
Sampling-based Motion Planning:
Analysis and Path Quality

Bewegingsplanning gebaseerd op samples:
Analyse en Padkwaliteit

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Univer-
siteit Utrecht op gezag van de rector magnificus, prof.
dr. W.H. Gispen, ingevolge het besluit van het col-
lege voor promoties in het openbaar te verdedigen op
maandag 8 mei 2006 des middags te 12.45 uur

door

Roland Jan Geraerts

geboren op 9 juni 1978
te Maaseik, België

Promotor: Prof. dr. M.H. Overmars

This work was supported by the
Netherlands Organisation for Scientific Research NWO,
grant number 612.015.003.

CONTENTS

1 Introduction 1

1.1 Motion planning . 3
1.1.1 Complexity of motion planning 6
1.1.2 Classification of motion planning techniques 7
1.1.3 Extensions of the basic motion planning problem 10

1.2 General experimental setup . 12
1.2.1 SAMPLE . 13
1.2.2 Collision checker . 17
1.2.3 Distance metric . 18
1.2.4 Interpolation . 20

1.3 Thesis outline . 20

I Sampling-based motion planning 23

2 Performance-based comparison 25

2.1 Introduction . 26
2.2 The Probabilistic Roadmap Method 27
2.3 Experimental setup . 29
2.4 Collision checking . 33
2.5 Neighbor selection strategy . 36

2.5.1 Maximum connection distance 37
2.5.2 Maximum number of connections 38
2.5.3 Node adding strategies . 40

2.6 Uniform sampling . 45
2.7 Non-uniform sampling . 48
2.8 Discussion . 50

i

ii CONTENTS

3 Reachability-based analysis 53

3.1 Introduction . 54

3.2 Coverage and maximal connectivity 55

3.3 Experimental setup . 57

3.4 Neighbor selection strategy . 60

3.4.1 Maximum connection distance 61

3.4.2 Maximum numbers of connections 62

3.5 Sampling . 67

3.6 Local planners . 72

3.7 Discussion . 75

II Path quality 79

4 Increasing path clearance 81

4.1 Introduction . 82

4.2 Preliminaries . 84

4.3 Rigid, translating bodies . 85

4.3.1 Retraction algorithm . 85

4.4 Robots with many DOFs . 87

4.4.1 Retraction algorithm . 88

4.4.2 Algorithmic details . 90

4.5 Experiments . 96

4.5.1 Experimental setup . 96

4.5.2 Experimental results . 99

4.6 Discussion . 102

5 Decreasing path length 103

5.1 Introduction . 104

5.2 Path pruning . 104

5.3 Shortcuts . 105

5.4 Partial shortcuts . 105

5.5 Experiments . 107

5.5.1 Experimental setup . 108

5.5.2 Experimental results . 111

5.6 Discussion . 116

CONTENTS iii

6 Creating small roadmaps 117

6.1 Introduction . 118
6.2 Reachability . 119
6.3 Reachability Roadmap Method . 120
6.4 Algorithmic details . 123

6.4.1 Coverage . 123
6.4.2 Maximal connectivity . 125
6.4.3 Roadmap pruning . 126

6.5 Experiments . 127
6.5.1 Experimental setup . 127
6.5.2 Experimental results . 129

6.6 Discussion . 135

7 Putting it all together 137

7.1 Introduction . 138
7.2 Adding useful cycles . 140

7.2.1 Useful edges . 140
7.2.2 Adding useful nodes . 141
7.2.3 Reconnecting the edges . 144

7.3 Retracting a roadmap to the medial axis 146
7.4 Experiments . 148

7.4.1 Experimental setup . 148
7.4.2 Experimental results . 150

7.5 Discussion . 157

8 Conclusion 159

Bibliography 163

Publications 175

Samenvatting 177

Acknowledgements 181

Curriculum vitae 183

Colofon 185

iv CONTENTS

CHAPTER

ONE

INTRODUCTION

In the year 2004, the movie ‘I, Robot’ told the following story:

It is the year 2035, and humans have utilized robots in their every-
day lives, from serving coffee to walking pets. These robots have
Isaac Asimov’s three Laws of Robotics hardwired into their systems
which suggest that a robot can never harm a human:

1. A robot may not injure a human being, or, through inaction,
allow a human being to come to harm.

2. A robot must obey the orders given to it by human beings,
except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protec-
tion does not conflict with the First or Second Law.

On the eve of the release of the latest model robot, which is the
automated domestic assistant NS-5, the founder of U.S. Robotics
commits suicide. A detective investigates the crime he believes was
committed by a robot. By following the breadcrumbs, he finds out
that the robots have evolved a fourth law: protecting humans from
themselves. This causes the robots to impose martial law, keeping
humans inside their homes and fighting against them for control of
the city. Will mankind regain freedom?

Contemporary robots are by far unable to carry out the high-level tasks ap-
pearing in this movie. Besides dealing with high-level descriptions and tasks,

1

2 CHAPTER 1. INTRODUCTION

the goal of robotics is to execute these assignments while requiring little or
no user supervision. Even though a task such as serving coffee may at first
glance appear simple to humans, because they are intensively trained to in-
teract with their environment, many difficulties have to be conquered: A high-
level task has to be understood and split in executable sub-tasks, the workspace
in which the robot operates has to be mapped and interpreted, obstacles have
to be avoided while moving the robot from its current position to the goal posi-
tion, objects may have to be moved and manipulated, and the robot may have
to (socially) interact with the environment. Many of those tasks require a large
amount of non-trivial mathematical and algorithmic techniques.

Current robots are used to perform tasks that are too monotonous, dirty or
dangerous to humans, such as toxic waste cleanup, underwater and space ex-
ploration, and searching for mines. The automotive industry for example has
taken full advantage of robots replacing human labor in repetitive and danger-
ous tasks. These tasks include welding, painting and machine loading. An-
other form of industrial robots is the automated guided vehicle that is used
in warehouses, hospitals and container ports. Recently, robots are being em-
ployed in medical settings, e.g. in minimal invasive surgical procedures and
laboratory automation. Robots are also successfully emerging in domestic en-
vironments. For example, Sony created a toy robot dog called Aibo which is
very popular. This autonomous robot is able to walk, to ‘see’ its environment
via a camera, and to recognize spoken commands. Other popular gadgets are
robots for vacuum cleaning and lawn mowing. By the end of 2005, millions of
domestic robots had been sold worldwide.

One of the fundamental tasks robots have to perform is planning their mo-
tions while avoiding collisions with obstacles in the environment. This will be
the central topic of this thesis. We will restrict ourselves to motion planning
for two- and three-dimensional rigid bodies and articulated robots moving in
static and known virtual environments.

This thesis has been divided into two parts. The first part deals with com-
paring and analyzing sampling-based motion planning techniques, in partic-
ular variants of the Probabilistic Roadmap Method (PRM). The PRM consists
of two phases: a construction and a query phase. In the construction phase, a
roadmap (graph) is built, approximating the motions that can be made in the
environment. In the query phase, the start and goal are connected to the graph.
The path is obtained by a Dijkstra’s shortest path algorithm. Many variants of
the PRM have been developed over the past decade. Using both time-based as
well as reachability-based analysis, we compare some of the most prominent
techniques.

1.1. MOTION PLANNING 3

The second part deals with quality aspects of paths and roadmaps. A good
path is relatively short, keeps some distance (clearance) from the obstacles, and
is smooth. We will provide algorithms that increase path clearance. A big ad-
vantage of these algorithms is that high-clearance paths can now be efficiently
created without using complex data structures and algorithms. We also elabo-
rate on algorithms that successfully decrease path length. Then, we introduce
the Reachability Roadmap Method which creates small roadmaps for two- and
three-dimensional problems. Such a small roadmap has many advantages over
a roadmap that is created by the PRM. In particular, the method assures low
query times, low memory consumption, and the roadmap can be optimized
easily. The algorithm also ensures that a path is always found (if one exists) at
a given resolution. Finally, we combine the techniques and show how they can
be efficiently used in interactive applications.

In the remainder of this introduction, we elaborate on the motion planning
problem, describe the general experimental setup and detail the outline of the
thesis.

1.1 Motion planning

A central problem in robotics is planning a collision-free path for a moving
object (robot) in a rigid environment with obstacles. More formally:

Definition 1.1 (Motion planning). Given a robot A moving in a workspace W
amidst a collection of fixed rigid obstacles B, and a start placement s and goal placement
g for A, find a continuous path Π for A from s to g avoiding contact with B.

In this thesis we focus on three types of robots: rigid translating bodies,
rigid free-flying bodies and articulated robots, such as manipulator arms. The
robot is modeled by a collection of geometric primitives such as spheres, boxes,
cones, cylinders, and complexes of polytopes such as convex polygons and
convex polyhedra.

The workspace W is the space in which the robot moves. This space is
modeled by the same collection of geometrical primitives. The workspace can
be modeled either in R

2 or R
3. The obstacles inW are denoted by B.

At first glance, finding a path for a moving square in the plane may seem
a different problem than finding a path for a manipulator arm in a three-di-
mensional workspace. Perhaps surprisingly, these problems can be handled
similarly using the notion of configuration space. The underlying idea of the
configuration space C is to represent the robot as a point in an appropriately

4 CHAPTER 1. INTRODUCTION

modeled space. After the workspace obstacles have been mapped to this space,
the problem has been transformed into finding a path for a point in the config-
uration space. An important question is how to map a particular placement of
a robot in theW-space to a configuration in the C-space.

The placement of a robot A inW can be described by a list of parameters (a
configuration). Each parameter corresponds to a degree of freedom (DOF) of A.
The C-space can then be defined as the space of all possible configurations of
A. The C-space should be represented in such a way that each placement of A
inW corresponds to exactly one point in C. Furthermore, a continuous motion
inW must correspond to a continuous motion in C.

In this thesis we consider three types of degrees of freedom (DOFs). First,
we have the translational DOFs which correspond to a particular location of the
robot in the workspace. Rigid, translating bodies (often) have two translational
DOFs in a two-dimensional workspace and three translational DOFs in a three-
dimensional workspace.1 The range of translational DOFs can be limited by
the robot itself (as prismatic joints have a limited translational range) or by the
bounding box of the workspace.

Second, we have the rotational1 DOFs, each corresponding to a revolution
around one axis. A rigid body in a two-dimensional workspace may have one
rotational DOF. An articulated robot may have several revolute joints. Such a
joint constrains the relative motion of two objects to be a rotation around an
axis fixed with respect to both objects. The rotational DOF can have limits, e.g.
the angle of rotation θ can be limited to the real interval I = [0, π]. Although
the range of θ is at most [0, 2π), rotational DOFs do not have to be constrained
by any limits, i.e. θ = 0 is the same angle as θ = 2π and θ = 4π et cetera. We can
resolve this issue by defining the mathematical group S1 as the set [0, 2π) where
addition of two numbers a and b is defined by (a + b) mod 2π. As a result,
the corresponding C-space is circular. To assure that a continuous motion inW
corresponds to a continuous motion in C, we have to do some extra work when
we interpolate between two rotations. That is, the robot must move along the
shortest arc.

Third, we have the rotational3 DOFs corresponding to a rotation about any
of the three coordinate axes in a three-dimensional workspace. A free-flying
robot is an example of a robot that can rotate freely in a three-dimensional
workspace. (Like the rotational1 DOF corresponds to the S1 C-space, the rota-
tional3 DOF corresponds to the S3 C-space.) The 3D orientation of the robot

1A robot arm, for example, can have more than three translational DOFs. They may corre-
spond to its prismatic joints. Such a joint constrains the relative motion of two objects to be a
translation along an axis fixed with respect to both objects.

1.1. MOTION PLANNING 5

can be described by three Euler angles. Although numerically stable and con-
sidered to be more intuitive to work with (compared to other representations
such as rotation matrices and quaternions), Euler angles are not a good choice
for motion planning because this representation has several drawbacks such
as the ‘gimbal lock’2, the difficulty to interpolate between two rotations and
to measure their relative distance [92]. These problems can be resolved by
representing a rotation in 3D as a unit axis a = (ax, ay, az) and an angle of
revolution θ about that axis. This representation can be easily converted to a
unit quaternion, i.e. Q(x, y, z, w) = (ax sin(θ

2), ay sin(θ

2), az sin(θ

2), cos(θ

2)). Unit
quaternions are a good choice for representing rotations in 3D as it is relatively
easy to define proper methods for sampling the configurations [142] and com-
puting their relative distance (see Section 1.2.3). Moreover, a big advantage
of using unit quaternions is the ability to smoothly interpolate between them.
The SLERP algorithm can be used to interpolate along the shortest arc on a 4D
unit sphere [142]. This assures that a continuous motion inW corresponds to a
continuous motion in C.

The C-space of a particular robot A can now be described as a composition
of C-spaces that correspond to each of the DOFs ofA. For example, for a planar
rigid body, which can translate and rotate freely in the plane, C = R

2 × S1.
The C-space of a free-flying rigid body in a three-dimensionalW-space can be
represented by C = R

3 × S3. For a manipulator arm with six joints we have
C = I1 × . . .× I6, where Ii describes the real interval of the joint.

The C-space is composed of two subspaces: the forbidden and the free con-
figuration space. A configuration that describes the placement of the robot in
the workspace that causes the robot to touch or intersect with the obstacles in
the workspace is called forbidden. The space of all forbidden configurations is
called the forbidden configuration space Cforb. The set of configurations that
represent placements of A inW that do not cause the robot to collide or touch
with an obstacle is called the free configuration space Cfree. Any configuration in C
is either in Cforb or Cfree, but not in both, i.e. C = Cforb ∪Cfree and Cforb ∩Cfree = ∅.
The reader is referred to Figure 1.1 and Figure 1.2 for examples of the relation-
ship between theW-space and C-space.

Now that we have defined the relationship between the W- and C-space,
we can define the notion of a path for A. A path Π for A is a continuous map
Π ∈ [0, 1] → C which describes the motion of the robot A in W . If Π lies in
Cfree, i.e. ∀t ∈ [0, 1] : Π[t] ∈ Cfree, then Π is called a (collision-)free path.

2The gimbal lock is an ambiguity that exists due to the interdependence of the rotations and
manifests itself when two or more axes happen to align, causing a loss of a degree of freedom.

6 CHAPTER 1. INTRODUCTION

(a) W-space (b) C-space

Figure 1.1 Correspondence between the W-space and C-space of a rigid, translating
square A. The shape of the C-space is two-dimensional, i.e. C = R

2. While A is a
square in the W-space, A is a point in the C-space.

(a) W-space (b) C-space

Figure 1.2 Correspondence between the W-space and C-space of a rectangle that trans-
lates horizontally and rotates (without limits) in the plane. The shape of the C-space is
cylindrical, i.e. C = R

1 × S1. While such a space has no vertical beginning or ending,
it is visualized as an unrolled cylinder.

1.1.1 Complexity of motion planning

In 1979, Reif showed that path planning for a polyhedral robot among a finite
set of polyhedral obstacles was PSPACE-hard [127]. Four years later, Schwartz
and Sharir proposed a complete general-purpose path planning algorithm bas-
ed on an algebraic decomposition of the configuration space of any fixed di-
mension d. When the space of collision-free placements is a set defined by
n polynomial constraints of maximal degree m, a path can be computed by
an algorithm whose time complexity is doubly exponential in d and polyno-
mial in both n (geometrical complexity) and m (algebraic complexity) [137].
In 1986, Reif et al. [12] improved this algorithm to a single exponential time
algorithm. In 1988, Canny found a PSPACE algorithm for the general motion
planning problem and showed that it was PSPACE-complete [28], showing that
exact planners have little chance of solving complicated problems.

1.1. MOTION PLANNING 7

If the density of the obstacles in the environment is low, lower complexity
bounds exist. For example, when the obstacles are fat (they do not have long
and skinny parts), and the robot is relatively small compared to the obstacles,
the computational complexity is O(n log n) in 2D/3D workspaces for a robot
with any fixed number of DOFs [147]. When the obstacles are not fat and the
number of DOFs is high (i.e. more than three), these methods are unable to
solve the problem in practice because the complexity of the free space will be
very large. In the following sections we will show that efficient heuristics have
been proposed which tackle a large diversity of motion planning problems.

1.1.2 Classification of motion planning techniques

Motion planning techniques can be classified according to various criteria.

Notion of completeness One criterion is the notion of completeness. Three
forms are distinguished: completeness, resolution completeness and probabilistic
completeness. A motion planner is considered complete if for any input it cor-
rectly reports in a finite amount of time whether or not there is a solution. Al-
though such motion planners exist [28, 137], they have a high complexity and
can only be applied to very simple problems. A weaker form of completeness
is resolution completeness: whenever a solution exists, the planner will find one
provided that the resolution is small enough. If no solution exists or when the
resolution is too large, it will report that no solution is found. Like a complete
planner, this planner needs a finite amount of time but may spend an exponen-
tial amount of time in the robot’s number of DOFs to find the solution, if one
exists. The third form of completeness is probabilistic completeness: whenever
a solution exists, the probability that it will be found converges to one as the
computation time goes to infinity. It may not terminate if no solution exists.

In this thesis we will discuss the Probabilistic Roadmap Method which
is probabilistically complete and a new method, the Reachability Roadmap
Method, which is resolution complete.

Exact versus approximate This classification is based on whether the method
is exact or approximate. Exact methods compute Cfree explicitly, and hence, they
are complete which means that they are guaranteed to find a path if one ex-
ists. The price paid for this completeness generally is a considerable increase in
computation time: For most exact methods, the running time is at least O(nd),
where n is the number of features that describe the objects and d the number of
DOFs [99].

8 CHAPTER 1. INTRODUCTION

Approximate methods compute an approximation of Cfree, and hence, they
are resolution or probabilistically complete. These methods are usually simple
to implement. In addition, they are often fast as they suffer less from geometric
complexity. For example, often a collision checker is used to determine whether
a particular configuration is free. Although this operation depends on the ge-
ometric complexity, the influence of the geometric complexity on the running
time is small considering the way collision checkers are usually implemented.
However, approximate methods may cost large amounts of memory and they
can fail to find a path. Furthermore, they are difficult to extend to deal with
rotational DOFs.

Cell decomposition, potential field, and roadmap methods Another classifi-
cation, made by Latombe [99], is the distinction between three different motion
planning methods: cell decomposition, potential field and roadmap methods.

A cell decomposition method decomposes Cfree into non-overlapping cells.
While exact decomposition methods [65, 109, 136–139] partition Cfree into cells
whose union equals exactly Cfree, approximate decomposition methods [15, 27,
31, 46, 149, 150, 160] approximate Cfree by a collection of cells of predefined
shapes (e.g. rectangloids) whose union is strictly included in Cfree. Most ap-
proximate decomposition methods decompose the space in a recursive manner,
stopping when a sub-cell is entirely in Cfree or entirely in Cforb. Otherwise, the
sub-cell is further refined. Due to memory (and time) constraints, the recursive
process has to stop at a certain level.

Potential field methods direct the motion of the robot through an artificial
potential field which is defined by a function over Cfree [86, 87, 128]. The robot
is pulled toward the goal configuration as it generates a strong attractive force.
In contrast, the obstacles generate a repulsive force to keep the robot from col-
liding with them. The path from the start to the goal can be found by following
the direction of the steepest descent of the potential toward the goal. However,
many shortcomings have been identified that are inherent to the method [91].
The robot often ends up in a local minimum of the potential. Several attempts
have been made to escape from such a minimum [7–9, 141]. Other methods
focus on building potential fields with few or no local minima [87, 89, 134]. In-
stead of beginning with a potential field and taking the gradient, Lindemann
and LaValle [108] directly construct a smooth vector field which has no local
minima. Other problems with potential field methods are that no passage is
found between closely spaced obstacles and that oscillations occur in the pres-
ence of obstacles and in narrow passages [91].

1.1. MOTION PLANNING 9

Roadmap methods capture the connectivity of Cfree with a set of one-dimen-
sional curves. A path can be extracted by connecting a start and goal con-
figuration to the roadmap. A graph searching algorithm (such as Dijkstra’s
shortest path algorithm) can be used to find a path connecting the start and
goal. Four different types of roadmap methods are distinguished (see the book
of Latombe [99] for an extensive elaboration). An example of such a method
is the Voronoi diagram (or medial axis). This diagram is defined by the locus
of points (in Cfree) which are at least two-equidistant to closest points on the
object boundaries. Hence, the robot will have a high clearance when mov-
ing along the diagram. The diagram can be approximated [27, 35, 67, 111, 150]
or can be computed exactly [28, 105, 122, 155]. The second type of roadmap
methods is called the visibility graph [120]. The nodes of the graph consist of
the initial goal and start configurations and all vertices of the C-obstacles. The
edges in the graph consist of all free straight-line connections between two
nodes. The method mainly applies to two-dimensional C-spaces with polygo-
nal shaped C-obstacles. The third type is called the silhouette method which is
the first complete general method that applies to spaces of any dimension and
is singly exponential in the number of DOFs [28]. Due to its complexity, this
algorithm is not suitable for practical situations. The fourth type is the prob-
abilistic roadmap [4, 6, 80, 81, 83, 84, 121, 124, 151] which will be one of the two
central topics of this thesis. A probabilistic roadmap method often consist of a
construction and a query phase. In the construction phase, a roadmap (graph)
is built, approximating the motions that can be made in the environment. First,
a free random sample (configuration) is created. Such a sample describes a
particular placement of the moving object (robot) in the workspace. Then, a
simple local planner is employed to connect the sample to some useful neigh-
bors. A neighbor is considered useful if its distance to the new configuration
is less than a predetermined constant. Samples and connections are added to
the graph until the roadmap is dense enough. In the query phase, the start and
goal samples are connected to the graph. The path is obtained by a Dijkstra’s
shortest path algorithm. We discuss this method in Chapter 2.

Multiple shot versus single shot Multiple shot methods (such as cell decom-
position and roadmap methods) try to capture the connectivity of Cfree in a
preprocessing stage. The connectivity information is usually stored in a graph.
As much time is allowed to be spent at this stage, a careful analysis of Cfree can
be done. This saves much time when an actual query is carried out because
the query only has to be connected to the graph, after which the path can be
obtained almost instantly. The query does not have to be known beforehand.

10 CHAPTER 1. INTRODUCTION

This approach is especially useful when paths have to be obtained in time-
critical systems. For example, in computer games, only a fixed small amount
of calculation time is available to compute the path. If this calculation takes too
long, the game may halt.

If the start and goal configurations are known a priori, and only one (or
a few) queries will be performed in the environment, it may not be worth-
while to perform lots of preprocessing. As the query is known beforehand, a
more directed search can be employed. Motion planning methods that use this
paradigm are called single shot methods. Examples of such a method are the po-
tential field method of Barraquand and Latombe [9] and the ‘Ariadne’s clew’
algorithm that uses a genetic search algorithm to find a path for a robot in a
dynamic environment where obstacles can move [19]. Rapidly-exploring Ran-
dom Trees (RRTs), designed by Kuffner and Lavalle [94], have gained much
attention. The RRT is a data structure and algorithm which is designed for
efficiently searching non-convex high-dimensional spaces. RRTs are partic-
ularly suited for problems that involve differential constraints such as non-
holonomic [32, 33, 96, 140] and kinodynamic [32, 71, 102, 157] problems.

Recently, a bridge has been built between multiple shot and single shot
methods. Bohlin and Kavraki [21] propose to minimize collision checking
by introducing a scheme for lazy evaluation of the nodes and edges in the
roadmap. The scheme is particularly useful when collision checking is expen-
sive, for example in industrial applications with complex geometry. A related
technique is proposed by Nielsen and Kavraki [115].

In this thesis we will only study multiple shot methods.

1.1.3 Extensions of the basic motion planning problem

In the last two decades, many variants of the basic motion planning problem
have been proposed. In this section, we give an overview of these variants.

The manipulation planning problem [4,45,76,93,112,115,144] deals with mo-
tion planning for robots manipulating movable objects among static obstacles.
As movable objects can only move when they are grasped by the robot, this
problem is a special case of the multiple robot motion planning problem.

In the latter problem, all robots may move simultaneously while mutual
collisions and collisions with the obstacles are avoided [101, 132]. This prob-
lem is handled by centralized or decoupled methods. Centralized methods such
as [133,138] compute the paths for all robots simultaneously in a joint C-space.
These methods can be complete, but generally are computationally demand-
ing. Decoupled methods compute a path for each robot independently and try

1.1. MOTION PLANNING 11

to coordinate the resulting motions [126, 145]. These methods are often much
more efficient than centralized methods but the resulting paths can be far from
optimal. Also hybrid methods such as [61, 101, 153] have been proposed. A
variant to solving the problem is called prioritized motion planning [13, 37, 44].
According to some prioritization scheme, paths are planned sequentially which
reduces the problem to planning the motions for a single robot in a known dy-
namic environment [17, 48, 71].

Another variant of the multiple robot problem is the group motion plan-
ning problem where all robots belong to one group and have to behave as
such [10, 106]. While these two approaches do not guarantee that the group
will stay together, the method from Kamphuis and Overmars [77, 78] guaran-
tees coherence of the group.

Also in computer animation, paths for groups of entities (robots) are cre-
ated by motion planning techniques [79]. Kuffner et al. present an algorithm
for interactively animating object grasping and manipulation tasks for human
figures [90, 93]. Motion planning for humanoid robots is further elaborated on
in [26, 34, 95, 110, 125]. Not only the path of such a robot has to be free of colli-
sions, dynamic balance constraints have to be satisfied as well [95].

Other constraints that often occur in real-life problems are the non-holonomic
constraints. Such a constraint is a limitation on the allowable velocities of an ob-
ject. Car-like robots [33,96,98,140,152] for example can move forwards (and/or
backwards) but not sideways because this causes slipping of the wheels. Mo-
tion planning for closed kinematic chains [39, 40, 66, 109, 157] is also subject to
non-holonomic constraints.

A new area in biology is the study of protein folding. Such a protein is mod-
eled as a large kinematic chain with tens or hundreds of DOFs. Amato et al. [148]
use a Probabilistic Roadmap Method (PRM) to analyze the folding pathways.
Closely related is the area of ligand binding. Singh et al. [146] present a method
for studying the dynamics and kinetics of flexible ligand binding (to the recep-
tor protein) based on the PRM. Bayazit et al. [11] use a PRM in combination with
haptic user input for studying ligand binding. While these methods model the
proteins as open chains, Brock et al. [103] present a methodology for maintain-
ing closed loop constraints.

The problems mentioned above are all examples of planning the motions
for rigid or articulated robots. Another type of robot is the deformable robot.
Gupta gives a survey of motion planning for flexible shapes in [63]. Kavraki et
al. [82, 97] investigate the problem of planning paths for elastic objects such as
metallic plates or plastic flexible pipes. The flexibility of the object needs to be
exploited to accomplish the task while elasticity constraints have to be obeyed

12 CHAPTER 1. INTRODUCTION

to avoid damaging the object. Gayle et al. [49] present an algorithm that com-
putes a collision-free path for a deformable catheter in liver chemoembolization
by taking into account geometric and physical constraints, including obstacle
avoidance, non-penetration constraints, volume preservation, surface tension,
and energy minimization.

Another example of motion planning in a medical setting is planning cam-
era motions to guide virtual endoscopy [114]. A virtual camera is navigated
through the 3D reconstruction of a patient’s anatomy enabling the exploration
of the internal structures to assist in surgical planning. Automatic generation of
camera motions is also studied by Nieuwenhuisen and Overmars [118]. In [62],
Goemans and Overmars study the generation of camera motions through com-
plicated 2D and 3D environments to track a moving guide such that the user
maintains visibility with the guide along a known path through a virtual envi-
ronment.

Motion planning in virtual environments also facilitates the construction
and testing for functionality of designs in CAD/ CAM

3 applications [20,29,64,72,
125, 143].

Although we will not elaborate further on these extensions, the work in this
thesis is relevant for them. For example, the high-quality roadmaps produced
in Chapter 7 can be used as a basis for many of the problems.

1.2 General experimental setup

In this thesis we will provide experimental results for many existing and new
motion planning techniques. All these techniques were integrated into a single
motion planning system called SAMPLE (System for Advanced Motion PLan-
ning Experiments), implemented in C++ using Visual Studio.NET 2003 under
Windows XP Professional. All experiments were run on a 3 GHz Pentium 4
processor with 1 GB internal memory.

Throughout this thesis we make some common choices, e.g. for those tech-
niques involving random choices we will report the statistics over 100 runs. In
Section 1.2.1, we describe how we set up an experiment and process statistics
using SAMPLE. Then we describe in Section 1.2.2 which collision checker we
use in the experiments. We elaborate on the metrics in Section 1.2.3. Finally,
Section 1.2.4 discusses some interpolation issues.

3
CAD = Computer-Aided Design, CAM = Computer-Aided Manufacturing

1.2. GENERAL EXPERIMENTAL SETUP 13

1.2.1 SAMPLE

For fair comparison of techniques we decided to use a single framework which
allows adding and comparing new (and existing) techniques without much
effort. Furthermore, we wanted to be able to easily set up experiments. To
meet these two goals, we created the SAMPLE system.

In a motion planning experiment, we have to specify the following compo-
nents: the environment (geometry and bounding box of the environment, the
geometry and the degrees of freedom of the moving object), the queries, how
the roadmap is constructed (sampling method, neighbor selection method, dis-
tance metric, local planner and termination criterion), when the queries are
added, and an optimization technique if desired. In SAMPLE this is achieved
easily, as follows:

A user scenario: setting up a single run

Figure 1.4 shows the graphical user interface of SAMPLE which allows a user
to set up the experiment. First, an environment and robot have to be speci-
fied. When the user clicks on button ‘Generate environment’, Callisto (see page
17) loads the geometry into the collision checker and visualizer. Figure 1.3(a)
shows an example of such an environment. When the goal is to find one or
more paths for the robot, the user can define queries. Each query consists of
a start and goal configuration. Each configuration specifies a value for each
degree of freedom of the robot (see Figure 1.5). Next, the user can specify how
the roadmap should be created. Choices with respect to the (parameters of the)
sampling strategy, neighbor selection strategy, distance metric, local planner
and termination criterion have to be made. A particular sampling strategy for
example can be chosen by selecting the appropriate strategy in the drop down
list. Corresponding parameters can be set in the bottom part of the user inter-
face. The roadmap is created by clicking on the button ‘Generate PRM’. A path
is extracted by clicking ‘Run query’. This path (or a roadmap) can be optimized
by clicking on the button ‘Optimize’. A path can be animated by clicking on
the button ‘Animate’. We refer the reader to Figure 1.3 which visualizes these
stages in the motion planning algorithm.

Setting up an experiment

An experiment is set up in three steps. (The settings can be saved to an XML

file which allows us to repeat the experiment.)

14 CHAPTER 1. INTRODUCTION

(a) Environment (b) Roadmap (c) Path (d) Optimized path

Figure 1.3 A visualization of the stages in a motion planning algorithm.

• General settings: only one parameter or one technique can be changed in
an experiment while other settings remain unchanged. Hence, the latter
settings need to be specified. See the user scenario.

• Type of experiment: SAMPLE can be used to set up two types of experi-
ments. The first type compares different instances of a particular motion
planning component. For example, we can compare sampling strategies
such as the Bridge test, Gaussian sampling and Medial axis sampling.
The second type examines the influence of a particular parameter of an
instance which is done by specifying the range and step size of the pa-
rameter. For example, in Figure 1.6, we study the relationship between
the maximum connection distance of the Forest neighbor selection strat-
egy and the running time of the motion planning algorithm.

• The number of runs: a number has to be provided that specifies how
many times the experiment has to be run. If the experiment is determin-
istic, we generally perform one run. Otherwise, we set this number to
100.

Creating statistics

The statistics are automatically collected in an XML file such that we can eas-
ily create statistics. SAMPLE can compute statistics such as averages, medians,
quartiles, variances and standard deviations. These can be represented as ta-
bles or charts which can be found throughout this thesis. An advantage of
automatically collecting and processing statistics is that the chance of errors is
considerably reduced.

1.2. GENERAL EXPERIMENTAL SETUP 15

Figure 1.4 Choosing the instances of a motion planning algorithm and setting its pa-
rameters.

Figure 1.5 Specification of a query which consists of a start and goal configuration.
For each degree of freedom (DOF) of the configuration, a value can be specified.

16 CHAPTER 1. INTRODUCTION

Figure 1.6 Setting up an experiment. In this example, the effect the parameter ‘max
distance’ of the ‘Forest’ neighbor selection strategy is studied.

1.2. GENERAL EXPERIMENTAL SETUP 17

1.2.2 Collision checker

We use Solid as basic collision checking package [18]. The advantage of this
package, written by Van den Bergen, is that objects such as blocks, tetrahedra,
spheres, and cylinders are considered as solids rather than boundary represen-
tations. This avoids the generation of samples inside obstacles.4 In addition,
it reduces the number of obstacles required to describe complicated environ-
ments.

Solid has been integrated into a software package called ‘Callisto’, written
by Nieuwenhuisen [116]. Callisto is a library with a C interface developed for
visualizing and collision checking of 2D and 3D environments using primitives
and/or VRML/XML.

Experiments

To gain insight in the performance of Solid, we want to find out how the geo-
metric complexity of objects (i.e. the robot or obstacles) influences the perfor-
mance of the PRM. Therefore, we designed two experiments.

The first experiment studies the performance of the collision checker. We
performed 10,000 collision checks with a mosquito (10,000 triangles) in the
presence of a fly for which we have approximations at different resolutions.
These approximations range from 12,000 up to 581,000 triangles, which repre-
sent an increasing geometric complexity. The global shape remained the same;
otherwise, the comparison between different instances of the fly would not be
fair. Figure 1.7 shows the environment we used in the experiment. We ex-
pect that the performance does not vary much, because Solid uses geometric
coherence of the objects, which is an important factor determining its speed.
Geometric coherence expresses the degree in which the objects can be ordered
geometrically. It is the degree of separability of the set of objects. Two objects
are separable if the regions defined by their convex hulls are disjoint. If the
amount of overlap of the obstacles increases, then the separability decreases.

For each resolution, we report the average time in ms needed to check the
mosquito for collisions. Figure 1.7 shows the results. This figure shows that the
collision check time depends only marginally on the geometric complexity of
the obstacles. The average time ranged between 4.65 and 4.74 ms per collision
check.

Besides the geometric coherence, Solid also uses the frame coherence of the
environment. Frame coherence is a measure of reusability of computations

4This does not hold for obstacles that are constructed from triangles which can also be han-
dled by Solid.

18 CHAPTER 1. INTRODUCTION

 0

 1

 2

 3

 4

 5

10
4

10
5

10
6

number of triangles

ti
m

e
p

er
co

ll
is

io
n

ch
ec

k
(m

s)
Figure 1.7 The influence of the geometric complexity of the obstacles on the perfor-
mance of the collision checker. The picture shows an environment consisting of a
large fly (obstacle) and a mosquito (robot). The robot is composed of 10,000 triangles.
The chart shows the average time for collision checking the robot against the obstacle
which is composed of a variable number of triangles, ranging from 12,000 to 581,000
triangles.

from earlier moments in the calculations. The idea behind reusing computa-
tions is that testing whether a certain situation from a previous moment is still
valid is cheaper than repeating the calculations from scratch. Only if the test
fails, an expensive collision check needs to be performed.

The second experiment was designed to find out whether a change in geo-
metric representation of the robot has an influence on the performance of the
type of motion planners we study in this thesis. In the experiment, a fly has to
find a path through two doorways depicted in Figure 1.8. (Note that we used
the fly as a free-flying robot, that is, no non-holonomic constraints were placed
on the fly.) We ran this experiment 100 times and report the running times in
seconds. The results show that the problem was solved almost equally fast for
the different resolutions.

We conclude that increasing the geometric complexity influences the per-
formance only marginally.

1.2.3 Distance metric

The importance of choosing a good distance metric is discussed in [2]. Such a
metric often incorporates weights (wi) which can be used to control the rela-
tive importance of the DOFs of the robot. We distinguish three types of DOFs:
translation, rotation1 (rotation about the x-, y-, or z-axis) and rotation3 (rotation

1.2. GENERAL EXPERIMENTAL SETUP 19

 0

 1

 2

 3

 4

 5

 6

10
4

10
5

10
6

ru
n

n
in

g
ti

m
e

(s
)

number of triangles

Figure 1.8 The influence of the geometric complexity of the robot on the running time.
The picture shows an environment consisting of three rooms (obstacles) through which
a fly (robot) has to navigate. When the fly has found a path from the start position to
the goal position, the problem has been solved. For each instance of the robot, the chart
shows a box plot which represents the amount of time needed to solve the problem.
Such a box plot consists of a box, one large and two small horizontal lines and a vertical
line. The box represents the middle 50% of the data, the large horizontal line represents
the average, the small lines represent the average ± the standard deviation and the
vertical line represents the minimum and maximum value.

in S3). For example, a free-flying robot can be described by three translational
DOFs and one rotational3 DOF, and an articulated robot with six joints can be
described by six rotational1 DOFs.

We calculate the distance between two configurations q and r by summing
the weighted partial distances for each DOF 0 ≤ i < n that describes the config-
urations, i.e.

d(q, r) =

√

√

√

√

n−1

∑
i=0

[wid(qi, ri)]2.

The calculation of distance d(qi, ri) is dependent on the type of the DOF:

• For translation, we set d(qi, ri) to |qi − ri|.

• We split the calculation for a rotational1 DOF in two parts: if the range is
smaller than 2π, which often occurs for revolution joints in manipulator
arms, we take the same distance measure as for a translational DOF. If
the rotational DOF is periodic, i.e. the orientation at 0 radians equals the
orientation at 2π radians, we take the smallest angle. More formally, we

20 CHAPTER 1. INTRODUCTION

set d(qi, ri) to |qi − ri| if r is not periodic, otherwise d(qi, ri) = min{|qi −
ri|, qi − ri + 2π, ri − qi + 2π}.

• We use unit quaternions to represent rotations in 3D. The distance be-
tween two quaternions qi(x, y, z, w) and ri(x, y, z, w) can be calculated by
taking the shortest angle over a 4D-sphere, i.e. d(q i, ri) = min{2 arccos(qi·
ri), 2π − 2 arccos(qi · ri)}. The dot product qi · ri is defined as qi · ri =
qi.x ∗ ri.x + qi.y ∗ ri.y + qi.z ∗ ri.z + qi.w ∗ ri.w.

1.2.4 Interpolation

We interpolate between two configurations p and q by interpolating each DOF

i that describes the configuration. Let f be the number between 0 and 1 and
INTERPOLATELINEAR(a, b, f) = a + f ∗ (b − a). We compose the interpolated
configuration ri(f) as follows:

• translation: ri(f) = INTERPOLATELINEAR(pi , qi, f)

• rotation1: ri(f) =

{

INTERPOLATEROTATION(pi , qi, f) DOF i is periodic
INTERPOLATELINEAR(pi , qi, f) otherwise

• rotation3: ri(f) = INTERPOLATESLERP(pi , qi, f)

The interpolated value for a translational and a non-periodical rotational DOF is
calculated by linear interpolation. The interpolated angle for a rotational1 DOF

is calculated by interpolating along the shortest arc on a circle, see Algorithm
1.1.

The interpolation between two quaternions is performed by spherical linear
interpolation (SLERP), see e.g. [92] for implementation issues.

Algorithm 1.1 INTERPOLATEROTATION(a,b,f)

1: if |a− b| < π then angle ← INTERPOLATELINEAR(a, b, f)
2: else if (a < b) then angle ← [a − f ∗ (a + 2π − b)] mod 2π

3: else angle ← [a + f ∗ (b + 2π − a)] mod 2π

4: return angle

1.3 Thesis outline

This thesis has been divided into two parts. The first part deals with comparing
and analyzing sampling-based motion planning techniques, in particular vari-
ants of the Probabilistic Roadmap Method (PRM). Over the past fifteen years,

1.3. THESIS OUTLINE 21

the PRM has been studied by many different researchers. This has led to many
variants of the approach, each with its own merits. It is difficult to compare
the different techniques because they were tested on different types of environ-
ments, using different underlying libraries, implemented by different people
on different machines.

In Chapter 2, we provide a comparative study of a number of these tech-
niques, all implemented in a single system and run on the same test scenes and
on the same computer. In particular we compare the running times of collision
checking techniques, neighbor selection techniques and sampling techniques.
The results are surprising in the sense that techniques often perform differently
than claimed by the designers.

In Chapter 3, we give a reachability-based analysis of these techniques. This
analysis compares them based on coverage and connectivity of the free space.
The experiments show, contrary to general belief, that the main challenge is not
getting the free space covered but getting the nodes connected, especially when
the problems get more complicated, e.g. when a narrow passage is present. By
using this knowledge, we can tackle the narrow passage problem by incorpo-
rating a more powerful local planner, a refined neighbor selection strategy and
a hybrid sampling strategy. The analysis also shows why the PRM successfully
deals with many motion planning problems.

The second part deals with quality aspects of paths and roadmaps. Many al-
gorithms have been proposed that create a path for a robot in an environment
with obstacles. Since it can be hard to create such a path, they are only aimed
at finding a solution. However, for most applications it is also critical that the
path is of good quality with regard to the amount of clearance along the path
and the length of the path.

In Chapter 4, we study two algorithms that increase the clearance along
paths. The first one is fast but it can only deal with rigid, translating bodies.
The second one is slower but it can handle a broader range of robots which can
reside in arbitrary high-dimensional configuration spaces. Examples include
free-flying and articulated robots. A big advantage of these algorithms is that
clearance along paths can now be efficiently increased without using complex
data structures and algorithms.

Chapter 5 studies algorithms that decrease the path length. We observe that
existing algorithms can have difficulties in removing redundant (rotational)
motions of the robot. We propose a new algorithm that successfully deals with
these difficulties.

22 CHAPTER 1. INTRODUCTION

In Chapter 6, we introduce the Reachability Roadmap Method which cre-
ates small roadmaps for two- and three-dimensional problems. Such a small
roadmap assures low query times and low memory consumption and is easy
to optimize in a post processing phase. The algorithm ensures that a path is
always found (if one exists) at a given resolution.

Chapter 7 unifies the techniques from previous chapters to create high-
quality roadmaps for interactive virtual environments. That is, we use the
Reachability Roadmap Method to create an initial roadmap. We add useful
cycles to provide alternative routes and short paths, and we add clearance to
the roadmap to obtain high-clearance paths in real-time.

Finally, we make some concluding remarks in Chapter 8.

PART I

SAMPLING-BASED MOTION

PLANNING

23

CHAPTER

TWO

PERFORMANCE-BASED COMPARISON

The Probabilistic Roadmap Method (PRM) is one of the leading motion plan-
ning techniques. Over the past fifteen years, the technique has been studied by
many different researchers. This has led to many variants of the method, each
with its own merits. It is difficult to compare the different techniques because
they were tested on different types of environments, using different underlying
libraries, implemented by different people on different machines.

We provide a comparative study of a number of these techniques, all imple-
mented in a single system and run on the same test environments and on the
same computer. In particular we compare collision checking techniques, neighbor
selection techniques and sampling techniques. The results are surprising in the
sense that techniques often perform differently than claimed by the designers.

The study also shows how difficult it is to evaluate the quality of the tech-
niques. First, it is not necessarily true that combining different ‘good’ tech-
niques leads to a good overall result. Second, many techniques have high vari-
ances in running time which is undesirable as a large variation complicates
statistical analysis and can even make it unreliable. It is also undesirable from
a users point of view, e.g. in a virtual environment where real-time behavior
is required, only a particular amount of CPU time is scheduled for the motion
planner. The variance can be reduced by properly choosing the techniques and
their parameters.

The results of this study should help future users of the Probabilistic Road-
map Method in deciding which technique is suitable for their situation.

25

26 CHAPTER 2. PERFORMANCE-BASED COMPARISON

2.1 Introduction

Over the years, many different approaches to solving the motion planning
problem have been suggested. See the books of Choset et al. [36], Latombe [99]
and LaValle [100] for an extensive overview. A popular motion planning tech-
nique is the Probabilistic Roadmap Method (PRM), developed independently
at different sites [4, 6, 80, 81, 83, 84, 124, 151]. The method turns out to be very
efficient, easy to implement, and applicable to many different types of motion
planning problems (see e.g. [16,20,26,40,66,68,77,85,97,107,117,130,144,151–
153]).

Globally speaking, the PRM samples the configuration space for collision-
free configurations. These are added as nodes to a roadmap graph. Pairs of
promising nodes are chosen in the graph and a simple local motion planner is
used to try to connect such placements with a path. If successful, an edge is
added between the nodes in the graph. This process continues until the graph
represents the connectedness of the space.

The basic PRM leaves many details to be filled in, like how to sample the
space, what local planner to use and how to select promising pairs. Over the
past decade, researchers have investigated these aspects and developed many
improvements over the basic scheme (see e.g. [3, 15, 20, 21, 23, 25, 69, 70, 85, 94,
121, 130, 131, 152, 156]). Unfortunately, the different improvements suggested
are difficult to compare. Each author uses his or her own implementation of
the PRM and uses different test scenes, both in terms of environment and the
type of moving device (robot). Also the effectiveness of a technique sometimes
depends on choices made for other parts of the method. Therefore, it is still
rather unclear what is the best technique under which circumstances. See [42]
for a first study of this issue.

In this chapter, we will compare different techniques developed. We im-
plemented many different techniques in a single motion planning system and
added software to compare the approaches. In particular, we concentrated on
approaches checking local paths for collisions, the choice of promising pairs of
nodes and the sampling technique. This comparison gives insight into the rel-
ative merits of the techniques and the applicability in certain types of motion
planning problems. In addition, we hope that in the longer term our results
will lead to improved (combinations of) techniques and adaptive approaches
that choose techniques based on observed scene properties.

The chapter is organized as follows. In Section 2.2, we review the basic PRM.
In Section 2.3, we describe our experimental setup and the environments we
use. In Section 2.4, we compare different ways of performing collision checks

2.2. THE PROBABILISTIC ROADMAP METHOD 27

of the paths produced by the local planner. We will conclude that a binary ap-
proach performs best. In Section 2.5, we study different strategies for choosing
promising pairs of nodes to connect. We will conclude that a technique based
on connecting a new configuration to the nearest-k configurations works rela-
tively well. In Section 2.6, we consider five different uniform sampling strate-
gies. We conclude that, except for very special cases, a deterministic approach
based on Halton points can be best used, although the differences between
the methods are small. In Section 2.7, we consider six non-uniform sampling
techniques that have been designed to deal with the so-called narrow passage
problem. We will conclude that these techniques should only be used in parts
of the workspace containing narrow passages, i.e. they handle the test envi-
ronment with one very narrow passage faster than uniform sampling, but are
often much slower on all other environments. Finally, we draw conclusions in
Section 2.8.

2.2 The Probabilistic Roadmap Method

The motion planning problem is usually formulated in terms of the configura-
tion space C, the space of all possible placements of the moving object. Each
degree of freedom (DOF) of the object corresponds to a dimension of the con-
figuration space. Each obstacle in the workspace, in which the object moves,
transforms into an obstacle in the configuration space. Together they form the
forbidden part Cforb of the configuration space. A path for the moving object
corresponds to a curve in the configuration space, connecting the start and the
goal configuration. A path is collision-free if the corresponding curve does not
intersect Cforb, that is, it lies completely in the free part of the configuration
space, denoted by Cfree.

The PRM samples the configuration space for free configurations and tries
to connect these configurations to a roadmap of feasible motions. There are
several versions of the PRM, but they all use the same underlying concepts.

The global idea of the PRM is to pick a collection of (useful) configurations
in the free space Cfree. These free configurations form the nodes of a graph
G = (V, E). A number of (useful) pairs of nodes are chosen and a simple
local motion planner is used to try to connect these configurations by a path.
When the local planner succeeds, an edge is added to the graph. The local
planner must be fast (since checking local paths for collisions is the most time-
consuming part of the PRM), but is allowed to fail on difficult instances. A
typical choice is to interpolate between the two configurations, and then check
whether the path is collision-free. So the path is a straight line in C-space.

28 CHAPTER 2. PERFORMANCE-BASED COMPARISON

(a) Halton sampling (b) Gaussian sampling

Figure 2.1 The roadmap graph we get for the difficult Hole test environment used in
this chapter. The left image shows the graph using Halton sampling (20,002 nodes and
20,019 edges) and the right image shows the graph using Gaussian sampling (2,428
nodes and 2,425 edges).

Once the graph reflects the connectivity of Cfree it can be used to answer
motion planning queries. See Figure 2.1 for an example of the roadmap graphs
computed. To find a motion between a start configuration and a goal configu-
ration, both are added to the graph using the local planner. (Some authors use
more complicated techniques to connect the start and goal to the graph, e.g.
bouncing motions [124].) Then a path in the graph is found which corresponds
to a motion for the object. The pseudo-code for the algorithm for constructing
the graph is shown in Algorithm 2.1.

Algorithm 2.1 CONSTRUCTROADMAP

Require: V ← ∅; E ← ∅;
1: loop

2: c ← a (useful) configuration in Cfree

3: V ← V ∪ {c}
4: Nc ← a set of (useful) nodes chosen from V
5: for all c′ ∈ Nc, in order of increasing distance from c do

6: if c′ and c are not connected in G then
7: if the local planner finds a path between c′ and c then

8: add the edge c′c to E

2.3. EXPERIMENTAL SETUP 29

Note that in this version of the PRM, we only add an edge between nodes
if they are not in the same connected component of the roadmap graph. This
saves time because such a new edge will not help solving motion planning
queries. Hence, we will not add these additional edges in this comparative
study. However, to get short paths, such extra edges can be useful (see Section
7.2).

In this study, we concentrate on various choices for picking useful samples
(line 2 of the algorithm), for picking useful pairs of nodes for adding edges (that
is, on the choice of Nc in line 4) and for collision checking those edges (line 7).
These are the most crucial steps and they strongly influence the running time
and the structure of the roadmap graph.

In this study, we focus on multiple shot techniques and will not consider
single shot methods such as RRT-based planners [94, 130].

2.3 Experimental setup

In this study we restrict ourselves to free-flying objects in a three-dimensional
workspace. Such objects have six degrees of freedom (three translational and
three rotational). In all experiments (except for the rotate-at-s local planner
in the next section), we use the most simple local method that consists of a
straight-line motion in configuration space. For other types of devices or local
planners the results might be different. This will be investigated in Chapter 3.

The PRM builds a roadmap, which, in the query phase, is used to solve mo-
tion planning problems. We aim at computing a roadmap that covers the free
space adequately but this is difficult to test.1 Instead, in each test environment
we define a relevant query and continue building the roadmap until the query
configurations are in the same connected component.

For the experiments we use our SAMPLE system. In all experiments we
report the running time in seconds. Because the experiments are conducted
under the same circumstances, the running time is a good indication of the
efficiency of the technique. For those techniques where random choices are
involved, we report statistics gathered from 100 independent runs. See Section
1.2 for more information on our general experimental setup.

For the experiments we use the six environments depicted in Figure 2.2, all
representing different types of problems. The Cage and Wrench environments

1Actually, this is too expensive to test for problems involving more than three degrees of free-
dom. In Chapter 3, we use a termination criterion that is based on coverage (and connectivity)
of the free configuration space.

30 CHAPTER 2. PERFORMANCE-BASED COMPARISON

have been taken from the Motion Strategy Library [100]. To make extensive
experimentation possible, we do not include huge environments such as those
common in CAD environments. The environments have the following proper-
ties (see Table 2.1 for their dimensions).

Cage This environment consists of many primitives. The flamingo (7,049 poly-
gons) must navigate from inside the cage (1,032 triangles) to outside the
cage. The complexity of this environment will put a heavy load on the
collision checker but the paths are relatively easy.

Clutter This environment consists of 500 uniformly distributed tetrahedra. A
torus must move among them from one corner to the other. The configu-
ration space will consist of many corridors. There are many solutions to
the query.

Hole The moving object consists of four legs and must rotate in a complicated
way to get through the hole. The hole is placed off-center to avoid that
certain grid-based sampling methods have an advantage. The configu-
ration space will have two large open areas with two narrow winding
passages between them.

House The house is a relatively complicated environment consisting of ap-
proximately 2,200 polygons. The moving object (table) is small compared
to the house. Because the walls are thin, the collision checker must make
rather small steps along the paths, resulting in higher collision check-
ing times. Because of the many different parts in the environment, the
planner can be lucky or unlucky in finding relevant parts of the roadmap
quickly. Therefore, we expect large differences in the running times of
different runs.

Rooms In this environment there are three rooms with ample free space and
with narrow doors between them. So the density of obstacles is rather
non-uniform. The table must navigate through the two narrow doors to
the other room.

Wrench This environment features a large moving object (156 triangles) in a
small workspace (48 triangles). There are many different solutions. The
object is rather constrained at the start and goal.

We use the distance metric described in Section 1.2.3. Table 2.2 enumerates
the weights for the translational and rotational DOFs. The step sizes for the
local planner are listed in Table 2.3.

2.3. EXPERIMENTAL SETUP 31

(a) Cage (b) Clutter (c) Hole

(d) House (e) Rooms (f) Wrench

Figure 2.2 The six environments used for testing.

Dimensions of the bounding boxes

environment robot

Cage 45 × 40 × 45 4 × 13 × 10
Clutter 48 × 48 × 48 8 × 1.5 × 8

Hole(∗) 40 × 40 × 40 5 × 5 × 10
House 35 × 8 × 38 2.5 × 0.5 × 1.5
Rooms 40 × 20 × 40 8 × 2.5 × 4
Wrench 160 × 160× 160 68 × 24 × 8

Table 2.1 The axis-aligned bounding boxes of the environments and robots. (∗)The
dimensions of the hole are 5 × 5 × 0.5. The legs of the robot are 1 thick.

32 CHAPTER 2. PERFORMANCE-BASED COMPARISON

Weights for the DOFs of a robot

translational rotational3

Cage 1, 1, 1 30
Clutter 1, 1, 1 7
Hole 1, 1, 1 11
House 1, 1, 1 4
Rooms 1, 1, 1 9
Wrench 6, 6, 6 30

Table 2.2 The weights for each DOF of the robots.

step size

Cage 1.0
Clutter 1.0
Hole 1.0
House 0.5
Rooms 1.0
Wrench 3.0

Table 2.3 The step sizes used by the local planners.

2.4. COLLISION CHECKING 33

2.4 Collision checking

The most time-consuming steps in the Probabilistic Roadmap Method are the
collision checks that are required to decide whether a sample lies in Cfree and
whether the motion produced by the local planner is collision-free. In particu-
lar the second type of checks is time-consuming. In this section we investigate
some techniques for collision testing of the paths.

When testing a path for collisions we can use one of the following three
techniques:

incremental In the incremental method we take small steps along the path
from start to goal. Let d be the distance between the start and goal, then
the number of steps equals to d divided by the appropriate step size from
Table 2.3. We check each step (i.e. the placement of the robot) for colli-
sions with the environment.

binary In the binary method we start by checking the middle position along
the path. If it is collision-free we recurse on both halves of the path, check-
ing the middle positions there. In this way, we continue until either a col-
lision is found or the checked placements lie close enough together (again
determined by the given step size) [130].

rotate-at-s While the previous methods check collisions along a straight line
in the C-space, the rotate-at-s approach first translates from start to an
intermediate configuration s halfway, then rotates, and finally translates
to the goal [2]. We set s to 0.5, i.e. halfway the line.

The incremental method was used in early papers on the PRM. Later papers
suggest that the binary method works better [131]. The reason is that the mid-
dle position is the one that has the highest chance of not being collision-free.
This means that, when the path is not collision-free, a collision will most likely
be found earlier, that is, after fewer collision checks.

It has been suggested that one should try to compute sweep volumes and
use these for collision tests. As a result, a path check would require just one
collision test. Unfortunately, it is very difficult to compute sweep volumes for
three-dimensional moving objects with six degrees of freedom. A much sim-
pler technique is to first check with the sweep volume induced by the origin of
the object, that is, with a line segment between start and goal position, see [41].

preceding line check In this method we first perform a collision test with the
line segment between the start and goal position in the workspace. Only

34 CHAPTER 2. PERFORMANCE-BASED COMPARISON

Collision checking without line check

incremental binary rotate-at-s

Cage 2.4 1.5 4.2
Clutter 2.3 1.9 6.5
Hole 226.7 213.6 929.5
House 5.5 5.1 14.3
Rooms 0.3 0.3 0.9
Wrench 1.4 1.1 4.6

Collision checking with line check

incremental binary rotate-at-s

Cage 2.4 1.5 3.9
Clutter 2.4 2.4 5.8
Hole 186.2 213.7 979.2
House 6.6 6.3 13.9
Rooms 0.2 0.2 1.0
Wrench 1.5 1.1 4.6

Table 2.4 Average running times for three different collision checking methods. Each
method was tested without and with line check.

if it is collision-free, we perform one of the three techniques. Note that
this assumes that the origin of the object lies inside it.

We would expect that this test will quickly discard many paths that have a
collision, leading to an improvement in running time.

We conducted experiments with the three collision-check techniques. Each
experiment was run 100 times. To determine whether first performing a col-
lision test with an appropriate line segment decreases the running time, we
tested each technique with and without line check. Figure 2.3 and Table 2.4
summarize the results (using Halton* points for sampling and a simple nearest-
k node adding strategy2; see below). Note that the best times are indicated in
bold.

They show that in all environments the binary approach was faster than the
incremental approach although the improvement varied over the type of envi-
ronment. Also the standard deviation of this approach was smaller, making it

2The values used for the two parameters of this node adding strategy are stated in Table 2.5.

2.4. COLLISION CHECKING 35

 0

 5

 10

 15

 20

Cage

ru
n

n
in

g
ti

m
e

(s
)

incremental binary rotate-at-s

collision checking strategy

 0

 2

 4

 6

 8

 10

 12

 14

Clutter

ru
n

n
in

g
ti

m
e

(s
)

incremental binary rotate-at-s

collision checking strategy

 0

 1000

 2000

 3000

 4000

 5000

 6000

Hole

ru
n

n
in

g
ti

m
e

(s
)

incremental binary rotate-at-s

collision checking strategy

 0

 20

 40

 60

 80

 100

House
ru

n
n

in
g

ti
m

e
(s

)

incremental binary rotate-at-s

collision checking strategy

 0

 1

 2

 3

 4

 5

Rooms

ru
n

n
in

g
ti

m
e

(s
)

incremental binary rotate-at-s

collision checking strategy

 0

 5

 10

 15

 20

Wrench

ru
n

n
in

g
ti

m
e

(s
)

incremental binary rotate-at-s

collision checking strategy

Figure 2.3 Relation between the collision checking strategy and the running time. Box
plots are shown for each environment. Each strategy was tested without (left box plots)
and with a line check (right box plots). Each plot consists of a box (the middle 50% of
the data), one large horizontal line (average) and two small horizontal lines (average
± standard deviation) and a vertical line (minimum and maximum value).

36 CHAPTER 2. PERFORMANCE-BASED COMPARISON

more robust against outliers. The line check only had a marginal effect, con-
trary to the claim in [41]. This might be due to the way Solid does the collision
checking with line segments. In [41], it was suggested to only apply the line
check when the distance between the endpoints is large. We tried this but did
not see any significant improvement in performance.

Also the rotate-at-s technique did not give the improvement suggested in
[2]. Actually, its average running times were three times as large as the running
times of the binary approach. Also its standard deviation was much larger.
However, it should be noted that this can depend on the underlying collision
checking package used. For the rest of this chapter we will use the binary
approach without line checks.

2.5 Neighbor selection strategy

The neighbor selection strategy specifies for a particular sample how a set of
neighbor samples is chosen to which it is connected using a local planner. The
goal of the strategy is to make the graph connected as fast as possible. A strat-
egy usually selects neighbors based on the maximum connection distance, maxi-
mum number of connections tried, and the connected components in the graph.3 We
study the effects of different choices for these criteria.

It is recognized that the maximum connection distance should not be too
small nor too large: Although making long connections seems to be important
for the PRM, it is in general not useful to make very long connections since the
chance of success for such connections is small while the collision checks re-
quired for testing the local path are expensive. On the other hand, a very small
connection distance will always require an exponential number of samples. We
will show how to choose the maximum connection distance in Section 2.5.1.

In Section 2.5.2, we will study how to choose the maximum number of
connections. If this number is too small, then it might be hard to get the free
space connected because the chance is small that those few nodes are selected
to which a connection is possible. If connections are tried with too many nodes,
the total number of nodes will be less, but this might negatively influence the
running time as testing those connections is expensive.

3If these parameters are not set to infinity (which is the default case), then we have to find
the nearest-k neighbors. This is done by calculating the distance to each of the n nodes in the
graph. A node is stored in a sorted list of maximum size k if the distance to this node is less than
some maximum distance. This approach takes O(n log k) time. More efficient nearest-neighbor
searching algorithms based on kd-trees are discussed in [158].

2.5. NEIGHBOR SELECTION STRATEGY 37

In Section 2.5.3, we will compare five node adding strategies. These strate-
gies do not produce graphs with cycles. It is not useful (from a complexity
point of view) to make connections to nodes that are already in the same con-
nected component as such a new connection will not help solving motion plan-
ning queries.

2.5.1 Maximum connection distance

Before we can conduct experiments to determine the maximum connection dis-
tances, we have to make some choices for the PRM. We use the nearest-k node
adding strategy. We set parameter k (which denotes the maximum number of
connections) to 25 as this seems to work reasonably. Furthermore, we use the
Halton* sampling strategy (see below).

In each of the following experiments, we vary the maximum connection
distance from a small value (close to zero) to a large value. For each distance
value, we perform 100 runs and gather the following running time statistics:
the middle 50% of the data, the average, the standard deviation, the minimum
and the maximum. See Figure 2.4 for the results.

When we make the connection distance very small, the PRM starts looking
like grid-based techniques in which nodes are only connected to their direct
neighbors. Figure 2.4 shows that this considerably increases the running time.
Indeed, the power of PRM is that it can make longer connections. A relatively
small value is only useful in environments were the connections are expected to
be short. When we make the connection distance large (or even set this param-
eter to ∞), the average running times are in general higher than the running
time corresponding to the optimal maximum connection distance. A larger
value is best for environments in which long connections can be made and
where the weights, used by the metric, are large. (For example, as the rota-
tional DOFs play an important role in the Cage and Wrench environments, the
corresponding weights for these DOFs are large.) Hence, the optimal value is
correlated with the average visibility of the nodes and the weights used by the
metric. Moreover, there is some optimal trade-off. See Table 2.5 for the optimal
values.4 These values will be used in the remainder of the chapter.

The box plots of Figure 2.4 reveal a problem when dealing with statistical
analysis of data produced by the PRM. They show that there can be a large
difference between the minimum and maximum running times. Furthermore,
the large sizes of the boxes show that there is a large variance in the running

4For other types of problems, such as problems involving car-like or articulated robots, we
also advise not to use a small maximum connection distance.

38 CHAPTER 2. PERFORMANCE-BASED COMPARISON

Neighbor selection parameters

max. connection distance max. number of connections

Cage 45 75
Clutter 15 75
Hole 10 75
House 15 75
Rooms 20 75
Wrench 350 75

Table 2.5 The optimal values used in the neighbor selection strategy.

times. This phenomenon is undesirable because of two reasons. First, a large
variation complicates statistical analysis and can even make it unreliable. Sec-
ond, it is undesirable from a users point of view, e.g. it can be hard to give a
user an indication of how long the method will take to terminate. Hence, we
have to be very careful analysing the results. As the running times can vary
extensively, we performed 100 runs for each experiment. In this way we can
increase its statistical significance. We noticed that some authors choose a low
number of runs per experiment while only mentioning the average. Because of
the large variance between runs that we observe, we think that this reduces the
validity of the claims that are made.

2.5.2 Maximum number of connections

In the following experiments, we will vary the maximum number of connec-
tions k to determine the optimal value for each environment. For each k, we
perform 100 runs and create a corresponding box plot. As maximum connec-
tion distance, we use the results of our experiments of the previous section as
shown in Table 2.5. We again use the Halton* sampling strategy (see below).
Figure 2.5 shows the relation between the maximum number of connections
and the running time and Figure 2.6 shows the effect on the number of nodes.

The results show that a small maximum number of connections (e.g. k < 5)
leads to high running times and high peaks. Corresponding graphs contain a
huge number of nodes; they are typically one order of magnitude larger than
graphs corresponding to the optimal value of k. As only a few connections per
new node are tried, chances are small that the node will get connected to other
nodes.

It is not useful to us a k larger than the (expected) number of nodes in the
graph. In the Cage experiment for example, we observe that the average num-

2.5. NEIGHBOR SELECTION STRATEGY 39

10
-2

10
-1

10
0

10
1

10
2

10
3

∞605040302010

Cage

ru
n

n
in

g
ti

m
e

(s
)

maximum connection distance

10
-1

10
0

10
1

10
2

∞403530252015105

Clutter

ru
n

n
in

g
ti

m
e

(s
)

maximum connection distance

10
0

10
1

10
2

10
3

10
4

∞605040302010

Hole

ru
n

n
in

g
ti

m
e

(s
)

maximum connection distance

10
-1

10
0

10
1

10
2

10
3

∞403530252015105

House
ru

n
n

in
g

ti
m

e
(s

)

maximum connection distance

10
-2

10
-1

10
0

10
1

10
2

∞403530252015105

Rooms

ru
n

n
in

g
ti

m
e

(s
)

maximum connection distance

10
-1

10
0

10
1

10
2

10
3

∞500400300200100

Wrench

ru
n

n
in

g
ti

m
e

(s
)

maximum connection distance

Figure 2.4 Relation between the maximum connection distance and the running time. A
series of box plots is shown for each environment. Note that we use a logarithmic scale
for the ‘running time’-axis.

40 CHAPTER 2. PERFORMANCE-BASED COMPARISON

ber of nodes in the graph is about 40 when k is set to at least 20. Using a value
larger than 40 will not lead to extra collision checks or distance calculations.
Hence, this will not influence the running times. Against our expectations, a
high number of maximum connections had only a marginal effect on the run-
ning times (compared to the optimal running times). This can be explained as
follows.

In order to find a path, at least the following criterion must hold: each con-
figuration on the path must be in at least one visibility area of a sample/node
in the graph. In other words, a set of nodes should cover the path. However,
when these nodes belong to different connected components, the path cannot
be found (yet). In the next chapter we will show that connecting the different
connected components is more complicated than satisfying the coverage cri-
terion. This especially holds for narrow passage problems which arise e.g. in
the Hole environment, but also in the House and Rooms environments. When
more effort is put in connecting the components, i.e. the maximum number of
connections is increased (up to a certain level), the problem is solved in less
time.

When a new node ν is connected to more nodes (up to a certain level), the
chance is larger that different connected components will be merged, but this
may take more time for collision checking. Note that the amount of extra cover-
age of ν is not affected by the maximum number of connections. (After adding
some n nodes to the graph, the path will be covered.) On the other hand, when
ν is connected to less nodes, the chance is smaller that different connected com-
ponents will be merged, and hence, more than n nodes are needed. Although
these extra nodes do not contribute to the coverage anymore, their only goal is
to connect the components. As a smaller k complicates this task, too much time
may be spent on checking the connections for collisions while the node may
be less useful. We conclude that the extra time needed to check more connec-
tions saves computation time compared to the time needed for adding a larger
number of useless nodes.

We advise to use a high value (e.g. 75) for the maximum number of connec-
tions.

2.5.3 Node adding strategies

We will now compare some node adding strategies. We consider the following
techniques:

nearest-k We try to connect the new configuration to the nearest k nodes in the
graph that lie close enough. The rationale is that nearby nodes result in

2.5. NEIGHBOR SELECTION STRATEGY 41

 0

 2

 4

 6

 8

 10

∞100755040302010

Cage

ru
n

n
in

g
ti

m
e

(s
)

maximum number of connections

 0

 1

 2

 3

 4

 5

 6

 7

 8

∞100755040302010

Clutter

ru
n

n
in

g
ti

m
e

(s
)

maximum number of connections

10
0

10
1

10
2

10
3

10
4

∞100755040302010

Hole

ru
n

n
in

g
ti

m
e

(s
)

maximum number of connections

 0

 20

 40

 60

 80

 100

 120

 140

 160

∞100755040302010

House

ru
n

n
in

g
ti

m
e

(s
)

maximum number of connections

 0

 1

 2

 3

 4

 5

 6

 7

∞100755040302010

Rooms

ru
n

n
in

g
ti

m
e

(s
)

maximum number of connections

10
-1

10
0

10
1

10
2

∞100755040302010

Wrench

ru
n

n
in

g
ti

m
e

(s
)

maximum number of connections

Figure 2.5 Relation between the maximum number of connections and the running time.
A series of box plots is shown for each environment.

42 CHAPTER 2. PERFORMANCE-BASED COMPARISON

10
0

10
1

10
2

10
3

∞100755040302010

Cage

n
u

m
b

er
o

f
n

o
d

es

maximum number of connections

10
2

10
3

10
4

∞100755040302010

Clutter

n
u

m
b

er
o

f
n

o
d

es

maximum number of connections

10
3

10
4

10
5

10
6

∞100755040302010

Hole

n
u

m
b

er
o

f
n

o
d

es

maximum number of connections

10
2

10
3

10
4

10
5

∞100755040302010

House
n

u
m

b
er

o
f

n
o

d
es

maximum number of connections

10
1

10
2

10
3

10
4

∞100755040302010

Rooms

n
u

m
b

er
o

f
n

o
d

es

maximum number of connections

10
1

10
2

10
3

10
4

10
5

∞100755040302010

Wrench

n
u

m
b

er
o

f
n

o
d

es

maximum number of connections

Figure 2.6 Relation between the maximum number of connections and the number of
nodes. A series of box plots is shown for each environment. Note that we use a loga-
rithmic scale for the ‘number of nodes’-axis.

2.5. NEIGHBOR SELECTION STRATEGY 43

short connections that can be efficiently checked for collisions.

component We try to connect the new configuration to the nearest node in
each connected component that lies close enough. The rationale is that
we prefer to connect to multiple connected components.

component-k We try to connect the new configuration to at most k nodes in
each connected component. Still, we keep the total number of connec-
tions tried small (the same number as for nearest-k). The rationale is that
when the number of components is small we prefer to spend some ex-
tra time on trying to make connections. Otherwise the time required for
adding the node will become the dominant factor. Preliminary experi-
ments showed that setting k to 3 works fine in our environments.

visibility This method is based on the visibility sampling technique described
in [121]. This technique only connects configurations to useful nodes.
Usefulness is determined as follows: when a new node cannot be con-
nected to other nodes it forms a new connected component and is labeled
useful. If it connects two or more components it is also labeled useful. If
it can be connected to just one component it is not labeled useful. It has
been observed in [121] that the number of useful nodes remains small,
making it possible to try connections to all of them. Hence, we do not
restrain the connection distance and number of connections.

visibility-k This method is again based on the visibility sampling technique,
but now only the nearest k nodes that lie close enough will be considered
for the usefulness test.

Table 2.6 and Figure 2.7 summarize the results. Although the visibility ap-
proach pruned the graphs a lot, it still performed worse on most environments.
Only for the Hole environment it performed better. We feel that the reason is
that the approach is too strict in rejecting nodes. However, the method per-
formed better when restrictions were put on the two parameters. In general,
the nearest-k technique performed relatively well, except in the Hole environ-
ment. We must remark that for this environment it is better to use an obstacle-
based sampling technique such as nearest contact which will be discussed in
Section 2.7. This technique is two orders of magnitude faster than the visibility
approach.

44 CHAPTER 2. PERFORMANCE-BASED COMPARISON

 0

 5

 10

 15

 20

Cage

ru
n

n
in

g
ti

m
e

(s
)

node adding strategy

near-k com-kcom vis-kvis
10

-1

10
0

10
1

10
2

10
3

Clutter

ru
n

n
in

g
ti

m
e

(s
)

node adding strategy

near-k com-kcom vis-kvis

10
0

10
1

10
2

10
3

10
4

10
5

Hole

ru
n

n
in

g
ti

m
e

(s
)

node adding strategy

near-k com-kcom vis-kvis
 0

 50

 100

 150

 200

 250

 300

House
ru

n
n

in
g

ti
m

e
(s

)

node adding strategy

near-k com-kcom vis-kvis

 0

 5

 10

 15

 20

Rooms

ru
n

n
in

g
ti

m
e

(s
)

node adding strategy

near-k com-kcom vis-kvis
10

-1

10
0

10
1

10
2

10
3

Wrench

ru
n

n
in

g
ti

m
e

(s
)

node adding strategy

near-k com-kcom vis-kvis

Figure 2.7 Relation between the node adding strategy and the running time. A series of
box plots is shown for each environment. Note that we sometimes use a logarithmic
scale on the ‘running time’-axis.

2.6. UNIFORM SAMPLING 45

Node adding strategy

nearest-k comp comp-k visibility visibility-k

Cage 1.5 2.1 1.7 4.0 3.4
Clutter 1.9 1.7 1.6 40.0 5.5
Hole 213.6 2,886.5 1,451.9 129.4 54.0
House 5.1 12.2 7.8 44.5 40.5
Rooms 0.3 0.8 0.5 2.8 1.8
Wrench 1.1 0.8 0.7 23.5 3.2

Table 2.6 Average running times of five distinct node adding strategies.

2.6 Uniform sampling

The first papers on the PRM used uniform random sampling of the configura-
tion space to select the nodes that are added to the graph. In recent years, other
uniform sampling approaches have been suggested to remedy certain disad-
vantages of the random behavior. In particular, we study the following tech-
niques (see Figure 2.8 for a visual impression of the corresponding sampling
distributions):

random In the random approach a sample is created by choosing random val-
ues for all degrees of freedom of the moving object.

grid In this approach we choose samples on a grid. Because the grid resolution
is unknown in advance, we start with a coarse grid and refine this grid
in the process, halving the cell size. Grid points on the same level of the
hierarchy are added in random order.

Halton In [23] it has been suggested to use so-called Halton point sets as sam-
ples. Halton point sets have been used in discrepancy theory to obtain a
coverage of a region that is better than using a grid (see e.g. [30]). It has
been suggested in [23] that this deterministic method is well suited for
the PRM.

Halton* In this variant of Halton we choose a random initial seed instead of
setting the seed to 0 [154]. The claims in [23] should still hold because
they are independent of the seed. By choosing a random seed we avoid
the situation in which seed 0 is lucky or unlucky.

cell-based In this approach we take random configurations within cells of de-
creasing size in the workspace. The first sample is generated randomly

46 CHAPTER 2. PERFORMANCE-BASED COMPARISON

(a) random (b) grid (c) Halton (d) cell-based

Figure 2.8 Uniform sampling strategies in a 2D environment. Each image shows a
typical distribution of 500 samples.

Uniform sampling strategy

random grid Halton Halton* cell-based

Cage 1.8 3.0 1.3 1.5 2.2
Clutter 1.7 3.7 1.5 1.9 1.6
Hole 237.9 84.7 101.5 213.6 232.4
House 20.6 14.5 2.3 5.1 21.2
Rooms 0.5 0.6 0.2 0.3 0.6
Wrench 1.5 1.4 1.0 1.1 1.4

Table 2.7 Average running times of five uniform sampling strategies.

in the whole space. Next we split the workspace in 23 equally sized cells.
In a random order we generate a configuration in each cell. Next we split
each cell into sub-cells and repeat this for each sub-cell. This should lead
to a better distribution of the samples over the configuration space com-
pared to random sampling. A similar approach was used in [129].

An important issue is how to choose random values. Random values were
obtained by the Mersenne Twister [113]. Sampling for the rotational degrees
of freedom was performed by choosing random unit quaternions [92], except
for the Halton approach as this method is deterministic.5 See [159] for a more
extensive elaboration on sampling methods for these DOFs.

5We are aware that this choice might negatively influence the performance of this method.
Contrary to the claim in [159], we experienced little difference in our experiments when we
chose uniform random quaternions instead of Halton Euler angles which were converted to
quaternions.

2.6. UNIFORM SAMPLING 47

 0

 2

 4

 6

 8

 10

Cage

ru
n

n
in

g
ti

m
e

(s
)

uniform sampling strategy

random grid Halton*Halt. cell
 0

 2

 4

 6

 8

 10

Clutter

ru
n

n
in

g
ti

m
e

(s
)

uniform sampling strategy

random grid Halton*Halt. cell

 0

 500

 1000

 1500

 2000

 2500

Hole

ru
n

n
in

g
ti

m
e

(s
)

uniform sampling strategy

random grid Halton*Halt. cell
 0

 50

 100

 150

 200

 250

House

ru
n

n
in

g
ti

m
e

(s
)

uniform sampling strategy

random grid Halton*Halt. cell

 0

 1

 2

 3

 4

 5

Rooms

ru
n

n
in

g
ti

m
e

(s
)

uniform sampling strategy

random grid Halton*Halt. cell
 0

 1

 2

 3

 4

 5

 6

 7

Wrench

ru
n

n
in

g
ti

m
e

(s
)

uniform sampling strategy

random grid Halton*Halt. cell

Figure 2.9 Relation between the uniform sampling strategy and the running time. A
series of box plots is shown for each environment.

48 CHAPTER 2. PERFORMANCE-BASED COMPARISON

Table 2.7 and Figure 2.9 summarize the results. At first glance, it may ap-
pear that the deterministic Halton approach performed best. Especially the dif-
ferences for the Hole and House environments were large. We tested whether
this approach was lucky for these environments by translating the house and
hole by a few units. Now the differences were negligible. Hence, the method
was lucky for these environments. The running times being constant does not
necessarily mean that this deterministic method is more consistent in perfor-
mance. If the seed is randomized, which is the case for the Halton* method, its
variance was comparable to e.g. the random approach.

The differences were in general small, i.e. the slowest method took about
twice the time of the fastest method, except for the House environment. In
general we must conclude that there is little to win when using different kinds
of uniform sampling in terms of average running time. Nonetheless, there can
be other arguments to use a particular technique. For example, the Halton
method is deterministic. However, such a deterministic approach might be
unlucky for a particular environment.

2.7 Non-uniform sampling

Rather than using uniform sampling, it has been suggested to add more sam-
ples in difficult regions of the environment. In this section we study a number
of these techniques (see Figure 2.10 for their typical distributions):

Gaussian Gaussian sampling is intended to add more samples near obstacles.
The idea is to take two random samples, where the distance σ between
the samples is chosen according to a Gaussian distribution. Only if one
of the samples lies in Cfree and the other lies in Cforb we add the free sam-
ple. This leads to a favorable sample distribution [22]. We conducted
preliminary experiments to find the optimal values for σ. We set σ to
{2, 2, 1, 1, 2, 8} for the six environments, respectively.

obstacle-based This technique, based on [3], has a similar goal. We pick a uni-
form random sample. If it lies in Cfree we add it to the graph. Otherwise,
we pick a random direction and move the sample in that direction with
increasing steps until it becomes free and add the free sample. We set the
initial step size to the corresponding step size from Table 2.3.

obstacle-based* This is a variation of the previous technique where we discard
a sample if it initially lies in Cfree. This will avoid many samples in large
open regions.

2.7. NON-UNIFORM SAMPLING 49

Non-uniform sampling strategy

Gaussian obstacle obstacle* bridge MA NC Halton*

Cage 5.2 2.5 5.0 6.0 143.2 4.1 1.5
Clutter 2.8 2.9 4.2 6.3 411.8 4.5 1.9
Hole 4.5 27.2 3.0 38.4 111.5 1.2 213.6
House 7.1 6.0 5.1 9.9 433.4 3.9 5.1
Rooms 0.4 0.4 0.4 0.6 1.4 0.4 0.3
Wrench 2.3 1.9 3.0 7.7 17.9 4.0 1.1

Table 2.8 Comparison of average running times of six non-uniform sampling strate-
gies.

bridge test The bridge test is a hybrid technique that aims at better coverage
of the free space [69]. The idea is to take two random samples, where
the distance σ between the samples is chosen according to a Gaussian
distribution. Only if both samples lie in Cforb and the point in the middle
of them lies in Cfree the free sample is added. To also get points in open
space, every sixth sample is chosen random. We set σ to {5, 5, 2, 1, 4, 5}
for the six environments, respectively.

medial axis This technique generates samples near the medial axis (MA) of the
free space [156]. (See algorithm 4.1). All samples represent robot place-
ments having at least two equidistant nearest points on the obstacles re-
sulting in a large clearance from obstacles. The method is relatively ex-
pensive to compute since expensive closest pair calculations are involved.

nearest contact This method is based on [107] and generates samples on the
boundary of the C-space and can be considered as the opposite of the me-
dial axis technique. First, we choose a uniform random sample c. If c lies
in Cfree we discard it, else our collision checker calculates the penetration
vector v between c and the environment. Then, we move c in the oppo-
site direction of v and place c on the boundary of the C-space. Care must
be taken not to place c exactly on the boundary, because then it would
be difficult to make connections between the samples. Hence, we move c
away from the boundary with the step size listed in Table 2.3.

Due to their biased distributions, we expect these techniques to be useful
only in environments where there are ample free spaces (in the configuration
space) and some narrow passages. Table 2.8 and Figure 2.11 show the results.
(The results of the Halton* approach are stated for comparison.)

50 CHAPTER 2. PERFORMANCE-BASED COMPARISON

(a) Gaussian (b) obstacle-based (c) obstacle-based*

(d) bridge (e) medial axis (f) nearest contact

Figure 2.10 Non-uniform sampling strategies in a 2D environment. Each image shows
a typical distribution of 500 samples.

As expected, the techniques only performed considerably better for the
Hole environment. Also for the House environment, the methods works well
but the improvement was not significant. However, in other situations, the
methods were up to 10 times slower. The medial axis approach was even
worse, due to the expensive calculations. This method does provide samples
that are nicely located between the obstacles which results in motions with
a higher clearance. (We will discuss clearance in Chapters 4, 6, and 7.) We
conclude that special non-uniform techniques should only be used in specific
situations with narrow corridors. Preferably, they should only be used in the
parts of the workspace where this is relevant, see e.g. [73].

2.8 Discussion

In this chapter we presented the results of a comparative study of various PRM

techniques. The results confirm previous claims that the binary approach for
collision checking works well. In contrast, the results also show that many
claims on efficiency of certain sampling approaches could not be verified, i.e.

2.8. DISCUSSION 51

10
-1

10
0

10
1

10
2

10
3

Cage

ru
n

n
in

g
ti

m
e

(s
)

non-uniform sampling strategy

Gaus ob*ob brdg MA NC

10
-1

10
0

10
1

10
2

10
3

Clutter

ru
n

n
in

g
ti

m
e

(s
)

non-uniform sampling strategy

Gaus ob*ob brdg MA NC

10
-1

10
0

10
1

10
2

10
3

Hole

ru
n

n
in

g
ti

m
e

(s
)

non-uniform sampling strategy

Gaus ob*ob brdg MA NC

10
-1

10
0

10
1

10
2

10
3

10
4

House
ru

n
n

in
g

ti
m

e
(s

)

non-uniform sampling strategy

Gaus ob*ob brdg MA NC

10
-2

10
-1

10
0

10
1

Rooms

ru
n

n
in

g
ti

m
e

(s
)

non-uniform sampling strategy

Gaus ob*ob brdg MA NC

10
-1

10
0

10
1

10
2

10
3

Wrench

ru
n

n
in

g
ti

m
e

(s
)

non-uniform sampling strategy

Gaus ob*ob brdg MA NC

Figure 2.11 Relation between the non-uniform sampling strategy and the running time.
A series of box plots is shown for each environment. Note that we use a logarithmic
scale on the ‘running time’-axis.

52 CHAPTER 2. PERFORMANCE-BASED COMPARISON

there was little difference between the various uniform sampling methods.
However, the (deterministic) Halton approach performed best. These meth-
ods were only outperformed by non-uniform sampling methods for special
(narrow passage) cases.

For node adding it turned out that visibility sampling did not perform as
well as expected. A technique based on connecting a new configuration to the
nearest-k configurations works relatively well. It turned out that the maximum
number of connections attempted, i.e. the value of k, has to be set fairly high
(like 75). The maximum connection distance is dependent on the environment
and robot. This distance should not be set too low as this may increase the
running time by orders of magnitude compared to the optimal running time.

One thing that is clear from this study is that a careful choice of techniques
is important. Also, it is not necessarily true that a combination of good tech-
niques and parameter choices results in optimal running times. For example,
for the Hole environment one might expect that a combination of nearest con-
tact sampling and visibility node adding works best. But experiments showed
that this combination is actually about two times worse than the best combina-
tion.

The study also shows the difficulty of evaluating the performance of the
techniques. In particular the variance in the running time and the influence of
certain bad runs were surprisingly large. Further research, in particular into
adaptive sampling techniques, will be required to improve this. In addition,
further study would be interesting for other robot types, such as articulated
and car-like robots, since we only compared techniques for free-flying objects.

We hope that our study shed some more light on the question of what tech-
nique to use in which situation. A major challenge is to create planners that
automatically choose an appropriate combination of techniques based on scene
properties or that learn the optimal settings while running.

In this chapter we compared and analyzed techniques based on solving a par-
ticular query. In contrast, the next chapter evaluates the techniques based on
solving every possible query. To solve each query, the following two criteria
have to be satisfied. First, the free configuration space (Cfree) must be covered
by the nodes in the graph. Second, for each two nodes in the graph: if these
nodes share the same connected component in Cfree, then there must exist a
path between them in the graph. This distinction will provide an even better
understanding of the techniques.

CHAPTER

THREE

REACHABILITY-BASED ANALYSIS

While theoretically, the complexity of the motion planning problem is exponen-
tial in the number of degrees of freedom, sampling-based planners can success-
fully handle this curse of dimensionality in practice. The success of these plan-
ners for problems with many degrees of freedom can be explained by the fact
that no explicit representation of the free configuration space (Cfree) is required.
The main operation of these planners is checking configurations for collisions
with obstacles in the environment, which can be performed efficiently by the
current generation of collision checkers. The second reason for their success is
that problems which are not pathological have favorable reachability proper-
ties. That is, the free configuration space of a reasonable problem can often be
captured with few nodes and each node can reach a large portion of Cfree using
a local planner. Therefore, a PRM usually finds a solution quickly, even if the
geometric complexity is high.

In the previous chapter, we compared and analyzed techniques based on
solving one particular query. In contrast, we now inspect the techniques based
on solving every possible query. We say that a motion planning problem is
solved if the following two criteria are satisfied. First, each free configuration
in Cfree can be reached by at least one node in the graph (coverage). Second, for
each two nodes in the graph: if these nodes share the same connected com-
ponent in Cfree, then there exists a path between them in the graph (maximal
connectivity). Our experiments show that covering Cfree is not the main diffi-
culty, but getting the nodes connected, especially when the environments get
more complicated, e.g. a narrow passage is present. The narrow passage prob-
lem can be tackled by incorporating a hybrid sampling strategy that aims at
concentrating samples in difficult areas. The strategy must also generate some

53

54 CHAPTER 3. REACHABILITY-BASED ANALYSIS

samples in ample free spaces. Another strategy to get Cfree faster connected is
to use a more powerful local planner. We present a potential field local planner
that creates larger reachability regions which eases making connections. Also
this planner is better able to find the entry of a narrow passage, decreasing the
number of regions needed to get the nodes connected. Our experiments show
that this approach leads to a better performance of sampling-based methods.

3.1 Introduction

The complexity of a motion planning problem is often expressed in terms of
geometric complexity (of the obstacles and moving object) and the number of
degrees of freedom (DOFs) of the moving object. This is reasonable for methods
that are based on the geometry of obstacles such as visibility graphs, Voronoi
diagrams and exact cell decompositions. In practice, these methods fail when
the geometric complexity is high or when there are many (> 3) DOFs or many
primitives involved.

Complexity analysis is also employed for sampling-based planners such as
the PRM. Analyses for these planners use the coverage of the free configura-
tion space (Cfree) with (hyper)spheres which results in exponential complexity
bounds (see e.g. [81]). Yet, in practice, the PRM can successfully handle this
curse of dimensionality because it is reachability-based, i.e. a sample can often
be connected to other samples that are far away because they can be reached
by the local planner. For example, if each sample can reach a large part of C free

by using a local planner, then Cfree will be covered and connected quickly. This
does not follow from the standard analysis that only allows a sample to be con-
nected to its adjacent neighbors. Another reason why the PRM is fast is because
its primitive operations are simple. Checking samples for collisions does not
require an explicit representation of the configuration space (whose combina-
torial complexity can be very high). When a path or a sample is checked for col-
lisions, only the obstacles in the vicinity are involved. As a result, ‘redundant’
primitives on the other side of the environment do not affect the performance.
These properties lead to a favorable performance that is proportional to some
measure of difficulty for the problem to be solved.

In this chapter, we will study properties of commonly used techniques in
sampling-based planning by performing a reachability analysis which empha-
sizes the notions of coverage and maximal connectivity. These concepts are intro-
duced in Section 3.2. In Section 3.3, we describe the experimental setup. In the
following three sections, we analyze neighbor selection, sampling and local
planning techniques, resulting in a better understanding of these techniques.

3.2. COVERAGE AND MAXIMAL CONNECTIVITY 55

We observe that the main difficulty is not getting Cfree covered, but getting the
nodes connected, especially when the problem gets more complicated. We con-
clude in Section 3.7 that a hybrid sampling technique and a newly proposed
potential field local planner lead to a better performance of the PRM.

3.2 Coverage and maximal connectivity

The PRM was designed to be a multiple shot planner which enables fast query-
ing. This goal can be achieved by creating a graph G = (V, E) that covers Cfree

and captures its connectivity. We define coverage and maximal connectivity as
follows:

Definition 3.1 (coverage). G covers Cfree when each configuration c ∈ Cfree can be
connected using the local planner to at least one node ν ∈ V.

Definition 3.2 (maximal connectivity). G is maximally connected when for all
nodes ν

′, ν
′′ ∈ V, if there exists a path in Cfree between ν

′ and ν
′′, then there exists

a path in G between ν
′ and ν

′′.

Coverage ensures that every query (which consists of a start and goal con-
figuration) can be connected directly to the graph, as is required to solve the
query. If there exists a path (in Cfree) between the start and goal configuration,
then maximal connectivity ensures that a path between them can be found in
the graph. Note that the path in the graph and the path in Cfree do not have to
be in the same homotopic class.

If both criteria are satisfied, then a path can always be found for every
query. Additional criteria are of course imaginable, for example creating a
graph that optimizes path quality (see Part II), but we will not consider them
here. Several authors have studied the use of PRM for solving single motion
planning queries. For single shot techniques, coverage does not play an impor-
tant role, and, our analysis is less relevant.

We use coverage and connectivity as an analysis tool to gain insight in
sampling-based methods. Our goal is to determine for various techniques how
long it takes before Cfree has been covered and connected. Because this would
be rather complex for a continuous (high-dimensional) configuration space C,
we discretize C (for problems that have 2D and 3D C-spaces): for each cell
(whose dimensions are determined by the step size used by the local planner)
in C, we check whether the placement of the robot for that cell is free and store
this information in an array. When a node ν is added to V, its discretized reach-
ability region is calculated by checking for each free cell c in the array whether

56 CHAPTER 3. REACHABILITY-BASED ANALYSIS

Figure 3.1 The coverage and maximal connectivity criteria have been met. The reach-
ability regions of the white nodes cover the complete free space and are connected via
the black node.

there exists a local path between ν and c. All free cells that can be connected
by the local planner are labeled with a unique region number. If each free cell
has been covered by at least one region, the coverage criterion has been met.1

The connectivity criterion is verified as follows: for each added node ν ∈ V
we calculate the set of nodes W ⊆ V to which it can be connected through the
grid of free cells. Then we add all combinations of ν with W to a connectivity
list. If there exists a path in graph G for each connection in the connectivity
list then Cfree is maximally connected. Please realize that these calculations are
only done to compare planning techniques. They are not part of the actual mo-
tion planning algorithm and, hence, are not taken into account when reporting
the running times.

As an example, Figure 3.1 shows an environment whose free space is cov-
ered by two (white) nodes and is connected via one extra (black) node. Hence,
the three-node graph suffices to solve this problem. The reachability region
for the upper left node has been drawn. Each configuration in this region can
be connected with a straight-line local planner to the node. The shape of a
reachability region can be complicated. Figure 3.2(a) shows a region for a 2D
environment with many small obstacles and Figure 3.2(b) shows a 3D region
for the manipulator arm depicted in Figure 3.3(f) with three rotational DOFs.

1We will provide a more efficient way to compute a reachability region in Section 6.4.1.

3.3. EXPERIMENTAL SETUP 57

(a) A 2D reachability region (b) A 3D reachability region for the robot of Figure 3.3(f)

Figure 3.2 Complicated 2D and 3D reachability regions.

3.3 Experimental setup

For the experiments we use our SAMPLE system. As the techniques involve ran-
dom choices, we report statistics gathered from 100 independent runs for each
experiment. See Section 1.2 for more information on our general experimental
setup.

We used the six environments depicted in Figure 3.3. Their bounding boxes
are stated in Table 3.1. The environments have the following properties:

Clutter 1 The 2D cluttered environment consists of 16 polygons through which
a small robot must navigate. It should be easy to create a maximally con-
nected roadmap for this environment, because each sample will cover a
large portion of the free space. The robot is a square with two transla-
tional degrees of freedom (DOFs).

Clutter 2 We added 24 polygons to the first environment to reduce the average
size of the regions. Again, the robot is a translating square.

Narrow passage This environment has been designed to be more difficult. It
contains a narrow passage through which a square has to move. The pas-
sage is surrounded by two large open spaces. The robot is a translating
square.

Hole The Hole environment has two large open spaces separated by a wall
with a narrow hole in it. The robot is a small cube that can only translate.
Each sample will cover a large portion of Cfree.

58 CHAPTER 3. REACHABILITY-BASED ANALYSIS

(a) Clutter 1 (b) Clutter 2 (c) Narrow passage

(d) Hole (e) Corridor (f) Manipulator

Figure 3.3 The six test environments.

Corridor A small translating cube has to move through a 3D winding corridor
consisting of four hairpins. The walls of the corridor will limit the size of
the reachability regions.

Manipulator This 3D environment features a robot arm with three rotational
DOFs which operates in a constrained workspace. The C-space has a long
passage.

We discretized the C-space of each environment.2 The level of discretization
can be found in Table 3.2. Consider for example the Clutter 1 environment: The
ranges of the translational DOFs of the robot are [0 : 40]× [0 : 40]. The step size
used by the local planner is 0.5. Hence, the C-space is discretized with 80× 80
cells.

2We used other environments than in Chapter 2. We did not use problems with more than
three DOFs because the analysis of coverage and connectivity would require too much memory.

3.3. EXPERIMENTAL SETUP 59

Dimensions of the bounding boxes

environment robot

Clutter 1 40 × 40 0.5 × 0.5
Clutter 2 40 × 40 0.5 × 0.5
Narrow passage 40 × 40 0.5 × 0.5
Hole 40 × 40 × 40 2 × 2 × 2
Corridor 40 × 8 × 40 2 × 2 × 2
Manipulator variable variable

Table 3.1 Information on the workspaces of the environments.

DOF range step size number of cells

Clutter 1 40 × 40 0.5 80 × 80
Clutter 2 40 × 40 0.5 80 × 80
Narrow passage 40 × 40 0.5 80 × 80
Hole 40 × 40 × 40 2.0 20 × 20 × 20
Corridor 40 × 8 × 40 2.0 20 × 4 × 20
Manipulator 6.1 × 0.6 × 0.7 0.05 122 × 12 × 14

Table 3.2 Information on the configuration spaces of the environments.

Sampling strategy

Gaussian Bridge

Clutter 1 4.0 4.8
Clutter 2 4.0 4.8
Narrow passage 1.2 2.4
Hole 4.0 5.6
Corridor 4.0 5.6
Manipulator 1.2 4.0

Table 3.3 The optimal values of σ used in Gaussian and Bridge sampling.

60 CHAPTER 3. REACHABILITY-BASED ANALYSIS

We used the metric from Section 1.2.3. We set the weights w i for the trans-
lational DOFs to 1 and set the weights for the rotational DOFs to 6. The optimal
parameters for the sampling strategies are listed in Table 3.3 and the optimal
parameters for neighbor selection strategy are listed in Table 3.4.

For each experiment, we ran the PRM until both coverage and maximal con-
nectivity had been achieved and recorded the following statistical data.

Definition 3.3 (number of regions). Each node ν ∈ V in the graph implies a new
region. The number of regions is denoted by k.

Definition 3.4 (average size of the regions). Let k be the number of regions r i dis-
covered so far. Furthermore, let |ri| be the number of cells in region i and |Cfree| the total
number of free cells. Then the average size of the regions equals: 1

k ∑
k
i=1 |ri|/|Cfree|.

We recorded the number of regions and the average size of the regions at
two moments: the moment that Cfree was covered and at the moment that Cfree

was maximally connected (after Cfree was covered). We also recorded the run-
ning time after both criteria had been satisfied. We give an indication of the
dispersion of the running times by a box plot. Each plot consists of a box, one
large and two small horizontal lines and a vertical line. The box represents the
middle 50% of the data, the large horizontal line represents the average, the
small lines represent the average ± the standard deviation and the vertical line
represents the minimum and maximum value.

3.4 Neighbor selection strategy

The neighbor selection strategy specifies for a particular sample how a set of
neighbor samples is chosen to which it is connected. The goal of the strategy
is to make the graph connected as fast as possible. A strategy usually selects
neighbors based on a combination of the following criteria: the maximum con-
nection distance, the maximum number of connections tried, and the node adding
strategy, see Section 2.5. We chose the nearest-k node adding strategy as this
method performed reasonably well on different environments. We used the
optimal sampling strategy for each environment (see below). That is, we used
Bridge sampling for the Narrow passage environment. For the other ones, we
used Halton* sampling. We study the effects of different choices for the first
two criteria on the six test environments.

3.4. NEIGHBOR SELECTION STRATEGY 61

3.4.1 Maximum connection distance

We concluded in Section 2.5 that the maximum connection distance should not
be too small nor too large. A very small connection distance will always require
an exponential number of samples (in the number of DOFs) which increases the
running time a lot. The PRM works best if reasonably long connections can be
made. In general, it is not useful to try too long connections since the chance
of success for such connections is small while the collision checks required for
testing the local path are expensive.

In each of the following experiments, we varied the maximum connection
distance from a small value (close to zero) to a large value. The maximum num-
ber of connections was set to 75 (see below). Figure 3.5 shows the results for
the 2D environments and Figure 3.6 shows the results for the 3D environments.

When we make the connection distance very small, the PRM starts looking
like grid-based techniques in which samples are only connected to their direct
neighbors. The figures show that this considerably increases the (average and
variance of the) running time. Furthermore, there is a large difference in the
moment of coverage and the moment of maximal connectivity. This shows
that a small connection distance complicates making connections.

It is clear, as the maximum distance gets larger, that the average size of the
reachability regions will increase (up to some value), and hence, the number of
samples needed to solve the problem will decrease. In other words, the number
of samples required to solve the problem decreases when the time required per
sample increases. The results show that there is some optimal trade-off which
is dependent on the environment (and metric). If the size of a region (that cor-
responds to a particular sample) is small, then the sample can be connected to
other samples to which the distance is small, and vice versa. In general, if the
average reachability of the samples is low, then a small connection distance is
preferable and vice versa. See Figure 3.4 which shows the average size of the re-
gions for the six environments corresponding to the optimal neighbor selection
parameters. We can make two observations. First, the larger the average size of
the regions, the smaller the growth of running times when the maximum con-
nection distance increases. Second, the larger the average size of the regions,
the larger the value for the optimal maximum connection distance. This infor-
mation can be used to estimate the (local) optimal maximum connection dis-
tance. For example, when a sample can be connected to other samples at a large
distance, then the average size of its reachability region is large. Hence, using
a large maximum connection distance is a good choice for choosing neighbors.
In addition, few samples should be created near the sample.

62 CHAPTER 3. REACHABILITY-BASED ANALYSIS

 0

 10

 20

 30

 40

 50

 60

Narrow passageClutter 1 Clutter 2 Hole Corridor Manipulator

environment

av
g

si
ze

o
f

re
g

io
n

s
(%

C
fr

e
e
)

Figure 3.4 The average size of the regions corresponding to the optimal neighbor
selection parameters.

The results again confirm that the PRM derives its strength from making
long connections. While a very small connection distance has a dramatic nega-
tive impact on the running time, a large value only has little impact, especially
when the average size of the reachability regions is large.

3.4.2 Maximum numbers of connections

The second analyzed criterion for selecting neighbors is the maximal number of
connections attempted to connect a node. We concluded in Section 2.5.2 that
this value should be large. In this section we will show the relation between
the maximal number of connections and the coverage and connectivity.

The number of attempted connections does not influence the coverage, but
has a clear influence on the connectivity. If the number of connections is too
small, it might be hard to get the free space maximally connected because the
chance is small that those few samples are selected to which a connection is
possible. If connections are attempted with (too) many nodes, Cfree will become
maximally connected using less regions. Nevertheless, this might negatively
influence the running time since testing those connections is expensive.

In our experiments, we varied the maximum number of connections. Fig-
ure 3.7 shows the results for the 2D environments and Figure 3.8 shows the re-
sults for the 3D environments. Indeed, when only a few connections are tried,
more regions are needed to get the roadmap maximally connected. Making
more and more connections does not seem to be useful because the number of

3.4. NEIGHBOR SELECTION STRATEGY 63

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60

Clutter 1

maximum connection distance

ru
n

n
in

g
ti

m
e

(s
)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60

Clutter 1

maximum connection distance

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60

Clutter 2

maximum connection distance

ru
n

n
in

g
ti

m
e

(s
)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

Clutter 2

maximum connection distance

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

Narrow passage

maximum connection distance

ru
n

n
in

g
ti

m
e

(s
)

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

Narrow passage

maximum connection distance

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

Figure 3.5 Influence of the maximum connection distance on the running time and num-
ber of regions required to get the free space covered and maximally connected in the
2D environments.

64 CHAPTER 3. REACHABILITY-BASED ANALYSIS

10
-3

10
-2

10
-1

10
0

10
1

 0 10 20 30 40 50 60

Hole

maximum connection distance

ru
n

n
in

g
ti

m
e

(s
)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60

Hole

maximum connection distance

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

Corridor

maximum connection distance

ru
n

n
in

g
ti

m
e

(s
)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

Corridor

maximum connection distance

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 2

 4

 6

 8

 10

 12

 14

109876543210

Manipulator

maximum connection distance

ru
n

n
in

g
ti

m
e

(s
)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10

Manipulator

maximum connection distance

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

Figure 3.6 Influence of the maximum connection distance on the running time and num-
ber of regions required to get the free space covered and maximally connected in the
3D environments.

3.4. NEIGHBOR SELECTION STRATEGY 65

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80

Clutter 1

maximum number of connections

ru
n

n
in

g
ti

m
e

(s
)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

Clutter 1

maximum number of connections

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

Clutter 2

maximum number of connections

ru
n

n
in

g
ti

m
e

(s
)

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70

Clutter 2

maximum number of connections

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

Narrow passage

maximum number of connections

ru
n

n
in

g
ti

m
e

(s
)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

Narrow passage

maximum number of connections

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

Figure 3.7 Influence of the maximum number of connections on the running time and
number of regions in the 2D environments.

66 CHAPTER 3. REACHABILITY-BASED ANALYSIS

10
-3

10
-2

10
-1

10
0

10
1

 0 10 20 30 40 50 60 70 80

Hole

maximum number of connections

ru
n

n
in

g
ti

m
e

(s
)

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70

Hole

maximum number of connections

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80

Corridor

maximum number of connections

ru
n

n
in

g
ti

m
e

(s
)

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

Corridor

maximum number of connections

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

Manipulator

maximum number of connections

ru
n

n
in

g
ti

m
e

(s
)

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70

Manipulator

maximum number of connections

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

Figure 3.8 Influence of the maximum number of connections on the running time and
number of regions in the 3D environments.

3.5. SAMPLING 67

Neighbor selection parameters

max. connection distance max. number of connections

Clutter 1 15 75
Clutter 2 10 75
Narrow passage 30 75
Hole 40 75
Corridor 15 75
Manipulator 2 75

Table 3.4 The optimal values used in the neighbor selection strategy.

regions needed to get Cfree covered and maximally connected remains constant
at a certain maximum number of connections. However, as a large maximum
number of connections (e.g. 75) does not affect the running time much, we
recommend to use such a high value. This can be explained as follows. First,
we observe that setting the maximum number of connections larger than the
expected number of regions (that satisfies the coverage and connectivity cri-
teria) has no effect on the running time. Consider for example the Clutter 1
environment. As it uses a random sampling strategy, the expected number
of samples to which a particular sample can be connected is the connection
area, divided by the area of the free space, multiplied by the average number
of regions that corresponds to satisfying both criteria: the expected number of
samples equals π ∗ 152/402 ∗ 40 = 17.7. This means, if the samples are uni-
formly random spread in the space and a maximum connection distance of 15
is used, that the expected number of samples to which a connection is tried
(per sample) is 17.7. Setting the maximum connection distance higher than this
value will have little effect on the running time. Setting the parameter slightly
smaller than this value will also not have much effect on the running time as
the chances are high that the discarded samples do already belong to the same
connected component.

3.5 Sampling

The PRM has been expressed as a sampling-based motion planning method.
In this section we will study the behavior of different sampling techniques.
They can be classified into three categories: uniform, non-uniform and hybrid
techniques.

68 CHAPTER 3. REACHABILITY-BASED ANALYSIS

The first category comprises the uniform techniques such as random, grid,
cell-based and Halton sampling. It is well known that these techniques can
have difficulties dealing with the narrow passage problem, see Section 2.6. The
second category tackles the narrow passage problem by biasing the sampling
distribution. That is, more samples are added in ‘difficult’ regions of the en-
vironment. A region is difficult if the size of the region (which corresponds
to a particular sample) is small compared to the total free space. The number
of samples that are generated within these regions can be increased by filter-
ing out samples that probably do not contribute to the coverage and maximal
connectivity of the roadmap. Examples include Gaussian and obstacle-based
sampling. The third category combines the strengths of the previous two cate-
gories. The bridge test for example concentrates samples in difficult areas but
it also generates some samples in open areas. Several combinations of existing
sampling strategies are suited to serve as a hybrid technique, see the paper of
Hsu et al. [73] for an elaboration.

Experiments

For each category we choose a representative method. For the uniform tech-
nique we choose Halton*, for non-uniform Gaussian and for hybrid we choose
Bridge test. See Section 2.6 for more information on these techniques. We will
compare their behavior by considering the experiments we performed on the
six environments. These environments are representative for many different
motion planning problems so we expect the observations to apply rather gen-
eral.

Figure 3.9 shows the results for the 2D environments and Figure 3.10 shows
the results for the 3D environments.

Halton* sampling resulted in relatively low running times for all environ-
ments, except for the Narrow passage environment. This is consistent with the
results from the previous chapter. Halton’s uniform distribution created too
many samples in the two wide open areas and too few in the narrow passage.
Since the chance is small of obtaining a set of samples that covers the space
in the narrow passage, the total number of regions required for coverage and
maximal connectivity was higher for this method than for the other two meth-
ods.

The Gaussian technique needed fewer samples than Halton* in the Nar-
row passage environment. The reason for this is that relatively more samples
are concentrated in the difficult areas of the C-space, which resulted in faster
coverage. In addition, the ample free space was covered fewer times (due to

3.5. SAMPLING 69

 0

 10

 20

 30

 40

 50

 60

 70

 80

Clutter 1

connectivity
coverage

sampling strategy

n
u

m
b

er
o

f
re

g
io

n
s

Halton Gaussian Bridge
 0

 0.05

 0.1

 0.15

 0.2

Clutter 1

ru
n

n
in

g
ti

m
e

(s
)

sampling strategy

Halton Gaussian Bridge

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Clutter 2

connectivity
coverage

sampling strategy

n
u

m
b

er
o

f
re

g
io

n
s

Halton Gaussian Bridge
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Clutter 2
ru

n
n

in
g

ti
m

e
(s

)

sampling strategy

Halton Gaussian Bridge

 0

 200

 400

 600

 800

 1000

 1200

 1400

Narrow passage

connectivity
coverage

sampling strategy

n
u

m
b

er
o

f
re

g
io

n
s

Halton Gaussian Bridge
 0

 1

 2

 3

 4

 5

 6

Narrow passage

ru
n

n
in

g
ti

m
e

(s
)

sampling strategy

Halton Gaussian Bridge

Figure 3.9 Sampling statistics for the 2D environments. The charts in the left column
show the average number of regions required to cover and connect the free space. In
the Narrow passage environment for example, Halton sampling required 275 regions
to cover the free space and 1300 regions to connect the free space. The right column
shows box plots corresponding to the time needed to satisfy both criteria.

70 CHAPTER 3. REACHABILITY-BASED ANALYSIS

 0

 10

 20

 30

 40

 50

Hole

connectivity
coverage

sampling strategy

n
u

m
b

er
o

f
re

g
io

n
s

Halton Gaussian Bridge
 0

 1

 2

 3

 4

 5

Hole

ru
n

n
in

g
ti

m
e

(s
)

sampling strategy

Halton Gaussian Bridge

 0

 20

 40

 60

 80

 100

Corridor

connectivity
coverage

sampling strategy

n
u

m
b

er
o

f
re

g
io

n
s

Halton Gaussian Bridge
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Corridor

ru
n

n
in

g
ti

m
e

(s
)

sampling strategy

Halton Gaussian Bridge

 0

 200

 400

 600

 800

 1000

Manipulator

connectivity
coverage

sampling strategy

n
u

m
b

er
o

f
re

g
io

n
s

Halton Gaussian Bridge
 0

 20

 40

 60

 80

 100

Manipulator

ru
n

n
in

g
ti

m
e

(s
)

sampling strategy

Halton Gaussian Bridge

Figure 3.10 Sampling statistics for the 3D environments.

3.5. SAMPLING 71

the Gaussian distribution of the samples). As this distribution generates fewer
samples in ample free space and more near obstacles, it can be difficult to con-
nect them. This explains why connecting Cfree involved more than three times
as many regions compared to covering Cfree.

The Bridge technique has been designed to combine the strengths of the
previous two categories by concentrating samples in difficult areas while some
samples are also generated in open areas. This resulted in the lowest average
running time and the lowest number of regions needed to get Cfree connected
in the Narrow passage environment. However, the technique performed mod-
erately on the other environments. The charts show that it had difficulties in
getting Cfree covered. This can be explained by looking at the properties of these
environments. As they have no narrow passages, a technique that is designed
to create samples in narrow passages will spend time uselessly. In the Hole
environment, many Bridge samples were created near the walls while most of
them did not increase the coverage of Cfree. The same argument holds for the
Manipulator environment.

By looking at the charts of Figure 3.9 and Figure 3.10, we can make an im-
portant observation. For the Clutter 1 and Clutter 2 environments, the differ-
ence between the moment that Cfree was covered and the moment that Cfree

was maximally connected is very small. In contrast, for the Narrow passage
environment this difference was much larger. Hence, covering Cfree is not the
problem, but getting Cfree maximally connected is more difficult when the en-
vironment contains a narrow passage. To clarify this, we considered two ver-
sions of the Manipulator environment. The first variant is the one depicted
in Figure 3.3(f). The second variant is the same as the first one, except that
we made the passages narrower by scaling the workspace in the y-direction,
i.e. the workspace became 25% less high. In the first variant, the Halton sam-
pling strategy needed about 271 samples to cover the space. Only 6% more
samples were needed to connect the space. While the second variant needed
the same number of samples to cover the space, connecting the space required
five times as many samples. Hence, connecting samples near or in narrow pas-
sages is more difficult. The main observation that can be made is that the nar-
row passage problem is not so much caused by coverage but by connecting the
nodes. Rather than concentrating on more clever sampling, it may be beneficial
to spend more effort on connecting nodes in difficult regions. Actually, already
one of the first papers on PRM did this by trying to connect difficult nodes in
a second phase using a bouncing strategy [124]. In Section 3.6, we will show
how more powerful local planners can be used for this as well. The challenge
is to apply such a connection strategy only when and where it is necessary.

72 CHAPTER 3. REACHABILITY-BASED ANALYSIS

Ideal sampling strategy

An ideal sampling strategy should create few samples that covers and connects
Cfree. The smaller the number of samples, the less time is needed to connect
those samples which is the most time-consuming step in the PRM. However,
some overlap between the regions that belong to the samples is required be-
cause this simplifies creating connections between them. This can be achieved
by creating a hybrid technique which filters out samples that do not contribute
to extra coverage or maximal connectivity. The visibility sampling technique
tries to achieve this by throwing away nodes [121]. Section 6.5 will show that
this technique has difficulties satisfying the coverage and maximal connectiv-
ity criteria. The approach is too strict and should probably be combined with
other sampling techniques.

In Chapter 6, we propose a new technique that creates small graphs satis-
fying both criteria.

3.6 Local planners

In the previous sections we showed that it can be difficult to connect certain
nodes while the coverage criterion has already been met. If we were able to
create a local planner that is more powerful than the straight-line local planner
(SLLP), then we could decrease the gap between the moment of coverage and
maximal connectivity, improving the total running time. Although this new
planner might be more time-consuming, a careful trade-off between the power
and speed of the planner should lead to a better performance of the PRM.

To be successful, this planner should preferably satisfy the following two
criteria. First, it must cover at least the same volume as the SLLP does, i.e. it
must subsume each reachability region that is created using the SLLP. If the
regions are larger we expect that the space is covered faster. More importantly,
because of the larger expected overlap between the regions, they will sooner
become maximally connected. Second, the planner should be fast enough to be
useful in practice. This can be achieved by letting the planner behave as a SLLP

if the connections can be made in a straight line; if the straight-line connection
results in a collision, then a more clever approach should be employed. These
criteria are satisfied by the simple potential field local planner (PFLP) we will
describe below.

3.6. LOCAL PLANNERS 73

In general, a potential field method calculates distances between the robot
and obstacles to define a force vector on the robot [99]. These operations make
a PFLP expensive in comparison to the simple SLLP. To mitigate this effect, we
use a modified version of the potential field planner used in [124].

It is implemented as follows. The planner tries to make small steps on the
straight line toward the goal, as does the SLLP.3 This assures that the region
reached by the PFLP subsumes the region reached by the SLLP. When the robot
walks into an obstacle, the planner checks a step from the last collision-free
configuration in several directions on the hemisphere in configuration space
oriented toward the goal. The most promising step is considered first. A local
minimum is easily detected when all possible steps fail in which case the local
planner stops and reports failure.

Although this planner is more powerful, it will be more expensive than the
SLLP in terms of consumed time. A second drawback is that a new parameter
is introduced that has to be optimized, i.e. the number of directions on the
unit sphere has to be chosen. We choose the axes and diagonals as directions,
i.e. in 2D we choose 8 directions and in 3D we choose 26 directions on the
unit sphere and select only those that bring the robot closer to the goal. It is a
trade-off between the accuracy and speed: the higher this number, the larger
the reachability region, but the slower the planner is. The number of directions
we choose seems to work reasonably, but it is in essence arbitrary.

Figure 3.11 shows the Clutter 2 and Narrow passage environments for each
of which a reachability region is drawn. The left pictures show the area that can
be reached by the SLLP from a particular sample. The right pictures correspond
to the PFLP. While reasonably long connections can be made by the SLLP, the
reachability region of the PFLP significantly extends the area to which connec-
tions can be made. Besides the advantage of covering larger regions, the PFLP,
in contrast to the SLLP, is able to find its way through the narrow passage. This
allows connections to be made from one side of the passage to the other.

We expect that the PFLP outperforms the SLLP in all environments except
the Corridor environment, because the reachability regions will be larger than
those created with the SLLP. The PFLP will be able to easily connect the two
ample free spaces in the Narrow passage and Hole environments. By contrast,
in the Corridor environment, the PFLP may only have an advantage in the hair-
pins; much ineffectual work might be done elsewhere before it is concluded
that no connections exist. This is expected to have a negative effect on the run-
ning time.

3However, the SLLP uses binary collision checking while the PFLP uses incremental collision
checking, see Section 2.4.

74 CHAPTER 3. REACHABILITY-BASED ANALYSIS

Figure 3.11 Reachability regions for straight-line (left column) and potential field local
planner (right column) in the Clutter 2 environment (top row) as well as the Narrow
passage environment (bottom row).

Experiments

We used the optimal sampling strategy in all experiments.4 That is, we used
Halton* for each environment except the Narrow passage environment where
we used Bridge sampling. As neighbor selection strategy we used nearest-k,
where k was set to 75.

In the first experiment we study the effect of using the SLLP or PFLP on the
average size of the regions. We set the maximum connection distance to infin-
ity to reveal the full potential of the planners. Figure 3.12 shows the results.
In all cases, the PFLP covered larger regions than the SLLP. For the Clutter 1
environment, the PFLP created regions that were on average 86% of Cfree com-
pared to 27% for the SLLP. In the Clutter 2 environment, the regions of the PFLP

were even ten times as large as the regions of the SLLP. Even in the Corridor
environment, the differences were large.

4Unfortunately, we cannot conduct experiments with the Manipulator environment as our
implementation of the PFLP currently does not support rotational DOFs.

3.7. DISCUSSION 75

Next, we conduct experiments to find out whether using a PFLP (which cre-
ates larger regions, but takes more time per region) outperforms a SLLP (which
creates smaller regions, but takes less time per region). To make a fair compar-
ison possible, we use for both planners the optimal choices. The SLLP uses the
neighbor selection parameters from Table 3.4. The maximum connection dis-
tances for the PFLP are set to {∞, ∞, 30, ∞, 20} for the different environments.
The PFLP generally uses larger (optimal) maximum connection distances as the
regions will be larger.

Figure 3.13 shows the average number of regions and Figure 3.14 shows the
running times for the two local planners. The results show, as expected, that
the number of regions needed to cover the space are considerably lower for the
PFLP, which is caused by the larger average size of the regions. In addition,
the maximal connectivity criterion was satisfied by considerably less regions.
The (absolute) difference between the number of nodes to achieve coverage
and number of nodes to achieve maximal connectivity was much smaller for
the PFLP than for the SLLP. The PFLP clearly outperformed the SLLP in all envi-
ronments, except in the Corridor environment. However, the difference of the
average running time is small for this environment. Thus, the PFLP turns out
to be an efficient local planner.

Ideally, a local planner should be simple in an ‘easy’ part of the C-space
and more advanced in more ‘difficult’ parts. The potential field local planner
combines those requirements: easy connections (i.e. straight-line connections)
are made at the expense of a marginal overhead, while difficult connections (i.e.
connections that avoid obstacles) can actually be made. Experiments showed
that sampling-based methods can benefit from more powerful local planners
such as the potential field local planner. Because the local planner is slower, the
time improvement in general is less dramatic than the improvement in number
of regions required. However, we believe that one could improve the time even
further.

In future work, one could investigate techniques that can identify difficult
regions in the space. This information can be used to select the most appro-
priate local planner which should lead to an even better performance of the
PRM.

3.7 Discussion

While theoretically, the complexity of the motion planning problem is expo-
nential in the number of degrees of freedom, sampling-based planners can
successfully handle this curse of dimensionality in practice because they are

76 CHAPTER 3. REACHABILITY-BASED ANALYSIS

 0

 20

 40

 60

 80

 100

Clutter 1 Clutter 2 Narrow passage Hole Corridor

environment

av
g

si
ze

o
f

re
g

io
n

s
(%

C
fr

e
e
)

SLLP

PFLP

Figure 3.12 The average size of the regions corresponding to the two local planners.
The maximum connection distance has been to set to infinity.

reachability-based. We presented a reachability analysis for these planners
which focused on coverage and maximal connectivity of the free configura-
tion space Cfree. By inspecting the roadmap when Cfree was covered and when
Cfree was maximally connected, we obtained a better understanding of these
planners. This led to the insight that not coverage is the main problem but get-
ting the nodes connected, especially when the problems get more complicated,
i.e. a narrow passage is present. The narrow passage problem can be tackled
by incorporating a hybrid sampling strategy that aims at concentrating sam-
ples in difficult areas. The strategy must also generate some samples in large
open areas. Other strategies to get the free configuration space faster connected
are to use a refined neighbor selection strategy which is able to make long and
many connections and a more powerful local planner. We presented a poten-
tial field local planner that creates larger reachability regions and accordingly
eases making connections. This planner is also better able to find the entry of a
narrow passage, decreasing the number of regions needed to get the nodes con-
nected. Experiments showed that this approach leads to a better performance
of sampling-based methods.

In Chapter 6, we will use a reachability analysis of Cfree to obtain a more
clever sampling and connection strategy. This results in very small roadmaps
that satisfy the coverage as well as the maximal connectivity criteria.

3.7. DISCUSSION 77

 0

 50

 100

 150

 200

 250

Clutter 1 Clutter 2 Narrow passage Hole Corridor

environment

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

Number of regions for the SLLP

 0

 5

 10

 15

 20

 25

 30

Clutter 1 Clutter 2 Narrow passage Hole Corridor

environment

n
u

m
b

er
o

f
re

g
io

n
s

connectivity
coverage

Number of regions for the PFLP

Figure 3.13 Influence of the two local planners on the number of regions. Note the
different scales.

78 CHAPTER 3. REACHABILITY-BASED ANALYSIS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Clutter 1 Clutter 2 Narrow passage Hole Corridor

environment

ru
n

n
in

g
ti

m
e

(s
)

Running times for the SLLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Clutter 1 Clutter 2 Narrow passage Hole Corridor

environment

ru
n

n
in

g
ti

m
e

(s
)

Running times for the PFLP

Figure 3.14 Influence of the two local planners on the running time.

PART II

PATH QUALITY

79

CHAPTER

FOUR

INCREASING PATH CLEARANCE

Many algorithms have been proposed that create a path for a robot in an envi-
ronment with obstacles. Since it can be hard to create such a path, most meth-
ods are aimed at finding a solution. However, for many applications, the path
must be of a good quality as well. That is, a path should preferably be short
because redundant motions will take longer to execute. In addition, the path
also has to keep some amount of minimum clearance to the obstacles because it
can be difficult to measure and control the precise position of a robot. Traveling
along such a path reduces the chances of collisions due to these uncertainties.

In this chapter, we will study two algorithms that increase the clearance
along paths. The first one is fast but can only deal with rigid, translating bod-
ies. The second algorithm is slower but can handle a broader range of robots,
including three-dimensional free-flying and articulated robots, which may re-
side in arbitrary high-dimensional configuration spaces. A big advantage of
these algorithms is that clearance along paths can now be increased efficiently
without using complex data structures and algorithms.

81

82 CHAPTER 4. INCREASING PATH CLEARANCE

4.1 Introduction

Algorithms that produce paths with high clearance can be divided into two
categories. The first category creates a roadmap (or graph) which represents
the high-clearance collision-free motions that can be made by the moving ob-
ject in an environment with obstacles. From this graph a path is extracted by
a Dijkstra’s shortest path algorithm. Since the calculations to create the high-
clearance paths are performed off-line, we refer to this technique as a prepro-
cessing approach. The second category optimizes a given path. The optimiza-
tion is usually performed on-line in a post-processing stage.

The Generalized Voronoi Diagram (GVD) is a roadmap which can be used
to extract high-clearance paths. The GVD (or medial axis) for a robot with n
degrees of freedom is defined as the collection of k-dimensional geometric fea-
tures (0 ≤ k < n) which are (n + 1 − k)-equidistant to the obstacles. As an
example, consider Figure 4.1 that shows a bounding box and a part of the me-
dial axis for a translating robot. The medial axis of this robot consists of a col-
lection of surfaces, curves and points. The surfaces are defined by the locus of
2-equidistant closest points to the bounding box. The curves have 3-equidistant
closest points and the points have 4-equidistant closest points to the bounding
box. These features are connected if the free space in which the robot operates
is also connected [35]. Hence, the GVD is a complete representation for mo-
tion planning purposes. Most importantly, paths on the GVD have appealing
properties such as large clearance from obstacles.

Halperin et al. [155] introduce a hybrid between the visibility graph and the
Voronoi diagram of polygons in the plane. A shortest path with a preferred
minimum amount of clearance can be extracted in real-time.

Unfortunately, an exact computation of the GVD is not practical for prob-
lems involving many degrees of freedom (DOFs) and many obstacles as this
requires an expensive and intricate computation of the configuration space ob-
stacles. Therefore, the GVD is approximated in practice.

Vleugels and Overmars [150] approximate the GVD by applying spatial
subdivision and isosurface extraction techniques. Although the calculations
are easy and robust, and they can be generalized to higher dimensions, the
technique only works for disjoint convex sites and consumes an exponential
amount of memory, making this technique impractical for problems involving
many DOFs. Another approach, proposed by Masehianand et al. [111], incre-
mentally constructs the GVD by finding the maximal inscribed disks in a two
dimensional discretized workspace. Although this algorithm is also extensi-
ble to handle higher-dimensional problems, it suffers from the same drawback

4.1. INTRODUCTION 83

as the preceding algorithm. Hoff et al. [67] describe a technique that exploits
the fast computation of a GVD using graphics hardware for motion planning in
complex static and dynamic environments. However, the technique is limited
to a three-dimensional workspace for rigid translating robots.

Kim et al. [88] use an augmented version of Dijkstra’s algorithm to extract
a path from a graph based on other criteria than length. The minimum clear-
ance along the path is maximized by incorporating a higher cost for edges that
represent a small amount of clearance. Such a path rarely provides an opti-
mal solution because it is restricted to the randomly generated nodes in the
roadmap. Even if the nodes are placed on the medial axis [107], the edges will in
general not lie on the medial axis, and hence, the extracted path does not have
an optimal amount of clearance.

The above preprocessing methods create a data structure from which paths
can be extracted. Brock and Khatib [26] present a (post-processing) framework
that provides an efficient method for performing local adjustments to a path in
dynamic environments. This path is represented as an elastic band. Subjected
to artificial forces, the elastic band deforms in real-time to a short and smooth
path that maintains clearance from the obstacles. The method can be applied to
a broad range of robots, but many parameters have to be set to get the frame-
work running. It is also not clear whether the resulting path will and can have
an optimal amount of clearance.

In this chapter, we will study techniques to improve the clearance along a
given path. Later, in Chapter 7, we will discuss a preprocessing approach in
which a roadmap with high-clearance paths is computed. First, we will pro-
vide some preliminaries in Section 4.2. In Section 4.3, we describe our first
algorithm that adds clearance to a path by retracting it to the medial axis of the
workspace. The algorithm is limited to translating, rigid bodies. Although it
provides optimal clearance paths for rigid, translating bodies in the plane, the
paths may not be optimal for robots operating in a three-dimensional environ-
ment. We remove these limitations in Section 4.4 where an algorithm is pre-
sented that provides high-clearance paths for a broad range of robots residing
in arbitrary high-dimensional configuration spaces. We apply these algorithms
to six different environments in Section 4.5 and conclude in Section 4.6 that
clearance along paths can be increased without using complex data structures
and algorithms. The results can be used, for example, to obtain high-clearance
paths in high-cost environments such as a factory in which a manipulator arm
operates.

84 CHAPTER 4. INCREASING PATH CLEARANCE

Figure 4.1 A part of the medial axis of an environment that only consists of a bounding
box.

4.2 Preliminaries

As this chapter deals with improving the robot’s clearance along a path, we
need a way to compute the clearance of the robot to the obstacles. This cal-
culation is delegated to Solid (see Section 1.2.2). We define the clearance of a
configuration as follows:

Definition 4.1 (Clearance of a configuration π). Let R be the set of all points on
the robot whose placement in the environment corresponds to configuration π. Fur-
thermore, let O be the set of all points on all obstacles in the environment. Then the
clearance of configuration π is the Euclidean distance min d(r, o) : r ∈ R ∧ o ∈ O.

To define a path, we need the following definition of adjacent configura-
tions.

Definition 4.2 (Adjacent configurations). The configurations π0, · · · , πn−1 are ad-
jacent if the distance d(πi, πi+1) is at most a predetermined distance step.

The step size is chosen dependent on the robot and obstacles. The reader is
referred to Section 1.2.3 for details on computing distances. We can now define
a discrete path and a discrete local path.

Definition 4.3 (Discrete path Π). A discrete path Π is a series of n adjacent con-
figurations π0, · · · , πn−1.

Definition 4.4 (Discrete local path LP). A discrete local path LP[π ′, π
′′] is a series

of n interpolated adjacent configurations π0, · · · , πn−1 on the local path between π
′

and π
′′.

The average clearance of a path gives an indication of the amount of free
space in which the path can be moved without colliding with the obstacles:

Definition 4.5 (Average clearance of discrete path Π). Let Π be a discrete path.
Then the average clearance equals to 1

n ∑
n−1
i=0 Clearance(πi).

4.3. RIGID, TRANSLATING BODIES 85

4.3 Rigid, translating bodies

In this section, we describe an algorithm that adds clearance to a path traversed
by a translating, rigid body. The problem we want to solve is as follows. Con-
vert a given discrete path Π into a path Π′ such that each robot placement that
corresponds to π

′
i ∈ Π′ has (at least) two-equidistant nearest points to the ob-

stacles in the scene. We initially assume that the start and goal configurations
lie on the medial axis.

We will increase the clearance along a path by retracting its individual
placements of the robot (which we refer to as samples) to the medial axis of
the free workspace. Our approach is based on a technique from Wilmarth et
al. [156] which retracts samples to the medial axis.1 Such a retracted sample will
have (at least) two-equidistant nearest points to the obstacles in the workspace,
resulting in a large clearance. As the retraction is performed in the workspace,
only the clearance along paths traversed by translating, rigid bodies can be
improved.

4.3.1 Retraction algorithm

We will first show how to retract a single sample, corresponding to configu-
ration π ∈ Π, to the medial axis. Algorithm 4.1 outlines our approach. Let
cpπ be the point on the robot in the workspace that corresponds to configu-
ration π that is closest to the point cpo on an obstacle in the workspace. We
first calculate the pair (cpπ , cpo) of closest points between the robot and obsta-
cles. Then, we iteratively move in direction −−−−→cpocpπ until the closest point on
the obstacles changes. In each iteration, the largest distance it can move such
that the robot will not collide with the obstacles equals its clearance which is
defined as the Euclidean distance between cpπ and cpo. Finally, we use binary
search between the original closest point cpo and changed closest point cpo′

(with precision step) to find the configuration πmid that has two-equidistant
nearest points to the obstacles in the workspace.

Algorithm 4.2 shows how to retract a discrete path Π to the medial axis.
We retract each configuration π ∈ Π to the medial axis. If the distance between
two consecutive configurations of the retracted path Π ′ exceeds step, we gen-
erate extra configurations by applying the algorithm onto the local path that is
defined by these two configurations until the distance between any two con-
secutive configurations is less than step.

1While their technique retracts single samples to the medial axis, our technique retracts a
complete path.

86 CHAPTER 4. INCREASING PATH CLEARANCE

Algorithm 4.1 RETRACTCONFIGURATION(configuration π)

Require: free configuration π, obstacles O, precision step
1: (cpπ , cpo) ← CLOSESTPAIR(π, O)
2: cpo′ ← cpo

3: while cpo′ = cpo do

4: π
′ ← π

5: π ← π + cpπ − cpo

6: (cpπ , cpo′) ← CLOSESTPAIR(π, O)
7: while d(π, π

′) > step do

8: πmid ← INTERPOLATE(π, π
′, 0.5)

9: (cpπ , cpo) ← CLOSESTPAIR(πmid , O)
10: if cpo′ = cpo then π ← πmid else π

′ ← πmid

11: return πmid

Algorithm 4.2W -RETRACTION(discrete path Π)

1: retracted path Π′ ← ∅

2: for all πi ∈ Π, 0 ≤ i < n do
3: π

′ ← RETRACTCONFIGURATION(πi)
4: πr ← the last configuration of path Π′

5: if d(πr , π
′) > step then

6: Π′ ← Π′ ∪W -RETRACTION(LP [πr, π
′])

7: Π′ ← Π′ ∪ π
′

8: return Π′

Algorithm 4.3 REMOVEBRANCHES(discrete path Π)

1: i ← 1
2: while i < |Π| − 1 do

3: if d(πi−1, πi+1) < step then

4: Π ← Π\πi

5: if i > 1 then i ← i− 1
6: else i ← i + 1
7: return Π

4.4. ROBOTS WITH MANY DOFS 87

(a) Original path (b) Retracted path (c) Removed branches

Figure 4.2 Retraction of a path traversed by a square robot in a 2D workspace. Picture
(a) shows the query path. In (b), this path has been retracted to the medial axis of the
workspace. In (c), its branches have been removed.

Algorithm 4.2 will only work correctly when the start configuration π0

and/or goal configuration πn−1 lie on the medial axis. If not, the retracted path
is concatenated with the local path LP[π0, π

′
0] and/or local path LP[π ′

n−1, πn−1].

The path will now follow the medial axis. As an example, we applied the
algorithm on a square translating in a 2D environment. We took this environ-
ment from Lavalle’s Motion Strategy Library [100]. See Figure 4.2. The first
picture shows the original path. The retracted path is visualized in the second
picture. As we can see, the moving object sometimes traverses the same po-
sition twice. This detour is caused by the injective mapping of configurations
and can be detected by looking for reversals in a sub-branch of the path. Al-
gorithm 4.3 removes those redundant branches in linear time in |Π|. For each
triple {πi−1, πi, πi+1}, we remove πi if the distance between πi−1 and πi+1 is
smaller than step. Figure 4.2(c) shows the resulting path following the medial
axis without traversing a sub-branch twice. This path was computed within
one second.

4.4 Robots with many degrees of freedom

The retraction method from the previous section provides an accurate retrac-
tion of paths for rigid, translating bodies to the medial axis. As the retraction
is performed by a series of translations of the robot, the method is not suitable
for increasing the clearance along a path traversed by an articulated robot or
a free-flying robot for which the rotational DOFs are important for a solution

88 CHAPTER 4. INCREASING PATH CLEARANCE

(a) Initial path (b) Retracted path (c) Optimal path

Figure 4.3 Retraction of a path in a 3D environment that only consists of a bounding
box. A part of the medial axis inside this box is shown. Figure (a) shows the initial
path. This path is retracted to the medial axis by Algorithm 4.2. Figure (c) shows a path
having a larger amount of average clearance. This path was obtained by Algorithm 4.4.

of the problem. In addition, the method will in general not produce a maxi-
mal clearance path because the retraction is completed when the samples are
placed somewhere on the medial axis. Many samples could have had a larger
clearance if they were further retracted toward configurations representing a
higher clearance. See Figure 4.3 for an example. The crooked path from Fig-
ure 4.3(a) was retracted to the medial axis by the algorithm from the previous
section. Figure 4.3(b) shows that the retracted samples sway on the medial axis
surfaces. In Figure 4.3(c), the path has obtained a larger amount of clearance.

4.4.1 Retraction algorithm

Our new retraction algorithm attempts to iteratively increase the clearance of
the configurations on the path by moving them in a direction for which the
clearance is higher. The problem we want to solve is as follows. Convert a
given path Π into a path Π′ such that for each π

′
i ∈ Π′ the clearance is locally

maximal wherever possible. A configuration represents a locally maximum
clearance when there is no direction in which the clearance is larger. Algo-
rithm 4.4 outlines our approach. Globally speaking, our solution consists of
several iterations. In each iteration, we choose a random direction dir which
incorporates all DOFs.2 Then, we try to move each configuration πi in the cho-
sen direction, i.e. π

′
i ← πi ⊕ dir. (The operator ⊕ will be defined below.) If the

clearance of π
′
i is larger than the clearance of πi, then πi is replaced by π

′
i. We

stop retracting the path when the average clearance of the path (see Definition
4.5) does not improve anymore.

2We use a random direction because alternative choices will require too many time-
consuming distance calculations (such as moving in the direction of the steepest descent).

4.4. ROBOTS WITH MANY DOFS 89

Figure 4.4 An impression of the retraction algorithm. The algorithm retracts the initial
path (traversed by a square robot) to the medial axis. For each configuration in the
discrete path, the guided random walk (small curve) is drawn.

By updating the configurations, the path is forced to stretch and shrink dur-
ing the retraction which causes the following two problems. First, the distance
between two adjacent configurations in the path can become larger than the
maximum step size. This happens for example when the path is pushed away
from the obstacles. If this occurs, we insert an appropriate configuration be-
tween them. Second, several configurations can be mapped to a small region
in which the distance between two non-adjacent configurations is smaller than
the step size. This occurs for example when pieces of the path are traversed
twice. As we have seen in the previous section, they can be removed easily.

An impression of a retraction is given in Figure 4.4. This figure shows an
initial and a discrete retracted path traversed by a square robot in a simple two-
dimensional workspace. The line segments between the paths are the guided
random walks of the configurations. We call these walks guided because a con-
figuration is updated only if its clearance increases. Note (by close inspection)
that extra configurations have been inserted at some places while configura-
tions have been removed at other places. After 40 iterations, the initial path
has been successfully retracted to the medial axis, resulting in a path with large
clearance. Although this example shows a retraction for a robot with only two
DOFs, the retraction can also be applied to robots with more DOFs such as an
articulated robot with six joints.

90 CHAPTER 4. INCREASING PATH CLEARANCE

Algorithm 4.4 C-RETRACTION(discrete path Π)

1: loop

2: Π′ ← Π

3: dir ← RANDOMDIRECTION(step)
4: for all π

′
i in Π′ do

5: πnew ← π
′
i ⊕ dir

6: if CLEARANCE(πnew) > CLEARANCE(π
′
i) then

7: π
′
i ← πnew

8: Π ← VALIDATEPATH(Π, Π′)
9: return Π

4.4.2 Algorithmic details

A discrete path consists of a series of configurations. We require that the dis-
tance between each pair of adjacent configurations is at most step. Distances
are computed by the distance metric from Section 1.2.3. That is, the distance
between configurations q and r is calculated by summing the weighted partial
distances for each DOF 0 ≤ i < n that describes the configurations; remember
that we distinguish three types of DOFs – translation, rotation1 and rotation3,
so

d(q, r) =

√

√

√

√

n−1

∑
i=0

[wid(qi, ri)]2.

The clearance of the configurations is improved by iteratively moving them in
a random direction. We will show how to compute such a direction and how
to add this direction to a configuration. After an iteration of the algorithm,
the distance between two adjacent configurations may have changed. We will
show how to insert and delete appropriate configurations to maintain a valid
path. Finally, we discuss how to choose an appropriate termination criterion
for the algorithm.

Random direction vector

Our goal is to create a random direction q′ such that the distance from config-
uration q to q⊕ q′ equals step. The direction q′ is composed of values for each

DOF qi such that
√

∑
n−1
i=0 p2

i = step, where pi = wid(qi, qi ⊕ q′i). This expression

shows how much each DOF i contributes to the total distance. Let rnd be a vec-
tor of random values between 0 and 1 such that ∑

n−1
i rndi = 1, and let rndi be

the random value for DOF i. Furthermore, let w = (w0, · · ·wn−1) be the weight

4.4. ROBOTS WITH MANY DOFS 91

vector. Theorem 4.1 shows that the translational and rotational1 components of

q′ must be set to q′i = ± rndi ∗ step√
rnd·w . The calculation of the rotational3 component

is more complicated. We represent this component as a random 3D unit axis
a = (ax, ay, az) and an angle of revolution θ about that axis. (Since a revolution
about a random axis of more than π radians is redundant, we constrain θ to
0 ≤ θ ≤ π.) This representation can easily be converted to a quaternion, i.e.
q′i = (ax sin(θ/2), ay sin(θ/2), az sin(θ/2), cos(θ/2)). Theorem 4.1 shows that θ

must be set to
rndi ∗ step√

rnd·w .

Lemma 4.1. If the distances d(qi, qi ⊕ q′i) are set to ± rndi ∗ step√
rnd·w , then d(q, q ⊕ q′) =

step.

Proof: The distance between q and q ⊕ q′ is defined as
√

∑
n−1
i=0 p2

i , where pi =

wid(qi, qi ⊕ q′i). When setting d(qi, qi ⊕ q′i) to ± rndi ∗ step√
rnd·w , we must prove that

√

∑
n−1
i=0 p2

i = step. By definition, we have

d(q, q ⊕ q′) =

√

√

√

√

n−1

∑
i=0

(

wid(qi, qi ⊕ q′i)
)2

.

By substitution, we get

d(q, q⊕ q′) =

√

√

√

√

n−1

∑
i=0

(

± rndi ∗wi ∗ step√
rnd ·w

)2
,

and hence,

d(q, q ⊕ q′) = step ∗

√

√

√

√

n−1

∑
i=0

(

± rndi ∗wi√
rnd ·w

)2
= step ∗

√

√

√

√

n−1

∑
i=0

(rndi ∗wi)2

rnd ·w .

Since rnd ·w = ∑
n−1
j=0 (rndj ∗ wj)

2, we get

d(q, q ⊕ q′) = step ∗

√

√

√

√

n−1

∑
i=0

(rndi ∗ wi)2

∑
n−1
j=0 (rndj ∗wj)2

,

and hence,
d(q, q ⊕ q′) = step.

92 CHAPTER 4. INCREASING PATH CLEARANCE

Lemma 4.2. Let q and q′ be two rotational1 values. If the range of angle q′ is set to
−π ≤ q′ ≤ π, then d(q, q ⊕ q′) = |q′|.
Proof: The distance between two rotational1 values q and r is defined as

d(q, r) = min{|q− r|, q− r + 2π, r − q + 2π}.
Let r = q⊕ q′. Then,

d(q, q⊕ q′) = min{|q− (q + q′)|, q− (q + q′) + 2π, (q + q′)− q + 2π}.
By substitution, we get

d(q, q ⊕ q′) = min{|q′ |, 2π − q′, q′ + 2π}.
Because −π ≤ q′ ≤ π, it holds that 2π − q′ ≥ π and q′ + 2π ≥ π. Since q′ ≤ π,
the minimum is determined by |q′|. Hence,

d(q, q ⊕ q′) = |q′|.

Lemma 4.3. Let q and q′ be two quaternions. The quaternion q′ represents a random
(unit) axis and an angle of revolution θ about that axis. If the range of θ is set to
0 ≤ θ ≤ π, then the distance d(q, q′ ∗ q) = θ.

Proof: The distance between two quaternions q and r is defined as d(q, r) =
min{2 arccos(q · r), 2π − 2 arccos(q · r)}. Since θ is positive, the dot product q · r
is also positive and lies between 0 and 1. As a consequence, the arccos of the
dot product will lie between 0 and π. Hence, the distance between q and r
equals to d(q, r) = 2 arccos(q · r).

Let q = q′ ∗ r. The quaternion q′ represents a rotation by θ around a unit axis
a = (ax, ay, az), i.e. q′ = (ax sin(θ/2), ay sin(θ/2), az sin(θ/2), cos(θ/2)). Hence,
we get

d(q, q′ ∗ q) = 2 arccos((q′ ∗ r) · r).
After substitution, this can be shown to be equivalent to

d(q, q′ ∗ q) = 2 arccos(((r · r) cos(
θ

2
)).

The length of a quaternion that represents a rotation is always equal to 1.
Hence, r · r = 1. By using 0 ≤ θ ≤ π and substitution, we get

d(q, q′ ∗ q) = θ.

4.4. ROBOTS WITH MANY DOFS 93

Theorem 4.1. By setting the translational and rotational1 components of q′ to q′i =

± rndi ∗ step√
rnd·w and the rotational3 components of q′ to q′i = (ax sin(θ/2), ay sin(θ/2),

az sin(θ/2), cos(θ/2)), where a = (ax, ay, az) is a random unit axis and angle θ =
rndi ∗ step√

rnd·w , it holds that d(q, q ⊕ q′) = step.

Proof: The distance between two translational values q i and qi ⊕ q′i equals

d(qi, qi ⊕ q′i) = d(qi, qi + q′i) = |qi − (qi + q′i)| = |q′i|.

Furthermore, Lemma 4.2 showed that the distance between two rotational1 val-
ues qi and qi ⊕ q′i equals

d(qi, qi ⊕ q′i) = |q′i|.

As we set q′i to

q′i = ± rndi ∗ step√
rnd · w

,

Lemma 4.1 implies that

d(q, q ⊕ q′) = step.

Finally, Lemma 4.3 showed that the distance between two quaternions q i and
qi ⊕ q′i equals

d(qi, qi ⊕ q′i) = d(qi, q′i ∗ qi) = θ,

where q′i = (ax sin(θ/2), ay sin(θ/2), az sin(θ/2), cos(θ/2)) and a = (ax, ay, az)
is a random unit axis. By setting θ to

θ =
rndi ∗ step√

rnd ·w
,

Lemma 4.1 implies that

d(q, q ⊕ q′) = step.

Besides choosing a random vector, we need to add a direction q ′ to config-
uration q. For translational and rotational1 DOFs, we add up the values. If the
rotational1 DOF is periodic, we have to make sure that the value remains in the
range between 0 and 2π. For the rotational3 DOF, q′i is multiplied by qi.

94 CHAPTER 4. INCREASING PATH CLEARANCE

Algorithm 4.5 VALIDATEPATH(discrete path Π, discrete path Π ′)

1: i ← 0
2: valid path Π′′ ← ∅

3: while i < |Π| − 1 do

4: Π′′ ← Π′′ ∪ π
′
i

5: if d(π
′
i , π

′
i+1) > step then

6: π
′
int ← INTERPOLATE(π

′
i, π

′
i+1, 0.5)

7: if CLEARANCE(π
′
int) > CLEARANCE(πi+1) then

8: Π′′ ← Π′′ ∪ π
′
int

9: else

10: Π′′ ← Π′′ ∪ πi+1

11: i ← i + 1
12: Π′′ ← Π′′ ∪ π

′
i

13: Π′′ ← REMOVEBRANCHES(Π′′)
14: return Π′′

Path validation

As a path is forced to stretch and shrink during the retraction, the path may not
be valid anymore after an iteration of Algorithm 4.4. A discrete path Π is valid
if ∀i : d(πi, πi+1) ≤ step. In this section we will show how to construct a new
valid path. Algorithm 4.5 outlines our approach.

Let Π be the original path and Π′ be the updated path. Furthermore, let
πi be the ith configuration on path Π and π

′
i be the corresponding (possibly

updated) configuration on path Π′. We construct a new path Π′′ which will
initially contain all configurations from Π ′ and possibly new configurations to
assure that Π′′ is valid.

In each iteration of the loop, we concatenate configuration π
′
i to the valid

path Π′′. Then we check whether the distance between two adjacent config-
urations on the updated path Π′ is larger than the step size, i.e. we check if
d(π

′
i , π

′
i+1) > step. If this condition is true, we have to add an extra configu-

ration to path Π′′ to assure that Π′′ keeps valid. We consider two candidate
configurations and choose the one that has the largest clearance. The first one
is the original configuration πi+1 and the second one is created by interpolating
halfway between configurations π

′
i and π

′
i+1. The reader is referred to Section

1.2.4 for details on interpolation.

After the iterations, we add the last configuration of path Π ′ to the valid
path Π′′. Finally, to remove superfluous configurations, we apply Algorithm
4.3 on path Π′′. Recall that this algorithm removes a configuration π

′′
i from

4.4. ROBOTS WITH MANY DOFS 95

path Π′′ for which it holds that d(π
′′
i−1, π

′′
i+1) ≤ step.

Theorem 4.2. Algorithm 4.5 assures that discrete path Π ′′ is valid.

Proof: The input of the algorithm is a valid path Π and a possibly invalid
path Π′. We have to prove that the algorithm creates a path Π ′′ such that ∀i :
d(π

′′
i , π

′′
i+1) ≤ step.

Lines 4 and 12 imply that path Π′′ will contain each configuration of the
updated path Π′. The maximum distance between two adjacent configurations
π
′
i and π

′
i+1 of path Π′ is 2 ∗ step which occurs when one of them is updated

while the other one is left unchanged. (Note that when both configurations
are updated, their relative distance remains the same, and hence, they do not
cause the path to be invalid.) We insert one of the following two configurations
to path Π′′. The first candidate, π

′
int, is the configuration in the middle of the

straight-line in Cfree between π
′
i and π

′
i+1. As the distance between π

′
i and π

′
i+1

is halved, d(π
′
i , π

′
int) ≤ step and d(π

′
int, π

′
i+1) ≤ step. The second candidate is

configuration πi+1. It holds that d(π
′
i , πi+1) ≤ step and d(πi+1, π

′
i+1) ≤ step. As

path Π′′ contains the sequence π
′
i, the candidate configuration, and π

′
i+1, path

Π′′ will remain valid. Finally, as Algorithm REMOVEBRANCHES only removes
a configuration π

′′
i when d(π

′′
i−1, π

′′
i+1) < step, it will not invalidate the path.

Hence, Algorithm 4.5 constructs a valid path Π ′′.

Termination criterion

An important issue is when to terminate the algorithm. In each iteration of the
algorithm, we only update a configuration if its clearance increases. Such an
update can lead to insertions and deletions of configurations. If a configuration
π is inserted, then the clearance of π will be equal to or higher than the clear-
ance of the configuration before it was updated. If a configuration π

′ is deleted,
it will not play a role anymore. However, π

′ could have a high clearance while
a possibly inserted configuration could have a low clearance. Hence, while
each configuration can obtain a higher clearance, the average clearance can ac-
tually decrease. As this worst-case scenario may occur incidentally, we have to
take this into account in our termination criterion.

We terminate the algorithm when the improvement of the average clear-
ance in k consecutive iterations is smaller than some small threshold δ. We
conducted experiments to find appropriate values for these parameters. We
observed that setting k to 25 and δ to step/10 led to mature convergence.

96 CHAPTER 4. INCREASING PATH CLEARANCE

4.5 Experiments

In this section, we will investigate the extent to which the W-retraction and
C-retraction algorithms can improve the clearance along six paths.

4.5.1 Experimental setup

We considered the environments and their corresponding paths depicted in
Figure 4.5. They have the following properties (see Table 4.1 for their dimen-
sions):

Planar This simple two-dimensional environment contains a path traversed by
a square robot that can only translate in the plane. As the robot has two
translational DOFs, a retraction in the workspace will result in a path hav-
ing the optimal amount of clearance. The experiments will show whether
a retraction in the C-space is competitive.

Simple corridor This simple three-dimensional environment with ample free
space to maneuver features a path traversed by a small free-flying cylin-
der. Both algorithms will introduce an extra amount of clearance as they
both move the robot to the middle of the corridors. However, the C-
retraction algorithm should outperform theW-retraction algorithm as it
also considers rotational DOFs.

Corridor The environment consists of a winding corridor that forces a free-
flying elbow-shaped robot to rotate. As there is little room between the
walls of the corridor and the robot, it may be hard to increase the clear-
ance along the path.

Wrench This environment features a fairly large free-flying object (wrench)
in a workspace that consists of thirteen crossing beams. The wrench is
rather constrained at the start and goal positions. We expect that theW-
retraction algorithm will be outperformed by the C-retraction algorithm
as the rotational DOFs are of major concern in this environment.

Hole The free-flying robot, which has six DOFs (three translational DOFs and
a rotation3 DOF), consists of four legs and must rotate in a complicated
way to get through the hole. Only where the robot passes through the
hole, the clearance is small. Hence, the improvement of the minimum
amount of clearance along the path shows the potential of the C-retraction
algorithm.

4.5. EXPERIMENTS 97

(a) Planar (b) Simple corridor (c) Corridor

(d) Wrench (e) Hole (f) Manipulator

Figure 4.5 The six test environments and their corresponding initial paths. For the
Wrench and Hole environments, the robot has been depicted at the lower right.

Manipulator The articulated robot has six rotational DOFs and operates in a
constrained environment. The clearance along the path is very small. The
W-retraction algorithm cannot be applied as it cannot handle rotational
DOFs. Again, an increase in the minimum and average amounts of clear-
ance along the path will show the potential of the C-retraction algorithm.

We subdivided each path in consecutive configurations such that the dis-
tance between each two adjacent configurations is at most some predetermined
distance step. The step sizes for the paths can be found in Table 4.2. The dis-
tance metric from Section 1.2.3 uses weights w i for the DOFs of a robot. These
are listed in Table 4.3.

In each run, we recorded the minimum, maximum and average clearance of
the path. As the C-retraction algorithm is non-deterministic, we ran this algo-
rithm 100 times for each experiment and calculated the averages. Each run was
terminated when the improvement of the average clearance in 25 consecutive
iterations was smaller than some small threshold, step/10.

98 CHAPTER 4. INCREASING PATH CLEARANCE

Dimensions of the bounding box

environment robot

Planar 100× 100 1 × 1
Simple corridor 40 × 11 × 30 0.2 × 0.2 × 0.75
Corridor 40 × 17 × 40 5 × 1 × 5
Wrench 160 × 160× 160 68 × 24 × 8
Hole 40 × 40 × 40 5 × 5 × 10
Manipulator 10 × 10 × 10 variable

Table 4.1 The axis-aligned bounding boxes of the environments and robots.

step size

Planar 1.0
Simple corridor 0.4
Corridor 0.7
Wrench 3.0
Hole 1.0
Manipulator 0.1

Table 4.2 The step sizes for the robots.

Type of DOF of the robot

translational rotational1 rotational3

Planar 1, 1
Simple corridor 1, 1, 1 3
Corridor 1, 1, 1 7
Wrench 6, 6, 6 30
Hole 1, 1, 1 11
Manipulator 6, 6, 6, 2, 2, 2

Table 4.3 The weights for each DOF of the robots.

4.5. EXPERIMENTS 99

4.5.2 Experimental results

The results are listed in Table 4.4 and visualized in Figure 4.6.

Planar A retraction in the workspace results in a path having the optimal
amount of clearance. The statistics show that the C-retraction technique
reached these optimal values. However, for robots having two transla-
tional DOFs, we recommend theW-retraction technique as this technique
is considerably faster.

Simple corridor As expected, a large increase in clearance was introduced by
the retraction algorithms. At the expense of five extra seconds of com-
puting time, the C-retraction technique doubled the minimum amount of
clearance and increased the average clearance with 39% with respect to
theW-retraction technique.

Corridor Although there is little room between the walls of the corridor and
the robot, the techniques were still able to increase the clearance along the
path. Again, the C-retraction technique outperformed the W-retraction
technique but this took much more computation time.

Wrench Both algorithms needed relatively much time as the environment was
larger compared to the other ones. Both algorithms were successful in in-
creasing the clearance. The C-retraction technique performed slightly bet-
ter with respect to increasing the average and maximum clearance. How-
ever, theW-retraction technique was 6% better with respect to the mini-
mum clearance. This was due to the early termination of the C-retraction,
as showed by decreasing the termination threshold.

Hole The W-retraction technique doubled the amount of minimum and av-
erage clearance along the path. The C-retraction technique outperformed
theW-retraction technique because all DOFs were taken into account. The
minimum amount of clearance along the path was further improved with
33%.

Manipulator The minimum clearance along the initial path was nearly zero.
The C-retraction technique successfully introduced some clearance along
the path. Although there is little room for the manipulator to move, the
algorithm doubled the average clearance along the path. This extra clear-
ance may be crucial in high-cost environments to guarantee safety. For
clarity, we only visualized a part of the sweep volume of the manipulator
in Figure 4.6.

100 CHAPTER 4. INCREASING PATH CLEARANCE

Planar Clearance Time

min avg max s

Initial path 0.00 2.47 7.15 -
W-retraction 1.79 4.49 8.32 0.8
C-retraction 1.79 4.49 8.32 9.4

Simple corridor Clearance Time

min avg max s

Initial path 0.16 1.91 3.83 -
W-retraction 0.62 2.62 3.96 0.7
C-retraction 1.21 3.64 4.25 6.0

Corridor Clearance Time

min avg max s

Initial path 0.01 0.59 2.44 -
W-retraction 0.22 1.15 3.22 1.0
C-retraction 0.27 1.87 4.57 27.6

Wrench Clearance Time

min avg max s

Initial path 0.00 4.17 11.32 -
W-retraction 2.11 7.12 12.38 12.4
C-retraction 1.99 7.83 15.03 373.8

Hole Clearance Time

min avg max s

Initial path 0.28 1.81 5.97 -
W-retraction 0.79 3.08 6.85 0.6
C-retraction 1.05 3.44 7.24 12.7

Manipulator Clearance Time

min avg max s

Initial path 0.00 0.14 0.35 -
W-retraction n.a. n.a. n.a. n.a.
C-retraction 0.05 0.29 0.43 26.8

Table 4.4 Clearance statistics for the six environments. A larger clearance indicates a
better result. The C-retraction statistics are the averages over 100 independent runs.

4.5. EXPERIMENTS 101

(a) Initial paths

not available

(b) W-retraction (c) C-retraction

Figure 4.6 A close-up of the paths in the six environments. The pictures in the left
column show parts of the initial paths. The paths in the middle column are the result
of the W-retraction technique while the paths in the right have been created by one
particular run of the C-retraction technique.

102 CHAPTER 4. INCREASING PATH CLEARANCE

4.6 Discussion

We presented two new simple algorithms that increase the clearance along
paths. They improve on existing algorithms since higher amounts of clear-
ance for a larger diversity of robots are obtained. Moreover, they do not need
complex data structures and (manual) preprocessing.

The first algorithm, W-retraction, is fast but it can only deal with rigid,
translating bodies. The second algorithm, C-retraction, is slower but it outper-
forms the workspace-based algorithm as higher amounts of clearance along the
paths are obtained. Furthermore, it can handle a broader range of robots which
may reside in arbitrary high-dimensional configuration spaces.

The running times indicate that improving the clearance along paths may
be too slow to be applied online. However, in applications where safety is
important, the running times are not that crucial. For example, due to the dif-
ficulty of measuring and controlling the precise position of a manipulator arm,
the arm can be damaged if it moves near obstacles. Improving the clearance at
the cost of a few minutes of calculation time can prevent damage to the robot
and its environment.

We expect that the running times of the C-retraction algorithm can be dra-
matically decreased by incorporating learning techniques. This is a topic of
future research. However, when on-line performance is needed, a complete
roadmap should preferably be retracted to the medial axis in the preprocessing
phase. We will show in Section 7.3 that a path can indeed be extracted from
such a pre-processed roadmap in real-time.

CHAPTER

FIVE

DECREASING PATH LENGTH

Paths which are created by e.g. sampling-based motion planning methods usu-
ally contain many redundant motions. However, most applications require
short paths because they take less time to execute. A popular algorithm for de-
creasing the path length is the Shortcut method. This method iteratively takes
two random configurations on the path and creates a shortcut between them
if this shortcut does not cause the robot to collide with the obstacles. Unfor-
tunately, this heuristic will not remove all redundant motions. This is mainly
caused by simultaneously interpolating all degrees of freedom of the configu-
rations when creating a shortcut. We propose a new algorithm, Partial shortcut,
which successfully deals with these difficulties by interpolating one degree of
freedom at a time.

103

104 CHAPTER 5. DECREASING PATH LENGTH

5.1 Introduction

Due to their probabilistic nature, sampling-based planners create low-quality
paths. These paths often contain many unnecessary and jerky motions. How-
ever, many applications require a short path since redundant motions will take
longer to execute. In this chapter, we will study several techniques for reducing
the path length.

A simple technique that decreases the path length is called Path pruning.
This technique assumes that a path is represented by a list of nodes ν0, · · · , νn−1

∈ V which may originate from a graph. When a robot must move along this
path, it should first be converted to a discrete path Π using a local planner (see
Definition 4.3). The path pruning technique removes a node νi+1 from a path Π

if the local path LP[νi, νi+2] between nodes νi and νi+2 is collision-free. Details
will be given in Section 5.2.

In Section 5.3, we investigate the Shortcut heuristic, which is the most often
applied method because of its effectiveness and simple implementation. The
Shortcut heuristic takes two random configurations on the path. If the part
between these two configurations can be replaced by a new shorter path, pro-
duced by a local planner, then the original part is replaced by the new path.
This technique outperforms the Path pruning heuristic as not only nodes are
considered on the path, but also all intermediary configurations. The config-
urations can be chosen randomly [31, 50, 84, 131, 140, 151], or deterministically
[5, 72, 75]. Also several variants of this heuristic have been used [5, 72, 75, 84].

We will show in Section 5.4 that the previous two heuristics will not remove
all redundant motions. This is because interpolations are performed between
all degrees of freedom (DOFs) simultaneously. We propose the Partial shortcut
heuristic which takes only one DOF into account in each optimization step.

The experiments in Section 5.5 will show that this efficient method creates
shorter paths than the other methods.

5.2 Path pruning

In this section, we assume that a path is represented by a list of nodes, see
Definition 5.1. As these nodes are often generated randomly, the path will be
jerky. A very simple technique that decreases the path length considerably is
to remove all redundant nodes. A node νi+1 on node path N is redundant if
the configurations on the local path LP[νi, νi+2] are collision-free. Besides being
simple, the technique is efficient and deterministic. See Algorithm 5.1 for more
details.

5.3. SHORTCUTS 105

Definition 5.1 (Node path N). A node path N is a series of nodes ν0, · · · , νn−1 such
that the local paths LP[νi, νi+1] are collision-free.

Algorithm 5.1 REMOVEREDUNDANTNODES(node path N)

1: i ← 0
2: while i < |N| − 2 do
3: if LP[νi, νi+2] ∈ Cfree then

4: N ← N\νi+1

5: if i > 0 then i ← i− 1
6: else

7: i ← i + 1
8: return N

5.3 Shortcuts

While the previous method only considers the nodes of a path, the shortcut
method considers all configurations on a discrete path Π (see Definition 4.3).
Therefore, this method is expected to create shorter paths at the cost of in-
creased computation time. The method tries to iteratively improve the path
(see Algorithm 5.2). In each iteration, path Π is randomly split in three parts.
Let πa and πb denote the begin and end configurations of the middle part. If
the local path LP(πa, πb) is collision-free, then this local path replaces the mid-
dle part. As we use a straight-line local planner1, all DOFs are interpolated
simultaneously. See Section 1.2.4 for details on interpolation.

5.4 Partial shortcuts

Redundant motions (like unnecessary rotations) will not be removed by the
previous two heuristics as they can only be removed by considering large por-
tions of the path. But if we consider such a large portion, some other degrees of
freedom (DOFs) are necessary to navigate around obstacles. Hence, applying
the local planner to such a long portion is not going to succeed (see Figure 5.1).

The standard optimization technique (Shortcut) replaces pieces of the path
by a straight-line segment in the configuration space. In this way, all DOFs

1When another local planner is used (e.g. a local planner for non-holonomic robots), care has
to be taken that path Π

′ and Π
′′ keep satisfying the constraints of the local planner.

106 CHAPTER 5. DECREASING PATH LENGTH

(a) Query path (b) Shortcut (c) Partial shortcut

Figure 5.1 Translation is required to navigate around the obstacle and rotation can
only be optimized by considering large portions of the path.

Algorithm 5.2 SHORTCUT(discrete path Π)

1: loop

2: number of configurations n ← |Π|
3: a, b ← two random indices 0 ≤ a + 1 < b < n
4: Π′ ← π0, · · · , πa−1

5: Π′′ ← πa, · · · , πb

6: Π′′′ ← πb+1, · · · , πn−1

7: if LP(πa, πb) ∈ Cfree then

8: Π ← Π′ ∪ LP(πa, πb) ∪Π′′′

are interpolated simultaneously. Some of them might be necessary to move
around the obstacles while others are not. The translational DOFs in particular
are often necessary to guide the object around an obstacle while the rotational
DOFs might be less relevant. Consequently, applying the local planner on such
a part of the path will fail. Applying the local planner to optimize shorter pieces
of the path will not remove the redundant rotations either because the two
positions on the path will often have rather different orientations. Therefore,
the rotation is required locally, while more globally, it might be redundant (see
Figure 5.1).

We created a new technique, called Partial Shortcut, which takes only one
DOF f into account in each optimization step. Algorithm 5.3 outlines the tech-
nique. In line 2, the chance that a particular DOF is chosen is dependent on its
weight, i.e. P(DOF i) = wi/ ∑

n−1
i=0 wi. In this expression, we consider rotation in

3D as one DOF. Then, we split path Π in the same way as we did in the Shortcut

5.5. EXPERIMENTS 107

algorithm.2 Now let π
′′
i [f] indicate the value for the f th

DOF of configuration
π
′′
i of path Π′′. We replace in each configuration π

′′
i the value of the f th

DOF

by the value interpolated between π
′′
0 [f] and π

′′
m−1[f], where m is the number

of configurations on path Π′′. After creating partial shortcuts, it can occur that
the distance between two adjacent configurations on path Π ′′ is larger then the
step size. In such a case, we validate Π′′ by inserting extra configurations such
that ∀i : d(πi, πi+1) ≤ step. If path Π′′ is collision-free, then Π′′ replaces the
original middle part. In this path all DOFs behave in the same way as in the
original path except for DOF f .

We expect that this method will be slower than the Shortcut heuristic as
only one DOF is taken into account in each iteration. However, we expect that
more redundant motions can be removed.

Algorithm 5.3 PARTIALSHORTCUT(discrete path Π)

1: loop

2: f ← a random degree of freedom
3: number of configurations n ← |Π|
4: a, b ← two random indices: 0 ≤ a + 1 < b < n
5: Π′ ← π0, · · · , πa−1

6: Π′′ ← πa, · · · , πb

7: Π′′′ ← πb+1, · · · , πn−1

8: m ← |Π′′|
9: for all π

′′
i ∈ Π′′ do

10: π
′′
i [f] ← INTERPOLATE(π

′′
0 [f], π

′′
m−1[f], i/(m − 1))

11: VALIDATEPATH(Π′′)
12: if Π′′ ∈ Cfree then

13: Π ← Π′ ∪Π′′ ∪Π′′′

5.5 Experiments

In this section, we will apply the three techniques from the previous sections
to six different paths. These paths have been selected such that an optimiza-
tion step cannot easily change the homotopic class of a path. Our goal is to
investigate the extent to which these techniques can improve the paths.

2We assume that there are no constraints which the configurations on the path have to satisfy.

108 CHAPTER 5. DECREASING PATH LENGTH

5.5.1 Experimental setup

To test the quality of the three techniques, we considered the environments
depicted in Figure 5.2. These are the same test environments as used in Chapter
4. Their properties are stated in Table 4.1 and Table 4.2. Since they have already
been introduced in Section 4.5, we only discuss the properties of the paths:

Planar We use this simple problem involving two DOFs to check whether the
techniques can reach the optimal solution.

Simple corridor The environment contains a jerky path traversed by a small
free-flying cylinder. Many motions are redundant. We expect that they
can be removed easily by all techniques.

Corridor Traversing corridors requires rotation of the elbow shaped object.
The path has little clearance. Redundant rotations can only be removed
by considering large portions of the path. Hence, we expect that the Par-
tial shortcut technique outperforms the other techniques.

Wrench This environment features a large moving object in a small workspace.
The moving object is rather constrained at the start and goal. In contrast
to the previous three environments, rotational DOFs are now more im-
portant than translational ones. Again, we expect that the Partial short-
cut technique outperforms the other techniques as this technique handles
each DOF independently.

Hole The path contains many redundant (rotational) motions. Only where the
path passes through the hole, the clearance is small, which may cause
difficulties in removing the redundant rotational part of the motions for
the Path pruning and Shortcut methods.

Manipulator In this environment, there is a major difference in importance of
the six rotational DOFs. That is, the link that is closest to the base is more
important than the gripper of the manipulator. As only the Partial short-
cut technique recognizes this difference, we again expect this technique
to outperform the other ones.

We need a distance measure to discuss path length. As we want to distin-
guish between rotational and translational DOFs, we compute the length of a
discrete path Π as follows:

d(Π) = dr(Π) + dt(Π),

5.5. EXPERIMENTS 109

where

dr(Π) =
n−2

∑
i=0

dr(πi, πi+1) and dt(Π) =
n−2

∑
i=0

dt(πi, πi+1).

Let q = πi and r = πi+1. Then, for all k rotational DOFs 0 ≤ j < k and for all
(l − k) translational DOFs k ≤ j < l:

dr(q, r) =

√

√

√

√

k−1

∑
j=0

[wjd(qj , rj)]2 and dt(q, r) =

√

√

√

√

l−1

∑
j=k

[wjd(qj, rj)]2.

The partial distances d(q j, rj) are calculated in the same way as in Section 1.2.3.
The weights wj that are used for the different environments are listed in Table
4.3.

We express path length as a percentage relatively to the ‘optimal’ path
length to facilitate the comparison between different optimization techniques.
Let d be the path length and dopt be the optimal path length. Then we calculate
the percentage ∆d as

∆d = 100% ∗ d− dopt

dopt
.

The closer this number approaches zero, the closer to optimal the path is. The
optimal path lengths were defined as the paths of minimum length over all
experiments conducted and are stated in Table 5.1 and depicted in Figure 5.3.
Even though we cannot guarantee that these are indeed optimal, visual inspec-
tion strongly suggests that they are very close to optimal. Table 5.2 shows the
initial relative lengths. The paths are far from being optimal. For example, the
path in the Simple corridor environment is 408% longer than the shortest path
encountered in all experiments with this environment.

We will investigate the extent to which the three heuristics can improve the
six paths from Figure 5.2. We will run the Path pruning heuristic once for each
experiment as this technique is deterministic. We will use these paths as in-
put for the Shortcut and Partial shortcuts heuristics. As these techniques are
non-deterministic, we run them 100 times for each experiment and report the
average results. To ensure the exploitation of the full potential of the heuris-
tics, we run each non-deterministic experiment for 120 seconds as preliminary
experiments showed that all paths converges within this time.

In the second batch of experiments we determine how long the Shortcut
and Partial shortcut heuristics should be applied to obtain reasonably short
paths. This is useful for practical purposes.

110 CHAPTER 5. DECREASING PATH LENGTH

Shortest path length

dropt dtopt dopt

Planar - 300.12 300.12
Simple corridor 0.12 100.84 100.96
Corridor 19.31 162.59 181.90
Wrench 827.63 138.99 966.62
Hole 6.87 36.76 43.63
Manipulator 10.73 - 10.73

Table 5.1 The shortest absolute lengths of the paths.

Relative path length

∆dr ∆dt ∆d

Planar - 40 40
Simple corridor 213,917 154 408
Corridor 1,296 132 256
Wrench 113 112 113
Hole 628 61 150
Manipulator 55 - 55

Table 5.2 The relative length statistics of the initial paths. The numbers are expressed
as percentages relatively to the optimal path lengths.

5.5. EXPERIMENTS 111

(a) Planar (b) Simple corridor (c) Corridor

(d) Wrench (e) Hole (f) Manipulator

Figure 5.2 The six test environments and their corresponding initial paths.

5.5.2 Experimental results

The results of the experiments are stated in Table 5.3. This table shows the
relative path length (rotational, translational and total length) for the initial
paths and the three heuristics.

The table shows that the Path pruning heuristic improved the paths con-
siderably in all cases. Note that the rotational distance (∆dr) is still far from
optimal, although the translational distance (∆dt) has been decreased consid-
erably. The running times of this deterministic heuristic were between 5 and
54 ms. The Shortcut heuristic was able to decrease the path length even more,
i.e. the paths obtained a length that was 3 to 28 percent larger than the optimal
paths. However, the paths still contained many redundant rotational motions.
The Partial shortcut heuristic was much better able to remove the redundant
(rotational) motions than the previous heuristics. In addition, the translational
lengths of the paths became close to optimal.

112 CHAPTER 5. DECREASING PATH LENGTH

(a) Planar (b) Simple corridor (c) Corridor

(d) Wrench (e) Hole (f) Manipulator

Figure 5.3 The six test environments and their corresponding optimal paths.

We will now examine the results more closely for each environment.

Planar Both the Shortcut and Partial shortcut techniques reached the optimal
solution. The latter one produced paths that were on average only 1%
larger than the optimal path.

Simple corridor The initial path contained many redundant (rotational) mo-
tions which could not be removed completely by the Path pruning and
Shortcut heuristics. However, the Partial shortcut technique was able to
produce paths that are very close to the optimal path as only one DOF

is optimized during an iteration of the algorithm. Note that the relative
rotational path length seems to be very large while the total relative path
length was only 1. This is because the optimal (absolute) rotational dis-
tance was very close to zero (0.12).

Corridor Also in this environment, the Partial shortcut heuristic outperformed
the other techniques. A large part of the redundant rotational motions

5.5. EXPERIMENTS 113

was removed as large portions of the path could be replaced by less re-
dundant motions.

Wrench The optimal path corresponds to a smooth motion traversed by the
wrench. Again, the Partial shortcut heuristic was able to produce such a
path as the resulting paths were only 3% worse than the optimal path.

Hole All techniques removed the redundant translational motions, i.e. the
translational relative path lengths for the Shortcut and Partial shortcut
heuristics were only 0.49% and 0.33%. However, it was difficult to re-
move the rotational motions as the moving object was rather constrained
near the hole. However, the Partial shortcut heuristic obtained a path that
was on average 5% longer than the optimal path.

Manipulator The Shortcut and Partial shortcut methods created short paths
which are comparable to the optimal path depicted in Figure 5.3(f). How-
ever, the latter one outperformed the Shortcut method and produced
paths that were on average only 3% larger than the optimal path.

In our experiments, we ran the heuristics for 120 seconds as we wanted to
see their full potential. In all cases, the Partial shortcut heuristic outperformed
the Shortcut heuristic. Hence, when optimal path quality is desired (in terms
of path length), the Partial shortcut algorithm should be used.

However, the running times may be too high for on-line use. An impor-
tant question is how well the heuristics perform when there is less computa-
tion time available. Figure 5.4 shows for each environment the relationship
between the running time and the relative path length of both the Shortcut and
Partial shortcut heuristics. Each marker in the graphs represents the averaged
relative path length over 100 independent runs. In all but one environment
(Manipulator), the Partial shortcut heuristic always outperforms the Shortcut
heuristic. Therefore, the Partial shortcut heuristic should be preferred. Fur-
thermore, it can be observed that the relative path length decreases rapidly as
the available computation time increases. When the path is relatively simple
(such as in the Planar, Simple corridor, Wrench and Hole environment), only
one second of computation time is required to obtain a path that is about 5%
longer than the optimal path. For more complex paths (such as in the Corridor
and Manipulator environment), the paths obtained after one second are about
25% longer than the optimal path.

We conclude that reasonably short paths can be obtained for all tested en-
vironments when the (Partial shortcut) algorithm is run for one second.

114 CHAPTER 5. DECREASING PATH LENGTH

Planar Relative path length

∆dr ∆dt ∆d

Initial - 40 40
Path pruning - 15 15
Shortcut - 3 3
Partial shortcut - 1 1

Simple corridor Relative path length

∆dr ∆dt ∆d

Initial 213,917 154 408
Path pruning 15,817 10 28
Shortcut 11,633 3 17
Partial shortcut 383 1 1

Corridor Relative path length

∆dr ∆dt ∆d

Initial 1,296 132 256
Path pruning 326 34 65
Shortcut 133 8 21
Partial shortcut 35 4 7

Wrench Relative path length

∆dr ∆dt ∆d

Initial 113 112 113
Path pruning 71 71 71
Shortcut 28 28 28
Partial shortcut 3 3 3

Hole Relative path length

∆dr ∆dt ∆d

Initial 628 61 150
Path pruning 462 17 87
Shortcut 155 0 25
Partial shortcut 27 0 5

Manipulator Relative path length

∆dr ∆dt ∆d

Initial 55 - 55
Path pruning 45 - 45
Shortcut 8 - 8
Partial shortcut 3 - 3

Table 5.3 The relative length statistics of the resulting paths. The numbers are ex-
pressed as percentages relatively to the optimal path lengths. The closer a number
approaches zero, the closer to optimal it is.

5.5. EXPERIMENTS 115

 0

 5

 10

 15

 20

 0 5 10 15 20

Planar

running time (s)

re
la

ti
v

e
p

at
h

le
n

g
th

(%
)

Shortcut
Partial shortcut

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

Simple corridor

running time (s)
re

la
ti

v
e

p
at

h
le

n
g

th
(%

)

Shortcut
Partial shortcut

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

Corridor

running time (s)

re
la

ti
v

e
p

at
h

le
n

g
th

(%
)

Shortcut
Partial shortcut

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

Wrench

running time (s)

re
la

ti
v

e
p

at
h

le
n

g
th

(%
)

Shortcut
Partial shortcut

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20

Hole

running time (s)

re
la

ti
v

e
p

at
h

le
n

g
th

(%
)

Shortcut
Partial shortcut

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Manipulator

running time (s)

re
la

ti
v

e
p

at
h

le
n

g
th

(%
)

Shortcut
Partial shortcut

Figure 5.4 Convergence of the Shortcut and Partial shortcut heuristics in the six envi-
ronments.

116 CHAPTER 5. DECREASING PATH LENGTH

5.6 Discussion

We compared three simple heuristics to decrease the path length. We showed
that the Path pruning heuristic is a fast and effective technique that can be
used to decrease the path length. The length can be further decreased by the
Shortcut heuristic which is often used as this technique is easy to implement.
However, this technique can have difficulties removing all redundant (rota-
tional) motions as all DOFs are interpolated simultaneously. We presented a
new technique, Partial shortcut, which takes only one DOF into account in each
optimization step. Experiments showed that these redundant motions are now
successfully removed. Another advantage of this technique is that the Par-
tial shortcut technique creates shorter paths than the Shortcut technique. Rea-
sonably short paths are obtained within one second of computation time on a
modern personal computer.

In this chapter, we focused on paths traversed by holonomic robots. An in-
teresting topic for future research is to extend the Shortcut and Partial Shortcut
method such that non-holonomic constraints are satisfied.

CHAPTER

SIX

CREATING SMALL ROADMAPS

Many algorithms have been proposed that create a roadmap from which a path
for a moving object can be extracted. These algorithms generally do not give
guarantees on the quality of the roadmap.

In this chapter, we propose the Reachability Roadmap Method, which is a new
efficient algorithm that creates small roadmaps for two- and three-dimensional
problems. A small roadmap assures low query times and low memory con-
sumption. A path that is extracted from such a roadmap will have reasonably
long edges which is useful when optimizing paths. The method is resolution
complete in the sense that a valid query (which consists of a start and goal
configuration) can always be connected to the roadmap. In addition, when the
start and goal belong to the same connected component of the free space, a
corresponding path can always be found (at a given resolution).

It may be surprising to see how small covering roadmaps can be. We
compare the Reachability Roadmap Method (RRM) with the PRM and visibil-
ity PRM. Experiments will show that roadmaps created by the PRM can have
many nodes and edges. The visibility PRM creates reasonably small roadmaps
but this method has great difficulties in creating covering roadmaps. In con-
trast, the RRM creates small covering roadmaps for all tested environments.

117

118 CHAPTER 6. CREATING SMALL ROADMAPS

6.1 Introduction

In application areas such as mobile robots, manipulation planning, CAD sys-
tems, virtual environments, protein folding and human robot planning, it is
often desirable that a path between a start and goal configuration (which is
a placement of the robot in the workspace) is quickly found. For example,
maintenance studies in industrial installations [143] can be performed more
efficiently if an engineer does not have to wait long for a solution. In other
fields, e.g. in computer games, only a fixed small amount of calculation time is
available to compute the path. If this takes too long, the game may halt.

Single shot methods for motion planning aim at quickly connecting a start
configuration to a goal configuration. Although good performance is achieved
(compared to the traditional methods described in [99]), they may still be too
slow as the calculations are performed on-line. In contrast, the Probabilistic
Roadmap Method (PRM) enables the construction of a path in real-time [6, 85,
117].

A drawback of the PRM is that a resulting roadmap often contains many
redundant nodes and edges, in particular when the environment contains one
or more narrow passages. Over the years, many improvements have been sug-
gested to tackle the narrow passage problem [22, 69, 107] but those solutions
often lead to large roadmaps. Such large roadmaps increase the time needed
to extract a path and can require a vast amount of memory which may not al-
ways be available. Furthermore, the roadmap may contain many short edges
which complicates the smoothing phase that often follows a query phase [117].
Another drawback is that a path may not always be found in practice, in spite
of its existence. For example, this can occur when the roadmap is not dense
enough.

A variant of the PRM, which aims at keeping the roadmap small, is the
visibility-based roadmap proposed by Nissoux et al. [121]. Recall that this tech-
nique only connects configurations to useful nodes. Usefulness is determined
as follows: when a new node cannot be connected to other nodes it forms a
new connected component and is labeled useful. If it connects two or more
components it is also labeled useful. If it can be connected to just one compo-
nent it is not labeled useful. Although this approach prunes the roadmap a lot,
it is often slower than other variants of the PRM as the approach is too strict in
rejecting nodes (see Section 2.5.3).

We propose a new efficient method that creates small roadmaps for two-
and three-dimensional problems. Our method will ensure that a valid query
can always be connected to the roadmap and that a path is always found (if

6.2. REACHABILITY 119

one exists) at a given resolution. Because the roadmap is small, smoothing can
easily be applied in the preprocessing phase, leading to instant query answers.
We will elaborate on the properties of the approach in Section 6.2. In Section
6.3, we show the outline of the method. Details will be given in Section 6.4. In
Section 6.5, we show some experiments on different environments, and in Sec-
tion 6.6, we conclude that our algorithm successfully creates small roadmaps
for these environments.

6.2 Reachability

An important issue is how to determine when the roadmap is dense enough,
i.e. when should the algorithm terminate? Many motion planning techniques
such as the PRM and RRT are probabilistically complete, i.e. whenever a path
exists, the probability that it will be found converges to one as the computa-
tion time goes to infinity. As there is no guaranteed upper bound, the running
time may not be a practical termination criterion. Many authors terminate the
method when a path between a specified start and goal is found. However, this
does not guarantee that this roadmap can solve every query.

In Section 3.2, we used the reachability criterion to determine when a prob-
lem has been solved, i.e. a problem has been solved if a roadmap G = (V, E)
covers the free configuration space (Cfree) and captures its connectivity. We re-
peat the definitions of coverage and maximal connectivity:

Definition 6.1 (coverage). G covers Cfree when each configuration c ∈ Cfree can be
connected using the local planner to at least one node ν ∈ V.

Definition 6.2 (maximal connectivity). G is maximally connected when for all
nodes ν

′, ν
′′ ∈ V, if there exists a path in Cfree between ν

′ and ν
′′, then there exists

a path in G between ν
′ and ν

′′.

Coverage ensures that every query (which consists of a start and goal con-
figuration) can be directly connected to the roadmap, as is required to solve
the problem. If there exists a path (in Cfree) between the start and goal config-
uration, then maximal connectivity ensures that a path between them can be
found in the roadmap.

Figure 6.1 shows an environment whose free space is covered by two (white)
nodes and is connected via one extra (black) node. The reachability region for
the upper left node has been drawn. Each configuration in this region can be
connected with a straight-line local planner to the node, so a three-node graph
suffices to solve this problem. In Section 6.4, we will explain how such a reach-
ability region can be computed.

120 CHAPTER 6. CREATING SMALL ROADMAPS

Figure 6.1 The coverage and maximal connectivity criteria have been met. The reach-
ability regions of the white nodes cover the complete free space and are connected via
the black node.

6.3 Reachability Roadmap Method

Our goal is to create a small roadmap G = (V, E) that satisfies both the cov-
erage and maximal connectivity criteria. The idea is to compute a small set of
guards that cover the complete free space. These guards are then connected via
connectors to fulfill the maximal connectivity criterion. The resulting roadmap
is then pruned to obtain an even smaller roadmap (see Algorithm 6.1).

Computing the minimum number of guards corresponds to the well known
art gallery problem which is NP-hard. See the book of O’Rourke which elab-
orates on this problem [123]. As we want to create a roadmap for a possibly
large environment with many obstacles, exact algorithms will take too much
time. Therefore, we will use a heuristic to create and place these guards (which
are added as nodes to the roadmap).

Globally speaking, the guards are chosen as follows. To get the free space
Cfree covered as fast as possible, we place the guard nodes V g ⊆ V on loca-
tions where they probably cover a large part of the free space. Locations on
the medial axis M are good candidates as they have a large clearance from the
obstacles and thus have an increased probability of having a large reachabil-
ity region.1 In addition, placing guards on the medial axis produces ‘good’
roadmaps [107]. To prune the number of candidate guards, a new guard ν

g is
only accepted if its location c is not covered by guards that have already been
placed. That is, c ∈ M\C ′ where C ′ ⊆ Cfree =

⋃

ν∈Vg REACHABILITYREGION(ν).
Nonetheless, it can occur that all locations on the medial axis have been cov-
ered by the guards, i.e. M\C ′ = ∅, while the free space has not been fully

1See Section 4.1 for a definition of the medial axis.

6.3. REACHABILITY ROADMAP METHOD 121

Algorithm 6.1 REACHABILITYROADMAP(C-space C)

Output: Graph G(V, E), where V = Vg ∪Vc

1: covered space C ′ ← ∅

2: M← locus of configurations of the medial axis
3: while C ′ 6= Cfree do

4: if M\C ′ 6= ∅ then

5: guard node ν
g ← the node corresponding to a configuration c ∈ M\C ′

6: else
7: configuration c ← a configuration in Cfree\C ′
8: guard node ν

g ← node corresponding to RETRACTCONFIGURATION(c)
9: C ′ ← C ′ ∪ REACHABILITYREGION(ν

g)
10: Vg ← Vg ∪ ν

g

11: for all νi, νj ∈ Vg : i < j do

12: C ′ ← REACHABILITYREGION(νi) ∪ REACHABILITYREGION(νj)
13: if C ′ 6= ∅ then

14: ν
c ← connector node that corresponds to a configuration in C ′

15: Vc ← Vc ∪ ν
c

16: E ← E ∪ ǫ(νi, ν
c)

17: E ← E ∪ ǫ(ν
c, νj)

18: PRUNEROADMAP(G, C)

covered yet, i.e. C ′ 6= Cfree. In such a situation we choose a configuration c that
has not been covered yet by other guards, i.e. c ∈ Cfree\C ′. Then we retract this
configuration to the medial axis to increase the expected size of its reachability
region. (Note that the location of this guard will be covered by other guards.)
We keep adding new guards to the roadmap until Cfree has been fully covered,
i.e. C ′ = Cfree.

We connect the guards by placing connectors in the overlapping reachabil-
ity regions of the guards. We consider all pairs of guards whose regions over-
lap. For each pair (νi, νj) : i < j, we add a connector node ν

c and its connections
(edges ǫ(νi, ν

c) and ǫ(ν
c, νj)) to the roadmap.

Finally, we prune this roadmap by transforming it to a Steiner Tree. Such
a tree is a network that does not throw away guards (but is allowed to re-
move connectors) and keeps the connected components connected. To prune
the roadmap even more, we add all remaining connections and create a mini-
mal spanning tree.

Theorem 6.1 (Coverage of Cfree). Algorithm 6.1 creates a roadmap that satisfies the
coverage criterion.

122 CHAPTER 6. CREATING SMALL ROADMAPS

Proof: It is well known that each configuration in Cfree can be connected to the
medial axis in a straight line. Hence, we can limit ourselves to consider only
configurations lying on the medial axis. We start with selecting configurations
on the medial axis and add them as nodes to the roadmap. If all configurations
on the medial axis are covered by the guards but there are still configurations
in the free space that have not been covered yet, we select such a configuration
which we retract to the medial axis. As this retraction can be performed in a
straight line2, the original configuration will be covered by the retracted config-
uration. Because we keep adding new guards until the free space is completely
covered, the coverage criterion will be met. This criterion will remain satisfied
when the roadmap is pruned as these heuristics never remove guards.

Theorem 6.2 (Maximal connectivity of Cfree). Algorithm 6.1 creates a roadmap that
satisfies the maximal connectivity criterion.

Proof: Choset and Burdick show in [35] that the medial axis is a connected
structure if the free space in which a robot operates is also connected. Hence,
the medial axis is a complete representation for motion planning purposes. Let
ν
′, ν

′′ ∈ V be two random nodes in the graph (corresponding to configura-
tions c′ and c′′) for which there exists a continuous path Π in Cfree between c′

and c′′. As the algorithm satisfies the coverage criterion, there exists for each
configuration c ∈ Π a guard node ν

g ∈ Vg ⊆ V that covers c. Now con-
sider the sequence of different guard nodes νi ∈ Vg that covers the configu-
rations on Π. (If several guard nodes in V g cover a particular configuration
c, we consider the guard node having the smallest index.) Let now config-
urations ca and cb correspond to guard nodes νi and νi+1. Since there exists
a path in Cfree between configurations ca and cb, the reachability regions of
nodes νi and νi+1 must have some overlap. (This may be a point in the extreme
case.) As the algorithm chooses a connector node ν

c ∈ Vc ⊆ V in this over-
lapping part, edges ǫ(νi , ν

c), ǫ(ν
c , νi+1) ∈ E will be part of the graph. Hence,

we can construct a path Π′ in graph G between nodes ν
′ and ν

′′ as follows:
Π′ ← ⋃

i ǫ(νi , ν
c) ∪ ǫ(ν

c , νi+1).

The maximal connectivity criterion will remain satisfied when the roadmap
is pruned as the heuristics only remove edges that are part of cycles.

2See Section 4.3.1.

6.4. ALGORITHMIC DETAILS 123

6.4 Algorithmic details

The most time-consuming operation in our technique is the computation of
the reachability regions. In general, an exact computation of these regions
would involve intricate and practically infeasible calculations in the configu-
ration space C. To make the calculations feasible, we approximate the C-space
by discretizing it. Because of memory limitations, this approach is restricted to
low-dimensional C-spaces. We will perform experiments with both two- and
three dimensional C-spaces.

We discretize a d-dimensional C-space as follows. First, we create a d-
dimensional grid. For each cell in this grid we check whether the configuration
that corresponds to the cell collides with the obstacles. We update the cell ap-
propriately, i.e. we put the value 0 in the cell if it collides and 1 otherwise. We
will use this grid in the remainder of the algorithm.

In theory, this grid could be used for motion planning purposes. However,
in this chapter, we are dealing with environments that contain narrow passages
and/or environments that are large. We need a huge grid for both types. In
Chapter 7, we will show that such a grid will be too large to use as a roadmap,
i.e. the time for extracting a query will be too high for real-time usage. Besides,
our goal is to create small roadmaps.

In this section, we show for a given resolution how to get the free space
covered and maximally connected. Then, we show how the roadmap can be
pruned.

6.4.1 Coverage

We need a set of cells M that reside on the medial axis. Such a set can be
computed efficiently by the medial axis transform (MAT). We use the algorithm
from Lee et al. in [104]. This algorithm is a two-pass dynamic program that
computes the MAT in O(n) time where n is the number of cells in the grid. See
Figure 6.2(b) for an example.

We select guards on the medial axis having a large distance to the obstacles.
The distance can be computed efficiently by the distance transform (DT) in O(n)
time, see Figure 6.2(c). Like the MAT, the DT is also computed by a two-pass
dynamic program, see e.g. [104]. By combining the MAT and DT, we know for
each cell on the medial axis the closest distance to the obstacles, see Figure
6.2(d). These cells are then sorted by decreasing distance, using bucket sort in
linear time. We store these cells (candidate guards) in a list M. Figure 6.2(e)
shows an example of how such candidate guards are obtained.

124 CHAPTER 6. CREATING SMALL ROADMAPS

(a) C-space (b) MAT (c) DT (d) MAT ∩ DT (e) guards

Figure 6.2 The creation of candidate guards. The white area of Figure (a) corresponds
to the discretized C-space of Figure 6.1. Figure (b) shows the cells of the medial axis
transform and (c) the distance transform. Dark cells correspond to a large distance to
the closest obstacle while light cells correspond to a small distance. In (d), the intersec-
tion of the MAT and DT is shown. Finally, (e) shows the four guards on the medial axis
having the largest distance in the distance transform.

We keep adding guards from this list to the roadmap until the free space has
been fully covered (or when all candidate guards corresponding to the cells in
M have been handled). As we have already mentioned, we initially only add
guards as nodes to the graph which have not been covered yet by other guards.
If the space is not covered when all cells in M have been handled, we consider
uncovered cells (in order of decreasing distance) and add their corresponding
configurations retracted on the medial axis (see Algorithm 4.3.1 for details).

There are two issues we have to resolve: how to determine the cells in the
reachability region of a guard and how to determine which cells have not been
covered yet.

We consider two ways to compute the reachability region of a guard placed
in cell g ∈ G ⊆ M. The first algorithm is analogous to a Flood-fill algorithm.
Its usual purpose is to fill an arbitrary bounded space in a picture with a given
color. The boundary of a reachability region consists of cells that cannot be
reached anymore from cell g. We start with adding cell g to a queue. The
algorithm terminates looping when the queue is empty. In each loop, we ex-
tract a cell c from the queue. If the straight-line connection from g to c is in
Cforb (which can be calculated efficiently by the Bresenham line-drawing algo-
rithm [24]), then we know that g does not belong to the region. Hence, we can
continue taking cells from the queue. In the other case, the region will be ex-
tended by cell c. Then we check for each of the facing neighbors of c whether
such a neighbor is in Cfree and whether the neighbor has not been covered yet.
(A cell in a d-dimensional grid has 2d facing neighbors.) If the two conditions
are satisfied, then we add the neighbor cell to the queue. This approach can be

6.4. ALGORITHMIC DETAILS 125

applied in a grid of any dimension d. Its complexity is O(d|g|l), where |g| is the
number of cells in the region and l is the number of cells that intersects with
the line from r to the furthest cell in the reachability region of g.

The second algorithm, which we call WEDGEFILL, improves this bound to
O(|g|) when the grid is two-dimensional. The algorithm subdivides the 2D
space in four quadrants originating from cell g. In each quadrant, it fills cells
within the boundaries of one or more wedges. For each wedge, the cells on the
current scan line are added to the region if they are visible from g, i.e. the cell
lies within the boundaries of the wedge. If an obstacle cell is encountered, the
wedge is split or its boundaries are narrowed. This process is repeated until
each wedge is too narrow to contain a cell or until all cells on the current scan
line are obstacle cells.

To determine which cells have not been covered yet, we store for each cell
in the grid the set of guards that cover the cell, i.e. when guard gi is added
to the roadmap, index i is inserted to the sets in the grid corresponding to
all cells that are covered by this guard. A set is a data structure that allows
insertions in O(log k) time [38], where k is the number of guards that cover
this cell. Checking whether the cell has been covered by a guard also takes
O(log k) time. Storing all covering guards might seem an overkill but we need
this information in the next phase. In addition, k will generally be very small.

6.4.2 Maximal connectivity

As most guards usually do not cover any other guards, we have to calculate a
set of connectors to which the guards can be connected such that the maximal
connectivity criterion is satisfied. These connectors will be placed in the over-
lapping reachability regions of the guards. For each pair of guards that share
cells in the grid, we place one connector in a cell that lies on the medial axis.
As the number of shared cells is generally larger than one, we have to choose
one of those cells. Since we prefer a large clearance, we choose the one that has
the largest value in the distance transform (DT). When the set of shared cells
contains no medial axis cells, we choose a cell that has the largest distance in
the DT. If more than one cell satisfies this condition, we choose the one that
minimizes the connection distance of the connector to the two guards. Possi-
bly, different connectors share the same cell in the grid. These connectors are
then merged. This part of the algorithm can be computed in linear time in the
number of elements of the sets in the grid. We obtain a roadmap that satis-
fies the maximal connectivity criterion by adding all collision-free connections
between the guards and connectors.

126 CHAPTER 6. CREATING SMALL ROADMAPS

6.4.3 Roadmap pruning

If we allow all collision-free connections between guards and connectors, the
number of connections can become quadratic in the number of nodes in the
roadmap. Figure 6.3(a) shows such a fully connected roadmap. As our ob-
jective is to create small roadmaps, we want to solve the following problem.
Given a roadmap G = (V, E) that consists of a set of guards V g ⊆ V, a set
of connectors Vc ⊆ V, and all feasible connections E between the joint set of
guards and connectors, create a shortest roadmap G ′ = (V ′, E′) (in terms of
total edge length) that spans the guards. This problem is known as the discrete
Euclidean Steiner problem which is NP-complete. (See the book of Hwang et
al. [74] which elaborates on Steiner Tree problems.) Consequently, no polyno-
mial time algorithm for this problem is likely to exist. We handle this problem
by using the shortest path heuristic, described in the same book. Figure 6.3(b)
shows such a tree. Algorithm 6.2 outlines the approach. First, a priority queue
Q is initialized (sorted on increasing path length) with all shortest paths be-
tween the guards in Vg. Then, a graph G′ is created that consists of all guards
Vg. For each path Π in Q, an edge ǫ(ν

′, ν
′′) of Π is added to the edges E′ if there

exists no path between nodes ν
′ and ν

′′ in G′.

Algorithm 6.2 STEINERTREE(Graph G(V = Vg ∪Vc, E))

Output: Graph G′(V ′ = Vg ′ ∪Vc ′, E′)
1: PriorityQueue Q {sorted on increasing path length}
2: for all distinct pairs of guards (ν

′, ν
′′) do

3: node path N ← shortest path between ν
′ and ν

′′

4: if |N| > 0 then Q.push(N)
5: Vg ′ ← Vg

6: while not Q.empty() do

7: Π ← Q.front()
8: Q.pop()
9: for i ← 0 to |N| − 2 do

10: if νi+1 ∈ Vc and νi+1 /∈ Vc ′ then

11: Vc ′ ← Vc′ ∪ νi+1

12: if not G′.sameConnectedComponent(νi, νi+1) then

13: E′ ← E′ ∪ ǫ(νi, νi+1)
14: remove all connectors ν

c ′ ∈ Vc ′ with degree 1

The total edge length of G′ can be decreased further by the following ap-
proach. First, all collision-free connections between the nodes in G ′ are added

6.5. EXPERIMENTS 127

(a) Initial roadmap (b) Steiner Tree (c) All connections (d) MST

Figure 6.3 Roadmap pruning. Figure (a) shows the initial roadmap. From this
roadmap, an approximated Steiner Tree is calculated in (b). In (c), all collision-free con-
nections are added. Finally, (d) shows the minimal spanning tree (MST) of the roadmap
in (c).

to G′. Then, its minimal spanning tree (MST) is calculated by Kruskal’s algo-
rithm [38]. It can occur that by reconnecting the edges, there are connectors in
the graph having degree 1. These are removed as they do not contribute to the
coverage and/or maximal connectivity. Figure 6.3 shows these pruning steps
of the algorithm.

6.5 Experiments

In this section, we apply the Reachability Roadmap Method (RRM) to create
roadmaps in five environments. These are depicted in Figure 6.4. We com-
pare the RRM with the PRM and Visibility PRM with regard to the size of the
roadmaps as well as the required computation time.

6.5.1 Experimental setup

For the experiments we use our SAMPLE system. We perform experiments on
five different environments. They have the following properties:

Grid This is a simple 2D environment that contains 49 squares. The optimal
solution is a roadmap containing seven guards, six connectors and twelve
edges. We want to know whether the RRM can be competitive compared
to the optimal solution.

Rotated grid We rotated the 49 squares which resulted in many narrow pas-
sages. We use this environment to study the effect of the reduced local
visibility on the size of the roadmaps.

128 CHAPTER 6. CREATING SMALL ROADMAPS

Corridor This environment consists of a 3D winding corridor with four hair-
pins. While we expect that the RRM creates a small roadmap, we expect
that the PRM will be faster than the RRM because this is an easy problem
with no narrow passages.

Manipulator This 3D environment features a robot arm with three rotational
degrees of freedom that can move through a long passage. We selected
this environment to show that our algorithm can handle complex reacha-
bility regions in C-space. Note that this environment is much more com-
plex than the environment from Figure 3.3(f).

Toy village This large 3D environment contains seven buildings (>10,000 ob-
jects). There are many scale differences in this environment, i.e. the
environment has ample free spaces (outside) and small rooms (inside).
We want to know whether our algorithm can handle such large environ-
ments.

For each environment, we create a roadmap with the Reachability Roadmap
Method. See Table 6.1 for their level of discretization. The reachability regions
are computed by the WEDGEFILL algorithm for 2D-problems and by FLOOD-
FILL algorithm for the 3D-problems.

We compare this technique with the PRM (as this is a widely used mo-
tion planning method) and the Visibility PRM (as this method creates small
roadmaps). We refer the reader to Chapter 2 for details on these techniques.
They have some parameters that have to be set. We use the Halton sampling
strategy with a random seed. The step size of the straight-line local planner
corresponds to the size of a cell in the grid. We use the Forest neighbor selec-
tion strategy. For both techniques, we perform 100 independent runs. Such
a run has been solved if both the coverage and maximal connectivity criteria
have been satisfied. When we report the construction time, we do not include
the time needed to check these two criteria.

In the first batch of experiments, we focus on the size of the roadmaps. We
set the maximum connection distance and maximum number of connections
to infinity. This will minimize the number of nodes and edges needed to fulfill
the coverage and maximal connectivity criteria. These choices have a negative
impact on the running times for the PRM and Visibility PRM (see Chapter 2).
Nonetheless, these choices minimize the size of the roadmap.

In the second batch of experiments, we focus on the running times of the
three methods. To provide a fair comparison, we use the optimal connection
parameters for the PRM and Visibility PRM. These are stated in Table 6.2. Using

6.5. EXPERIMENTS 129

number of cells

Grid 80 × 80
Rotated grid 200× 200
Corridor 40 × 8 × 40
Manipulator 60 × 60 × 60
Toy village 180× 22 × 160

Table 6.1 Level of discretization of the environments.

Neighbor selection parameters

max. connection distance max. number of connections

Grid(∗) 10 75
Rotated grid 5 75
Corridor 15 75
Manipulator 2 75
Toy village 50 75

Table 6.2 The optimal values used in the neighbor selection strategy. (∗)We did not
constrain the maximum connection distance for the Visibility PRM in the Grid environ-
ment.

optimal values for the parameters will cause the PRM and Visibility PRM to
terminate faster, but larger graphs will be produced.

We record the following statistical data: the construction time of the road-
map, the number of nodes |V| and the number of edges |E| in the roadmap.
Furthermore, for each environment and technique we measure the length of
the roadmap |G| which we calculate as the sum of the lengths of the edges in
the roadmap.

6.5.2 Experimental results

When we conducted the experiments, we experienced that the PRM and the
Visibility PRM in particular were not always able to find a solution within the
maximum running time that had been set to two hours. In those cases we con-
ducted only 10 experiments.3 The roadmaps created by the RRM are visualized
in Figure 6.5. The results are stated in Table 6.3. Figure 6.6 shows the box plots
of the running times.

3The PRM could not find any solution for the Manipulator and Toy village environments. The
Visibility PRM only found solutions for the Grid and Corridor environments.

130 CHAPTER 6. CREATING SMALL ROADMAPS

(a) Grid (b) Rotated grid

(c) Corridor (d) Manipulator

(e) Toy village

Figure 6.4 The five test environments.

6.5. EXPERIMENTS 131

Grid The RRM computed a roadmap that has the minimum number of nodes.
The roadmap length is close to optimal. Hence, our algorithm is com-
petitive compared to the optimal solution. While the PRM created much
larger roadmaps, the Visibility PRM produced reasonably small ones but
this took on average more time than the other two techniques. The box
plots of the Visibility PRM in Figure 6.6 show that this high average run-
ning time is caused by a few outliers. As this technique sometimes creates
artificial narrow passages [121], it may be difficult to solve the problem.
When the optimal connection parameters were used for the PRM, its run-
ning times were comparable to the running times of the RRM, but the PRM

produced considerably larger roadmaps.

Rotated grid As the reachability regions are much smaller in this environment
than the regions in the Grid environment, more nodes are required to
get the free space covered. The RRM needed far less nodes and edges
than the PRM, because the RRM tries to minimize the amount of double
coverage. In addition, the resulting roadmap length was much smaller.
The Visibility PRM was unable to solve the problem within two hours.

Corridor As expected, the RRM created a small roadmap, consisting of 17 nodes
and 16 edges. By lack of narrow passages, the PRM was considerably
faster than the RRM. However, the PRM created relatively large roadmaps.
The Visibility PRM creates small roadmaps but its variance in running
time was very large.

Manipulator The RRM required 313 nodes and 306 edges to cover and con-
nect the three-dimensional configuration space. The PRM and Visibility
PRM were unable to solve the problem within two hours. This is because
the free C-space contains small regions (which complicates getting Cfree

covered) and narrow passages (which complicates getting the nodes con-
nected).

Toy village As this environment has a rather non-uniform distribution of the
obstacles, the PRM had difficulties in covering and connecting the small
areas. The Visibility PRM was unable to solve the problem within two
hours as well. In contrast, the RRM solved the problem within six min-
utes. The resulting roadmap concentrated the nodes in regions where
much detail was present in the environment, while nodes in ample free
space were relatively sparse. This resulted in a surprising small roadmap.

132 CHAPTER 6. CREATING SMALL ROADMAPS

(a) Grid (b) Rotated grid (c) Corridor

(d) Toy village

Figure 6.5 Resulting roadmaps projected onto the environments.

6.5. EXPERIMENTS 133

Statistics – Grid (size)

time (s) |V| |E| |G|

RRM 0.25 13 12 88

PRM 0.72 127 125 629
Vis. PRM 0.86 26 25 331

Statistics – Grid (time)

time (s) |V| |E| |G|

RRM 0.25 13 12 88
PRM 0.27 192 193 582

Vis. PRM(∗) 0.86 26 25 331

Statistics – Rotated grid (size)

time (s) |V| |E| |G|

RRM 2.49 252 251 388

PRM 19.50 2,594 2,593 1,614

Vis. PRM(+)
>7,200.00 n.a. n.a. n.a.

Statistics – Rotated grid (time)

time (s) |V| |E| |G|

RRM 2.49 252 251 388
PRM 3.40 2,551 2,550 1,493

Vis. PRM(+)
>7,200.00 n.a. n.a. n.a.

Statistics – Corridor (size)

time (s) |V| |E| |G|
RRM 0.22 17 16 156

PRM 0.09 46 45 324
Vis. PRM 0.74 18 17 204

Statistics – Corridor (time)

time (s) |V| |E| |G|
RRM 0.22 17 16 156
PRM 0.05 56 55 3270
Vis. PRM 0.28 24 23 207

Statistics – Manipulator (size)

time (s) |V| |E| |G|
RRM 9.94 313 306 861

PRM(+)
>7,200.00 n.a. n.a. n.a.

Vis. PRM(+)
>7,200.00 n.a. n.a. n.a.

Statistics – Manipulator (time)

time (s) |V| |E| |G|
RRM 9.94 313 306 861

PRM(+)
>7,200.00 n.a. n.a. n.a.

Vis. PRM(+)
>7,200.00 n.a. n.a. n.a.

Statistics – Toy village (size)

time (s) |V| |E| |G|
RRM 351.64 177 143 1,278

PRM(+)
>7,200.00 n.a. n.a. n.a.

Vis. PRM(+)
>7,200.00 n.a. n.a. n.a.

Statistics – Toy village (time)

time (s) |V| |E| |G|
RRM 351.64 177 143 1,278

PRM(+)
>7,200.00 n.a. n.a. n.a.

Vis. PRM(+)
>7,200.00 n.a. n.a. n.a.

Table 6.3 Statistics for the five environments. The left column shows the statistics of
the experiments that were focused on the size of roadmaps, i.e. we put no limits on the
connection parameters for the PRM and Visibility PRM in the experiments. The right
column shows the statistics of the experiments that were focused on the construction
time of roadmaps, i.e. we used the optimal connection parameters for the PRM and

Visibility PRM. (∗)The optimal maximum connection distance for the Visibility PRM

was ∞. Hence, the results are the same as in the corresponding statistics in the left

column. (+)Ten out of ten runs were not solved within two hours.

134 CHAPTER 6. CREATING SMALL ROADMAPS

 0

 0.5

 1

 1.5

 2

Grid (size)

ru
n

n
in

g
ti

m
e

(s
)

technique

RRM PRM Vis. PRM

 0

 0.5

 1

 1.5

 2

Grid (time)

ru
n

n
in

g
ti

m
e

(s
)

technique

RRM PRM Vis. PRM

 0

 5

 10

 15

 20

 25

 30

 35

 40

Rotated grid (size)

ru
n

n
in

g
ti

m
e

(s
)

technique

RRM PRM

 0

 5

 10

 15

 20

 25

 30

 35

 40

Rotated grid (time)
ru

n
n

in
g

ti
m

e
(s

)

technique

RRM PRM

 0

 2

 4

 6

 8

 10

Corridor (size)

ru
n

n
in

g
ti

m
e

(s
)

technique

RRM PRM Vis. PRM

 0

 2

 4

 6

 8

 10

Corridor (time)

ru
n

n
in

g
ti

m
e

(s
)

technique

RRM PRM Vis. PRM

Figure 6.6 Box plots of the running times for the Grid, Rotated grid and Corridor
environments. As the Visibility PRM could not solve the Rotated grid environment
within two hours, no corresponding box plot is displayed.

6.6. DISCUSSION 135

6.6 Discussion

We presented a new efficient algorithm, the Reachability Roadmap Method (RRM),
which creates small roadmaps for two- and three-dimensional motion plan-
ning problems. The RRM ensures that every valid query can be connected to
the roadmap, as is required to solve the problem. If there exists a path in the
(discretized) free space that connects the query, the algorithm ensures that a
path can be found in the roadmap.

We compared the RRM with the PRM and the Visibility PRM. The RRM cre-
ated roadmaps with the fewest number of nodes and edges in all environments.
While the PRM produced large roadmaps, the Visibility PRM created relatively
small roadmaps but had great difficulties in getting the free space covered and
connected. It was surprising to see how few nodes are actually required for
roadmaps satisfying the two reachability criteria.

For difficult environments containing narrow passages (e.g. the Grid, Ro-
tated grid, Manipulator and Toy village environments), the RRM was faster
than the other two techniques. In these environments, the PRM and Visibility
PRM consumed much time before obtaining a path through the narrow pas-
sages. For the easy Corridor environment, the RRM was outperformed by the
PRM as all samples could reach a large portion of the free space. When the
number of dimensions increases and the problem does not contain very nar-
row passages, the RRM will be outperformed (in running time) by the PRM, as
the PRM is less sensitive to the dimensionality of the problem. In addition, full
coverage of the C-space is not required in many motion planning problems as
queries will be ‘reasonable’. In such situations the preprocessing times for the
PRM and the Visibility PRM will be much lower. But the roadmaps they produce
will still be large, leading to increased query times.

An interesting topic for future research is how to efficiently extend the RRM

to higher dimensions. A roadmap that is built for a lower dimensional sub-
space could be used to guide the motions for an object operating in a high-
dimensional C-space (see e.g. [15, 25, 47]). We believe that the Reachability
Roadmap Method, and its future modifications, will enhance the quality of
motion planners, in particular when query time is the major concern.

136 CHAPTER 6. CREATING SMALL ROADMAPS

CHAPTER

SEVEN

PUTTING IT ALL TOGETHER

In this chapter we unify the techniques from previous chapters to create road-
maps that are particularly suited for motion planning in virtual environments.
We use the Reachability Roadmap Method to compute an initial, resolution
complete roadmap. This roadmap is small which keeps query times and mem-
ory consumption low. For use in virtual environments, there are additional
criteria that must be satisfied. In particular, we require that the roadmap con-
tains useful cycles. These provide short paths and alternative routes which
allow for variation in the routes entities can take. We will show how to incor-
porate such cycles. In addition, we provide high-clearance paths by retracting
the edges of the roadmap to the medial axis. Since all operations are performed
in a preprocessing phase, high-quality paths can be extracted in real-time as is
required in interactive applications.

137

138 CHAPTER 7. PUTTING IT ALL TOGETHER

7.1 Introduction

In many virtual environments, paths have to be planned for entities to traverse
from a start to a goal position in the virtual world. A common way to plan the
path is to use an A* algorithm on a (low-resolution) grid. Such a path is dis-
played in Figure 7.1. This search algorithm is popular because it always finds
a shortest path in the roadmap if one exists. However, as contemporary vir-
tual worlds can be very large, storing the grid and running the algorithm may
consume a huge amount of memory which is not always available, in particu-
lar on systems with constrained memory such as console systems. In addition,
the algorithm may consume too much processor time, especially when many
paths (for different entities) have to be planned simultaneously.1 This will lead
to stalls in interactive applications. Paths resulting from A* algorithms tend
to have little clearance and can be jaggy and aesthetically unpleasant, so care
must be taken to smooth them.

Figure 7.1 A shortest path that was found by an A* algorithm in the displayed
roadmap. This roadmap was constructed by placing a node on each corner of each
free grid cell. Edges were added for each boundary and each diagonal of a free cell.
This resulted in a roadmap with 1,793 nodes and 6,553 edges.

1An A* algorithm is most inefficient in determining that there is no path between the start
and goal positions. It will then examine every possible cell in the grid accessible from the start
[43].

7.1. INTRODUCTION 139

Another popular motion planning technique is the Probabilistic Roadmap
Method (PRM), which we discussed in Chapter 2. A drawback of the PRM is
that a resulting roadmap often contains many redundant nodes and edges, in
particular when the environment contains one or more narrow passages. In
addition, the roadmap may contain many short edges which complicates the
smoothing phase that often follows a query phase [117].

Nieuwenhuisen et al. [117] improve a roadmap generated by the PRM such
that it can be used for path planning in games. Their method guarantees that
the paths are short, have enough clearance from the obstacles, and are C1 con-
tinuous, leading to natural looking motions. Such a path can be retrieved al-
most instantaneously. Their method does not guarantee that a path can always
be found (if one exists in the free space Cfree). In addition, the method is limited
to two-dimensional problems.

Sometimes, roadmaps are created manually from which paths can be ex-
tracted. However, this may take many hours of precious time.2

Our goal is to automatically create a roadmap for 2D and 3D (possibly large
and complex) environments that can be used to guide the motions for one or
more entities in a virtual environment. By a careful integration of existing and
new techniques, we aim at generating roadmaps with the following four prop-
erties:

1. The roadmap is resolution complete. This means that a valid query (which
consists of a start and a goal configuration) can always be connected to
the roadmap. If the start and goal belong to the same connected compo-
nent of the free space, then a corresponding path can always be found (at
a given resolution).

2. The roadmap is small. A small roadmap assures low query times and low
memory consumption. A path that is extracted from a small roadmap
will have reasonably long edges. These are easier to optimize. For exam-
ple, Nieuwenhuisen et al. [117] add circular arcs to the roadmap to make
the paths C1 continuous, resulting in natural looking motions. In addi-
tion, when a roadmap must obey other criteria, a small roadmap eases
manual tuning.

3. The roadmap contains useful cycles. These cycles provide short paths and
alternative routes which allow for variation in the routes that entities
take. Van den Berg et al. [14] exploit cycles in dynamic environments

2It is mentioned in [1] that a designer spends roughly 8 hours setting up and debugging the
roadmap for an indoor level and up to 20 hours for a large outdoor level.

140 CHAPTER 7. PUTTING IT ALL TOGETHER

where additional obstacles might appear, and to avoid deadlock situa-
tions when multiple robots move in the same environment.

4. The roadmap provides high-clearance paths. By retracting the roadmap to
the medial axis, paths with much clearance can be extracted in real-time.
High-clearance paths work well with entities that have large widths, such
as a wide formation of characters. In addition, they are perfectly suitable
for guiding the motions of a group of entities or for creating a useful
backbone path for the animation of walking characters, see the work of
Kamphuis et al. [77–79].

In Chapter 6, we have introduced the Reachability Roadmap Method (RRM)
which already satisfies the first and second property. In Section 7.2, we propose
an algorithm that adds useful cycles to the roadmap. We meet the fourth prop-
erty in Section 7.3 which shows how to retract a roadmap to the medial axis.
We perform experiments with 2D and 3D virtual environments in Section 7.4
and conclude in Section 7.5 that our algorithm successfully creates roadmaps
satisfying these four properties.

7.2 Adding useful cycles

In Section 5.1, we discussed three methods for decreasing the path length. Al-
though these methods can decrease the path length considerably, they usually
do not remove the detours around obstacles. These detours can be avoided by
adding cycles to the roadmap. Besides obtaining shorter paths, cycles provide
alternative routes for an entity.

In the following subsections, we will show how to add useful cycles to the
roadmap. Our strategy is partly based on the work of Nieuwenhuisen and
Overmars [119] which adds useful edges to the roadmap. An edge is useful if it
introduces a cycle that improves the roadmap according to some criterion. As
we are working with small roadmaps, unfavorably placed queries can still lead
to long paths. We will show that these can be avoided by adding useful nodes
and their corresponding edges to the initial roadmap. The final roadmap will
then be composed of all nodes from the initial roadmap, as well as the added
useful nodes and useful edges between those nodes.

7.2.1 Useful edges

Nieuwenhuisen and Overmars [119] propose a technique that adds useful cy-
cles to the roadmap. The goal is to add only those edges that have a high

7.2. ADDING USEFUL CYCLES 141

probability of introducing a path that cannot be continuously deformed into
an existing path.3 A useful edge is defined as follows:

Definition 7.1 (Useful edge). Let ν be the node that corresponds to configuration c
which has been added to the graph and Vn its set of neighbors. Let ν

′ be a node in Vn

and d(ν, ν
′) be the distance between ν and ν

′. The graph distance between ν and ν
′ is

G(ν, ν
′) which is the length of the shortest path in the graph from ν to ν

′. If there is no
path from ν to ν

′, G(ν, ν
′) is ∞. Then edge ǫ(ν, ν

′) is K-useful if

K ∗ d(ν, ν
′) < G(ν, ν

′).

This definition only adds an edge to the graph (roadmap) between ν and ν
′

if their graph distance improves by a factor K. A small value of K adds more
edges than a large value of K. Figure 7.2 shows that no cycles are added if K is
set to ∞. If K ≤ 1, then all collision-free edges (i.e. local paths) are allowed. The
authors use a pruned version of Dijkstra’s shortest path algorithm to efficiently
determine whether a particular edge is useful. They also show, when time
goes to infinity, that their approach will find a path with a length converging to
K ∗ |Π|, where |Π| denotes the length of shortest possible path Π.4 Hence, the
larger the number of nodes in the roadmap (and the smaller the value of K), the
shorter the expected length of a path. As one of our criteria is obtaining a small
roadmap, these two conflicting criteria (short path length and small roadmap)
need to be balanced.

7.2.2 Adding useful nodes

Figure 7.3 displays the same roadmaps as Figure 7.2, but unfavorably placed
start and goal positions were added and connected to the roadmap. As few
nodes were placed in the middle of the environment, such a small roadmap can
yield long paths, making detours around the obstacles. We handle this problem
by adding useful nodes (and useful edges) to the roadmap, while attempting to
keep it small. Accordingly, we define a useful node as follows:

3If a path cannot be continuously deformed into an other particular path, these paths are said
to be in different homotopic classes. Schmitzberger et al. [135] conducted research on identifying
all homotopic classes. This may only work well in 2D, since, in higher dimensions, solutions are
often in the same homotopic class but are hard to continuously distort into each other. Hence,
identifying these solutions seems to be of little use for motion planning purposes.

4In practice, however, we do not have an infinite amount of time or memory, and hence, we
have to decide how many nodes the roadmap can contain. In our case, this number of nodes is
determined by the output of the Reachability Roadmap Method.

142 CHAPTER 7. PUTTING IT ALL TOGETHER

(a) K = ∞ (b) K = 1.5 (c) K = 1

Figure 7.2 The influence of parameter K on the number of cycles. Picture (a) shows
a roadmap created by the Reachability Roadmap Method for a 2D rigid, translating
square. As K was set to infinity, the roadmap remains a tree. In (b), three additional
edges were introduced when K was set to 1.5. Picture (c) displays the roadmap contain-
ing all collision-free connections between each pair of nodes, as obtained with K = 1.

Definition 7.2 (Useful node). Let c ∈ Cfree be a configuration and ν be its represent-
ing node. Let {ν′, ν

′′} be its two closest neighbors in the graph to which a collision-free
connection exists, i.e. edge ǫ(ν, ν

′) ∈ Cfree and edge ǫ(ν, ν
′′) ∈ Cfree. Let d(ν, ν

′) and
d(ν, ν

′′) be the distances to these neighbors. Furthermore, let G(ν
′, ν

′′) be the graph
distance between ν

′ and ν
′′ and Π be the corresponding path in G. If there are no two

closest neighbors to which a connection can be made, then G(ν
′, ν

′′) is zero. Then node
ν is L-useful if

L ∗ (d(ν, ν
′) + d(ν, ν

′′)) < G(ν
′, ν

′′) ∧ ∃νi ∈ Π : ǫ(ν, νi) ∈ Cforb.

As one of our goals is to obtain high-clearance paths, we only select candi-
date useful nodes that lie on the medial axis. Definition 7.2 says that a node ν is
L-useful if it satisfies two conditions, see Figure 7.4 and Algorithm 7.1. First, if
ν can be connected to two neighbors, then the length of these two connections
times the factor L must be shorter than the length of the shortest path in G be-
tween those neighbors. Second, the new cycle must guide the entity around an
obstacle, i.e. there must be at least one connection from node ν to the nodes
describing the shortest path Π which causes the moving object to collide with
the obstacles. We limit ourselves to checking connections between nodes be-
cause checking all connections from node ν to each configuration on path Π

will consume too much time.
As a clarification, we apply Algorithm 7.1 on our running example. Figure

7.5 shows the resulting roadmaps for three different values of L. A smaller
value of L yields more nodes and edges. If L equals zero, then only the second

7.2. ADDING USEFUL CYCLES 143

(a) K = ∞ (b) K = 1.5 (c) K = 1

Figure 7.3 A roadmap that contains few nodes can lead to long paths for unfavorably
placed queries. Even when parameter K is set to one, i.e. when all collision-free con-
nections are added as edges to the roadmap, the extracted path can be long compared
to the optimal path.

Figure 7.4 Node ν is L-useful for L < 3 because L ∗ (1 + 1) < 6 and edge ǫ(ν, ν
′′′) ∈

Cforb. If the value for L is less than three, then node ν and edges ǫ(ν, ν
′) and ǫ(ν, ν

′′)
are added to the graph, introducing a useful cycle.

condition of Definition 7.2 has to hold, i.e. a node ν is useful if there is at least
one edge from ν to a node in the cycle that causes the robot to collide.

Figure 7.5 shows that the useful nodes have a tendency to spread. This can
be explained as follows. Suppose that a candidate node ν is very close to a pre-
viously added useful node ν

′ which has already been added and connected to
the roadmap. Then it is likely that ν has the same two neighbors as ν

′ to which
free connections exist. (Node ν will not be connected to ν

′ as useful nodes are
only connected to nodes from the initial roadmap to keep the roadmap small.)
As their edges will lie close together, it is unlikely that ν is part of a connection
that collides with an obstacle. As a result, node ν is not labeled according to
Definition 7.2.

144 CHAPTER 7. PUTTING IT ALL TOGETHER

(a) L = 3 (b) L = 1.5 (c) L = 0

Figure 7.5 Adding useful nodes. The black discs represent the added useful nodes.
Each of these nodes has been connected to the two nearest neighbors from the input
graph to which a collision-free connection exists.

7.2.3 Reconnecting the edges

The roadmap quality can be further improved by rearranging its edges. Our
approach creates a graph G′ that consists of all nodes from graph G. Then,
for each pair of nodes, we check if the connection between them is collision-
free. Such a connection is added as an edge to G ′ if the edge is K-useful. The
approach is outlined in Algorithm 7.2. First, we create a priority queue (sorted
on increasing edge length) and fill it with all collision-free connections between
pairs of nodes from graph G. The improved graph G ′ will have the same nodes
as graph G. The edges of G′ consist of edges extracted from the queue if the
two nodes do not belong to the same connected component5 or if the edge
introduces a K-useful cycle. Due to the reconnection of the edges, it can occur
that a (useful) node is no longer part of a cycle. If such a node has degree one,
than this node is removed as our goal is to keep the roadmap small. Figure 7.6
shows the effect on the roadmaps of using different values for L.

Figure 7.7 gives an indication of changes in path length of the unfavor-
ably placed query in several phases of the running example. In each picture,
the same initial roadmap was used (which was produced by the Reachability
Roadmap Method). Figure 7.7(a) shows the path for the roadmap to which use-
ful cycles were added. This path is rather long. A shorter path was found in (b),
which shows the roadmap after adding useful nodes and their corresponding
connections. Yet a shorter path was found after reconnecting the edges, which
is shown in (c).

5Note that Definition 7.1 already guarantees this criterion, i.e. if there is no path between the
two nodes, then the graph distance is set to infinity which validates the condition.

7.2. ADDING USEFUL CYCLES 145

Algorithm 7.1 ADDUSEFULNODESANDCYCLES(graph G(V, E), factor L)

1: MA← list of configurations, sampled on the medial axis
2: for all c ∈ MA do

3: ν ← node that represents configuration c
4: ν

′, ν
′′ ← the two closest neighbors of the input graph to ν for which

ǫ(ν, ν
′), ǫ(ν, ν

′′) ∈ Cfree

5: Π ← shortest node path in G from ν
′ to ν

′′

6: if L ∗ (d(ν, ν
′) + d(ν, ν

′′)) < |Π| then

7: addCycle ← false

8: for all νi ∈ Π do

9: if ǫ(ν, νi) ∈ Cforb then

10: addCycle ← true

11: break
12: if addCycle = true then

13: V ← V ∪ ν

14: E ← E ∪ ǫ(ν, ν
′)

15: E ← E ∪ ǫ(ν, ν
′′)

Algorithm 7.2 RECONNECTEDGES(graph G(V, E), factor K)

Output: graph G′(V ′, E′)
1: PriorityQueue Q {sorted on increasing edge length}
2: for all pair of nodes ν

′, ν
′′ ∈ V : ν

′ 6= ν
′′ do

3: if edge ǫ(ν
′, ν

′′) ∈ Cfree then Q.push(ǫ(ν
′, ν

′′))
4: V ′ ← V
5: E′ ← ∅

6: while not Q.empty() do

7: edge ǫ(ν
′, ν

′′) ← Q.top()
8: Q.pop()
9: if K ∗ d(ν

′, ν
′′) < G(ν

′, ν
′′) then E′ ← E′ ∪ ǫ

10: Remove all useful nodes from V ′ with degree 1

146 CHAPTER 7. PUTTING IT ALL TOGETHER

(a) K = 1.5 and L = 3 (b) K = 1.5 and L = 1.5 (c) K = 1.5 and L = 0

Figure 7.6 Reconnection of the edges with K = 1.5.

(a) Useful cycles: length
query = 63.8

(b) Useful nodes: length
query = 25.9

(c) Useful nodes, useful cy-
cles and edges reconnected:
length query = 18.3

Figure 7.7 Path lengths of an unfavorably placed query. The factor K for adding useful
cycles is 1.5.

7.3 Retracting a roadmap to the medial axis

The fourth criterion which a roadmap must obey is that high-clearance paths
can be obtained in real-time. A path has a high clearance if it follows the medial
axis of the free configuration space. We provided two algorithms that retract
paths to the medial axis in Chapter 4. Recall that Algorithm 4.2 is relatively fast,
but it can only be applied to rigid, translating bodies with two or three DOFs.
In contrast, Algorithm 4.4 is relatively slow, but it can be applied to a broader
range of robots and generally provides a larger clearance for robots with more
than two DOFs.

Rather than retracting paths, our goal now is to retract the entire roadmap
to the medial axis. Algorithm 7.3 outlines our approach. To ensure that the

7.3. RETRACTING A ROADMAP TO THE MEDIAL AXIS 147

Figure 7.8 Retraction of the roadmap. For each edge in the graph, the local path that
corresponds to the edge lies on the medial axis.

complete roadmap will be retracted to the medial axis, we require that its nodes
initially lie on the medial axis. Note that the Reachability Roadmap Method
already satisfies this requirement. For each edge ǫ, let Π be the local path that
corresponds to the edge. If the number of (translational) DOFs of the entity
equals two, then we retract this local path by applying Algorithm 4.2. In other
cases, we apply Algorithm 4.4.

Algorithm 7.3 RETRACTROADMAP(graph G(V, E))

Require: ∀ν ∈ V: each configuration that corresponds to node ν lies on the
medial axis

1: for all edges ǫ(ν
′, ν

′′) ∈ E do

2: Π ← LP[ν′, ν
′′]

3: if number of DOFs equals 2 then Π ← W -RETRACTION(Π) {see Algo-
rithm 4.2}

4: else Π ← C-RETRACTION(Π) {see Algorithm 4.4}

As an example, we apply Algorithm 7.3 on our running example. The input
graph of Figure 7.8 was created in three steps. A small covering roadmap was
produced by the Reachability Roadmap Method. Then useful nodes and edges
were added. These edges were then retracted by the appropriate algorithm.
Note that some retracted edges have overlapping parts. We do not attempt to
merge them as this will increase the number of nodes in the roadmap.

148 CHAPTER 7. PUTTING IT ALL TOGETHER

7.4 Experiments

In this section, we test our approach on four virtual environments. In the first
part of the experiments, we compare the roadmaps produced by the following
three algorithms. The first algorithm, which we refer to as the Grid Roadmap
Method (GRM), creates a grid. This algorithm is often used in the game commu-
nity, see Figure 7.1 for its construction. The second algorithm is the Reachability
Roadmap Method (RRM) from Chapter 6. The third algorithm (RRM*) uses the
RRM as input and adds useful nodes and edges. Its edges are then rearranged.

In the second part of the experiments, we retract the edges of the roadmaps
produced by the RRM* to the medial axis of the free space to obtain high-
clearance paths. We refer to this combination of methods as the Retract RRM*
(RRRM).

7.4.1 Experimental setup

We conduct experiments with the four environments depicted in Figure 7.9.
Information on the environments and robots is listed in Table 7.1. The environ-
ments have the following properties:

Field This small 2D environment contains ten cones, two fences and four trees.
These obstacles are cluttered in a large part of the environment. The other
part is rather empty. There are many alternative routes. We will test
whether our algorithm can capture most of them.

Office This large 3D environment with more than 80 pieces of furniture (79,000
geometrical objects) has a rather non-uniform distribution. There are
large open spaces and many narrow passages, requiring a large grid to
capture the connectivity of Cfree. Also this environment contains many
alternative routes. The results will show whether our algorithm can cap-
ture them. We will also investigate how well our algorithm deals with
many obstacles and large environments.

House This 3D environment has twelve rooms. There are few different routes
from one room to another room. Hence, we expect that few cycles will
be added to the reachability roadmap. Each edge in the roadmap will be
retracted to the medial axis of the environment. We will investigate how
much the clearance improves along the roadmap.

7.4. EXPERIMENTS 149

Bounding boxes

environment robot grid resolution # objects

Field 47 × 47 1 × 1 94 × 94 16,000
Office 80 × 80 1 × 1 × 4 160 × 160 79,000
House 57 × 20 × 40 3 × 3 × 3 57 × 20 × 40 1,000
Quake 130× 25 × 80 1 × 1 × 1 130 × 25 × 80 4,000

Table 7.1 Information on the environments and robots used in the experiments.

Quake This 3D environment has been converted from a level from the game
Quake.6 There are many alternative routes. We will investigate how
much the average path length decreases when we add useful cycles. Fur-
thermore, we will test whether clearance can be added successfully to
roadmaps of problems involving three DOFs.

When we add cycles to a roadmap, we need a way to measure the improve-
ment. For this purpose we define the Shortest path factor (SPF):

Definition 7.3 (Shortest path factor). Let G ′ = (V ′, E′) be the graph in which
node ν

′ ∈ V ′ is placed on each corner of each free cell in a grid representation of the
environment and let E′ be the set of edges placed on each border and diagonal of each
free cell. Let G = (V, E) be a graph for which V ⊆ V ′. Furthermore, let Ψ be the set
of shortest paths in G between each pair of nodes in V, n be the number of paths in Ψ

and Ψ′ be the set of shortest paths in G ′ between each pair of nodes in V. Finally, let
| · | denote the length of a path. Then the Shortest path factor is defined as follows:

SPF =
n

∑
i=1

|Ψi|/
n

∑
i=1

|Ψ′
i|.

This definition provides a factor that describes how much longer the ex-
pected length of a path (between two nodes of graph G) is compared to the op-
timal path length in the grid. If the factor equals one, than each extracted path
will be the shortest one in the grid. The larger this factor, the larger the detour
made by the moving entity. For all environments and techniques, we define 100
random queries and report how many seconds it takes to solve them. Regard-
ing the Grid Roadmap Method, finding the closest free neighbor can be done
in O(1) time. Hence, we only report the time needed for running Dijkstra’s

6See www.quake.com.

150 CHAPTER 7. PUTTING IT ALL TOGETHER

(a) Field (b) Office

(c) House (d) Quake

Figure 7.9 The four test environments.

shortest path algorithm. In contrast, the other two methods require finding the
closest free neighbors and running Dijkstra’s algorithm.

We also keep track of the sizes of the roadmaps, the construction times, the
query times and clearance information (i.e. minimum, average and maximum
clearance of configurations in the roadmap).

7.4.2 Experimental results

In the following paragraphs, we will describe the results of adding useful cy-
cles and nodes, and adding clearance to the roadmap. See Figure 7.10 for visu-
alizations of these results.

7.4. EXPERIMENTS 151

Adding useful cycles and nodes

For each environment, we created a roadmap by applying the Grid Roadmap
Method (GRM), the Reachability Roadmap Method (RRM) and the modified
RRM (RRM*) method. We set parameter K to 1.5 and L to 0. The results are
stated in Table 7.2 and are discussed below:

Field Even for this relatively small environment that was discretized with 94
by 94 cells, the GRM produced a huge roadmap. As a result, comput-
ing 100 random queries took 1.36 seconds. These running times may be
acceptable for real-time behavior. An advantage of the method is that a
shortest path in the grid will always be found, but as indicated above,
the path lacks clearance as it runs very close to obstacles. The RRM cre-
ated a small roadmap consisting of 29 nodes and 18 edges. As the graph
was small, connecting a query to the roadmap and running Dijkstra’s al-
gorithm on average took 4.3 ms. Hence, this roadmap can be used in
real-time situations. However, due to the small size of the roadmap,
the off-center placement of the nodes in the environment, and the fact
that the roadmap does not have cycles, the shortest path factor is rather
high (1.57). This means that an extracted path between two nodes in the
roadmap is on average 57% larger than the corresponding shortest path
in the grid of the GRM roadmap. The RRM* added 14 useful nodes and
29 useful edges to the roadmap. As a result, the SPF decreased to 1.137
which means that an extracted path will be much shorter than an ex-
tracted path in the RRM roadmap. This did not have a negative impact on
the extraction times of the queries.

Office Again, the GRM created a huge roadmap containing 16,917 nodes and
62,917 edges. Finding a shortest path between existing nodes in this
roadmap took 34 ms on average. The RRM created a small roadmap.
The RRM* added 15 nodes and 33 edges to this roadmap, improving the
SPF with 53 percent points. Hence, an extracted path will make less de-
tours. In addition, a close inspection of this roadmap in Figure 7.10 shows
that many alternative routes have been introduced. This did not result in
longer query times. Note that these three methods only needed a few sec-
onds to discretize the C-space (35,600 collision checks) and to create the
roadmaps. Hence, the RRM and RRM* methods function well in environ-
ments with a lot of detail and many obstacles.

House When we go from two-dimensional to three-dimensional problems, a
roadmap produced by the GRM will inevitably become huge (i.e. 40,088

152 CHAPTER 7. PUTTING IT ALL TOGETHER

nodes and 454,250 edges), even for relatively small environments such as
this environment. Running a query on average took 135 ms, which is far
too long in real-time situations. It was surprising to observe that the RRM

only needed 34 nodes and 33 edges to get the free configuration space
covered and connected. Apparently, the nodes were properly placed in
each room, as the RRM* did not add any useful node to the roadmap.
Only one edge was added. Running a query took on average 8 ms. An
extracted path will be short as it will be only 23% larger than the corre-
sponding optimal path in the grid.

Quake This environment was discretized with 260,000 cells. The correspond-
ing roadmap created by the GRM became huge (> 1.5 million edges). As a
result, extracting a query took 0.64 seconds on average. The RRM created
a small roadmap (71 nodes and 65 edges). This sparse roadmap lead to a
high SPF. The expected path length between two nodes in the roadmap
was two times the length of the shortest path in the grid. By adding 61
nodes and 151 edges, the RRM* reduced this factor substantially to 1.194.
Extracting a query took on average 42 ms, which may be too high in a
real-time situation. Connecting the query to the graph consumed rela-
tively much time as many connections had to be checked for collisions.

In conclusion, roadmaps created by the GRM rapidly become huge, espe-
cially in 3D environments, resulting in query times that are too high for real-
time performance. In practice, much smaller grids are used but this can be
problematic when there are narrow passages. In contrast, the RRM creates
small roadmaps that completely cover the free space and have low query times.
However, the extracted paths can be long. The RRM* combines the advantages
of GRM and RRM, i.e. reasonably short paths are produced while the extrac-
tion times are kept relatively low. The resulting paths were on average 14 to 23
percents larger than the optimal paths in a corresponding grid. Since the RRM*
placed the nodes on the medial axis, a large clearance caused the nodes to lie
far away from the obstacles, increasing the path length.

7.4. EXPERIMENTS 153

Figure 7.10 The results for the Field, Office, House and Quake environments. The
left column shows the initial roadmaps created by the Reachability Roadmap Method.
The middle column shows the roadmaps to which useful nodes and cycles were added
(RRM*). The right column shows the roadmaps to which clearance was added (RRRM).

154 CHAPTER 7. PUTTING IT ALL TOGETHER

Field Graph statistics Path statistics

time (s) |V| |E| SPF 100 queries (s)

GRM 0.88 7,350 27,741 1.000 1.36
RRM 0.75 29 18 1.570 0.43
RRM* 0.91 43 47 1.137 0.23

Office Graph statistics Path statistics

time (s) |V| |E| SPF 100 queries (s)

GRM 0.89 16,917 62,297 1.000 3.42
RRM 1.10 154 147 1.812 0.38
RRM* 2.70 167 180 1.181 0.36

House Graph statistics Path statistics

time (s) |V| |E| SPF 100 queries (s)

GRM 12.91 40,088 454,250 1.000 13.48
RRM 11.67 34 33 1.225 0.82
RRM* 18.68 34 34 1.224 0.82

Quake Graph statistics Path statistics

time (s) |V| |E| SPF 100 queries (s)

GRM 210.16 134,492 1,511,241 1.000 63.54
RRM 306.44 71 65 2.068 2.71
RRM* 384.90 132 216 1.194 4.15

Table 7.2 Roadmap statistics for the four environments. Three methods were com-
pared. We collected the following statistical data: the construction time of the roadmap
(in seconds), its number of nodes |V| and edges |E|. Then we mention the shortest path
factor (SPF) and the summed running time of 100 random queries (in seconds).

7.4. EXPERIMENTS 155

(a) Nodes: 38.5% (b) Nodes and edges:
57.7%

(c) Each configura-
tion: 80.1%.

(d) Each retracted
configuration: 98.5%.

Figure 7.11 Using clearance information of the roadmap to obtain collision-free motion
planning. The number denotes the percentage covered of Cfree.

Improving query performance

The largest portion of the query times for RRM and RRM* is occupied by checks
for collision-free connections from the query position to the roadmap. We could
remove the need for collision checks by using the clearance information of
the roadmap. For example, let c be a configuration that has to be added as
a node to the roadmap and c′ be a configuration located on the roadmap. If
distance d(c, c′) < Clearance(c′), then we know that c can be connected to c′.
Since distance calculations between configurations are much faster than col-
lision checks, using clearance information, gathered in the preprocessing of
roadmaps, decreases query time significantly.

As an example, we apply this idea to the Field environment, see Figure 7.11.
First, we only use the clearance information of the nodes in the roadmap. Fig-
ure 7.11(a) shows a collection of discs centered at the nodes. The radius of a
disc equals the distance of (the configuration that corresponds to) the node to
the nearest obstacle. A query does not collide with the obstacles when it lies
in these discs. The total coverage of the discs is 38.5% of the free configuration
space. If we also use the minimum amount of clearance along the paths that
correspond to the edges and place a disc along each configuration on the paths,
the percentage improves to 57.7 which is shown in Figure 7.11(b). The amount
of coverage can be further improved by considering all configurations on all
local paths of the roadmap. Figure 7.11(c) shows that this improves the cover-
age to 80.1%. The highest amount of coverage can be obtained by using each
configuration in a retracted roadmap. This leads to a coverage of 98.5% of the
free space. In this case, the retracted roadmap consists of 870 configurations.
Hence, at most 870 distance calculations are needed to check if a configuration
can be connected to the roadmap. Checking whether one configuration can
be connected takes 0.073 ms which makes the approach suitable for real-time
planning. Even when the roadmap is larger (which is the case in the other en-

156 CHAPTER 7. PUTTING IT ALL TOGETHER

Field Clearance Time

min avg max s

RRM* 0.03 2.71 6.44
RRRM 0.34 3.08 6.46 24

Office Clearance Time

min avg max s

RRM* 0.00 1.60 6.82
RRRM 0.01 1.77 7.53 320

House Clearance Time

min avg max s

RRM* 0.00 2.17 5.64
RRRM 0.13 3.33 10.41 49

Quake Clearance Time

min avg max s

RRM* 0.00 2.90 9.45
RRRM 0.05 3.28 9.75 343

Table 7.3 Clearance and time statistics for RRM* and retracted RRM* (RRRM) roadmaps.
Statistics corresponding to the RRRM are the averages over 100 independent runs. In
the Field and Office environment, the RRRM used the W -RETRACTION algorithm to the
retract the roadmap. The C-RETRACTION algorithm was used in the House and Quake
environments.

vironments), connecting a query by using clearance information turned out to
be efficient, i.e. the times were below 1 ms. Since running Dijkstra’s shortest
path algorithm was far below 1 ms for the roadmaps produced by the RRM and
RRM*, we conclude that this technique enables real-time extraction of queries.

An advantage of using clearance information is that no expensive collision-
checking operations are needed for motion planning. In particular, no geomet-
rical data has to be stored for motion planning purposes which saves memory.
As we created small roadmaps, storing clearance information is feasible.

Adding clearance

As indicated above, high-clearance paths are often preferred. Such paths can
be obtained by retracting each of the four roadmaps created by the RRM* to
the medial axis. We refer to this method as the Retracted RRM* (RRRM). We
compare the clearance of roadmaps produced by the RRM* and RRRM. Table
7.3 shows the corresponding statistics. In all retracted roadmaps, the (mini-
mum, maximum and average) clearance was improved. The times needed for
the retraction were reasonably fast for the Field and House environments. The
roadmaps for Office and Quake environments were retracted within six min-
utes. The main reason for this difference is that the latter two roadmaps are
considerably larger than the other two. As we have already indicated in Sec-
tion 4.5.2, we expect that the running times of the retraction algorithms can be
dramatically decreased by incorporating learning techniques.

7.5. DISCUSSION 157

7.5 Discussion

A common way to plan a path is to use an A* algorithm on a grid. The grid may
have many cells because an environment can be large or the environment con-
tains a narrow passage by which a high-resolution grid is needed. We showed
that for such grids, the query times are far too high for real-time motion plan-
ning.

We presented a method that automatically computes a roadmap for 2D and
3D virtual environments. We used the Reachability Roadmap Method to gener-
ate small roadmaps. This ensures low query times and low memory consump-
tion. In addition, the roadmaps are resolution complete which means that a
valid query can always be extracted from the roadmap.

As paths, extracted from this roadmap, can make long detours around ob-
stacles, we provided a method that adds useful cycles to the roadmap. Exper-
iments showed that reasonably short paths can now be extracted from the en-
hanced roadmap. This roadmap also provides alternative routes which allow
for variation in the routes that entities take. The query times on this roadmap
are low which enables real-time extraction of paths.

Another criterion the roadmap should satisfy is that high-clearance paths
can be extracted without extra computation time in the query phase. This cri-
terion was met by retracting the edges of the roadmap to the medial axis of the
free space. Experiments showed that this criterion can be satisfied within six
minutes in our test environments. However, we believe that the running times
of the retraction algorithms can be improved dramatically by incorporating
learning techniques. In addition, since closest pair calculations are expensive,
much could be saved by using the discretized free space instead of referring
these calculations to the collision checker.

In future work, the method could be extended to incorporate extra con-
straints that level designers put on the roadmaps. For example, one could in-
corporate non-holonomic constraints, walkable surfaces, take special care of
staircases and incorporate tactical information in the roadmap.

158 CHAPTER 7. PUTTING IT ALL TOGETHER

CHAPTER

EIGHT

CONCLUSION

In this thesis, we studied a central problem in robotics: planning a collision-free
path for a moving robot in a static and known environment. We restricted our-
selves to motion planning for rigid bodies and articulated robots. We compared
and analyzed multiple-shot sampling-based motion planning techniques, in
particular variants of the Probabilistic Roadmap Method (PRM).

Sampling-based planners can successfully handle a large diversity of prob-
lems. The success of these planners in solving problems with possibly many
degrees of freedom and many obstacles can be explained by the fact that no
explicit representation of the free configuration space is required. The main op-
eration of these planners is checking placements of the robot for collisions with
obstacles in the environment, which can be efficiently performed by the cur-
rent generation of collision checkers. In contrast, exact methods always have
to take each obstacle into account, even when the solution path is simple. The
second reason for their success is that problems which are not pathological
have favorable reachability properties. That is, the free configuration space of
a reasonable problem can often be captured by few nodes where each node can
reach a large portion of the free space using a local planner. Therefore, a PRM

usually finds a solution quickly, even if the geometric complexity is high.

If the length of the allowed connections between nodes in the roadmap
is considerably limited, the PRM starts looking like grid-based techniques in
which nodes are only connected to their adjacent neighbors in the grid. Ex-
periments showed that this had a dramatic negative impact on the running
times. The PRM also tends to perform poorly when crucial configurations lie
in and around very narrow regions of the configuration space, which has been
identified as the narrow passage problem. The probability of randomly guess-

159

160 CHAPTER 8. CONCLUSION

ing such a configuration can be very small, especially when the rest of the free
space is large compared to these regions. Moreover, creating a set of configura-
tions that covers a path going through the passage is not necessarily sufficient
to solve the problem. The problem is only solved when all configurations in
the set belong to the same connected component. Experiments showed that
this last criterion, which we call maximal connectivity, is much more difficult
to satisfy than the coverage criterion, especially when we have to deal with a
narrow passage.

The narrow passage problem can be tackled by incorporating a hybrid or
adaptive sampling strategy that concentrates samples in difficult areas on the
one hand, and generates some samples in large open areas on the other hand.
Hence, using a uniform sampling strategy is not a good choice for environ-
ments involving narrow passages. Another tactic is to employ a more pow-
erful local planner. We presented a potential field local planner that creates
larger reachability regions which eases making connections. This planner is
also better able to find the entry of a narrow passage, decreasing the number of
samples needed to obey the maximal connectivity criterion.

When a passage is extremely narrow, the PRM may not always find a solu-
tion within the allowed amount of time as this method is (only) probabilisti-
cally complete. In this case, or when the robot needs to maintain contact with
the obstacles, using a PRM is a poor choice. In such cases, a problem may only
be solved in practice by a careful analysis before it is fed to a complete planner.

In conclusion, when we have to deal with a problem with many degrees of
freedom (DOFs) and the passages are not pathologically narrow, a PRM seems
to be a logical choice as sampling-based planners can successfully handle the
curse of dimensionality. These planners have been used successfully for many
applications, including CAD/CAM, computer simulation, computer animation,
biology, medical applications, and virtual environments. Our analysis and ex-
periments have provided further insight in the effects of the different choices
which should be of use in improving these applications.

In most applications, a path should preferably be short because redundant
motions will take longer to execute. Although reasonably short paths can be
obtained from a roadmap with cycles, yet even shorter paths can be obtained
by creating Partial shortcuts. Experiments showed that this new technique is
successfully able to remove redundant (rotational) motions of the robot, im-
proving on existing algorithms. Besides having a short path, the robot often
has to keep some minimum amount of clearance to the obstacles because it can
be difficult to measure and control the precise position of a robot. Traveling
along a path with a certain amount of minimum clearance reduces the chances

161

of collisions due to these uncertainties. We proposed a new technique that in-
creases the clearance along a path without using complex data structures and
algorithms. Both techniques can be applied to a wide range of robots which
may reside in high-dimensional configuration spaces.

Interactive applications are getting more and more attention from robotics.
Research includes planning the motions for a group of entities, the generation
of camera motion to track a moving guide and the animation of the entities.
The entity that moves in the environment is often represented by a translat-
ing cylinder or box. As such an entity only has two or three DOFs, we can
often employ a more efficient and more specific algorithm than the PRM. We
introduced the Reachability Roadmap Method which can be used efficiently
to create small roadmaps for these environments. Such a small roadmap en-
sures low query times and low memory consumption and is easy to adjust to
fit the user’s wishes. If there exists a path in the (discretized) free space that
connects the start and goal of the query, the algorithm ensures that a path can
be found in the roadmap. Hence, the algorithm is resolution complete. An-
other criterion these roadmaps have to satisfy is that alternative routes and
short paths can be extracted. This was met by adding useful nodes and useful
cycles. Besides the possibility to extract short paths, paths are often required
to have much clearance, as this leads to natural looking motions. For example,
high-clearance paths work well with entities that have large width, such as a
wide formation of characters. We met this goal by retracting a roadmap to the
medial axis which allowed extraction of such paths in real-time.

While the paths we computed may be perfectly suitable for robots operating in
virtual environments, they cannot be used directly for controlling real robots
due to inexact control and dynamic constraints. The first problem is caused
by robots not following a precomputed path exactly. Sensor information may
be incorporated into the motion planning algorithm to adjust the robot’s ac-
tions and to reduce the errors in its position. The second problem exists be-
cause we do not take into account constraints such as velocities and accelera-
tion. This problem can be handled by adding extra information in the nodes
of the roadmap which can be used by a suitable local planner. Another ap-
proach would be transforming the geometric path to a path that can be exe-
cuted by searching within the neighborhood of the geometric path for a real
solution [140].

The PRM was first described some years ago. Originally, there was much doubt
about its usefulness, but soon, people realized its power in many different ap-

162 CHAPTER 8. CONCLUSION

plications. We have come a long way since then. By a combination of faster
computers and improvements in the technique, we are now able to solve com-
plex motion planning problems efficiently.

A next step is to create a library of motion planning techniques that can be
used as a ‘black-box’. That is, users should not have to think about parameter
choices that usually have no meaning to them. In this thesis, we tried to auto-
mate these choices as much as possible. We also provided insight in the effect
these parameters have on the PRM. While our SAMPLE system, algorithms and
results provide a foundation for such a library, more research will be needed to
enable the black-box to automatically choose parameters, such as an appropri-
ate metric, a step size of the local planner, the maximum connection distance, a
hybrid sampling strategy, and a termination criterion.

Creating such a library may prove essential to the development of autono-
mous robots.

BIBLIOGRAPHY

[1] G. Alt. The suffering: A game AI case study. In Challenges in Game AI workshop,
Nineteenth national conference on Artificial Intelligence, pages 134–138, 2004.

[2] N.M. Amato, O. Bayazit, L. Dagle, C. Jones, and D. Vallejo. Choosing good
distance metrics and local planners for probabilistic roadmap methods. In IEEE
International Conference on Robotics and Automation, pages 630–637, 1998.

[3] N.M. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo. OBPRM: An obstacle-
based PRM for 3D workspaces. In International Workshop on the Algorithmic Foun-
dations of Robotics, pages 155–168, 1998.

[4] N.M. Amato and Y. Wu. A randomized roadmap method for path and manip-
ulation planning. In IEEE International Conference on Robotics and Automation,
pages 113–120, 1996.

[5] B. Baginski. Efficient motion planning in high dimensional spaces: The paral-
lelized Z3-method. In International Workshop on Robotics in the Alpe-Adria-Danube
Region, pages 247–252, 1997.

[6] J. Barraquand, L.E. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and P. Ragha-
van. A random sampling scheme for path planning. International Journal of
Robotics Research, 16:759–744, 1997.

[7] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field tech-
niques for robot path planning. IEEE Transactions on Systems, Man, and Cybernet-
ics, 22:224–241, 1992.

[8] J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning
with many degrees of freedom. In IEEE International Conference on Robotics and
Automation, pages 1712–1717, 1990.

[9] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed repre-
sentation approach. International Journal of Robotics Research, 10:628–649, 1991.

163

[10] O.B. Bayazit, J.-M. Lien, and N.M. Amato. Better group behaviors using rule-
based roadmaps. In International Workshop on the Algorithmic Foundations of
Robotics, pages 95–111, 2002.

[11] O.B. Bayazit, G. Song, and N.M. Amato. Ligand binding with OBPRM and hap-
tic user input. In IEEE International Conference on Robotics and Automation, pages
954–959, 2001.

[12] M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra and
geometry. Computer and Systems Sciences, 32:251–264, 1986.

[13] M. Bennewitz, W. Burgard, and S. Thrun. Priority schemes for decoupled path
planning techniques for teams of mobile robots. Robotics and Autonomous System,
41:89–99, 2002.

[14] J.P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M.H. Overmars. Creating
robust roadmaps for motion planning in changing environments. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2515–2521, 2005.

[15] J.P. van den Berg and M.H. Overmars. Using workspace information as a guide
to non-uniform sampling in probabilistic roadmap planners. In IEEE Interna-
tional Conference on Robotics and Automation, pages 453–460, 2004.

[16] J.P. van den Berg and M.H. Overmars. Prioritized motion planning for multi-
ple robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2217–2222, 2005.

[17] J.P. van den Berg and M.H. Overmars. Roadmap-based motion planning in dy-
namic environments. IEEE Transactions on Robotics and Automation, 21:885–897,
2005.

[18] G. van den Bergen. Collision Detection in Interactive 3D Environments. Morgan
Kaufmann, 2003.

[19] P. Bessiere, J.M.Ahuactzin, E.-G. Talbi, and E. Mazer. The ‘ariadne’s clew’ algo-
rithm: Global planning with local methods. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1373–1380, 1993.

[20] R. Bohlin. Motion Planning for Industrial Robots. PhD thesis, Göteborg University,
1999.

[21] R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In IEEE International
Conference on Robotics and Automation, pages 521–528, 2000.

[22] V. Boor, M.H. Overmars, and A.F. van der Stappen. The Gaussian sampling
strategy for probabilistic roadmap planners. In IEEE International Conference on
Robotics and Automation, pages 1018–1023, 1999.

[23] M. Branicky, S.M. LaValle, K. Olson, and L. Yang. Quasi-randomized path plan-
ning. In IEEE International Conference on Robotics and Automation, pages 1481–
1487, 2001.

164

[24] J.E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4:25–30, 1965.

[25] O. Brock and L.E. Kavraki. Decomposition-based motion planning: A frame-
work for real-time motion planning in high-dimensional configuration spaces.
In IEEE International Conference on Robotics and Automation, pages 1469–1475,
2001.

[26] O. Brock and O. Khatib. Elastic strips: A framework for motion generation in hu-
man environments. International Journal of Robotics Research, 21:1031–1052, 2002.

[27] R.A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration
space for findpath with rotation. IEEE Transactions on Systems, Man, and Cy-
bernetics, 15:224–233, 1985.

[28] J. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

[29] H. Chang and T.Y. Li. Assembly maintainability study with motion planning. In
IEEE International Conference on Robotics and Automation, pages 1012–1019, 1995.

[30] B. Chazelle. The discrepancy method. Cambridge University Press, Cambridge,
2000.

[31] P.C. Chen and Y.K. Hwang. SANDROS: A dynamic graph search algorithm for
motion planning. IEEE Transactions on Robotics and Automation, 14:390–403, 1998.

[32] P. Cheng, E. Frazzoli, and S.M. LaValle. Exploiting group symmetries to improve
precision in kinodynamic and nonholonomic planning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 631–636, 2003.

[33] P. Cheng, Z. Shen, and S.M. LaValle. Using randomization to find and optimize
feasible trajectory for nonlinear systems. In Annual Allerton Conference on Com-
munications, Control, Computing, pages 926–935, 2000.

[34] J. Chestnutt, M. Lau, G. Cheung, J.J. Kuffner, J.K. Hodgins, and T. Kanade. Foot-
step planning for the honda asimo humanoid. In IEEE International Conference
on Robotics and Automation, pages 1909–1915, 2005.

[35] H. Choset and J. Burdick. Sensor-based exploration: The hierarchical general-
ized Voronoi graph. International Journal of Robotics Research, 19:96–125, 2000.

[36] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT
Press, first edition, 2005.

[37] C.M. Clark, T. Bretl, and S. Rock. Applying kinodynamic randomized motion
planning with a dynamic priority system to multi-robot space systems. In IEEE
Aerospace Conference, pages 3621–3631, 2002.

[38] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press/ McGraw-Hill Book Company, second edition, 2001.

165

[39] J. Cortés and T Siméon. Sampling-based motion planning under kinematic loop-
closure constraints. In International Workshop on the Algorithmic Foundations of
Robotics, pages 59–74, 2004.

[40] J. Cortés, T. Siméon, and J.-P. Laumond. A random loop generator for planning
the motions of closed kinematic chains using PRM methods. In IEEE Interna-
tional Conference on Robotics and Automation, pages 2141–2146, 2002.

[41] L. Dale. Optimization techniques for probabilistic roadmaps. PhD thesis, Texas A&M
University, 2000.

[42] L. Dale and N.M. Amato. Probabilistic roadmaps – putting it all together. In
IEEE International Conference on Robotics and Automation, pages 1940–1947, 2001.

[43] M. DeLoura. Game programming gems. Charles River Media, Inc, 2000.

[44] M. Erdmann and T. Lozano-Pérez. On multiple moving objects. Algorithmica,
2:477–521, 1987.

[45] C. Esteves, G. Arechavaleta, and J.-P. Laumond. Motion planning for human-
robot interaction in manipulation tasks. In IEEE International Conference on
Mechatronics and Automation, pages 1766–1771, 2005.

[46] B. Faverjon. Object level programming of industrial robots. In IEEE International
Conference on Robotics and Automation, pages 1406–1412, 1986.

[47] M. Foskey, M. Garber, M. Lin, and D. Manocha. A Voronoi-based hybrid motion
planner. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 55–60, 2001.

[48] Th. Fraichard. Trajectory planning in a dynamic workspace: A ‘state-time’ ap-
proach. Advanced Robotics, 13:75–94, 1999.

[49] R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for deformable
robots in complex environments. In Robotics: Science and Systems, 2005.

[50] C. Geem, T. Siméon, J.-P. Laumond, J.-L. Bouchet, and J.-F. Rit. Mobility anal-
ysis for feasibility studies in CAD models of industrial environments. In IEEE
International Conference on Robotics and Automation, pages 1770–1775, 1999.

[51] R. Geraerts and M.H. Overmars. A comparative study of probabilistic roadmap
planners. In International Workshop on the Algorithmic Foundations of Robotics,
pages 43–57, 2002.

[52] R. Geraerts and M.H. Overmars. Clearance based path optimization for mo-
tion planning. In IEEE International Conference on Robotics and Automation, pages
2386–2392, 2004.

[53] R. Geraerts and M.H. Overmars. On improving the path quality for motion
planning. In Conference of the Advanced School for Computing and Imaging, pages
211–217, 2004.

166

[54] R. Geraerts and M.H. Overmars. Sampling techniques for probabilistic roadmap
planners. In Conference on Intelligent Autonomous Systems, pages 600–609, 2004.

[55] R. Geraerts and M.H. Overmars. Creating small roadmaps for solving motion
planning problems. In IEEE International Conference on Methods and Models in
Automation and Robotics, pages 531–536, 2005.

[56] R. Geraerts and M.H. Overmars. On improving the clearance for robots in high-
dimensional configuration spaces. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 4074–4079, 2005.

[57] R. Geraerts and M.H. Overmars. On the analysis and success of sampling based
motion planning. In Conference of the Advanced School for Computing and Imaging,
pages 313–319, 2005.

[58] R. Geraerts and M.H. Overmars. Reachability analysis of sampling based plan-
ners. In IEEE International Conference on Robotics and Automation, pages 406–412,
2005.

[59] R. Geraerts and M.H. Overmars. Creating high-quality roadmaps for motion
planning in virtual environments. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 4355–4361, 2006.

[60] R. Geraerts and M.H. Overmars. Sampling and node adding in probabilistic
roadmap planners. Robotics and Autonomous System, 54:165–173, 2006.

[61] R. Ghrist, J.M. O’Kane, and S.M. LaValle. Pareto optimal coordination on
roadmaps. In International Workshop on the Algorithmic Foundations of Robotics,
pages 171–186, 2004.

[62] O. Goemans and M.H. Overmars. Automatic generation of camera motion to
track a moving guide. In International Workshop on the Algorithmic Foundations of
Robotics, pages 187–202, 2004.

[63] K. Gupta. Motion planning for flexible shapes (systems with many degrees of
freedom): A survey. The Visual Computer, 14:288–302, 1998.

[64] D. Halperin, J.-C. Latombe, and R.H. Wilson. A general framework for assembly
planning: The motion space approach. Algorithmica, 26:577–601, 2000.

[65] D. Halperin, M.H. Overmars, and M. Sharir. Efficient motion planning for an
L-shaped object. SIAM Journal on Computing, 21:1–23, 1992.

[66] L. Han and N.M. Amato. Algorithmic and Computational Robotics: New Direc-
tions. The Fourth Workshop on the Algorithmic Foundations of Robotics, chapter A
kinematics-based probabilistic roadmap method for closed chain systems, pages
233–245. 2000.

[67] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive motion plan-
ning using hardware-accelerated computation of generalized Voronoi diagrams.
In IEEE International Conference on Robotics and Automation, pages 2931–2937,
2000.

167

[68] C. Holleman, L.E. Kavraki, and J. Warren. Planning paths for a flexible surface
patch. In IEEE International Conference on Robotics and Automation, pages 21–26,
1998.

[69] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow pas-
sages with probabilistic roadmap planners. In IEEE International Conference on
Robotics and Automation, pages 4420–4426, 2003.

[70] D. Hsu, L.E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. Robotics: The Al-
gorithmic Perspective. The Third Workshop on the Algorithmic Foundations of Robotics,
chapter On Finding Narrow Passages with Probabilistic Roadmap Planners,
pages 141–154. 1998.

[71] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic motion
planning with moving obstacles. International Journal of Robotics Research, 21:233–
255, 2002.

[72] D. Hsu, J.-C. Latombe, and S. Sorkin. Placing a robot manipulator amid obstacles
for optimized execution. In IEEE International Symposium on Assembly and Task,
pages 280–285, 1999.

[73] D. Hsu, G. Sánchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-
sensitive adaptive strategy. In IEEE International Conference on Robotics and Au-
tomation, pages 3885–3891, 2005.

[74] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. North-
Holland, 1992.

[75] P. Isto. Constructing probabilistic roadmaps with powerful local planning and
path optimization. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2323–2328, 2002.

[76] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-free
reaching motions for interactive object manipulation and grasping. In Eurograph-
ics, pages 313–322, 2003.

[77] A. Kamphuis and M.H. Overmars. Finding paths for coherent groups using
clearance. In Eurographics/ ACM SIGGRAPH Symposium on Computer Animation,
pages 19–28, 2004.

[78] A. Kamphuis and M.H. Overmars. Motion planning for coherent groups of enti-
ties. In IEEE International Conference on Robotics and Automation, pages 3815–3822,
2004.

[79] A. Kamphuis, J. Pettre, M.H. Overmars, and J.-P. Laumond. Path finding for
the animation of walking characters. In Poster proceedings of Eurographics/ACM
SIGGRAPH Symposium on Computer Animation, pages 8–9, 2005.

[80] L.E. Kavraki. Random networks in configuration space for fast path planning. PhD
thesis, Stanford University, 1995.

168

[81] L.E. Kavraki, M. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic
roadmaps for path planning. In IEEE International Conference Robotics and Au-
tomation, pages 3020–3025, 1996.

[82] L.E. Kavraki, F. Lamiraux, and C. Holleman. A general framework for planning
paths for elastic objects. In International Workshop on the Algorithmic Foundations
of Robotics, pages 313–325, 1998.

[83] L.E. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration
space for fast path planning. In IEEE International Conference on Robotics and
Automation, pages 2138–2145, 1994.

[84] L.E. Kavraki and J.-C. Latombe. Probabilistic roadmaps for robot path planning.
In K. Gupta and A. del Pobil, editors, Practical Motion Planning in Robotics: Cur-
rent Approaches and Future Directions, pages 33–53. John Wiley, 1998.

[85] L.E. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12:566–580, 1996.

[86] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5:90–98, 1986.

[87] P. Khosla and R. Volpe. Superquadratic artificial potentials for obstacle avoid-
ance and approach. In IEEE International Conference on Robotics and Automation,
pages 1778–1784, 1988.

[88] J. Kim, R. Pearce, and N.M. Amato. Extracting optimal paths from roadmaps
for motion planning. In IEEE International Conference on Robotics and Automation,
pages 2424–2429, 2003.

[89] D.E. Koditschek. Exact robot navigation by means of potential functions: Some
topological considerations. In IEEE International Conference on Robotics and Au-
tomation, pages 1–6, 1987.

[90] Y. Koga, K. Kondo, J.J. Kuffner, and J.-C. Latombe. Planning motions with in-
tentions. In ACM Special Interest Group on Computer Graphics (SIGGRAPH), pages
395–408, 1995.

[91] Y. Koren and J. Borenstein. Potential field methods and their inherent limita-
tions for mobile robot navigation. In IEEE International Conference on Robotics and
Automation, pages 1398–1404, 1991.

[92] J.J. Kuffner. Effective sampling and distance metrics for 3D rigid body path plan-
ning. In IEEE International Conference on Robotics and Automation, pages 3993–
3998, 2004.

[93] J.J. Kuffner and J.-C. Latombe. Interactive manipulation planning for animated
characters. In IEEE International Conference on Robotics and Automation, pages
417–418, 2000.

169

[94] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In IEEE International Conference on Robotics and Automation,
pages 995–1001, 2000.

[95] J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning
for humanoid robots under obstacle and dynamic balance constraints. In IEEE
International Conference on Robotics and Automation, pages 692–698, 2001.

[96] F. Lamiraux, D. Bonnafous, and C. V. Geem. Path optimization for nonholo-
nomic systems: Application to reactive obstacle avoidance and path planning.
In Workshop Control Problems in Robotics and Automation, pages 1–18, 2002.

[97] F. Lamiraux and L.E. Kavraki. Planning paths for elastic objects under manipu-
lation constraints. International Journal of Robotics Research, 20:188–208, 2001.

[98] F. Lamiraux and J.-P. Laumond. Smooth motion planning for car-like vehicles.
IEEE Transactions on Robotics and Automation, 17:188–208, 2001.

[99] J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.

[100] S.M. LaValle. Planning Algorithms. http://msl.cs.uiuc.edu/planning, 2005.

[101] S.M. LaValle and S.A. Hutchinson. Optimal motion planning for multiple robots
having independent goals. Transaction on Robotics and Automation, 14:912–925,
1998.

[102] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. International
Journal of Robotics Research, 20:378–400, 2001.

[103] A. Lee, I. Streinu, and O. Brock. A methodology for efficiently sampling the
conformation space of molecular structures. Physical Biology, 2:108–115, 2005.

[104] Y.-H. Lee, T.-W. Kao, and S.-S. Lee. Optimal parallel algorithms for computing
the chessboard distance transform and the medial axis transform on RAP. In
IEEE International Symposium on Parallel Architectures, Algorithms and Networks,
pages 22–28, 1996.

[105] D. Leven and M. Sharir. Planning a purely translational motion for a convex
object in two-dimensional space using generalized Voronoi diagrams. Discrete
Computational Geometry, 2:9–31, 1987.

[106] T.-Y. Li and H.-C. Chou. Motion planning for a crowd of robots. In IEEE Inter-
national Conference on Robotics and Automation, pages 4215–4221, 2003.

[107] J.-M. Lien, S. Thomas, and N.M. Amato. A general framework for sampling on
the medial axis of the free space. In IEEE International Conference on Robotics and
Automation, pages 4439–4444, 2003.

[108] S.R. Lindemann and S.M. LaValle. Smoothly blending vector fields for global
robot navigation. In submitted to IEEE Conference on Decision and Control, 2005.

[109] G.F. Liu and J.C. Trinkle. Complete path planning for planar closed chains
among point obstacles. In Robotics: Science and Systems, 2005.

170

[110] J. Lo, G. Huang, and D. Metaxas. Human motion planning based on recursive
dynamics and optimal control techniques. Multibody System Dynamics, 8:433–58,
2002.

[111] E. Masehianand, M.R. Admin-Naseri, and S.E. Khadem. Online motion plan-
ning using incremental construction of medial axis. In IEEE International Confer-
ence on Robotics and Automation, pages 2928–2933, 2003.

[112] M.T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.

[113] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. Transactions on Mod-
eling and Computer Simulation, 8:3–30, 1998.

[114] D. Nain, S. Haker, R. Kikinis, and E. Grimson. An interactive virtual endoscopy
tool. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 55–60, 2001.

[115] C.L. Nielsen and L.E. Kavraki. A two level fuzzy prm for manipulation plan-
ning. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1716–1721, 2000.

[116] D. Nieuwenhuisen. Callisto. http://www.cs.uu.nl/∼dennis/callisto/callisto.html,
2006.

[117] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M.H. Overmars. Au-
tomatic construction of roadmaps for path planning in games. In International
Conference on Computer Games: Artificial Intelligence, Design and Education, pages
285–292, 2004.

[118] D. Nieuwenhuisen and M.H. Overmars. Motion planning for camera move-
ments. Technical Report 2003-004, Utrecht University, 2003.

[119] D. Nieuwenhuisen and M.H. Overmars. Useful cycles in probabilistic roadmap
graphs. In IEEE International Conference on Robotics and Automation, pages 446–
452, 2004.

[120] N.J. Nilsson. A mobile automation: An application of artificial intelligence tech-
niques. In International Joint Conference on Artificial Intelligence, pages 509–520,
1969.

[121] C. Nissoux, T. Siméon, and J.-P. Laumond. Visibility based probabilistic
roadmaps. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1316–1321, 1999.

[122] C. Ó’Dúnlaing, M. Sharir, and C.K. Yap. Retraction: A new approach to motion
planning. In ACM Symposium on Theory of Computing, pages 207–220, 1983.

[123] J. O’Rourke. Art Gallery Theorems and Algorithms. New York: Oxford University
Press, 1987.

171

[124] M.H. Overmars. A random approach to motion planning. Technical Report
RUU-CS-92-32, Utrecht University, 1992.

[125] W. Park, D.B. Chaffin, and B.J. Martin. Toward memory-based human motion
simulation: Development and validation of a motion modification algorithm.
IEEE Transactions on Systems, Man, and Cybernetics, 34:376–386, 2004.

[126] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic con-
straints along specified paths. International Journal of Robotics Research, 24:295–
310, 2005.

[127] J.H. Reif. Complexity of the mover’s problem and generalizations. In IEEE
Symposium on Foundations of Computer Science, pages 421–427, 1979.

[128] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial potential
fields. IEEE Transactions on Robotics and Automation, 8:501–518, 1992.

[129] B. Salomon, M. Garber, M.C. Lin, and D. Manocha. Interactive navigation in
complex environments using path planning. In Symposium on Interactive 3D
graphics, pages 41–50, 2003.

[130] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In International Symposium of
Robotics Research, pages 403–418, 2001.

[131] G. Sánchez and J.-C. Latombe. On delaying collision checking in PRM planning –
Application to multi-robot coordination. International Journal of Robotics Research,
21:5–26, 2002.

[132] G. Sánchez and J.-C. Latombe. Using a PRM planner to compare centralized and
decoupled planning for multi-robot systems. In IEEE International Conference
Robotics and Automation, 2002.

[133] G. Sánchez and J.-C. Latombe. Using a PRM planner to compare centralized and
decoupled planning for multi-robot systems. In IEEE International Conference on
Robotics and Automation, pages 2112–2119, 2002.

[134] J. Savage, E. Marquez, J. Pettersson, N. Trygg, A. Petersson, and M. Wahde. Op-
timization of waypoint-guided potential field navigation using evolutionary al-
gorithms. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3463–3468, 2004.

[135] E. Schmitzberger, J.-L. Bouchet, M. Dufaut, W. Didier, and R. Husson. Capture
of homotopy classes with probabilistic road map. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2002.

[136] J.T. Schwartz and M. Sharir. On the piano movers’ problem: I. The case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers. Com-
munications on Pure and Applied Mathematics, 36:345–398, 1983.

172

[137] J.T. Schwartz and M. Sharir. On the piano movers’ problem: II. General tech-
niques for computing topological properties of real algebraic manifolds. Ad-
vances in Applied Mathematics, 4:298–351, 1983.

[138] J.T. Schwartz and M. Sharir. On the piano movers’ problem: III. Coordinating the
motion of several independent bodies: The special case of circular bodies mov-
ing amidst polygonal obstacles. International Journal of Robotics Research, 2:46–75,
1983.

[139] J.T. Schwartz and M. Sharir. On the piano movers’ problem: V. The case of a
rod moving in three-dimensional space amidst polyhedral obstacles. Communi-
cations on Pure and Applied Mathematics, 37:815–848, 1984.

[140] S. Sekhavat, P. Švestka, J.-P. Laumond, and M.H. Overmars. Multilevel path
planning for nonholonomic robots using semiholonomic subsystems. Interna-
tional Journal of Robotics Research, 17:840–857, 1998.

[141] S. Shimoda, Y. Kuroda, and K. Iagnemma. Random motion to escape local min-
ima potential field navigation of high speed unmanned ground vehicles on un-
even terrain. In IEEE International Conference on Robotics and Automation, pages
2839–2844, 2005.

[142] K. Shoemake. Graphics Gems III, chapter Uniform random rotations, pages 124–
132. Academic Press, 1992.

[143] T. Siméon, R. Chatila, and J.-P. Laumond. Computer aided motion for logistics
in nuclear plants. In International symposium on artificial intelligence, robotics and
human centered technology for nuclear applications, pages 46–53, 2002.

[144] T. Siméon, J. Cortés, A. Sahbani, and J.-P. Laumond. A manipulation planner
for pick and place operations under continuous grasps and placements. In IEEE
International Conference on Robotics and Automation, pages 2022–2027, 2002.

[145] T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile
robots: A resolution complete algorithm. IEEE Transactions on Robotics and Au-
tomation, 18:42–49, 2002.

[146] A.P. Singh, J.-C. Latombe, and D.L. Brutlag. A motion planning approach to flex-
ible ligand binding. In International Conference on Intelligent Systems for Molecular
Biology, pages 252–261, 1999.

[147] A.F. van der Stappen, M.H. Overmars, M. de Berg, and J. Vleugels. Motion
planning in environments with low obstacle density. Discrete & Computational
Geometry, 20:561–587, 1998.

[148] S. Thomas, G. Song, and N.M Amato. Protein folding by motion planning. Phys-
ical biology, 2:148–155, 2005.

[149] G. Varadhan and D. Manocha. Star-shaped roadmaps – A deterministic sam-
pling approach for complete motion planning. In Robotics: Science and Systems,
2005.

173

[150] J. Vleugels and M.H. Overmars. Approximating Voronoi diagrams of convex
sites in any dimension. International Journal of Computational Geometry & Applica-
tions, 8:201–221, 1998.

[151] P. Švestka. Robot Motion Planning Using Probabilistic Road Maps. PhD thesis,
Utrecht University, 1997.

[152] P. Švestka and M.H. Overmars. Motion planning for car-like robots, a proba-
bilistic learning approach. International Journal of Robotics Research, 16:119–143,
1997.

[153] P. Švestka and M.H. Overmars. Coordinated path planning for multiple robots.
Robotics and Autonomous System, 23:125–152, 1998.

[154] X. Wang and F.J. Hickernell. Randomized Halton sequences. Mathematics and
Computer Modeling, 32:887–899, 2000.

[155] R. Wein, J.P. van den Berg, and D. Halperin. The Visibility-Voronoi complex and
its applications. In Annual Symposium on Computational Geometry, pages 63–72,
2005.

[156] S.A. Wilmarth, N.M. Amato, and P.F. Stiller. MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of the free space. In IEEE International
Conference on Robotics and Automation, pages 1024–1031, 1999.

[157] J. Yakey, S.M. LaValle, and L.E. Kavraki. Randomized path planning for link-
ages with closed kinematic chains. IEEE Transactions on Robotics and Automation,
17:951–958, 2001.

[158] A. Yershova and S.M. Lavalle. Efficient nearest neighbor searching for motion
planning. In IEEE International Conference on Robotics and Automation, pages 632–
637, 2002.

[159] A. Yershova and S.M. Lavalle. Deterministic sampling methods for spheres and
SO(3). In IEEE International Conference on Robotics and Automation, pages 3974–
3980, 2004.

[160] D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical
path planning. IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

174

PUBLICATIONS

The chapters of this thesis are based on the following papers:

Chapter 2

R. Geraerts and M.H. Overmars. A comparative study of probabilistic roadmap
planners. In Workshop on the Algorithmic Foundations of Robotics, pages 43–57,
2002.

R. Geraerts and M.H. Overmars. Sampling techniques for probabilistic road-
map planners. In Conference on Intelligent Autonomous Systems, pages 600–609,
2004.

R. Geraerts and M.H. Overmars. Sampling and node adding in probabilis-
tic roadmap planners. Journal of Robotics and Autonomous Systems, 54:165–173,
2006.

Chapter 3

R. Geraerts and M.H. Overmars. Reachability analysis of sampling based plan-
ners. In IEEE International Conference on Robotics and Automation, pages 406–412,
2005.

R. Geraerts and M.H. Overmars. On the analysis and success of sampling based
motion planning. In Conference of the Advanced School for Computing and Imaging,
pages 313–319, 2005.

Chapter 4

R. Geraerts and M.H. Overmars. Clearance based path optimization for motion
planning. In IEEE International Conference on Robotics and Automation, pages
2386–2392, 2004.

175

R. Geraerts and M.H. Overmars. On improving the path quality for motion
planning. In Conference of the Advanced School for Computing and Imaging, pages
211–217, 2004.

R. Geraerts and M.H. Overmars. On improving the clearance for robots in
high-dimensional configuration spaces. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4074–4079, 2005.

Chapter 5

R. Geraerts and M.H. Overmars. Clearance based path optimization for mo-
tion planning. In IEEE International Conference on Robotics and Automation, pages
2386–2392, 2004.

R. Geraerts and M.H. Overmars. On improving the path quality for motion
planning. In Conference of the Advanced School for Computing and Imaging, pages
211–217, 2004.

Chapter 6

R. Geraerts and M.H. Overmars. Creating small roadmaps for solving motion
planning problems. In IEEE International Conference on Methods and Models in
Automation and Robotics, pages 531–536, 2005.

Chapter 7

R. Geraerts and M.H. Overmars. Creating high-quality roadmaps for motion
planning in virtual environments. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 4355–4361, 2006.

176

SAMENVATTING

In de toekomst —misschien al over 20 jaar— zullen robots niet meer uit ons
dagelijkse bestaan weg te denken zijn. Zo zullen ze tal van huishoudelijke ta-
ken, overheidsdiensten en industriële operaties gaan uitvoeren. Ook kunnen
ze gevaarlijke taken tijdens reddingsoperaties uit handen nemen.

De robots van nu zijn nog lang niet in staat om dit soort complexe taken
autonoom uit te voeren. Veel taken lijken eenvoudig voor mensen, zoals het
serveren van koffie, omdat we in ons leven intensief getraind zijn om interac-
tie met de omgeving te hebben. Echter, robots moeten nog vele uitdagingen
overwinnen: ze moeten een taak begrijpen en in deeltaken opdelen, de omge-
ving waarin ze werkzaam zijn interpreteren en in kaart brengen, de obstakels
ontwijken terwijl ze navigeren, objecten verplaatsen en manipuleren, en ze die-
nen sociale interacties met hun omgeving te kunnen hebben.

Hedendaagse robots voeren taken uit die te monotoon, smerig of gevaarlijk
voor ons zijn. Denk maar eens aan het verwijderen van giftig afval of het uit-
voeren van onderhoudswerkzaamheden in de ruimte. Ook in de industrie
zijn robots met succes ingezet voor het doen van repeterende en gevaarlijke
taken. Naast de industrie heeft ook de consument de robot ontdekt. Erg po-
pulair is de speelgoed-robothond, Aibo, die door Sony op de markt is gebracht.
Hij is in staat om zich voort te bewegen, de omgeving te ‘zien’ en op gespro-
ken commando’s te reageren. Andere veelverkochte huishoudelijke robots zijn
stofzuigers en grasmaaiers die op eigen houtje hun taak volbrengen.

Eén van de fundamentele taken voor robots is het plannen van hun bewe-
gingen terwijl ze botsingen met obstakels in hun omgeving voorkomen. Deze
taak vormt het centrale thema van dit proefschrift. Hierin wordt met name
bewegingsplanning voor rigide en aaneengeschakelde robots in statische en
tevens bekende virtuele omgevingen besproken.

Het proefschrift is opgesplitst in twee delen. In het eerste deel worden sam-
pling-gebaseerde bewegingsplanningtechnieken vergeleken en geanalyseerd.
Er zal dieper worden ingegaan op de probabilistische wegenkaartmethode (’Prob-
abilistic Roadmap Method’). Het doel van de methode is het maken van een

177

wegenkaart van de omgeving die de robot kan gebruiken om een pad van A

naar B te plannen. Omdat deze omgeving bekend wordt geacht, kan voor elke
mogelijke positie van de robot getest worden of hij al dan niet een obstakel
raakt. De specificatie van een dergelijke positie wordt ook wel een sample ge-
noemd. De methode genereert een willekeurige verzameling van botsingsvrije
samples. Zij vormen de knooppunten van de wegenkaart. Voor bepaalde zorg-
vuldig gekozen paren uit deze verzameling probeert de methode de twee be-
treffende samples met elkaar te verbinden met een lokaal pad. Zo’n pad is
meestal een eenvoudige rechtlijnige verbinding tussen de samples. Als het pad
botsingsvrij is, dan wordt het als een verbinding in de wegenkaart opgenomen.
Een pad tussen een bepaalde start- en eindpositie kan de robot vervolgens in
twee stappen vinden: eerst moeten deze posities als samples toegevoegd wor-
den aan en verbonden worden met de wegenkaart. Dan kan de robot simpel-
weg de wegenkaart gebruiken om tussen deze posities te navigeren.

De methode is succesvol toegepast in een grote verscheidenheid aan ap-
plicaties waaronder CAD/CAD applicaties, computersimulatie, computerani-
matie, biologie, en medische en interactieve applicaties. Het succes kan toe-
gekend worden aan het feit dat de methode geen expliciete representatie van
de vrije bewegingsruimte hoeft uit te rekenen. De belangrijkste operatie is
namelijk het testen of een plaatsing van de robot botst met een obstakel. Deze
operatie kan tegenwoordig efficiënt uitgevoerd worden. De tweede reden van
het succes is dat problemen die ‘redelijk’ zijn positieve bereikbaarheidseigen-
schappen hebben. Zo kan de vrije bewegingsruimte van een redelijk probleem
vaak gerepresenteerd worden door een kleine verzameling samples waarbij el-
ke sample verbonden kan worden met andere samples die ‘ver weg’ liggen.
Hierdoor vindt de methode vaak snel een pad, zelfs als er veel obstakels zijn of
als de robot veel verschillende typen bewegingen kan maken.

De afgelopen vijftien jaar hebben veel onderzoekers aan deze methode ge-
werkt. Dit leidde tot vele varianten van de methode met elk zijn eigen verdien-
sten. Het is lastig om deze varianten te vergelijken aangezien ze door verschil-
lende mensen getest werden op verschillende typen virtuele omgevingen met
verschillende computers en programma’s.

In het eerste deel van dit proefschrift zal een vergelijkende studie worden
verricht van gangbare varianten, geı̈mplementeerd op één systeem en getest
op dezelfde problemen en dezelfde computer. In het bijzonder worden de
verschillende manieren die bepalen of een lokaal pad botsingsvrij is, en tech-
nieken die bepalen hoe de samples gekozen en met elkaar verbonden worden
bestudeerd. De resultaten zijn verrassend in de zin dat de technieken vaak
anders presteren dan wordt geclaimd door de ontwerpers.

178

Naast het vergelijken op basis van het vinden van één vooraf gespecificeerde
query (specificatie van het begin- en eindpunt van een pad), zal er een analyse
worden gemaakt op basis van het kunnen oplossen van elk mogelijke query.
De experimenten laten zien —in tegenstelling tot de algemene overtuiging—
dat het verbonden krijgen van de samples in het algemeen veel lastiger is dan
het met de samples overdekt krijgen van de botsingsvrije ruimte. Het verschil
wordt groter naarmate er nauwere passages in de omgeving aanwezig zijn.
Deze kennis kan men gebruiken om problemen adequater op te lossen. Zo
wordt er een nieuwe krachtigere methode gecreëerd die de samples verbindt.
Ook een hybride samplingmethode en een beter begrip van de parameters lei-
den tot een effectieve aanpak van het bewegingsplanningprobleem.

Het tweede deel van het proefschrift gaat over de kwaliteitsaspecten van
paden en wegenkaarten. Omdat het soms lastig kan zijn om een pad te creëren,
richten algoritmen zich slechts op het vinden van een enkele oplossing. Echter,
voor de meeste toepassingen is het van belang dat er genoeg speling is tussen
het pad en de obstakels, want het is vaak lastig om de precieze positie van de
robot te meten en te controleren. Het bewegen langs een pad dat een bepaalde
minimale hoeveelheid speling heeft, reduceert de kans op botsingen die ver-
oorzaakt kunnen worden door deze onzekerheden. Ook dient het pad geen
overbodige bewegingen te bevatten, want deze zullen langer duren om uit te
voeren. Ten slotte dient een dergelijk pad snel berekend te kunnen worden.

Er worden twee algoritmen voorgesteld die de speling tussen het pad en de
obstakels vergroten. De eerste is snel, maar de methode is beperkt tot rigide,
schuivende robots. De tweede is langzamer, maar de methode kan omgaan
met een breed perspectief aan robots zoals vrij-bewegende en aaneengescha-
kelde robots. Een groot voordeel van deze algoritmen is dat de speling langs
paden nu efficiënt vergroot kan worden zonder dat complexe datastructuren
en algoritmen nodig zijn.

Verder worden er algoritmen bestudeerd die de lengte van een pad kun-
nen verkleinen. Na observatie blijkt dat bestaande algoritmen lang niet altijd
overvloedige (rotationele) bewegingen van een robot kunnen wegnemen. Een
nieuw algoritme wordt voorgesteld dat deze succesvol verwijdert.

Daarna zal de Reachability Roadmap Method (RRM) worden geı̈ntroduceerd
welke kleine wegenkaarten creëert voor twee- en driedimensionale problemen.
Zo’n kleine wegenkaart verzekert het vinden van een pad binnen een kort
tijdsbestek en een minimaal gebruik van de hoeveelheid geheugen voor het
opslaan van de wegenkaart. Ten slotte garandeert de methode dat een pad
altijd gevonden wordt (indien hij bestaat) bij een gegeven opdeling in cellen
van de vrije bewegingsruimte.

179

De genoemde technieken zullen worden verenigd met enkele nieuwe tech-
nieken om wegenkaarten te maken die in het bijzonder geschikt zijn voor inter-
actieve virtuele omgevingen. Hierbij wordt de RRM als uitgangspunt gebruikt.
Om te beschikken over alternatieve routes en korte paden worden nuttige ke-
tens aan de wegenkaart toegevoegd. Vervolgens wordt speling aan de wegen-
kaart toegevoegd, wat men in staat stelt om zonder vertraging paden met hoge
kwaliteit te verkrijgen.

Ten slotte wordt aangegeven dat het nuttig is om in de nabije toekomst een
bibliotheek van bewegingsplanningtechnieken te bouwen die men als ‘black
box’ kan gebruiken. Zodoende hoeven gebruikers niet na te denken over pa-
rameterkeuzes die meestal weinig zinnig voor ze zijn. In dit proefschrift wordt
geprobeerd om deze keuzes zo veel mogelijk te automatiseren. Ook wordt
inzicht verschaft in het effect van alle parameters op de besproken methoden.
Hoewel de software, algoritmen en resultaten een basis voor de bibliotheek
verschaffen, zal verder onderzoek nodig zijn de black box mogelijk te maken.

Het creëren van een dergelijke bibliotheek zal essentieel zijn voor de ont-
wikkeling van autonome robots.

180

ACKNOWLEDGEMENTS

Many people contributed to this thesis in one way or another, and I wish to
express my gratitude toward them.

First of all, I would like to thank my promotor, Mark Overmars. During
our regular meetings, Marks’ bright observations always helped me to see ‘the
big picture’. His many suggestions and improvements have helped shape this
thesis.

Next, I would like to thank the members of the reading committee, Nancy
Amato, Frans Groen, Dan Halperin, Jean-Paul Laumond and Peter Werkhoven
for reading my thesis and for their helpful suggestions and discussions. I
would also like to thank Marcel and Rodrigo for proof reading the manuscript.
Marcel, I especially liked our nighttime tea and coffee breaks before the great
day had dawned.

A word of thanks goes to all my colleagues at the Department of Infor-
mation and Computing Sciences of Utrecht University for having a good time
during coffee breaks, lunches and conferences. Due to many hours of playing
darts with Guido, Han, and Twan et al., and playing table tennis with Arno,
Dennis, Little O and Big O, I did not get RSI. Geert-Jan, thanks for your help on
C++.

I want to thank Remco Veltkamp and Dirk Thierens for supervising me
during the writing of my M.Sc. thesis. It was during that time that I became
convinced that I wanted to do a Ph.D.

I would like to thank the Netherlands’ Organisation for Scientific Research
(NWO) for funding my position and the Advanced School for Computing and
Imaging (ASCI) for providing four nice holidays and partly funding my thesis.

Lastly, I would like to thank Suus (a.k.a. mevrouw Jeurnink), my parents
and my friends, for their endless support. Thank you all.

181

182

CURRICULUM VITAE

Roland Jan Geraerts was born in Maaseik, Belgium in 1978. From 1990 to 1997,
he received his preparatory education at the Scholengemeenschap Sint Ursula
in Horn, the Netherlands. From 1997 to 2001, he studied computer science at
Utrecht University, the Netherlands. His Masters thesis, entitled ‘Pose Esti-
mation with Evolution Strategies’, was completed under the supervision of dr.
Dirk Thierens and dr. Remco Veltkamp. In 2002, he started as a Ph.D. student
under the supervision of Prof. dr. Mark H. Overmars at the same university.
In 2006, he completed his thesis there.

183

184

COLOFON

This thesis was typeset by the author in LATEX 2ε. The main body of the text was
set using 11 points Palatino font. The charts were rendered using Gnuplot 4.0.
The cover was designed by Studio Hedris.
No computers were harmed during the production of this thesis.

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 121.

ISBN-10: 90-393-4229-6
ISBN-13: 978-90-393-4229-9

c© 2006 by Roland Geraerts. All rights reserved.

185

