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Sampling and Reconstruction of Sparse
Signals in Fractional Fourier Domain

Ayush Bhandari and Pina Marziliano

Abstract—Sampling theory for continuous time signals which
have a bandlimited representation in fractional Fourier transform
(FrFT) domain—a transformation which generalizes the conven-
tional Fourier transform—has blossomed in the recent past. The
mechanistic principles behind Shannon’s sampling theorem for
fractional bandlimited (or fractional Fourier bandlimited) signals
are the same as for the Fourier domain case i.e. sampling (and
reconstruction) in FrFT domain can be seen as an orthogonal
projection of a signal onto a subspace of fractional bandlimited
signals. As neat as this extension of Shannon’s framework is, it
inherits the same fundamental limitation that is prevalent in the
Fourier regime—what happens if the signals have singularities in
the time domain (or the signal has a nonbandlimited spectrum)?

In this paper, we propose a uniform sampling and reconstruc-
tion scheme for a class of signals which are nonbandlimited in
FrFT sense. Specifically, we assume that samples of a smoothed
version of a periodic stream of Diracs (which is sparse in time-do-
main) are accessible. In its parametric form, this signal has a fi-
nite number of degrees of freedom per unit time. Based on the
representation of this signal in FrFT domain, we derive conditions
under which exact recovery of parameters of the signal is possible.
Knowledge of these parameters leads to exact reconstruction of the
original signal.

Index Terms—Finite-rate-of-innovation, fractional Fourier
transform (FrFT), nonbandlimited signals, Shannon, sparse sam-
pling, stream of Diracs.

I. INTRODUCTION

S
HANNON’s sampling theorem [1] is at the heart of
analog-to-digital conversion. Jerri [2] and Unser [3] pro-

vide an excellent survey on the state-of-the-art of the sampling
theory in their respective eras. Since Almeida’s introduction of
fractional Fourier transform (FrFT) [4] to the signal processing
community, there has been a surge of research in this area.
Since sampling theory is the theme of this paper, we would
like to emphasize that at least on eight occasions including,
[5]–[12], Shannon’s sampling theorem [1] was independently
extended to the class of fractional Fourier bandlimited, or
simply, fractional bandlimited signals. Important applications
of the FrFT are mentioned in [5]–[13] and the references
therein. Let denote the -inner
product operation between continuous time signals and
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where “ ” in the superscript denotes complex conjugate of
. In context of [13], the FrFT of a signal or a function, say
, is defined by

(1)

where

(2)
is the transformation kernel, parametrized by the fractional
order and where is some integer. The inverse-FrFT
with respect to angle is the FrFT at angle , given by

(3)

Whenever , (1) collapses to the classical Fourier trans-
form definition. In sense of the FrFT, the generalized version of
Shannon’s sampling theorem states,

Theorem 1 (Shannon-FrFT): Let be a continuous-time
signal. If the spectrum of , i.e. is fractional bandlim-
ited to , meaning, when , then
is completely determined by giving its ordinates at a series of
equidistant points spaced seconds apart.

The reconstruction formula for fractional bandlimited signals
as given in [12] is

(4)

where is a domain independent chirp
modulation function. Let ‘ ’ denote the fractional convolution
operator. Filtering by a filter, say , in FrFT sense1 is
equivalent to [14],

(5)
where “ ” is the conventional convolution operator. From a fil-
tering perspective, (4) can be seen as filtering of samples
with the kernel . If is the approxi-
mation of , then whenever

(the Nyquist rate for FrFT), where is the
sampling frequency. All the aforementioned results are equiva-
lent to Shannon’s sampling theorem with respect to Fourier do-
main for .

1We adhere to this modified definition of convolution operator as it inherits
the fractional Fourier duality property in that

, which does not hold for the FrFT of unless .
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Although the result of Theorem 1 has notable advantages [12]
over its Fourier domain based counterpart, the sampling the-
orem for either domain is confined to bandlimited signals only.
Consider a Dirac impulse or . Using (2), we have

(6)

which is a nonbandlimited function (and least sparse when com-
pared to the time-domain counterpart) and thus, Theorem 1 fails
to answer the following question: If is a fractional nonban-
dlimited signal, then, how can we sample and reconstruct such
a signal?

This limitation can be quite restrictive from a practical point
of view—the intense motivation behind development of inter-
esting sampling theorems pertaining to Fourier domain by Vet-
terli et al. in [15] and their extensions in [16]–[18].

The problem of sampling nonbandlimited signals in FrFT do-
main has a natural/strong link with that of sparse sampling [15],
[16]. The Heisenberg-Gabor uncertainty principle for the FrFT
[19]—a generalization of the Fourier duality—asserts that the
product of spreads of and has a lower bound which
is proportional to (assuming ). This implies
that loss of compact support/bandlimitedness in one (frequency)
domain will lead to more sparse representation in canonically
conjugate (time) domain.

In this paper, we propose a sampling and reconstruction
scheme for a signal with sparse representation (in the time
domain), whose fractional spectrum is nonbandlimited. We
model the input signal as a continuous-time periodic stream
of Diracs which is observed by an acquisition device which
deploys a sinc-based low-pass filter.

The paper is organized as follows. In Section II, we introduce
our signal model and then derive an equivalent representation
of our sparse/nonbandlimited signal in FrFT domain. In Sec-
tion III, we present a uniform sampling theorem and describe the
reconstruction process and finally, we conclude in Section IV.

II. SIGNAL MODEL AND ITS EXPANSION IN FrFT DOMAIN

A. Sparse Signal Model: Periodic Stream of Diracs

In this paper, we are interested in sampling a periodic stream
of Diracs,

(7)

with period , unknown weights and arbitrary shifts,

. In sense of [15], the signal has degrees
of freedom per period and its rate of innovation is .
From now on, the signal will denote the stream of Diracs.

B. Fractional Fourier Series (FrFS)

Periodic signals can be expanded in fractional Fourier domain
as a fractional Fourier series or FrFS [20]. The FrFS of a periodic
signal, say , can be written as

(8)

where

constitutes the basis for FrFS expansion for a -periodic .
The FrFS coefficients are given by

(9)

where denotes the integral width. The well-known Fourier
series (FS) is just a special case of FrFS for .

C. Stream of Diracs in Fractional Fourier Domain

In Fourier analysis, the Poisson summation formula (PSF)
plays an important role. It is a well-known fact that a Dirac comb
(or stream of Diracs) in time-domain is another Dirac comb in
Fourier domain. Generalization of the PSF for Dirac comb in
FrFT domain leads to a similar result. LetШ

be a -periodic Dirac comb. Then, we have

Ш

(10)

where .
Proof: The proof is done by expandingШ as FrFS:

Ш Ш

Ш

(11)

where the coefficients of expansion are given by

Ш Ш

Ш

Ш Ш

Ш

(12)

where . Back substitution of (12) in
(11) results in,

Ш
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Fig. 1. Sampling and reconstruction of periodic stream of Diracs in fractional Fourier transform domain.

where . This concludes the proof.
For sake of convenience, we will assume that the constant

has been absorbed in . Note that at , Ш
which is the result of applying the PSF on

Ш in Fourier domain. Our immediate goal now is to derive
the FrFS equivalent of in (7). Since is a linear combi-
nation of some Ш delayed by some time shift , it will be
useful to recall shift property of FrFT [4] which states that

(13)
Therefore, call Ш whereШ Ш

is the -shifted version of Ш . Using (10) and the shift-
property of FrFT in (13), we have,

Ш

Having obtained the FrFT-version ofШ , we can write

Ш

Note that is nonbandlimited. However, it can be com-
pletely described by the knowledge of —a linear combi-
nation of complex exponentials.

III. MAIN RESULT: SAMPLING AND RECONSTRUCTION OF

SPARSE SIGNALS IN FRACTIONAL FOURIER DOMAIN

The scheme that we will present in this section is depicted in
Fig. 1. Like in most practical cases, we assume that the signal
is being observed through a lowpass prefilter which is analo-
gous to the anti-aliasing filter in Shannon’s framework. In this
paper, we presume that a sinc-based kernel is used to observe

. In particular, we let the sampling kernel to be
. We will use to denote .

Shannon’s Sampling Theorem for FrFT Domain Revis-

ited: The family of functions has two interesting

properties. Firstly, integer translates of form an or-
thonormal basis. Secondly, using

(14)

it is apparent that is a space of fractional bandlim-
ited signals which we will refer to as . Indeed, for every

it is self-evident that (where is the
projection operator) and mathematically, it results in,

which shows that Theorem 1 is simply the orthogonal projection
of onto the subspace of fractional bandlimited signals. We
would like to highlight the fact that this procedure is optimal
in least-square sense—a fact that has been overlooked in the
discussions presented in [5]–[12].

In view of the filtering operation in FrFT domain which
makes use of (5), can be interpreted in the
following two steps.

Sampling: is prefiltered with anti-aliasing filter
followed by sampling or

. Note that .
Reconstruction: is filtered using low-pass

leading to approximation of , which is

.
Departing From Shannon’s Framework for FrFT Do-

main: Theorem 1 is well applicable for the case of fractional
bandlimited signals, however, it fails to recover nonbandlimited
signals e.g. in (7). Certainly, . We propose a
remedy to this problem in the form of the following theorem.

Theorem 2: Let be a -periodic stream of Diracs

weighted by coefficients and locations
with finite rate of innovation . Let the sampling
kernel/prefilter be an ideal low-pass filter which has
fractional bandwidth , where is chosen such that

. If the filtered version of , i.e.
is sampled uniformly at locations ,
then the samples,

are a sufficient characterization of , provided that
and .

Proof: We define our sampling kernel as,

Using (14), one can show that is compactly supported
over . Prefiltering and sampling results in,
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The inner product in the above step is further simplified using
the Fourier integral,

(15)

We can therefore conclude that

where .
Signal Reconstruction From Its Samples: Call

, —a linear combination of -com-
plex exponentials, with weights

. The problem of calculating

and is based on finding a suitable polynomial

whose coeffi-
cients, annihilate meaning,

In matrix notation, finding is equivalent to finding a cor-
responding vector that forms a null

space of a suitable submatrix of i.e.,
which is essentially the set .

Computing ’s: Having computed the weights , the ’s
are obtained by finding roots of the polynomial which in
turn give one set of innovative parameters i.e. ’s.

Computing ’s: Once the ’s are obtained, we have
. To find the ’s on the other hand, we need to solve

the Vandermonde system of equations where is the

Vandermonde matrix with elements ,

and and vectors and
. This solution is unique since

, . This concludes the proof of Theorem 2.
Application of Theorem 2: Consider a -periodic chirp signal

corrupted by additive impulsive noise, ,
where is an fractional bandlimited signal

and as in (7) is the impulsive noise, thus
the rate of innovation of is . In view

of Theorem 2, can be recovered from ,
, which in turn will lead to the FrFS

coefficients of , i.e. ,
thus achieving the goal of denoising . Processing signals
in FrFT domain is certainly advantageous. For a given chirp
signal, its rate of innovation in FrFT domain is lower than that
of Fourier domain, i.e. .

IV. DISCUSSION & CONCLUSION

Departing from Shannon’s framework, we presented a
scheme for sampling and reconstruction of fractional non-
bandlimited signals which have a sparse representation in
time-domain. Even though these signals are nonbandlimited,
in their parametric form, as we have shown, exact recovery of
their parameters is possible. The constraint being, the fractional
bandwidth of anti-aliasing filter exceeds the rate of innovation.
Based on the recovered parameters, precise locations and
amplitudes of the stream of Diracs can be obtained. Our results
can be extended to Linear Canonical transform domain [13].
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