2/2, we have

H(1)
σ (ω) =

√
2πσe−ω2σ2/2 · (ejωσ/m − e−jωσ/m). (61)

Using the Taylor series expansion of the second term in (61), we obtain

H(1)
σ (ω) =

√
2πσe−ω2σ2/2(1 + jωσ/m +

(jωσ/m)2

2!
+

(jωσ/m)3

3!
+ . . .)

−
√

2πσe−ω2σ2/2(1 − jωσ/m +
(jωσ/m)2

2!
− (jωσ/m)3

3!
+ . . .)

=
√

2πσe−ω2σ2/2(2jωσ/m + 2
(jωσ/m)3

3!
+ 2

(jωσ/m)5

5!
+ . . .). (62)

The key is to observe that H
(1)
σ (ω), which is given by a product of a polynomial in variable ν = ωσ and an

exponentially decaying function of ν2, contains only one dominant term, that is,

H(1)
σ (ω) ≈

√
2πσe−ω2σ2/2 · 2jω σ

m
. (63)

This can be seen in Figure 1(a), where we plot the magnitude of the first three terms in the above sum for

m = 3. Now one can compare the expression in (63) with an expression for the Fourier transform of the

first-derivative Gaussian function, given by

F{ d

dt
hσ(t)} =

√
2πσe−ω2σ2/2 · jω. (64)
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Note that there is only a scaling relation between the two expressions, therefore, the above approach gives a

good approximation of the first derivative Gaussian function, which is illustrated in Figures 1(b)-(d).
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Fig. 1. Approximation of the derivatives of a Gaussian kernel (a) Magnitude of the first three terms in the expression

(62). (b) First derivative Gaussian kernel and its approximated version. (c) Second derivative Gaussian kernel and its

approximation. (d) Third derivative Gaussian kernel and its approximation.

The same idea can be used to approximate higher-order derivatives of the Gaussian kernel, using the

following recurrence relation:

h(n)
σ (t) =

m

2σ
(h(n−1)

σ (t − σ/m) − h(n−1)
σ (t + σ/m)), n = 2, 3, 4, ... (65)

Namely, as in the previous case, the key is to note the following relation in the frequency domain:

e−ω2σ2/2(jω)n−1(ejωσ/m − e−jωσ/m) ≈ 2σ
m

e−ω2σ2/2(jω)n. (66)

Let us now return to the sampling problem for finite length signals. For example, consider a piecewise

polynomial of maximum degree R. We have seen that in order to reconstruct the signal, one has to take

samples with the (R + 1)-th derivative Gaussian kernel at locations kT . Following the procedure described

above, these samples can be obtained from the set of samples taken with the Gaussian kernel at sampling
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instants kT −rσ/2, where r = −R,−R+1, ..., R. This leads to a practical version of the developed algorithm,

which we will illustrate in Section VII.

VI. Performance Evaluation

A. Analysis of Noise Sensitivity

The statistical properties of the estimates obtained using high-resolution methods have been studied ex-

tensively, mainly in the context of estimating the frequencies of superimposed complex sinusoids from noisy

measurements [7] [8] [15] [16]. Expressions for the mean square error (MSE) of the frequency estimates [7]

indicate that the numerical performance of such methods is very close to the Cramer-Rao bound [20], which

represents the lowest achievable MSE by any unbiased estimator. In the following, we present some of the key

ideas used in the statistical analysis of the state space approach, while more on this topic can be found in [7]

[16].

Consider the data matrix X and denote by Rc = XXH the corresponding covariance matrix. We will analyze

the subspace approach which uses the eigendecomposition of the covariance matrix Rc. However, note that

the same analysis applies to our method, based on the singular value decomposition of the matrix X, since

the left singular vectors (Us) of X are the eigenvectors of R, that is, Rc = UsΛsUs
H . Let Ũs = Us +�Us,

where �Us is the error in the eigenvectors corresponding to the signal subspace. Then, �Us can be written

as �Us = Ps�Us + Pn�Us, where Ps = UsUs
H is the unique orthogonal projection matrix onto the signal

subspace, that is, if x belongs to the signal subspace, then Psx = x. Similarly, Pn = I − Ps is a projection

operator onto the noise subspace. Now the key is to observe that only Pn�Us contributes to the error in the

eigenvalue estimates [16], which simplifies the analysis considerably.

The first step in the analysis is to relate �Rc, the error in the covariance matrix, to Pn�Us,

Pn�Us = Pn�RcUsΛs
−1. (67)

Next, we consider how Pn�Us affects Hs = Us
+Us as well as its eigenvalues. By denoting H̃s = Hs +�Hs,

it can be shown [16] that

�Hs = −Us
+(�UsHs −�Us), (68)

while the error in Hs can be related to the error of its eigenvalue zk through the following relation:

�zk = pk�Hsqk, (69)

where pk and qk are left and right eigenvectors of Hs corresponding to the eigenvalue zk. Finally, by combining

(67)-(69), we obtain:

�zk = −zkε
H
k �RcUsΛs

−1qk, (70)

where εH
k = −pkUs

+(W1 − z∗kW2), with W1 = [I(K−1)×(K−1), 0] and W2 = [0, I(K−1)×(K−1)].

Therefore, starting from (70) and using the statistics of �Rc, one can compute the mean-square-error

(MSE) of �zk. However, due to the complex dependency of �Rc on the data, the general expressions are

quite complex. Thus we give simplified expressions for the MSE of the frequency estimate in the case of a
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single exponential, which in our framework corresponds to the estimate of the time delay t1 of one Dirac

impulse.

Consider for simplicity the case of a periodic signal with period T . Let the data matrix X be of size M ×N ,

and let Nt = M + N − 1 be the total number of samples used for estimation. Assuming that the signal and

noise are uncorrelated, the optimum performance is achieved when N = Nt/3 or N = 2Nt/3, resulting in the

MSE of time delay estimation [7]:

E{∆t21} ≈ 1
ω2

0

27
4N3

t

1
SNR

. (71)

where ω0 = 2π/T . This is close to the Cramer-Rao bound (CRB) [20], given by

CRB =
1
ω2

0

6
N3

t

1
SNR

. (72)

which indicates desirable numerical performance of the subspace-based approach. Similar conclusions can be

reached for the two-source case [4] [7], while for the general results, we refer to [7] [21].

B. Model Mismatch

In all the methods presented so far, we assumed that both a signal model and the model order are known

a priori. This allowed us to select an appropriate reconstruction technique, as well as the size of the data

matrix, to ensure that all the signal parameters are reliably estimated. In the presence of noise, a low-rank

subspace property is destroyed and such an increased dimension of the solution set must be carefully dealt

with.

In the problem of estimating the parameters of superimposed exponentials, the model order can be obtained

from the number of dominant singular values of the noisy data matrix, which is a very good estimate, provided

that the smallest singular value of the original, noiseless matrix is not dominated by the noise variance.

However, for low values of SNR, it is often difficult to discriminate between small singular values corresponding

to the signal from extraneous ones due to noise and, typically, only dominant signal components can be reliably

estimated [19]. The problem becomes more involved in the case of piecewise polynomials and non-uniform

splines, since one has to take a sufficient number of signal derivatives prior to constructing the data matrix.

Such an approach obviously raises the following question: how can one reconstruct the signal in the case when

neither the signal model nor the model order are known? While at this point we do not have a formal answer

to this question, we would still like to point to one possible solution, namely, finding a piecewise constant

approximation of the signal.

In order to explain the main idea behind such an approach, consider a periodic signal x(t) of period T ,

filtered with a lowpass filter and sampled uniformly at a critical rate. In the case when the bandwidth of the

filter is relatively low compared to the effective bandwidth of the original signal, one could expect that the

Shannon interpolation formula would not yield a good approximation of the signal. Therefore, following the

approach used for reconstruction of a stream of Diracs from a lowpass version, one can obtain a piecewise

constant approximation xa(t) of the signal. This would potentially yield a better approximation, particularly

for signals with discontinuities.

Assume thus that xa(t) contains M constant pieces. In this case, xa(t) is uniquely determined by a set
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of transition instants {tm}M
m=1 and the corresponding amplitudes {am}M

m=1. The key is to consider the first

derivative xd(t) of the piecewise constant approximation xa(t). By denoting cm = am − am−1, the first

derivative xd(t) is given by a periodic sum of weighted impulses,

xd(t) =
d

dt
xa(t) =

∑
n

M−1∑
m=0

cmδ(t − tm − nT ). (73)

The idea is to approximate the first derivative of x(t) with the sum of weighted Diracs, instead of approximating

the original signal x(t). This can be done using the method developed in Section III and estimating the values

of {tm}M
m=1 and {cm}M

m=1 from the following system:

jnω0X[n]e−snω0 =
M−1∑
m=0

cme−nω0(s+jtm). (74)

where jnω0X[n] are the Fourier series coefficients corresponding to the first derivative of the original signal.

Note that these coefficients are windowed by exponentially decaying terms w[n] = e−snω0 , in order to avoid

ill-conditioning of the system (40). The same idea can be used in the case of aperiodic signals, where the

samples corresponding to the first derivative can be computed from samples taken with the Gaussian kernel,

as described in Section V-D.

VII. Simulation Results

In this section, we illustrate the performance of the developed schemes with simulation results. Experiments

are done in discrete-time, with a very long block size in oder to simulate continuous time.

A. The Case of Periodic Signals

We first consider a length 10000 signal made up of a periodic stream of K = 6 weighted Diracs (in Figure

2), and analyze the following cases: the locations of Diracs are chosen randomly according to a uniform

distribution over the interval [1, 10000]; the first component is chosen randomly over [1, 10000], while the

spacing between the components is a Gaussian random variable with mean m = 20 and standard deviation

d = 1. The signal is filtered with a lowpass filter, having one of the following bandwidths: B1 = [−500, 500],

B2 = [−1000, 1000] and B3 = [−1250, 1250], and in each case, a lowpass version of the signal is sampled

uniformly at a critical rate. The spectrum of the signal and different frequency bands used for estimation

are illustrated in Figure 2(a). In Figure 2(b), we plot the mean-square error (MSE) of the position estimates

versus signal-to-noise (SNR) ratio. The error is computed as an average MSE over 100 different trials and

normalized to the signal period. The results indicate that the performance of the method can be improved by

increasing the bandwidth and estimating the parameters from a larger set of samples. Yet, such an improved

performance is achieved at the expense of increased computational requirements, since the complexity of the

reconstruction scheme using Nt samples is on the order of O(N3
t ) [6]. More importantly, the performance of

the method degrades in the case when the average spacing between the Diracs is small compared to the signal

period. For example, when the average spacing is 20 (i.e. 0.2% of the signal period) and SNR < 10dB, it is

no longer possible to reconstruct the signal using only the band B1, and one should estimate the parameters

from a larger signal subspace.
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Fig. 2. Periodic stream of Diracs A periodic signal of length 10000, made up of 6 weighted Diracs, is passed through a

lowpass filter and sampled uniformly at the critical rate, determined by the filter bandwidth. We considered 3 different filter

bandwidths: B1 = [−500, 500], B2 = [−1000, 1000] and B3 = [−1250, 1250]. (a) Magnitude of the signal spectrum and bands

used for estimation. (b) MSE of location estimates versus SNR. Solid lines correspond to the case when the locations are

randomly chosen according to a uniform distribution over the interval [1, 10000], while dashed lines correspond to the MSE in

the case when the average spacing between components is 20 (i.e. 0.2% of the signal period). (c) MSE of location estimates

for the original method and the matrix-shifting method vs. SNR. For the latter method, the error is plotted for different values

of the shift parameter p. (d) MSE of location estimates vs. average spacing between the components. The MSE of the original

method is compared to the MSE’s of the interleaving technique and the subspace-shifting approach.

However, a more attractive solution to this problem is the one presented in Section III-D, where the

resolution performance is improved by exploiting the shift-invariant subspace property in a different way,

rather than by increasing a data set used for estimation. In Figure 2(c), we compare the MSE obtained

with the original method and the subspace-shifting method from Section III-D. We show the estimation

performance for different values of the parameter p, which determines the increase in the effective separation

between the estimated components. Clearly, for all considered values of SNR, the latter approach results in

much better numerical precision. Note that by increasing the value of p, the estimation accuracy improves,

and in this particular case, the value of p = 10 already yields very good precision. Also note that such an

approach does not increase the overall computational requirements, since the size of the data matrix has not
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changed. Still, p cannot be chosen arbitrarily large, since one may end up deleting too many rows/columns

from the data matrix, which would result in degraded performance. In Figure 2(d), we compare the estimation

performance of the subspace-shifting approach and the interleaving method, also presented in Section III-D,

for different values of the average spacing between the Diracs. The value of SNR used in this set of simulations

is SNR = 5dB. The results we obtained indicate that the interleaving technique yields better performance

as the spacing between the components decreases. Also note that the numerical precision achievable by both

techniques is by an order of magnitude better than the precision of the original method.
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Fig. 3. Periodic nonuniform splines and piecewise polynomials (a) Noisy nonuniform spline (SNR=27dB) of degree

R = 1 and reconstructed signal. The signal is reconstructed with an error of MSE=0.0135. The error is defined as MSE =

E{(xest − x)2}/E{x2}, where xest and x denote respectively, the estimated signal and the original signal in one period. (b)

Noisy piecewise linear signal (SNR=15dB) and reconstructed signal. MSE of reconstruction is MSE=0.015.

We next consider the case of a periodic nonuniform spline of period T = 1000 and degree R = 1, embedded

in additive white Gaussian noise. The signal is filtered with a lowpass filter of bandwidth B = [−50, 50] and a

uniform set of 100 samples is taken from the lowpass version. In order to reconstruct the signal from the set

of samples, we used the approach from Section IV-A, where the scaling parameter s is chosen to be s = 0.015.

In particular, we first estimated the locations of the transition points, and then found the least-squares (LS)

linear fit between each two transitions based on a set of samples. In Figure 3, we show the noisy version

(SNR=27dB) and the reconstructed signal, where the reconstruction error is MSE=0.0135. While in this case

we have obtained a good reconstruction of the original signal, in general, for R > 1, the method becomes more

sensitive to noise, as already discussed in Section IV-A. In the following example, we consider a noisy piecewise

linear signal (SNR=15dB) of length 1000, made up of 7 pieces. The signal is passed through a lowpass filter of

bandwidth B = [−100, 100], and a set of 200 uniform samples is taken from the lowpass version. We used the

approach from Section IV-B to reconstruct the signal, with the scaling parameter s = 0.01. As in the previous

case, we first extracted the locations and weights of the discontinuities, and then computed the best LS linear

fit between each two adjacent discontinuities. In Figure 3(b), we show the noisy version and the reconstructed

signal. The reconstruction error is MSE=0.015, however, we should note that as SNR decreases, the method

is less sensitive to noise than it was the case with nonuniform splines.
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B. Finite Length Signals

In this set of simulations, we consider finite length signals and evaluate the performance of the scheme based

on a Gaussian sampling kernel. We first analyze the case of a length 1000 signal, made up of K weighted

Diracs, where K takes on values between K = 2 and K = 12. We assume that the spacing between the

components is a Gaussian random variable with mean ts = 60 and standard deviation d = 3. The signal is

filtered with a Gaussian kernel hσ(t) = e−t2/2σ2
. In Figure 4(a), we show the MSE (normalized to the length

of the signal) of position estimates obtained using the method from Section V-A, in the case when K = 6

and σ = 35. The results are compared to the error obtained using the original method (i.e. no weighting

of the data matrix). Note that by using the original method, it is possible to reconstruct the signal only for

high values of SNR (i.e. SNR > 25dB), whereas preconditioning of the data matrix X from (50) allows for

significantly better estimation performance. Yet, in order to ensure a good performance of the algorithm, the

width of the Gaussian kernel σ must be chosen carefully. This can be seen in Figures 4(b)-(c), where we plot

the reconstruction error as a function of the parameter σ/ts, where ts denotes the average spacing between

the components. The error is plotted for different values of SNR (Figure 4(b)), as well as different number of

Diracs K (Figure 4(c)). The results indicate strong sensitivity to the choice of the parameter σ, specifically

as K increases. In Figure 4(d), we show the reconstruction error versus the number of Diracs K, while the

parameter σ is chosen such that the MSE of reconstruction is minimized. Note that for all considered values of

SNR, the method yields good performance for K < 10, however, when the number of Diracs further increases,

the performance degrades significantly. The main reason for such a behavior is the following: as the number

of components K increases, the time window where the signal must be sampled increases as well, and its

duration is approximately given by Kts. Yet, the optimum width σopt of the sampling kernel is only a fraction

of the average spacing ts, for example, when K = 8, σopt ≈ 0.7ts (see Figure 4(c)). Given the exponential

decay of the Gaussian kernel, for large values of K, at each sampling instant we will obtain the information

only about a limited number (K1 < K) of Diracs, which results in bad conditioning of the system. This makes

the Gaussian scheme suitable mainly for local reconstruction, where the overall sampling window is adapted

to the width of the kernel. This is illustrated in Figure 4(d) as well, where we plot the MSE for K ≥ 9, in

the case when we sample the signal over two distinct time windows (of approximately equal duration), and

in each window we perform local reconstruction. Such an approach clearly improves the performance of the

original method.

In Figure 5(a), we illustrate a noisy piecewise constant signal (SNR=25dB) of length 1000, made up of 7

pieces. The signal is filtered with a Gaussian kernel with σ = 75, as shown in Figure 5(b), and a set of 160

samples is taken from the filtered version shown in Figure 5(c). The first derivative of the signal is computed

according to (65), and the method from Section V-A is used for reconstruction. A reconstructed signal is

illustrated in Figure 5(d), where the reconstruction error is MSE = 6 · 10−3. In Figure 5(e), we show the MSE

of reconstruction versus SNR, for several different values of the number of samples N . The results indicate

that the performance of the method improves as the number of samples increases. In this case, a very good

reconstruction can be already obtained for N = 120, and by further increasing the number of samples, the

performance does not significantly improve.
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Fig. 4. Aperiodic stream of Diracs: We consider a signal of length 1000, made up of K weighted Diracs (K is varied

between 2 and 12), and sampled with the Gaussian kernel e−t2/2σ2
. Average spacing between the components is assumed

to be ts = 60. (a) MSE of position estimates vs. SNR, for K = 6, σ = 35. The MSE of the original method (i.e. with no

weighting of the data matrix) is compared to the MSE obtained by the method from Section V-A. (b) MSE of reconstruction

vs. the width of the Gaussian kernel. The error is plotted as a function of the parameter σ/ts (and is shown for different

values of SNR), indicating a sensitivity of the method to the choice of the width σ. (c) MSE vs. σ/ts, for different values of

K. (d) MSE vs. number of Diracs K. For each value of K, we chose the optimal value of the kernel width σ, that is, the

one which minimizes a reconstruction error. Dashed lines correspond to the MSE obtained by sampling the signal over two

smaller time windows and finding local reconstruction in each window.

C. Model Mismatch

In Figures 6 and 7, we illustrate robustness of our schemes to model mismatch. We first consider a noisy

signal made up of K = 15 weighted Diracs, where the locations are randomly chosen according to a uniform

distribution over the interval [1, 1000], while the weights are i.i.d. zero mean Gaussian random variables with

unit variance. The signal is filtered with a lowpass filter of bandwidth [−100, 100] and 200 uniform samples are

taken from the lowpass version. We used the subspace method from Section III-B, where no prior knowledge

of the model order is assumed. That is, the number of components is estimated as the number of dominant

singular vectors of the corresponding data matrix. In Figure 6(b), we show the reconstructed stream of pulses,
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Fig. 5. Aperiodic piecewise constant signal (a) Noisy piecewise constant signal (SNR=25dB). (b) Gaussian sampling

kernel. (c) Filtered signal. (d) Noisy signal and reconstructed piecewise constant signal. The signal is reconstructed from

N = 160 samples, with an error of MSE = 6 · 10−3. (e) Reconstruction error vs. SNR for different number of samples. The

error is defined as MSE = E{(xest − x)2}/E{x2}.

and obviously, only the dominant pulses have been extracted.

We next consider the case of a periodic piecewise polynomial signal of degree R = 3 embedded in noise,

where the signal model is not known in advance. The signal is lowpass filtered and a uniform set of 40 samples

is taken from the lowpass version. Since we made no assumption on the signal model, we approximated the

signal with a piecewise constant function with M = 16 pieces, as illustrated in Figure 7(a). In Figure 7(b),

we show the noisless signal and the reconstructed lowpass version using Shannon interpolation formula, where

the frequency band used for reconstruction is the same as in the previous case. Obviously, our approach yields

better representation of discontinuities, which points to some robustness of our scheme to model mismatch.

VIII. Conclusions

In this paper, we have considered the sampling problem for signals of finite rate of innovation in the

presence of noise. We have revisited some of the results for deterministic, noiseless signals [24], and developed

more robust methods that improve conditioning of the original schemes and allow for much better numerical

performance. We specifically focused on the case of a stream of Diracs and developed a subspace framework
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Fig. 6. Model mismatch: unknown model order (a) Signal made up of 15 weighted Dirac impulses, with 8 impulses being

dominant. (b) Reconstructed dominant components.
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Fig. 7. Model mismatch: unknown signal model (a) Piecewise polynomial signal, noisy version and the piecewise constant

approximation. (b) Original signal and reconstructed lowpass version using Shannon’s interpolation formula.

to signal reconstruction [16] [17], which provides an elegant and robust solution to the sampling problem.

For classes of periodic signals, such as piecewise polynomials and nonuniform splines, we proposed novel

algebraic solutions that use proper windowing and solve the problem in the Laplace domain. While some of

the tools we used were borrowed from spectral analysis [19], our framework extends classic spectral estimation

techniques and allows for solving more general classes of non-linear estimation problems. Furthermore, we

have developed techniques that improve resolution capabilities of the existing spectral estimation schemes in

the case when the signal contains closely spaced components. We have also considered finite-length signals,

and proposed improved schemes based on a Gaussian sampling kernel and weighting of the data matrix.

Both the numerical analysis and simulation results indicate desirable properties of the proposed methods,

particularly for classes of signals that contain discontinuities. Applications of our framework can be found in

signal and image processing [3] [12] [13], spectral estimation and communications [14]. The results presented

so far raise several questions for future research. Some of the interesting topics include developing a formal
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framework for analyzing the problem of model mismatch and investigating local reconstruction schemes for

finite length signals.

Acknowledgement

The authors would like to thank Dr. Luciano Sbaiz and Prof. Urbashi Mitra for their valuable comments.

References

[1] A. Aldroubi and K. Grochenig, Non-uniform sampling in shift-invariant spaces, SIAM Rev., Vol. 43, pp. 585-620, 2001.

[2] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading, MA, 1983.

[3] A. Chebira, P. L. Dragotti, L. Sbaiz, M. Vetterli, “Sampling and interpolation of the plenoptic function,” in Proc. IEEE

International Conference on Image Processing, Vol. 2, pp. 917-920, Sept. 2003.

[4] H. Clergeot, S. Tressens and A. Ouamri, “Performance of high-resolution frequencies estimation methods compared to the

Cramer-Rao bounds,” IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 37, No. 11, pp. 1703-1720, Nov. 1989.

[5] P. J. Davis, Interpolation and Approximation, Dover Publications, 1975.

[6] G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1989.

[7] Y. Hua and T. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in

noise,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38, No. 5, pp. 814-824, May 1990.

[8] Y. Hua and T. Sarkar, “On SVD for estimating Generalized Eigenvalues of Singular Matrix Pencil in Noise,” IEEE Trans-

actions on Signal Processing, Vol. 39, No. 4, April 1991.

[9] M. Kristensson, M. Jansson and B. Ottersten, “Further results and insights on subspace based sinusoidal frequency estima-

tion,” IEEE Trans. on Signal Processing, Vol. 49, No. 12, pp. 2962-2974, December 2001.

[10] H. B. Lee, “Eigenvalues and eigenvectors of covariance matrices for signals closely spaced in frequency,” IEEE Trans. on

Signal Processing, Vol. 40, No. 10, pp. 2518-2535, October 1992.

[11] I. Maravic, Sampling methods for parametric non-bandlimited signals: extensions and applications, PhD thesis, EPFL, 2004.

[12] I. Maravic and M. Vetterli, “Exact sampling results for classes of parametric non-bandlimited 2-D signals,” IEEE Trans. on

Signal Processing, Vol. 5, No. 1, pp. 175-189, Jan. 2004.

[13] I. Maravic and M. Vetterli, “A sampling theorem for the Radon transform of finite complexity objects,” in Proc. IEEE

ICASSP, Vol. 2, pp. 1197-1200, May 2002.

[14] I. Maravic, M. Vetterli and K. Ramchandran, “Channel estimation and synchronization with sub-Nyquist sampling and

application to UWB systems,” in Proc. IEEE ISCAS, Vol. 5, pp. 381-384, May 2004.

[15] B. Rao, “Sensitivity analysis of state space methods in spectral estimation”, in Proc. IEEE ICASSP, April 1987.

[16] B. D. Rao and K. S. Arun, “Model based processing of signals: A state space approach,” Proceedings of the IEEE, Vol. 80,

No. 2, pp. 283-309, February 1992.

[17] R. Roy and T. Kailath, “ESPRIT estimation of signal parameters via rotational invariance techniques,” IEEE Trans. on

Acoustics, Speech and Signal Processing, Vol. 37, No. 7, pp. 984-995, July 1989.

[18] P. Marziliano, Sampling Innovations, PhD thesis, EPFL, 2001.

[19] P. Stoica and R. Moses, Introduction to Spectral Analysis, Prentice Hall, 2000.

[20] P. Stoica and A. Nehorai, “MUSIC, Maximum Likelihood and Cramer-Rao Bound,” IEEE Trans. on Acoustics, Speech and

Signal Processing, Vol. 37, No. 5, pp. 720-741, May 1989.

[21] P. Stoica and A. Nehorai, “Performance comparison of subspace rotation and MUSIC methods for direction estimation,”

IEEE Trans. on Signal Processing, Vol. 39, No. 2, pp. 446-453, Feb. 1991.

[22] A. L. Swindlehurst, “Time delay and spatial signature estimation using known asynchronous signals,” IEEE Trans. on Signal

Processing, Vol. 46, No. 2, pp. 449-462, February 1998.

[23] M. Unser, Sampling-50 years after Shannon Proceedings of the IEEE, Vol. 88, No. 4, pp. 569-587, April 2000.

[24] M. Vetterli, P. Marziliano and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Transactions on Signal

Processing, Vol. 50. No. 6, pp. 1417-1428, June 2002.

30


