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ABSTRACT This paper proposes a novel control solution designed to solve the local and grid-connected

distributed energy resources (DERs) management problem by developing a generalizable framework capable

of controlling DERs based on forecasted values and real-time energy prices. The proposed model uses

sampling-based model predictive control (SBMPC), together with the real-time price of energy and forecasts

of PV and load power, to allocate the dispatch of the available distributed energy resources (DERs) while

minimizing the overall cost. The strategy developed aims to find the ideal combination of solar, grid, and

energy storage (ES) power with the objective of minimizing the total cost of energy of the entire system.

Both offline and controller hardware-in-the-loop (CHIL) results are presented for a 7-day test case scenario

and compared with two manual base test cases and four baseline optimization algorithms (Genetic Algo-

rithm (GA), Particle Swarm Optimization (PSO), Quadratic Programming interior-point method (QP-IP),

and Sequential Quadratic Programming (SQP)) designed to solve the optimization problem considering the

current status of the system and also its future states. The proposed model uses a 24-hour prediction horizon

with a 15-minute control horizon. The results demonstrate substantial cost and execution time savings when

compared to the other baseline control algorithms.

INDEX TERMS Controller Hardware-in-the-Loop (CHIL), distributed energy resources (DER), dis-

tributed generation (DG), distributed storage (DS), energy management, real-time pricing, model predictive

control (MPC).

I. INTRODUCTION

A
N unprecedented growth of DERs, especially PV and

wind, has driven the decentralization of power systems

and the increase in deployment of distributed generation (DG)

and distributed storage (DS) systems by both utility compa-

nies and consumers. Progressively, energy storage systems

are becoming more competitive, and companies are starting

to heavily invest in the development of lithium-ion batteries,

thermal storage, and other types of DS systems to decrease

energy costs and stabilize the distribution system.

DG and DS systems have the potential of becoming the

cornerstone of the future smart grid. Nonetheless, these sys-

tems are still not ready for a harmonious integration to the

grid due to their lack of proper control and intermittent

nature [1]. In the US, most of the DG and DS systems

are being deployed under two basic operating principles:
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1) to help in the reduction of metered load through net meter-

ing programs, and 2) to sell real power generation to util-

ity companies through power purchase agreements (PPAs).

These unsophisticated energy transaction methods limit the

optimal utilization of these systems. That is why, in order

to maximize the solar penetration and effective utilization

of available resources, DERs need to have more sophisti-

cated control approaches that dynamically leverage all the

resources available to the system while serving the load in

an economical, reliable, and safe way. Such optimal control

of the energy resources will translate into direct benefits to

both utility companies and regular consumers.

Due to the intermittent characteristics and constraints

present in some DER systems, such as solar and wind,

optimal energy management has become a challenging opti-

mization problem tackled by many researchers. The most

common methods found in the literature are linear program-

ming (LP,MILP)models, genetic algorithms (GA), game the-

ory approaches, particle swarm optimization (PSO), model

predictive control (MPC), and other metaheuristic methods

such as ant colony optimization (ACO) and crow-search

algorithms (CSA), among others. In [2], [3], researchers use

mixed-integer linear programming approaches to find the

optimal scheduled use of energy storage units together with

PV and wind generation using current load demand condi-

tions and optimal power dispatch. Most of these approaches

consider only the current state of the system to perform

dispatch optimization. However, similar methods also exist

where the system is extended to consider future states in

order to minimize the overall cost of the system operation.

One example is the model presented in [4], where authors

propose a model solved using MILP for optimizing mul-

tiple DERs and other residential appliances via stochastic

optimization and robust optimization based on a demand

response program. Another similar approach is presented

in [5], where authors formulate the energy scheduling prob-

lem of a microgrid system as a stochastic optimization

solved using standard convex quadratic programming solvers.

In [6], authors propose an online energy management sys-

tem (EMS) for a hybrid microgrid that contains renewable

sources such as PV and wind together with battery storage

and variable speed diesel generators. Here, authors propose

an EMS that consists of a two-level optimization algorithm

where the first level is a rolling optimization, and the second

level corresponds to an intrasample correction. In the rolling

optimization, DERs are scheduled based on the forecasted

information and an MPC approach, while on the intrasam-

ple correction, a feedback correction adjusts the schedule

based on the errors. Authors formulate the optimization prob-

lem as a MILP framework with two objectives: 1) mini-

mize total operating costs, and 2) minimize pollutant gas

emissions. Similarly, in [7], authors propose a generic and

adaptable energy management system, implemented in an

online scheme, designed to minimize the operating costs

of the microgrid and reduce the load disconnections. The

model claims to be a generic architecture that allows the

interaction of measured values together with forecasting and

optimization modules. The constrained optimization prob-

lem presented here is solved using the CPLEX solver. The

energy management system proposed in this paper is tested

under different conditions, such as grid-connected and

islanded modes. A similar approach is taken in [8] and [9],

where researchers propose two-layer (two-stage) optimiza-

tion approaches designed to solveMINLP formulations of the

EMproblem of grid-connectedmicrogrids and hybrid ES sys-

tems respectively. In [8], authors use a Lyapunov optimization

method while in [9], researchers use the IPOPT and Gurobi

solvers integrated with MATLAB.

In [10], [11], authors use GA models for solving a

mixed-integer nonlinear programming problem of a micro-

grid system taking into account the current state of the sys-

tem, cost of emissions, operating costs, and maintenance

costs of diesel generators, PV and batteries. Researchers

in [12] develop a genetic algorithm (GA) approach to solve

the planning problem of an energy management system

and a distributed energy storage planning model based on

a game-theoretic approach. Both approaches are designed

to solve the demand-side management formulations using

different approaches. For instance, The GA solves the dis-

tributed EM problem using a heuristic approach while the

game-theoretical energy management scheme obtains the

Nash equilibrium by using the proximal decomposition algo-

rithm. Another distributed approach is presented in [13],

where researchers propose a distributed robust energy man-

agement scheme designed to control multiple interconnected

microgrids (MGs). The objective of the model presented is

the optimization of the total operational cost of 4 microgrids

tested, where real-time energy trading is available between

all neighboring microgrids and the main grid. Authors use

an algorithm called DAROSA, derived from the ADMM

algorithm, to solve the formulated problem. This problem

considers uncertainties such as renewable generation, load

consumption, and buy/sell prices coming from the grid.

PSO is another well-known heuristic method widely used

to solve the energy management problem of a microgrid

system. In [14], [15], researchers present economic dispatch

and power management solutions for stand-alone microgrids

with wind turbines, microturbines, and ES systems. Other

new metaheuristic methods have also been proposed for

power and energy management of microgrid systems, such as

ACO in [16] and the crow-search algorithm in [17], [18]. The

results of these heuristic methods are highly dependent on

the initial guesses and can be very time-consuming for com-

plex optimization problems with a high number of decision

variables.

Several model predictive control (MPC) models have

also been proposed for managing ES in a microgrid

setting [19], [20] or for power regulation applications

in islanded AC/DC microgrids [21]. Similarly, off-line

day-ahead stochastic planning/scheduling models have

also been proposed in the literature. In these models,

the energy management solution is formulated as a stochastic
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problem based on scenarios generated by Monte Carlo

simulations [22], [23]. These solutions have the disadvantage

of being unable to react to real-time fluctuations and being

very computationally intensive due to the number of scenar-

ios that must be simulated to achieve an optimal solution.

The paper presented in [24] tries to address this difficulty

by proposing and studying the performance of a two-step

online energy management strategy for a grid-tie microgrid

that considers the efficiency of energy storage systems and

real-time changes in forecasts. In this case, authors use a non-

linear programming with discontinuous derivatives (DNLP)

solver to obtain a cost-efficient energy management solution

for a grid-tie microgrid with a battery energy storage system

(BESS). As mentioned, the EMS proposed is a two-step

energy management strategy where the first step focuses on

the scheduling of the available DERs and the second step

aims to balance the power flow and reduce the impacts of the

forecasting errors.

Contrasting from the papers examined, the solution pro-

posed in this paper provides a different approach to solve the

online energy management (EM) scheduling problem using

a graph-search approach that takes into account the current

and future status of the system to find the optimal planned

path solutions that minimize the cost of using the available

DER. This paper presents an improved and expanded version

of the model presented in [25]. More specifically, this paper

presents the following research contributions:

1) A novel control solution that uses Sampling-Based

Model Predictive Control (SBMPC) to allocate dis-

tributed energy resources (DER) based on the current

and future forecasted states of the system.

2) A cost-effective control solution that solves the energy

management problem using a graph-search approach

that provides a different way for computing the ‘opti-

mal’ control actions of the system. The proposed

method uses a rolling receding horizon approach suit-

able to handle forecasting errors by adjusting the

real-time control actions based on a new search per-

formed at every time-step.

3) A control solution that exploits the use of sam-

pling by discretizing the solution space of the sys-

tem while taking into account all system constraints.

The input-sampling procedure reduces the computa-

tional complexity and time needed to solve the non-

linear problem. In essence, this method offers a more

straightforward and competitive way of adjusting the

trade-off between energy costs and computational cost

via input-sampling parameters.

4) A detailed comparison with other competitive models

where the EM problem is formulated as a nonlinear

constrained optimization problem that considers future

states. Algorithms, such as GA, PSO, QP interior-point,

and SQP, are used to solve the problem formulated.

5) A controller hardware-in-the-loop (CHIL) implemen-

tation of the proposed controller in a real-time simu-

lation environment that demonstrates and validates its

utility in a real-world scenario. Real-time CHIL tests

have proven to be an effective tool for validating the

performance of control systems under a more realistic

scenario [26].

II. METHODOLOGY: ENERGY MANAGEMENT

OF MICROGRIDS USING SBMPC

The proposed model, shown conceptually in Fig. 1, is a

source allocation control scheme that considers various

power sources (PV, energy storage, and grid) to meet the load

requirements while minimizing the total cost of energy. One

significant advantage that the proposed model has when com-

pared with the other energy management models explored in

the literature review is that the energy management solutions

or setpoints gave by the controller consider both the current

status of the system and its future (forecasted) states with

considerably lower utilization of computing resources. This

is achieved by formulating the energy management of the

DERs as a shortest path problem, where the states of DERs

are used to generate a graph that is searched, using a search-

ing algorithm, with the objective of finding the ideal set-

points of all the DERs along the desired forecasting horizon.

A detailed performance comparison between the different

evaluated models is presented in Section IV.

FIGURE 1. Conceptual illustration of microgrid system with

SBMPC controller.

A. PROBLEM FORMULATION

The problem formulation is based on the energy management

formulation of a microgrid similar to the one seen in Fig. 1,

where the cost function is chosen to be the dollar cost of

energy of the system over the entire forecasting horizon. The

cost function to minimize is described as follows:

J (tk ) = [rG (tk )PG (tk )

+ scd (tk ) rESP
∗
ES
(tk )]1t (1)

Jtotal =

N
∑

k=0

J (tk+N ), (2)

where 1t = tk − tk−1 (for all k) and

rG (tk ) =

{

wr̄G (tk ), if PG (tk ) < 0,

r̄G (tk ), if PG (tk ) ≥ 0
(3)

VOLUME 6, NO. 4, DECEMBER 2019 197



IEEE Power and Energy Technology Systems Journal

Here, J (tk+N ) is the cost incurred from time t
k=0 to tk+N ,

where N is the number of time steps along the forecasting

horizon. PG represents the power to or from the grid as

seen at the point of common coupling (PCC) and is defined

by (5). The value P∗
ES
(tk ) is the selected ES power setpoint,

for charging/discharging operations, computed based on the

result given by the EM controller. A negative P
ES
(tk ) value

represents charging while a positive P
ES
(tk ) value represents

discharging. rG and rES represent the price rates (in $/kWh)

associated with the grid and ES, respectively. The weight, w,

is chosen on the interval 0 < w < 1 so as to incorporate

differential pricing that distinguishes the sell-to-grid and buy-

from-grid price rates. This helps the optimization algorithm to

prioritize charging or discharging operations of the ES based

on different buy-sell price scenarios. In (1), the value 0 for

the binary variable scd (tk ) represents the charging operation

of the ES system, while the value 1 represents the discharging

operation of the ES system.

scd (tk ) ∈ {0, 1} (4)

The defined cost function must satisfy different problem

constraints such as the power balance at the point of common

coupling (PCC), and the ratings for all the DER systems. The

power balance at the PCC of the system is given as:

PG (tk ) =

NL
∑

l=1

Pl
L
(tk )−

Ng
∑

j=1

Pj
PV
(tk )− P

∗
ES
(tk ), (5)

where PG is defined as the power as seen from the grid

perspective, and Pl
L
is the active power from the loads in NL .

Pj
PV

represents the PV power from the j PV system in the

microgrid and r
j
PV is the levelized cost of energy (LCOE) for

the j PV system in the set of Ng PV systems. The solutions

given by the EM controllers must satisfy constraints from the

grid, PV systems, and the ES system. These constraints are

shown below:

Pj,min
PV
≤ Pj

PV
(tk ) ≤ P

j,max
PV

(6)

Qj,min
PV
≤ Qj

PV
(tk ) ≤ Q

j,max
PV

(7)

(S j
PV
)2 ≥ (Pj

PV
(tk ))

2 + (Qj
PV
(tk ))

2 (8)

PG (tk ) ≤ Pmax
G

(9)

Pmin
ES
≤ PES (tk ) ≤ P

max
ES

(10)

Qmin
ES
≤ QES (tk ) ≤ Q

max
ES

(11)

(S2
ES
) ≥ (P2

ES
(tk ))+ (Q2

ES
(tk )) (12)

SOCmin
ES
≤ SOCES (tk ) ≤ SOC

max
ES

(13)

The constraints guarantee that all the systems in the micro-

grid are operating under their limiting capacity. These con-

straints define the limits on the apparent power (S), active

power (P), and reactive power (Q) of all the sources connected

to the microgrid system. The limits on the state-of-charge

(SOC) of the ES system are also defined above. The state-

of-charge for the next time (SOCES (tk+1)) is defined as:

SOCES (tk+1 ) = SOCES (tk )−1SOC(tk ) (14)

where 1SOC is the state-of-charge variation during the

charge or discharge process. 1SOC is defined as

1SOC(tk ) =















η
c

P∗
ES
(tk ) ·1t

Emax
ES

, when charging.

η
d

P∗
ES
(tk ) ·1t

Emax
ES

, when discharging.

(15)

Here Emax
ES

is the maximum rated energy of the ES system

and ηc and ηd are the efficiencies for either the charging or

discharging operation of the battery. Due to this definition,

the optimization problem needs to be treated as a non-smooth

nonlinear programming optimization problem. It should be

noted how this function definition does not represent a prob-

lem for SBMPC since the solutions are based on sampling,

but for the QP and SQP approaches, this definition needs to

be simplified.

B. EXTENDED NONLINEAR CONSTRAINED

OPTIMIZATION FORMULATION

CONSIDERING FUTURE STATES -

GA, PSO, QP(IP) AND SQP

The energymanagement (EM) problem formulated above can

be solved considering only the current status of the system,

i.e., just optimizing for the current time-step, or considering

the current and future states of the system, i.e., optimizing

for the entire forecasting horizon. Here, we explain how

the formulation presented above can be extended to solve

the EM problem considering the current and future states

of the system using a nonlinear constrained optimization

approach. This formulation can be used to solve the EM

problem as a deterministic or stochastic problem given some

predicted/forecasted states. Using this formulation, the prob-

lem becomes a constrained nonlinear optimization problem

inwhich quadratic programming, genetic algorithms (GA), or

particle swarm optimization (PSO) can be used as the primary

optimization technique to find the ‘optimal’ control values.

In order to simplify the explanation and without loss of

generality, let us assume the problem only requires to take

into consideration one variable load and one PV system.

Using this assumption, (5) can be simplified as:

PG (tk ) = PL (tk )− PPV (tk )− P
∗
ES
(tk ) (16)

Additionally, to simplify notation, let us define the follow-

ing variables as:

sk
cd
= [s0

cd
, s1

cd
, ..., sN

cd
] (17)

Pk

ES
= [P0

ES
,P1

ES
, ...,PN

ES
] (18)

Where s
cd

is the vector that contains the binary variables

scd (tk ), from k = 0 to N , and P
ES

is the vector containing

198 VOLUME 6, NO. 4, DECEMBER 2019



Ospina et al.: SBMPC of PV-Integrated Energy Storage System

the values to minimize the scalar cost function Jtotal subject

to some nonlinear constraints and bounds. Using this nota-

tion, the cost function to minimize can be expanded and

rewritten as:

Jtotal =
[

[rG (t0 )(PL (t0 )− PPV (t0 )− P
0
ES
)+ s0

cd
(rES P

0
ES
)]

+ [rG (t1 )(PL (t1 )− PPV (t0 )− P
1
ES
)+ s1

cd
(rES P

1
ES
)]

...+ [rG (tN )(PL (tN )− PPV (tN )− P
N
ES
)+ ...

... sN
cd
(rESP

N
ES
)]
]

1t

=

N
∑

k=0

[rG (tk )PG (tk )+ s
k
cd
rESP

k

ES
]1t (19)

The upper (UB) and lower bounds (LB) of the control

vector variable P
ES

(LB ≤ P
ES
≤ UB) are defined by (10).

Finally, the nonlinear constraints of this problem are associ-

ated with the state-of-charge (SOC) of the controlled energy

storage (ES) system propagated through the forecasting hori-

zon. In essence, at any time tk , the value of Pk
ES

must be

constrained by the change in SOC that it will cause. If this

change causes the SOC to go below or above the SOC limits

defined by the problem, then that specific value of Pk
ES

is not

considered as a feasible solution. In other words, at every time

step, the following constraint must be enforced:

SOCmin
ES
≤ SOCprev

ES
− Pk

ES
ηk
cd
(

1t

Emax
ES

) ≤ SOCmax
ES

(20)

Where Emax
ES

is the maximum energy rating of the ES sys-

tem, ηk
cd
is the efficiency for either the charging or discharging

operation of the energy storage (ES) system, and SOCprev
ES

is the state-of-charge (SOC) of the ES system before the

control action at tk . As seen in this term, the value ( 1t
Emax
ES

) can

be defined as a constant value since both Emax
ES

and 1t are

constant throughout the optimization procedure. The constant

letter ζ will be used to define this value as seen in:

ζ = (
1t

Emax
ES

) (21)

Using these definitions, we can characterize all the non-

linear constraints of the problem needed to perform the min-

imization of the cost function, while taking into account all

the states starting from the current state k = 0 up to the end

of the forecasting horizon at k = N . These constraints are

presented in (23)-(28), shown at the bottom of this page. Note

that these nonlinear constraints are defined using the standard

form c(x) ≤ 0.

C. SAMPLING-BASED MODEL PREDICTIVE CONTROL

ENERGY MANAGEMENT SOLUTION

Sampling-Based Model Predictive Control (SBMPC) is an

MPC method that consists of the consolidation of an opti-

mization algorithm called Sampling-Based Model Predic-

tive Optimization (SBMPO) and a receding horizon control

technique [27], [28]. The main idea behind using SBMPC

to solve the energy management problem, formulated in the

previous section, relies on the concept that this problem can

be formulated as a shortest path problem. In this shortest path

problem, the nodes of the graph represent the different states

of the system, and the edges represent the cost associated with

moving to a particular state at each time step tk . In essence,

SBMPC creates a graph tree that is searched using a searching

algorithm designed to find the optimal path of actions from

the current state of the system up to the system state at the end

of the prediction horizon. In our particular case, the A* search

algorithm is the algorithm used to traverse the graph. The

pseudocode listing of the SBMPC algorithm is presented in

Algorithm 1. The main details of this algorithm are explained

below.

SBMPC performs an iterative search that searches through

a graph that is generated based on forecasted microgrid sys-

tem states and a propagation model of the energy storage

being controlled by SBMPC. This iterative process starts

from the current state at tk = 0 and runs up to the prediction

horizon, tN . At each time step (from k to N ), the current

node with the lowest cost is expanded into a diverse pool of

possible states that the microgrid system can end up based

on the forecasted values and the control setpoint of the ES

system. After these states are expanded, they are checked

against constraints and prune based on similarity criteria

before they are added to the final graph tree. This process

is done to reduce the size of the graph that is going to be

searched. Finally, the nodes that are added to the final graph

are evaluated based on their individual cost, and a path that

connects the nodes with the lowest costs is obtained as a

result. Fig. 2 presents an overall depiction of the solution

P0
ES

(η0
cd
× ζ ) − SOC init

ES
+ SOCmin

ES
≤ 0 (23)

−P0
ES

(η0
cd
× ζ ) + SOC init

ES
− SOCmax

ES
≤ 0 (24)

P1
ES

(η1
cd
× ζ ) − (SOC init

ES
− P0

ES
(η0

cd
× ζ ))+ SOCmin

ES
≤ 0 (25)

−P1
ES

(η1
cd
× ζ ) + (SOC init

ES
− P0

ES
(η0

cd
× ζ ))− SOCmax

ES
≤ 0 (26)

· · ·

PN
ES
(ηN

cd
× ζ ) −(SOC init

ES
− P0

ES
(η0

cd
× ζ )− P1

ES
(η1

cd
× ζ )...− PN−1

ES
(ηN−1

cd
× ζ ))+ SOCmin

ES
≤ 0 (27)

−PN
ES
(ηN

cd
× ζ ) +(SOC init

ES
− P0

ES
(η0

cd
× ζ )− P1

ES
(η1

cd
× ζ )...− PN−1

ES
(ηN−1

cd
× ζ ))− SOCmax

ES
≤ 0 (28)
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FIGURE 2. Sampling-Based Model Predictive Control (SBMPC) for energy management of microgrid system. This

diagram shows the 4 major steps executed by the SBMPC algorithm and their relationships. SBMPC is executed

continuously with a receding horizon, so at every new step SBMPC is re-executed.

Algorithm 1 SBMPC Algorithm

Input: system_states(tk )

Output: control_action(tk )

Initialisation : time-step (k), branchout factor (B),

predict. horizon (N ) Open_List ← start_node,

Closed_List← 0

1: while (stopping_criteria) do

2: for k = 0 to N do

3: Select node w/ highest priority in Open List;

4: Move expanded node into Closed List;

5: for j = 0 to B do

6: Sample control space;

7: Propagate system model;

8: Determine neigh_nodes of current node;

9: if (neigh_nodes don’t satisfy constraints) then

10: Remove neigh_nodes from list;

11: else

12: Add neigh_nodes to graph (Open_List);

13: end if

14: Evaluate node cost based on cost (g) and heuristic

(h): f (k) = g+ h;

15: end for

16: end for

17: Construct optimal_trajectory;

18: end while

19: Get control_action(tk ) from optimal_trajectory ;

20: return control_action(tk )

process performed by SBMPC and shows how SBMPC is

able to reformulate the energy management problem as a

shortest path problem that is solved finding the optimal path

through the generated graph. The major steps that are exe-

cuted by SBMPC during the iterative search procedure are:

1) Input-Sampling of controlled model

2) Propagation/Forecasting model for system states

3) Constraints checks and pruning

4) Edge/Heuristic cost evaluation and A* search

procedure

1) INPUT-SAMPLING

At each control time step tk , SBMPC implements an

input-sampling procedure by discretizing the continuous state

space of the controlled model into a feasible region of inputs.

In our case, Halton sampling is used to sample the possible

states of the ES system. This deterministic sampling proce-

dure is necessary due to the fact that the possible states of

the ES system lie in a continuous space; thus, discretization

is needed for the proposed discrete control. Halton sampling

is used due to its advantage of limiting dimensionality and

low discrepancy when compared to other sampling methods

such as random sampling and gridding [29]. Fig. 3 shows

how the Halton sampling procedure is performed and the

differences between pseudorandom, gridding, and Halton on

the sampled space. The sample values of the ES system are

generated based on the current or estimated states of the node

being expanded and are propagated (using the propagation

models) until the end of the forecasting horizon. The number

of samples generated by the input-sampling procedure is

limited by a factor called the branchout factor, (B), that will

determine the number of branches of the tree that emanate

from a particular node based on the sampled values.

2) PROPAGATION MODEL

SBMPC is an algorithm that computes a graph tree with

nodes and branches generated from samples given by

the input-sampling procedure and a propagation model.

As described in [28], the propagation model can be modeled
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FIGURE 3. SBMPC input-sampling procedure using Halton

sampling. Halton sampling vs. Pseudorandom sampling vs.

Gridding. Others sampling models can be used, but SBMPC

relies primarily on Halton sampling.

FIGURE 4. SBMPC propagation model. SBMPC needs the

forecast of the future states of the microgrid system (PV power

generation, load consumption, SOC
ES

).

as a nonlinear discrete-time model or using machine learning

models such as neural networks. In our case, the propagation

model is in charge of producing a forecast or estimation

of the future system states. Particularly, (14) is used as the

propagation model for the state of charge of the ES system

(SOCES ) while the forecast of the PV power generation and

the cumulative load consumption, until the end of the fore-

casting horizon (24 hours in 15 minutes steps), is propagated

based on machine learning models. It is important to note that

SBMPC is not restricted to any particular forecasting model.

The training, validation, and testing results for the forecasting

models are presented in Section III. Fig. 4 shows a general

depiction of the propagation models.

3) CONSTRAINTS CHECK AND PRUNING

After the states of the system (nodes to add to the graph)

are obtained from the sampling procedure and the propaga-

tion models, the node at tk is expanded into a diverse pool

of possible states at tk+1 that are represented by the new

‘neighbor’ nodes that are going to be added to the graph and

connected to the current node being explored. As mentioned

previously, the expansion of the current node is limited by

the branchout factor. Before these nodes are added to the

graph, all the new ‘neighbor’ nodes, which represent different

states of the microgrid system, are checked against all the

constraints defined by (6)-(13). In other words, all these

new possible states of the system are checked against all the

constraints defined, and the nodes that do not comply with

these constraints are dropped from the final graph.

In addition to the constraints check procedure, a pruning

mechanism was introduced in order to reduce redundancy in

the generation of new ‘neighbor’ nodes. The pruning mecha-

nism consists in the elimination of all the nodes/branches that

exist in the same time step (tk+n) and have a small enough1d

difference in cost and value with a node that already exists

in the graph. This procedure improves the searching time

considerably, i.e., the execution time of SBMPC, because

it prevents the creation of branches that are equivalent to

already existing branches.

4) EDGE/HEURISTIC COST EVALUATION

AND A* SEARCH PROCEDURE

After the previous steps are executed, the new ‘neighbor’

nodes are connected to the current expanded node, and their

edge and heuristic costs are generated according to the cost

function of the problem being optimized. The edge cost is

defined as the cost to move from node to node, and the

heuristic cost is defined as the optimistic (lower bound) to

move from the current node to the goal. As seen in Fig. 2,

the edge cost (g) is calculated as JHB, where B represents a

number between 1 and the total number of branches generated

during theHalton sampling procedure. Similarly, the heuristic

cost (h) is defined as the optimistic estimation that the pre-

dicted load at any time step can be fulfilled entirely by the

cheapest power source for that time interval. In other words,

it is represented by the summation of the lowest cost terms

associated with each power source. Fig. 5 shows the descrip-

tion of the heuristic used. In any instance, this formulation

meets the necessary condition for optimality needed in the

A⋆ search algorithm (i.e., a rigorous lower bound on the cost-

to-goal) [30]. (22) shows the total cost for moving from node

to the other, taking into account the heuristic cost.

f = g+ h (22)

FIGURE 5. Heuristic used for Sampling-Based Model Predictive

Optimization. The lowest cost terms are highlighted in (red)

boxes on the time line.
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While the graph is being iteratively generated, SBMPC

searches the tree using the well-known A⋆ algorithm [30].

SBMPC uses the A* search algorithm as its main search-

ing procedure in order to find the lowest ‘cost’ path of

actions/system states from the current time step, tk=0, up to

the forecasting horizon at tk=N (in our particular case,

24 hours later or N = 96). This ‘optimal’ trajectory is

constructed at the same time the search is being executed

since each node visited while searching the graph is stored in

priority queue with information regarding its overall f cost

and its parent nodes. Finally, after the ‘optimal’ trajectory

is extracted, the current ideal control action at tk = 0 is

extracted from the defined trajectory and applied to the con-

trolled system.

III. EXPERIMENTAL SETUP

To test the proposed control scheme, distribution network

data, solar generation profiles, and load profiles were

obtained from different available open-source databases. The

data obtained was formatted and pre-processed for modeling

the distribution network simulation and the development of

the forecasting models.

A. PROPAGATION MODEL: TRAINING, VALIDATION,

AND TESTING OF NEURAL NETWORKS

The forecasting model used to perform the PV power fore-

casting of the system consists of a modified version of

the forecasting model presented in [31]. The neural network

model for forecasting the load demand consists of a feed-

forward DNN with 9 input parameters, 2 hidden layers with

5 neurons in each layer, and 1 output neuron representing the

forecasted load power demand at the specific time. The input

parameters are: the hour of the day (0-23), the minutes of the

hour (0, 15, 30, 45), the month number (1-12), day of the

week (1-7), is weekend (0-1), forecasted temperature, season:

winter, spring, summer, fall (1-4), load value 24 hours before,

and the load value 168 hours before (1 week before).

1) SOLAR DATA (SUNGRIN AND NREL)

The solar data used to develop the solar PV forecasting model

(training, validation, and testing) was obtained from the

SUNGRIN report [32]. This report has solar PV generation

data from different large-scale solar PV systems around the

state of Florida. Additional temperature data were obtained

from the National Solar Radiation Database (NSRDB) from

NREL. The forecasting model was trained, validated, and

tested using 70,176 samples of 15-minute interval data. The

data was split into a training set (70%), validation set (15%),

and testing set (15%). The metrics used for evaluating the

performance and accuracy of this forecasting model were: the

root mean squared error (RMSE), the normalized root mean

squared error (NRMSE), the coefficient of determination (R),

and the mean absolute percentage error (MAPE) as defined

by NREL in [33]. Table 1 presents the result metrics selected

for evaluating the performance and accuracy of the forecast-

ing model.

2) LOAD DATA (SUNGRIN AND CITY OF TALLAHASSEE)

The load data and load profiles used were also obtained

from the SUNGRIN project database, which has network

model data and aggregated load profiles from various feeders

located around the state of Florida [32]. Additional informa-

tion was obtained from the City of Tallahassee energy con-

sumption database. The neural network model was trained,

validated, and tested using 35,200 samples of 15-minute

interval data. The data was split into a training set (70%),

validation set (15%), and testing set (15%). The same metrics

were used for evaluating the performance and accuracy of this

forecastingmodel. Table 1 presents the result metrics selected

for assessing the performance and accuracy of the model.

TABLE 1. PV and Load forecasting results performance.

B. SIZING OF THE TEST CASE AND MODEL

For testing the proposed controller, the load, PV system, and

energy storage systems were sized according to a large-scale

commercial/ industrial or campus scale micro-grid appli-

cation. The load profile used for this study is modeled

as a 15-minute resolution variable load with a maximum

of 850 kW, a minimum of 406 kW, and an average of 544 kW

over 7-days simulated. Particularly, 7-days of simulation

were chosen so all control tests can be evaluated under

different types of scenarios continuously (e.g., sunny days,

rainy days, high RTP prices, etc.), and to have a reasonable

simulation time for the real-time simulation. The rating of

the PV system and the energy storage system are presented

in Table 2. The energy storage systemwasmodeled according

to currently available utility-scale solutions with a maximum

capacity of 2190 kWh.

TABLE 2. PV and Energy Storage (ES) system specifications.

C. REAL-TIME PRICE AND LEVELIZED COST OF ENERGY

FOR ES AND PV SYSTEMS - rG, rPV , AND rES

The real-time price (rG) data was obtained by adjust-

ing the publicly available New York Independent Service
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FIGURE 6. (a) Block diagram of controller Hardware-in-the-loop (CHIL) Communication, and (b) Implementation setup.

Operator (NYISO) wholesale location-based marginal pric-

ing (LBMP) as a real-time price (RTP) and using City of

Tallahassee time-of-use (ToU) based retail rates. The modifi-

cation of the price consists of the addition of an RTP supplier

charge plus the addition of an off-peak or on-peak rate (bias)

appropriate to North Florida load patterns and markets. For

the PV system, the levelized cost of energy (LCOE) of

the system was calculated with the objective of generating

an estimated cost of using the PV system. Similarly, since

SBMPC requires knowledge of the cost of using the energy

storage system, a similar approach to [34] was used to calcu-

late a price rate rES for the energy storage (ES) system. The

equation used was:

rES =
CES
total

Cyc · Emax
ES
· DoD · ηr

, (23)

where CES
total is the total cost of the ES system, DoD is

the desired depth-of-discharge of the ES system, Cyc is the

total number of cycles under warranty at depth-of-discharge,

Emax
ES

is the total energy capacity of the ES system, and ηr is

the round-trip efficiency of the system.

D. OFFLINE AND CONTROLLER HARDWARE-IN-

THE-LOOP (CHIL) SIMULATION

An average-value based inverter model of a three-phase two-

level voltage-source converter (VSC) is used to validate

the performance of the SBMPC controller in both offline

and controller hardware-in-the-loop implementations. These

VSCs are connected to the PV and ES system. The energy

storage model used for simulating the behavior of the Li-Ion

battery used was taken fromMATLAB/Simulink. This model

is based on the charge and discharge models presented

in [35]. The load model used for the system is based on a

dynamic load profile in which the active and the reactive

power of the load changes dynamically every 15 minutes

along the span of the simulation.

1) OFFLINE SIMULATION

An offline simulation of the system and the SBMPC con-

troller is performed using phasor models of the PV system,

dynamic load, ES, and feeder. The SBMPC controller is

developed in C/C++. The objective of this simulation is

to ensure the proper control and execution of the controller

while performing simulations for extended periods of time

(1 to 7 days). The results of the offline simulation are verified

usingMATLAB/Simulink software, and the cost is calculated

according to the cost function presented.

2) CONTROLLER HARDWARE-IN-THE-LOOP

(CHIL) SIMULATION

A controller hardware-in-the-loop (CHIL) system is com-

prised of a physical hardware controller that interacts with

a simulated software system in a real-time environment.

In this case, the entire electrical/power system (PV sys-

tem, ES, load, and grid) is modeled inside the simulator.

All the components inside the power system are modeled

with a 50-µs simulation time step. The C/C++ code of

the SBMPC controller is installed and executed on external

physical hardware with a CPU clock speed of 3.4 GHz,

8 GB of RAM and running a Linux distribution. Simulink,

SimPowerSystems, and RT-LAB are the main programs used

for developing, loading, and running the models for the CHIL

simulation. As seen in Fig. 6, the real-time power system

models are loaded on Target 1, and the SBMPC controller

code is loaded on Target 2. The communication between

the two targets is performed using TCP/IP protocol and a

network switch that facilitates the connection between them.

As observed in Fig. 6a, the simulator (Target 1), simulates

the electrical system and sends the current state of the sys-

tem (PV generation, load consumption, grid consumption,

ES charging/discharging and ES state of charge (SOC)) to

the SBMPC controller through the TCP/IP connection. After

receiving the states, the controller produces the required

predictions, performs the sampled-based model predictive
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optimization (SBMPC) operation, and sends the control sig-

nals to the ES system inside the real-time simulator. Cur-

rently, for a 24-hour planning trajectory, the model takes

about 1.5 to 2.0 seconds to execute the optimization algorithm

and send the decision trajectory back to the simulated power

system on Target 1.

IV. EXPERIMENTAL RESULTS

For a thorough comparison, the performance of the SBMPC

controller is evaluated against other baseline cases such as

two manual control cases and four optimization algorithms

(genetic algorithm (GA), particle swarm optimization (PSO),

QP interior-point method (QP-IP), and sequential quadratic

programming (SQP)). In the two manual control cases,

the charge and discharge operations are performed based

on preset control actions. Case 1 charges the ES between

2 am and 5 am and discharges it between 7 pm and 11 pm.

Case 2 performs the charge operation for the ES between

11 am and 2 pm, and discharges the ES at the same time as

Case 1 (7 pm to 11 pm). Case 1 exemplifies a case where users

preset the charge of the ES at the presumed lower price period

while Case 2 shows how a user presets the charge of the ES

at times when the PV system is presumed to have maximum

power output. Both cases discharge at the presumed higher

price period of the RTP signal. In the case of GA, PSO,

QP(IP), and SQP, two cases for each model are evaluated:

a) optimization considering only the current status of the

system (i.e., no forecast), and b) optimization considering

current and future states of the system (i.e., formulation pre-

sented in Section II-B). All the models are evaluated accord-

ing to their achieved cost at the end of the simulation and

their average computation time for execution. It is important

to note that all the models that consider the future states of

the system use the same forecast profiles generated by the

forecasting module. Both offline and CHIL implementations

are simulated for 7-days using the data described in the

previous sections.

A. OFFLINE SIMULATION RESULTS

For the offline implementation, three ES price scenarios

are used for comparing and testing the performance of the

SBMPC controller (SBMPC) against Case 1 and 2, GAa,

PSOa, QP(IP)a, SQPa, GAb, PSOb, QP(IP)b, and SQPb.

The superscripts a and b are used to distinguish between

the two cases previously explained. The three ES prices

used for testing the performance of the models are: rES =

12.3, 7.0, 5.3 c/kWh. These prices were calculated accord-

ing to the cost of currently available energy storage sys-

tems of the size proposed. Each test case is run for 7 days,

and costs are calculated for the entire system during the

span of the simulation. The SOC of the energy storage at

the beginning of the simulation is at the minimum 10%.

This ensures that the test cases and algorithms are starting

with no ‘‘free charge’’ and must find the best charge and

discharge control actions in order to minimize the overall

cost.

TABLE 3. Cost comparison results for offline tests.

Table 3 presents the results with cost comparisons between

all the evaluated cases. As observed, the SBMPC controller

is able to provide savings from 6.06% up to 28.9% when

compared with the manual cases and the optimization cases

that only take into account the current state of the system.

All these baselines test algorithms (GAa, PSOa, QP(IP)a, and

SQPa) are able to achieve the same cost along the span of the

simulation, but when compared with the SBMPC approach,

they demonstrate a clear disadvantage due to optimizers con-

sidering only the current status of the system. Note also

that all four baseline algorithms (GAa, PSOa, QP(IP)a, and

SQPa) achieved a lower cost when the price of ES is at

the highest price (rES = 12.3 c/kWh) due to the fact that

it’s only economically feasible to discharge at highest price

peaks, so they are forced to wait until these peaks occur in

order to dispatch. In contrast, SBMPC (together with GAb,

PSOb, SQPb, and SQPb) are not affected because they are

able to plan and delay immediate rewards (lower costs), at all

ES prices, to perform charging actions at the lowest periods

and discharging operations at the highest periods along the

forecasting horizon. This is one of the primary advantages

demonstrated by the model presented in this paper.

On the other hand, Table 3 clearly demonstrates how

SBMPC is able to achieve a slightly better cost when com-

pared to GAb with a significant reduction in execution time

for the entire forecasting horizon (96 steps). When compared

with QP(IP)b, SBMPC manages to achieve a better cost at

all prices but has a slightly higher average execution time

of around 0.65 seconds more. Additionally, when compared

with the SQPb model, SBMPC achieves a slightly worse

cost between -0.01 % and -0.71 % in all cases tested but

improves the execution time of the optimization process sig-

nificantly. Note how PSOb had terrible performance when

used to solve the energy management problem considering
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TABLE 4. Parameters used in models tested.

future states due to the high number of control variables it

needed to optimize. Table 4 shows the parameters for all the

models used in these test cases. These results exhibit some

of the key advantages of formulating the energy management

problem using a shortest path graph-search approach. These

key advantages are related to the way the input state space is

discretized and sampled from a continuous state space using

an input-sampling procedure, and the way the problem is

solved using a fast graph-searching algorithm. In other words,

if the number of input control variables increase, e.g., adding

more DER systems to control or extending the forecasting

horizon, models such as SQP, GA, and PSO will significantly

increase their computational time and computing resources,

while a regular QP(IP) approach would yield a higher cost.

In contrast, SBMPC has the ability to easily limit the dimen-

sionality of the problem via the input-sampling procedure

while sacrificing small deviations in the cost.

To further demonstrate this advantage, an additional energy

storage (ES) system was introduced in the EM problem

formulated above. The number of control variables for this

case increase from 96 to 192. For this case, only the QP(IP),

SQP, and SBMPC results are shown since the GA and

PSO results yield non-competitive execution times and very

high overall costs. Additionally, it is worth noting that for

this case each ES system had different rES , where rES1 =

12.3 c/kWh and rES2 = 7.0 c/kWh. In these tests, SBMPC

yielded an overall cost of $4,855.90 and an average exe-

cution time of 4.80 seconds. The QP(IP) method yielded

an overall cost of $4,882.90 and an average execution time

of 2.01 seconds. Finally, SQP yielded the minimum overall

cost with $4,682.30 but the highest average execution time

of around 11.02 seconds. Table 5 summarizes these results.

These results demonstrate how SBMPC could be considered

as a viable competitor to the studied approaches when solving

nonlinear constrained optimization since it has the ability to

achieve cost-effective solutions while keeping a low compu-

tational execution time.

TABLE 5. Cost and execution time comparison of PV-integrated
system with 2 energy storages test cases.

Based on the tests conducted, SBMPCwas the third-fastest

algorithm according to the average execution time at each

time step for all the test cases, and the second-fastest when

compared to the models optimizing based on forecasting pro-

files (with and without multiple ES systems). So, as demon-

strated by these results, the use of SBMPC shows potential

energy cost reductions in energy management problems with

a low computational time demand when compared with cur-

rent manual ES controls and optimization algorithms operat-

ing under variable energy price profiles.

B. CHIL SIMULATION RESULTS

For the CHIL (controller hardware-in-the-loop) implemen-

tation, 4 identical servers are used in parallel to run differ-

ent ES price scenarios for the proposed SBMPC algorithm.

The primary objective of this test is to demonstrate how the

proposed SBMPC controller can be deployed in a real-world

microgrid environment. Similarly to the offline tests, three

ES prices used for testing the performance of the model:

rES = 12.3, 7.0, 5.3 c/kWh. The controllers are connected

to the microgrid modeled in the real-time environment inside

the digital real-time simulator (DRTS) (OPAL-RT) using

a TCP/IP protocol interface, as explained earlier. Fig. 6b

depicts the hardware CHIL setup.

The SBMPC costs for the 7-days real-time simulation

for each rES price (12.3, 7.0, 5.3 c/kWh) were $4,874.40

$4,722.60, and $4,628.60 respectively. The differences

between the offline results and CHIL results (around 0.5%

on average) can be accounted to the different characteristics

presented by the models of the ES, load, and PV systems.

As explained in Section III, the CHIL simulation includes

more detailed models for each of the components and display

more realistic results due to its real-time simulation in the

transient domain, different from the offline model where the

microgrid components are modeled in phasor domain. Fig. 7

show the SBMPC control actions performed in the 4th day of

the 7-days CHIL simulation for the case rES = 7.0 c/kWh.

As observed in the figure, the SBMPC controller controls

the discharging operation of the ES only when the estimated

cost of using the amount of power selected is lower than

the cost of using the utility grid. It can also be observed

that the charging operations are performed at some steps in

anticipation of higher prices where the ES is used to offset

the use of the grid at those high price times. Overall, results

demonstrate the great potential of the proposed model for

energy scheduling and energy management operations that
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FIGURE 7. Power profile for 4th day of real-time CHIL simulation

at 7.0 c/kWh ES price with SBMPC control.

rely on varying energy price schemes. Note that since the EM

problem formulated minimizes the total cost of the localized

energy consumption, the model ‘solutions’ can be obtained

via finding the optimal mix of generating resources. This

approach works under scenarios where all available DERs

have different energy prices, and the grid provides an external

energy price that is defined by the energy provider. Nonethe-

less, without the grid, e.g., off-grid microgrid, the proposed

approach is capable of optimizing the available DERs based

on their individual energy prices.

V. CONCLUSION

This paper proposed a novel energy management solution

aimed to determine the cost-effective resource allocation of

multiple DERs, such as PV and ES, in a large-scale site.

The control scheme is designed to solve the energy manage-

ment problem by using Sampling-Based Model Predictive

Control (SBMPC) and converting the problem to a graph

search approach. The proposed model is tested using realistic

data from a feeder located in the state of Florida, together

with reliable DER and load models developed for offline

and real-time controller hardware-in-the-loop (CHIL) tests.

Additionally, a detailed extended formulation for solving

the nonlinear constrained optimization energy management

problem is presented and used to compare the performance

of other optimization techniques currently being used in the

literature such as GA, PSO, QP(IP), and SQP. The results

show performance improvement in the cost and execution

time of the proposed SBMPC controller over the ten baseline

test cases evaluated for their respective cases in a 7-day

simulation span. Results demonstrate the controller’s ability

to respond to varying energy price schemes by optimizing the

use of all the resources connected to the system to achieve

a lower utilization cost. The employment of the proposed

controller has the potential of providing incentives for the

development of real-time price schemes that can be tailored

for the use of optimal controllers aimed to reduce energy

costs by operating at optimal times. Future work will focus

on extending SBMPC to solve EM problems for distributions

systems that include additional constraints, thermal-based

DG systems, and other types of renewable DERs.
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